Emotion is an experience associated with a particular pattern of physiological activity along with different physiological, behavioral and cognitive changes. One behavioral change is facial expression, which has been studied extensively over the past few decades. Facial behavior varies with a person's emotion according to differences in terms of culture, personality, age, context, and environment. In recent years, physiological activities have been used to study emotional responses. A typical signal is the electroencephalogram (EEG), which measures brain activity. Most of existing EEG-based emotion analysis has overlooked the role of facial expression changes. There exits little research on the relationship between facial behavior and brain signals due to the lack of dataset measuring both EEG and facial action signals simultaneously. To address this problem, we propose to develop a new database by collecting facial expressions, action units, and EEGs simultaneously. We recorded the EEGs and face videos of both posed facial actions and spontaneous expressions from 29 participants with different ages, genders, ethnic backgrounds. Differing from existing approaches, we designed a protocol to capture the EEG signals by evoking participants' individual action units explicitly. We also investigated the relation between the EEG signals and facial action units. As a baseline, the database has been evaluated through the experiments on both posed and spontaneous emotion recognition with images alone, EEG alone, and EEG fused with images, respectively. The database will be released to the research community to advance the state of the art for automatic emotion recognition.


Computer Science


National Science Foundation, Grant CNS-1629898

Keywords and Phrases

Action unit; Action unit recognition; Affection; Database; EEG; Emotion; Emotion recognition; Facial action; Facial expression recognition; Fusion feature; Multimodal; Pain

International Standard Book Number (ISBN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Nov 2020