DisTGranD: Granular Event/sub-event Classification For Disaster Response

Abstract

Efficient crisis management relies on prompt and precise analysis of disaster data from various sources, including social media. The advantage of fine-grained, annotated, class-labeled data is the provision of a diversified range of information compared to high-level label datasets. In this study, we introduce a dataset richly annotated at a low level to more accurately classify crisis-related communication. To this end, we first present DisTGranD, an extensively annotated dataset of over 47,600 tweets related to earthquakes and hurricanes. The dataset uses the Automatic Content Extraction (ACE) standard to provide detailed classification into dual-layer annotation for events and sub-events and identify critical triggers and supporting arguments. The inter-annotator evaluation of DisTGranD demonstrated high agreement among annotators, with Fleiss Kappa scores of 0.90 and 0.93 for event and sub-event types, respectively. Moreover, a transformer-based embedded phrase extraction method showed XLNet achieving an impressive 96% intra-label similarity score for event type and 97% for sub-event type. We further proposed a novel deep learning classification model, RoBiCCus, which achieved ≥90% accuracy and F1-Score in the event and sub-event type classification tasks on our DisTGranD dataset and outperformed other models on publicly available disaster datasets. DisTGranD dataset represents a nuanced class-labeled framework for detecting and classifying disaster-related social media content, which can significantly aid decision-making in disaster response. This robust dataset enables deep-learning models to provide insightful, actionable data during crises. Our annotated dataset and code are publicly available on GitHub 1.

Department(s)

Computer Science

Comments

National Science Foundation, Grant CNS-2219614

Keywords and Phrases

Disaster response; Event classification; Fine-grained labels; Phrase extraction; Text annotation; Transformers; X data

International Standard Serial Number (ISSN)

2468-6964

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Elsevier, All rights reserved.

Publication Date

01 Jan 2025

Share

 
COinS