This paper investigates experimentally the seismic behavior of two hollow-core fiber-reinforced polymer-concrete-steel HC-FCS columns under cyclic loading as a cantilever. The typical precast HC-FCS member consists of a concrete wall sandwiched between an outer fiber-reinforced polymer (FRP) tube and an inner steel tube. The FRP tube provides continuous confinement for the concrete wall along the height of the column. Five large-scale HC-FCS columns were investigated during this study to estimate the effective flexural (which is an important factor to define the buckling capacity and deflection of such columns) and the effective structural stiffness of the composite columns. These columns have the same geometric properties; the only difference was in the thickness of the inner circular steel tubes and the steel tube embedded length into the footing. A three-dimensional numerical model has been developed using LS_DYNA software for modeling this large scale HC-FCS columns. The nonlinear FE models were designed and validated against experimental results gathered from HC-FCS columns tested under cyclic lateral loading and used to evaluate the effective stiffness’s results. The estimated effective stiffness results that obtained from the experimental work were compared with the FE results. This study revealed that the effective flexural and the effective structural stiffness for the HC-FCS columns need more investigation to be addressed in the standard codes. Since the embedded hollow core steel tube socket connections cannot reach the fully fixed end condition to act as a cantilever member subjected to a lateral load with a fully fixed end condition. Moreover, the effective stiffness results were found to be highly sensitive to the steel tube embedded length and slightly to the unconfined concrete strength.

Meeting Name

16th International Congress on Polymers in Concrete, ICPIC 2018 (2018: Apr. 29-May 1, Washington, DC)


Civil, Architectural and Environmental Engineering

Document Type

Article - Conference proceedings

Document Version

Accepted Manuscript

File Type





© 2018 Springer, All rights reserved.

Publication Date

01 May 2018