The Reaction Pathways of Glycerin in Supercritical Water


Glycerin, a byproduct of biodiesel production, is a cheap and widely available feedstock that may be used for hydrogen production in energy application. One method that can be used to produce hydrogen from glycerin is using supercritical water as a reaction medium. The process is non-catalytic and can handle a wide range of impurities. The primary gaseous products of glycerin in supercritical water are H₂, CO, CH₄, CO₂, and ethane. To optimize this process, a thorough understanding of the reaction pathways of glycerin in supercritical water is needed. The different mechanistic pathways of glycerin in supercritical water were studied, including decomposition, recombination, pyrolysis, and reformation. Reactions occurring between product gases, e.g., the water gas shift reaction and methanation, were also studied. An experimental study was also conducted to evaluate the accuracy of the different reaction pathways of glycerin using a 0.1 L Haynes® Alloy 282 reactor system, and particular attention was given to the role of supercritical water in the reaction chemistry. This is an abstract of a paper presented at the 2012 AIChE Spring National Meeting and 8th Global Congress on Process Safety (Houston, TX 4/1-5/2012).

Meeting Name

2012 AIChE Spring Meeting and 8th Global Congress on Process Safety (2012: Apr. 1-5, Houston, TX)


Chemical and Biochemical Engineering

Document Type

Article - Conference proceedings

Document Version


File Type





© 2012 American Institute of Chemical Engineers (AIChE), All rights reserved.

Publication Date

05 Apr 2012

This document is currently not available here.