Abstract

Active cyber defense mechanisms are necessary to perform automated, and even autonomous operations using intelligent agents that defend against modern/sophisticated AI-inspired cyber threats (e.g., ransomware, cryptojacking, deep-fakes). These intelligent agents need to rely on deep learning using mature knowledge and should have the ability to apply this knowledge in a situational and timely manner for a given AI-inspired cyber threat. in this paper, we describe a 'domain-Agnostic knowledge graph-As-A-service' infrastructure that can support the ability to create/store domain-specific knowledge graphs for intelligent agent Apps to deploy active cyber defense solutions defending real-world applications impacted by AI-inspired cyber threats. Specifically, we present a reference architecture, describe graph infrastructure tools, and intuitive user interfaces required to construct and maintain large-scale knowledge graphs for the use in knowledge curation, inference, and interaction, across multiple domains (e.g., healthcare, power grids, manufacturing). Moreover, we present a case study to demonstrate how to configure custom sets of knowledge curation pipelines using custom data importers and semantic extract, transform, and load scripts for active cyber defense in a power grid system. Additionally, we show fast querying methods to reach decisions regarding cyberattack detection to deploy pertinent defense to outsmart adversaries.

Department(s)

Computer Science

Keywords and Phrases

active cyber defense; cyber-security; knowledge graph; power grid systems

International Standard Serial Number (ISSN)

2164-2516

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jan 2023

Share

 
COinS