The gut microbiota is extremely important for the health of the host across its lifespan. Recent studies have elucidated connections between the gut microbiota and neurological disease and disorders such as depression, anxiety, Alzheimer's disease (AD), autism, and a host of other brain illnesses. Dysbiosis of the normal gut flora can have negative consequences for humans, especially throughout key periods during our lifespan as the gut microbes change with age in both phenotype and number of bacterial species. Neurologic diseases, mental disorders, and euthymic states are influenced by alterations in the metabolites produced by gut microbial milieu. We introduce a new concept, namely, the mycobiota and microbiota-gut-brain neuroendocrine axis and discuss co-metabolism with emphasis on means to influence or correct disruptions to normal gut flora throughout the lifespan from early development to old age. These changes involve inflammation and involve the permeability of barriers, such as the intestine blood barrier, the blood-brain barrier, and others. The mycobiota and microbiota-gut-brain axis offer new research horizons and represents a great potential target for new therapeutics, including approaches based around inflammatory disruptive process, genetically engineered drug delivery systems, diseased cell culling "kill switches", phage-like therapies, medicinal chemistry, or microbial parabiosis to name a few.



Keywords and Phrases

Aging; Alzheimer's disease; Autism; Blood-brain barrier; CRISPR; Gut-brain-axis; Leaky brain; Leaky gut; Microbiota; mycobiota; Parkinson disease; Schizophrenia; Synbiotics; Transsulfuration

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2019 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Jun 2019

Included in

Chemistry Commons