Theoretical Study of Vibronic Perturbations in Magnesium Carbide

Abstract

Understanding molecular systems with complex multi-configurational bonding has been of interest to both experimentalists and theoreticians for many years. High level dynamically weighted MRCI calculations were used to generate accurate potential energy curves for the triplet ground state 3Σ-, and triplet excited states up to (4 3Σ-, 4 3Πand 1 3Δ) and quintet (1 5Σ- and 1 5Π) states up to 50,000 cm-1 above the ground state minimum. The lowest four 3Πstates of magnesium mono-carbide (MgC) are strongly coupled leading to lifetimes that are shortened by pre-dissociation for most of the vibronic states. Non-adiabatic derivative couplings between the 3Πstates were used to determine diabatic potential energy curves. The state mixing role of spin-orbit coupling, which is much weaker than the non-adiabatic interactions, is discussed. A coupled vibronic Hamiltonian was solved to compute and assign strongly mixed vibronic states. The results are compared and contrasted with the valence iso-electronic beryllium carbide (BeC) system whose results were published earlier [B.J. Barker, I.O. Antonov, J.M. Merritt, V.E. Bondybey, M.C. Heaven, and R. Dawes, J. Chem. Phys. 137, 214313 (2012)]. Transitions, spectroscopic constants and band origins are expected to aid experimental detection of MgC in the future.

Department(s)

Chemistry

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Carbides; Excited States; Ground State; Magnesium; Molecular Physics; Diabatisation; Interstellar; MRCI; PEC; Vibronic; Potential Energy; Dynamic-weighting

International Standard Serial Number (ISSN)

0026-8976

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2016 Taylor & Francis Ltd., All rights reserved.

Publication Date

01 Jan 2016

Share

 
COinS