Abstract

A wide range of density functional theory (DFT) methods (37 altogether), including pure, hybrid, range-separated hybrid, double-hybrid, and dispersion-corrected functionals, have been employed to compute the harmonic vibrational frequencies of eight small water clusters ranging in size from the dimer to four different isomers of the hexamer. These computed harmonic frequencies have been carefully compared to recently published benchmark values that are expected to be very close to the CCSD(T) complete basis set limit. Of the DFT methods examined here, ωB97 and ωB97X are the most consistently accurate, deviating from the reference values by less than 20 cm-1 on average and never more than 60 cm-1. The performance of double-hybrid methods including B2PLYP and mPW2-PLYP is only slightly better than more economical approaches, such as the M06-L pure functional and the M06-2X hybrid functional. Additionally, dispersion corrections offer very little improvement in computed frequencies.

Department(s)

Chemistry

Publication Status

Open Access

Comments

National Science Foundation, Grant CHE-1338056

International Standard Serial Number (ISSN)

1089-7690; 0021-9606

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 American Institute of Physics, All rights reserved.

Publication Date

07 Dec 2015

Included in

Chemistry Commons

Share

 
COinS