Crystal Plasticity Simulation Study on the Influence of Texture on Earing in Steel


We present a numerical study on the influence of crystallographic texture on the earing behavior of a low carbon steel during cup drawing. the simulations are conducted by using the texture component crystal plasticity finite element method which accounts for the full elastic-plastic anisotropy of the material and for the explicit incorporation of texture including texture update. Several important texture components that typically occur in commercial steel sheets were selected for the study. by assigning different spherical scatter widths to them the resulting ear profiles were calculated under consideration of texture evolution. the study reveals that 8, 6, or 4 ears can evolve during cup drawing depending on the starting texture. an increasing number of ears reduces the absolute ear height. the effect of the orientation scatter width (texture sharpness) on the sharpness of the ear profiles was also studied. It was observed that an increase in the orientation scatter of certain texture components entails a drop in ear sharpness while for others the effect is opposite. © 2005 Elsevier B.V. All rights reserved.


Civil, Architectural and Environmental Engineering


Deutsche Forschungsgemeinschaft, Grant None

Keywords and Phrases

Anisotropy; Body-centered-cubic; Deep drawing; Earing; Modeling; Plastic deformation; Sheet forming; Springback

International Standard Serial Number (ISSN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2024 Elsevier, All rights reserved.

Publication Date

01 Nov 2005