Integration of Phase Distribution from Gamma-Ray Tomography Technique with Monolith Reactor Scale Modeling


In this work, a monolith reactor model was developed to study the effect of phase distribution on the performance of the monolith reactors by integrating phase distribution data from the experiments. To obtain the phase distribution at the reactions conditions, gamma ray computed tomography (CT) was used. Effect of gas density, surface tension of liquid and operating conditions on the phase distribution were studied using gamma-ray computed tomography. Experiments were conducted in Taylor flow regime. With the increase in gas density, uniformity increases. Surface tension has little effect on the distribution in the investigated conditions. Liquid with lower surface tension and gas with lower density has higher cross-sectional liquid saturation. Further, the monolith reactor model with uniform phase distribution and actual distribution were compared. It was found that at higher velocities both gives the same reactor performance irrespective of the maldistribution, however at low velocities, they differ significantly due to the maldistribution. If the maldistribution is present at both low and high velocities, catalyst utilization plays a major role, thus it is recommended to operate at higher velocities where catalyst utilization is high due to high mass transfer.


Chemical and Biochemical Engineering

Research Center/Lab(s)

Center for High Performance Computing Research


The authors would like to acknowledge financial support from Bayer AG and other CREL sponsors made this work possible.

Keywords and Phrases

CT; Monoliths; Phase distribution; Reactor modeling

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2019 Elsevier Ltd, All rights reserved.

Publication Date

01 Jun 2019