Abstract

Finding the roots of non-linear and transcendental equations is an important problem in engineering sciences. In general, such problems do not have an analytic solution; the researchers resort to numerical techniques for exploring. We design and implement a three-way hybrid algorithm that is a blend of the Newton–Raphson algorithm and a two-way blended algorithm (blend of two methods, Bisection and False Position). The hybrid algorithm is a new single pass iterative approach. The method takes advantage of the best in three algorithms in each iteration to estimate an approximate value closer to the root. We show that the new algorithm outperforms the Bisection, Regula Falsi, Newton–Raphson, quadrature based, undetermined coefficients based, and decomposition-based algorithms. The new hybrid root finding algorithm is guaranteed to converge. The experimental results and empirical evidence show that the complexity of the hybrid algorithm is far less than that of other algorithms. Several functions cited in the literature are used as benchmarks to compare and confirm the simplicity, efficiency, and performance of the proposed method.

Department(s)

Computer Science

Publication Status

Open Access

Keywords and Phrases

bisection; false position; newton; order of convergence; predictor-corrector; quadrature

International Standard Serial Number (ISSN)

2673-4117

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Mar 2021

Share

 
COinS