The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm ubiquitously seen in a wide variety of astrophysical regions are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Astronomical PAHs may have an aliphatic component, as revealed by the detection in many UIE sources of the aliphatic C-H stretching feature at 3.4 mm. The ratio of the observed intensity of the 3.4 mm feature to that of the 3.3 μm aromatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers. This requires knowledge of the intrinsic oscillator strengths of the 3.3 mm aromatic C-H stretch (A3.3) and the 3.4 μm aliphatic C-H stretch (A3.4). Lacking experimental data on A3.3 and A3.4 for the UIE candidate materials, one often has to rely on quantum-chemical computations. Although the second-order Møller-Plesset (MP2) perturbation theory with a large basis set is more accurate than the B3LYP density functional theory, MP2 is computationally very demanding and impractical for large molecules. Based on methylated PAHs, we show here that, by scaling the band strengths computed at an inexpensive level (e.g., B3LYP/6-31G), we are able to obtain band strengths as accurate as those computed at far more expensive levels (e.g., MP2/6-311+G(3df,3pd)). We calculate the model spectra of methylated PAHs and their cations excited by starlight of different spectral shapes and intensities. We find that (I3.4/I3.3)mod, the ratio of the model intensity of the 3.4 μm feature to that of the 3.3 μm feature, is insensitive to the spectral shape and intensity of the exciting starlight. We derive a straightforward relation for determining the aliphatic fraction of the UIE carriers (i.e., the ratio of the number of C atoms in aliphatic units NC,ali to that in aromatic rings NC,aro) from the observed band ratios (I3.4/I3.3)obs: NC,ali/NC,aro ≈ 0.57 x (I3.4/I3.3)obs for neutrals and NC,ali NC,aro ≈ 0.26 x (I3.4/I3.3)obs for cations.



Keywords and Phrases

Dust; Extinction; ISM: lines and bands; ISM: molecules

International Standard Serial Number (ISSN)

0004-637X; 1538-4357

Document Type

Article - Journal

Document Version

Final Version

File Type





© 2017 Institute of Physics - IOP Publishing, All rights reserved.

Publication Date

01 Mar 2017

Included in

Chemistry Commons