Abstract
Studies of the evaporation of aqueous nanoparticle solutions have been limited due to lack of homogeneity of the solution, difficulties in obtaining reproducible samples and stability of substrates, as well as the effect of other volatile components or contaminants such as surfactants. Colloidal unimolecular polymer (CUP) is a spheroidal nanoparticle with charged hydrophilic groups on the surface, and the particle size ranges from 3 to 9 nm. The large amount of surface water on the CUP surface provides the opportunity to evaluate the evaporation of surface water, which may contribute to the investigation the factors that affect the evaporation rate in solutions of ultra-small particles, like protein, micelle, colloidal, etc. Six CUP systems were evaluated by thermogravimetric analysis (TGA) with respect to time and solids content. The evaporation rate of water was initially enhanced due to the deformation of the air-water interface at low to moderate concentration due to particle charge repulsive forces. At higher concentrations, above 20%, surface charge condensation and increasing viscosity began to dominate. At higher concentration where the CUP reached the gel point the rate of diffusion controlled the evaporation. The final drying point was the loss of three waters of hydration for each carboxylate on the CUP surface.
Recommended Citation
P. Geng et al., "Investigation of the Evaporation Rate of Water from Colloidal Unimolecular Polymer (CUP) Systems by Isothermal TGA," Polymers, vol. 12, no. 11, pp. 1 - 20, article no. 2752, MDPI, Nov 2020.
The definitive version is available at https://doi.org/10.3390/polym12112752
Department(s)
Chemistry
Publication Status
Open Access
Keywords and Phrases
Colloidal unimolecular polymer (CUP); Counterion condensation; Deformation; Diffusion; Evaporation rate; Nanoparticle; Thermogravimetric analyzer (TGA)
International Standard Serial Number (ISSN)
2073-4360
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2024 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
02 Nov 2020