In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β-catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β-catenin, serine/threonine kinases, and other proteins. The kinases CK1α and GSK-3β, which are recruited by Axin, mediate phosphorylation of β-catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β-catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β-catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β-catenin, provided that Axin is limiting, and thereby sequester β-catenin away from Axin and the Axin-recruited kinases CK1α and GSK-3β. Full-length APC also competes with Axin for binding to β-catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β-catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β-catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by CK1ε, we suggest that CK1ε is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of CK1ε is predicted to limit binding of β-catenin to truncated APC and thereby to reverse the effect of APC truncation.


Chemical and Biochemical Engineering

Keywords and Phrases

Amino Acid; APC Protein; Beta Catenin; Creatine Kinase; Creatine Kinase 1alpha; Glycogen Synthase Kinase 3beta; Unclassified Drug; Wnt Protein, Amino Acid Sequence; Article; Cancer Cell; Carboxy Terminal Sequence; Colorectal Cancer; Concentration Response; Controlled Study; Human; Human Cell; Mathematical Model; Mutational Analysis; Protein Analysis; Protein Binding; Protein Depletion; Protein Expression; Protein Function; Protein Phosphorylation; Protein Protein Interaction; Protein Stability; Site Directed Mutagenesis; Upregulation, Beta Catenin; Colorectal Neoplasms; Genes, APC; Humans; Hydrolysis; Mutation; Phosphorylation; Up-Regulation

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2013 PLoS ONE, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Sep 2013

PubMed ID