Abstract

Self-consolidating earth concrete (SCEC) addresses the long construction process of conventional earthen constructions and their structural limitations, while further efforts are needed to enhance its sustainability. This study explores the development of a kaolinite-based self-consolidating earth paste (SCEP) due to their blended powder system, incorporating raw and treated (calcined and ground-calcined) kaolinite under various activation techniques, such as water hydration, sodium hexametaphosphate (NaHMP), and sodium hydroxide (NaOH) activation. The synergistic effect of calcination and mechanosynthesis on rheological, mechanical, structural, and microstructural properties of SCEP were investigated. Mechanically treated kaolinite increased yield stress, plastic viscosity, storage modulus evolution, and build-up index, while delayed the strength development compared to the calcined kaolinite samples. Among the investigated activators, NaOH resulted in more promising structural build-up, storage modulus, and compressive strength development. These findings were elaborated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), calorimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM).

Department(s)

Civil, Architectural and Environmental Engineering

Publication Status

Open Access

Comments

Natural Sciences and Engineering Research Council of Canada, Grant None

Keywords and Phrases

Activation; Kaolinite; Mechanosynthesis; Rheology; Self-consolidating earth concrete (SCEC)

International Standard Serial Number (ISSN)

0950-0618

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Elsevier, All rights reserved.

Publication Date

06 Jun 2025

Share

 
COinS