Combined Capture and Utilization of CO₂ for Syngas Production over Dual-Function Materials


The integration of CO2 capture and conversion has been recently demonstrated as a promising approach to address CO2 emissions while producing value-added chemicals and fuels. Herein, we report in situ capture and utilization of CO2 in syngas production from dry reforming of ethane (DRE) over dual-function materials (DFMs) consisting of Ni-impregnated CaO- and MgO-based double salts supported on γ-Al2O3. The N2 physisorption, XRD, CO2-TPD, NH3-TPD, H2-TPR, and XPS analyses were performed to characterize the obtained DFMs. The CO2 adsorption-desorption performance of γ-Al2O3-supported adsorbent-catalyst materials at 650 °C indicated that 100% of the adsorbed CO2 was desorbed from the DFMs surface for subsequent reaction with C2H6. At a reaction temperature of 650 °C and WHSV of 2250 mL g-1 h-1, the Ni20 (K-Ca)50/(γ-Al2O3)50 and Ni20(Na-Ca)50/(γ-Al2O3)50 showed the best activity with 100% C2H6 conversion and 65% and 75% CO2 conversion, respectively. Analysis of the spent DFMs revealed a low degree of coke formation (∼9 wt %) which reduced the stability of DFMs by only 5%. The results reported in this investigation highlight the importance of combined capture-reaction system as a cost-effective technology for utilizing the emitted CO2 as a feedstock to make valuable chemicals, materials, and fuels.


Chemical and Biochemical Engineering

Keywords and Phrases

Adsorbent-catalyst; CO2 capture; CO2 utilization; Dry ethane reforming; Syngas

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2018 American Chemical Society (ACS), All rights reserved.

Publication Date

01 Oct 2018