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ABSTRACT 

The importance of indoor air quality (IAQ), especially concerning particulate 

matter (PM), has become increasingly recognized due to its substantial impact on public 

health. Individuals spend a significant portion of their time indoors, where PM 

concentrations can exceed that of outdoors, leading to potential adverse health effects 

ranging from immediate irritation to long-term respiratory and cardiovascular diseases. 

The dynamic nature of indoor environments, combined with the diversity of PM sources, 

presents considerable challenges for effective IAQ monitoring and management. 

Traditional approaches to IAQ assessment often fall short, lacking the granularity and 

immediacy required to address these challenges adequately. 

This abstract proposes the development and deployment of advanced sensor 

networks as a transformative solution for real-time PM monitoring in indoor settings. 

These low-cost, high-sensitivity sensors enable continuous, high-resolution monitoring of 

PM concentrations, providing critical data for identifying pollution sources and taking 

timely action to mitigate exposure. The integration of sensor networks with building 

management systems allows for automated adjustments to ventilation and air purification 

strategies, directly responding to real-time IAQ data. Such an approach not only promises 

to enhance the health and well-being of indoor occupants by minimizing exposure to 

harmful PM but also contributes to energy efficiency by optimizing the operation of 

HVAC systems based on actual air quality conditions. Future advancements in sensor 

technology and smart building integration are anticipated to further refine IAQ 

monitoring capabilities. 
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1. INTRODUCTION 

1.1. AIR QUALITY 

Air quality refers to the condition or cleanliness of the air in our environment and 

is determined by the amount and types of pollutants it contains. Good air quality is 

characterized by low levels of pollutants, making the air safe to breathe and posing 

minimal risks to human health and the environment. The relationship between air quality 

and human health has been underscored by extensive research (Anderson. et al, 2011), 

highlighting the profound impact of particulate matter (PM), on various health outcomes. 

PM is a complex mixture of tiny particles and droplets in the air, composed of acids, 

organic chemicals, metals, and soil or dust particles. Among the various sizes of 

particulate matter, PM2.5—particles with an aerodynamic diameter of 2.5 micrometers or 

smaller—are of significant concern due to their ability to penetrate deep into the 

respiratory tract and enter the bloodstream, posing serious health risks (WHO guidelines, 

2021). The World Health Organization estimates that PM air pollution contributes to 

approximately 800,000 premature deaths annually, ranking it as a leading cause of 

mortality worldwide. Populations exposed to high levels of PM over long periods exhibit 

a significantly higher incidence of cardiovascular events. (Anderson et al, 2011). Figure 

1.1 categorizes the Air Quality Index (AQI), breaking down the ranges of air quality into 

categories that signify their effects on human health (EPA). 
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Figure 1.1. EPA PM25 standards 

1.2. AIR QUALITY MEASUREMENT 

The measurement of air quality, particularly the concentration of PM, is a critical 

aspect of environmental and occupational health monitoring. Recent advancements have 

shifted towards leveraging low-cost, light-scattering particulate matter sensors for more 

widespread and real-time surveillance of PM concentrations, including respirable 

particles such as coal dust in mining environments. These sensors, exemplified by the 

Plantower PMS7003, offer a promising solution to the limitations posed by traditional, 

bulky, and expensive monitoring equipment, making it feasible to monitor different 

environments and settings. The calibration of low-cost sensors for coal dust monitoring in 

underground mines emphasizes the need for precise calibration to harness their high 

spatiotemporal resolution for characterizing PM concentration. Linear regression models 

are used to calibrate the sensors. This approach not only confirmed the potential of low-
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cost sensors in accurately monitoring coal dust but also revealed the minimal influence of 

environmental factors such as temperature and relative humidity on sensor performance 

(Amoah. et al, 2022). The broader applications of low-cost PM sensors are detailed, 

including the evaluation methods used to ascertain compliance with ambient air quality 

standards for suspended particles. This encompasses diverse methodologies available for 

assessing the accuracy, precision, and reliability of these sensors under various 

environmental conditions, including comparisons with Federal Equivalent Methods 

(FEMs) or research-grade instruments. This method of measurement offers a 

comprehensive framework for the calibration and deployment of low-cost sensors in 

monitoring air quality, paving the way for their application in diverse settings beyond 

industrial environments (Judith et al, 2012). 

1.3. LOW-COST SENSOR NETWORKS 

A low-cost PM sensor network consists of a distributed array of inexpensive, 

often compact sensors designed to measure concentrations of particulate matter in the air. 

These sensors can detect various sizes of particulate matter, commonly PM2.5 and PM10. 

The term low-cost differentiates these sensors from traditional, high-precision air 

quality monitoring equipment used by governmental and research institutions, which can 

be prohibitively expensive and typically result in sparse monitoring networks due to 

budgetary constraints. Low-cost sensors, on the other hand, are affordable enough to 

deploy in much higher densities, thereby providing more detailed spatial coverage and 

the ability to capture localized pollution events that might be missed by fewer, widely 

spaced high-end monitors. 



4 

Recent studies have highlighted the potential of these sensors in environmental 

monitoring, providing a solid foundation for their application in IAQ management (Zaid 

et al, 2024). Similarly, (Thangavel et al, 2022) further justified the need for advanced 

monitoring technologies. The adoption of such sensor networks for IAQ management is 

poised to enable the ease of air quality monitoring, making it accessible to a broader 

population segment and enhancing awareness of the importance of maintaining healthy 

indoor air standards. The study by (Thangavel et al, 2022) also integrates findings from 

pivotal studies to emphasize the role of innovative sensor networks in advancing our 

understanding and management of IAQ, particularly concerning the particulate matter. 

The advent of low-cost sensor networks has opened new avenues for air quality 

monitoring enabling dense spatial coverage. An example of low-cost networks are 

networks that leverage advancements in sensor technology, the Internet of Things (IoT), 

and low-power wide-area networks (LPWAN) such as LoRaWAN, enable a detailed and 

dynamic understanding of air pollution patterns at a fraction of the cost of traditional 

monitoring systems. The potential of integrating low-cost PM sensors with IoT devices 

for city-scale air quality monitoring is significant. The feasibility of using these sensors to 

monitor PM concentrations across the city offers valuable data for environmental health 

studies (Johnston et al., 2018). The employment of LPWAN technologies further 

underscores the scalability and efficiency of low-cost PM sensor networks. LoRaWAN’s 

long-range and low-power communication capabilities ensure that sensors can transmit 

data over extensive urban areas without the need for frequent maintenance, making it an 

ideal choice for large-scale air quality monitoring networks. 
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A significant section of our study is the use of the PM sensor network in the 

Missouri University of Science and Technology (MS&T) mine. The conventional 

approach for measuring Diesel Particulate Matter (DPM) exposure in underground metal 

and nonmetal mines aims to calculate the mean concentration over a full work shift. This 

process generally involves gathering air samples during the shift. However, this approach 

could be problematic because, although it reports the correct data, it cannot do so in real-

time (Noll. et al, 2013). 

In this context, the proposed development and deployment of advanced sensor 

networks offer a transformative solution for real-time PM monitoring in indoor 

environments. This initiative, grounded in the employment of low-cost, high-sensitivity 

sensors, aims at facilitating continuous, high-resolution monitoring of PM concentrations. 

Such an approach is critical for identifying sources of indoor pollution and implementing 

timely measures to reduce exposure. Moreover, the integration of these sensor networks 

with building management systems enables the automation of adjustments in ventilation 

and air purification strategies, thereby enhancing the health and well-being of indoor 

occupants. 
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2. METHODS AND MATERIALS 

2.1. THE SENSOR UNIT 

This study focuses on the development and deployment of a network of 

particulate matter sensors in various settings including indoor and in-mine settings, the 

goal of this network of sensors is to offer a way to measure particulate matter in a passive 

low-cost alternative to the traditional ways to collect particulate matter data. To achieve 

this goal, a low-cost sensor was developed, which consists of a PCB board with an 

ESP8266 chip, a temperature and humidity sensor along with a PMS7003 PM2.5 by 

Plantower sensor these sensors report data in (μg/m³), and finally the power source of 

AiBOCN power banks. This is the first step towards establishing a network of particulate 

matter sensors. The production of the sensors has been upscaled to approximately ten 

units. These sensors will be interconnected through a developed mesh network, for 

catalysing the connectivity between particulate matter sensors.  

 

Figure 2.1 The sensor unit. 
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This setup will enable efficient and accurate data collection across a large area, as 

well as inside the MS&T mine. The sensor units were calibrated using the GRIMM 11-D 

Advanced Real-Time Dust Monitor. 4 sensors were placed in a chamber with a small fan, 

and two inlets one to introduce particles into the chamber and another to enable the 

GRIMM unit to collect readings from withing the chamber. The readings of the GRIMM 

were graphed against the sensors, the rest of the sensors were calibrated using the sensors 

that were calibrated using the GRIMM. overall, the sensors positively correlated with 

GRIMM.  

 

Figure 2.2. Calibration of sensors 
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2.2. THE SENSOR NETWORK 

The sensor network comprises two main categories which are the hardware and 

the software made to work together to create a mesh network of sensors that connect to-

enable the coverage of a large area. 

 

Figure 2.3. Sensor components  

2.2.1. Hardware. The development of a mesh network for monitoring particulate 

matter, specifically PM2.5 levels, involves a carefully selected assembly of hardware- 

components. This section outlines the materials chosen for the project and the process of 

integrating the following components. 

ESP8266 Module: The core of each sensor node, the ESP8266 module, was 

selected for its Wi-Fi capabilities, compact size, and compatibility with the Arduino 

development environment, making it ideal for IoT projects. LoRa Module (E32-

433T20DT): For long-range communication across the mesh network, LoRa modules 

were chosen. These modules are known for their low power consumption and long-

distance communication abilities, essential characteristics for remote sensor nodes. 
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PMS7003 Particulate Matter Sensors: The PMS7003 sensor was specifically chosen for 

its ability to accurately measure PM2.5 levels. Its small form factor and UART interface 

make it well-suited for integration with the ESP8266 modules. Power Sources: 

Considering the deployment in potentially remote areas, power sources such as battery 

packs or solar panels were evaluated for their suitability to ensure uninterrupted 

operation, the AiBOCN power banks. Connectors and Cables: A variety of connectors 

and cables were prepared to facilitate the physical connections between the ESP8266 

modules, LoRa modules, and PMS7003 sensors, including USB to UART converters for 

sensor data communication. 

2.2.2. Assembly of the Network. The following is the assembly process of the  

hardware components. The ESP8266 modules were flashed with the latest firmware and 

configured to be programmed using the Arduino IDE, setting the foundation for the 

software development phase. Connecting the LoRa Modules: Utilizing SPI 

communication, the LoRa modules were connected to the ESP8266. Special attention 

was given to the wiring configuration to ensure reliable communication for data 

transmission across the mesh network. Integrating the PMS7003 Sensors: The PMS7003 

sensors were connected to the ESP8266 modules via UART. Adapters were used where 

necessary to match the logic levels and connectors, ensuring accurate and reliable data 

communication. Power Management solutions were implemented, focusing on efficiency 

and reliability, leading to the choice of the Aibcon power banks. 

2.2.3. Software. Upon establishing a robust hardware foundation, the focus 

 shifted towards developing the software to control the sensor nodes, manage data 

collection, and handle communication across the mesh network. Software development 
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environment, Arduino IDE, the primary tool for programming the ESP8266 modules, the 

IDE’s wide support for libraries and straightforward programming model facilitate rapid 

development and testing. Combined with the Arduino libraries, key libraries included the 

LoRaWAN library for Arduino, providing an abstraction layer for handling LoRa 

communication, and the Software Serial library, enabling UART communication with the 

PMS7003 sensors on the ESP8266’s digital pins. Software implementation, sensor Data 

Collection Custom Arduino sketches were written for the ESP8266 modules to manage 

data collection from the PMS7003 sensors. The sketches utilize the Software Serial 

library to read PM2.5 concentration levels, process the data, and prepare it for 

transmission. This custom sketch also enabled the connection to the private server that 

was set up for the data collection and transmission. LoRa module communication, and 

the implementation of the LoRaWAN protocol via the Arduino LoRa library allowed for 

efficient configuration of the LoRa modules. Scripts were developed to package the 

PM2.5 data and manage its transmission across the network, ensuring data integrity and 

optimizing for power consumption. Mesh network configuration and software routines 

were developed to enable mesh networking capabilities, allowing sensor nodes to 

communicate directly or relay data. Algorithms for dynamic routing and network health 

monitoring were integrated to maintain network reliability and data accuracy. The main 

source of the internet is a hotspot that is connected to the mother node. A Private server, a 

private server was set up through Python that connects to the sensor network, enabling 

the sensors to upload data to the private server and have tables that show the collection of 

the data in time. Data analysis: A MATLAB code was developed to digest and graph the 

PM2.5 data as a time series plot. 
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2.3. SENSOR DEPLOYMENT 

The deployment of particulate matter sensors plays a crucial role in the 

comprehensive monitoring and assessment of air quality in different environments. This 

section details the deployment strategies and insights gained from deploying sensors in 

three distinct settings: on campus, in residential areas, and within mining operations. 

Each environment presents unique challenges and opportunities for understanding and 

mitigating particulate matter exposure. 

2.3.1. On-Campus Deployment. The experiment conducted on September 22nd, 

 2021, involved deploying sensors in the lobby of Butler Carlton Hall (BCH). This was 

the first experiment conducted with the sensors. The start was to make sure that the 

sensors work in this environment and report data accurately, the sensors were deployed 

near chairs where students frequent in the lobby. The sensors were also deployed in a 

classroom in a BCH classroom from March 3rd, 2022, to March 8th, 2022, where the 

sensors were set at different heights. The reason behind this setup is to observe the PM2.5 

vertical distribution which will help with identifying sources of PM2.5 and estimate the 

health impacts of this distribution.  

2.3.2. In-House Deployment. The in-house sensor deployment was conducted 

from November 25th, 2023, to November 26th, 2023, and aimed to assess indoor air 

quality and identify sources of particulate matter within residential settings. Sensors were 

placed in various rooms, including a kitchen, a bedroom, and a living room/office space. 

The purpose of this experiment is to report data from a day-to-day living basis such as 

cooking, or lighting candles among other activities that come with daily living. In this- 
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step, another sensor was added to make it a total of 4 as a means of scaling up to the next 

step. 

 

 

Figure 2.4. Classroom sensor deployment 
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Figure 2.5. In-house sensor deployment 

2.3.3. In Mine Deployment. The final experiment that was conducted from  

March 5th, 2024, to March 11th, 2024, using the sensors is the mine experiment where 9 

sensors were deployed near the entrance of the MS&T mine. In this step, the mesh 

network was also introduced to enable the connectivity between sensors the Raspberry Pi 

and the mother node to be able to share the internet and allow the sensors to upload the 

data to the private server. 
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Figure 2.6. Mine entrance 

Figure 2.7. Sensor deployed in the mine. 
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3. RESULTS AND DISCUSSION 

3.1. ON CAMPUS DEPLOYMENT RESULTS 

Figure 3.1 provides a time-series representation of PM2.5 concentrations, tracked 

by three distinct sensors between 15:00 and 18:30 on September 22, 2021. The readings 

are smoothed averages of every 500 measurements (50 seconds) to reduce noise. At the 

onset, the sensor 1 at 68 cm above the ground records the highest PM2.5 levels, initiating 

at concentrations just above 220 μg/m³. Sensor 2 at 102 cm begins slightly lower, under 

200 μg/m³, while Sensor 3 at 170 cm starts at approximately 160 μg/m³. The initial 

divergence between the sensors could be attributed to spatial differences in particulate 

matter distribution, or variable sensitivities. Shortly after the recording period 

commences, all sensors show a peak in PM2.5 concentration followed by a general 

decline. The peak is most pronounced in Sensor 1, suggesting a localized spike in 

particulate matter, which is progressively less evident in Sensor 2 and minimal in Sensor 

3, hinting at the possibility of a spatially confined particulate source or differing sensor 

responses. The trend continues with a consistent decrease in PM2.5 levels for all sensors. 

This decline may reflect changes in environmental conditions, effectiveness of 

ventilation, or the resolution of a localized particulate emission. The downward trend 

across all sensors post-peak indicates a shared environmental influence or a collective 

response to an event, pointing toward a systemic change in the area’s air quality. The 

gradual descent in PM2.5 concentrations suggests that the particles dissipate slowly, 

providing insight into air purification or circulation effectiveness within the area. 
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Sensor 1 showed a mean value of 169 μg/m³ which is already higher than the 

EPA recommendation. Sensor 2 shows a mean value of 148 μg/m³, finally, sensor 3 

showed an average of 153 μg/m³. The PM2.5 levels recorded by all sensors exceeded the 

WHO’s recommended safe thresholds, implying a persistent health risk. This is a 

significant concern, particularly in the context of the roof construction, that was taking 

place during the time of this experiment. The reported values all fall in the range that is 

considered unhealthy for sensor 2 and very unhealthy for sensors 1 and 3. The area that 

this experiment was conducted in was undergoing some construction maintenance which 

could explain the high reported values of PM2.5.  

The data underscores the importance of real-time environmental monitoring, 

especially in scenarios involving construction or other particulate-generating activities. 

Continuous monitoring allows for the immediate identification of potential hazards and 

the swift implementation of corrective actions to minimize health risks. Future analyses 

should consider correlating specific construction activities with observed PM2.5 trends, 

further calibration of sensors, and a detailed assessment of the health implications for 

individuals exposed to such particulate levels during similar events. The height at which 

sensors are positioned can lead to significant differences in readings, which is particularly 

important because people of different heights may be exposed to varying levels of 

pollution, especially in relation to PM2.5. This variation is significant as the distribution of 

particulate matter within a given environment can be uneven, with concentrations 

potentially varying at different heights due to factors such as airflow, source of pollution, 

and physical barriers. Therefore, understanding how sensor height affects readings is 

crucial for accurately assessing exposure levels.  
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Figure 3.1. On-campus deployment 1 

Figure 3.2 is tracking PM2.5 levels over several days in March 2022, with the 

addition of the height variability. The sensors’ heights are given as 68 cm, 70 cm, 102 

cm, 136 cm, and 170 cm. The concentration of PM2.5 particles. The scale reaches up to 

140 µg/m3, indicating that the sensor detected higher levels of PM2.5 particles at some 

points compared to the previous graph, where the scale only reached 40 μg/m³. 

There is an extreme spike for Sensor 2 on March 3rd, where the PM2.5 

concentration shoots up above 120 μg/m³. This is a significant outlier compared to the 

other readings and might suggest an event that caused a high level of particulates near the 

floor or a sensor malfunction. The rest of the data points for Sensor 1 are close to zero, 

which, together with the spike, might indicate an intermittent source of pollution or error 

in measurement. Sensor 2, which is at a similar height to Sensor 1, does not show this 

extreme spike, suggesting that the event on March 3rd was very localized or that there 

was a problem with Sensor 1. On March 6th and 7th, all sensors detect increases in PM2.5 
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levels, with the higher sensors (136 cm and 170 cm) generally recording higher 

concentrations. This could suggest that certain activities or environmental factors affected 

the entire room but had a greater impact at higher elevations. 

The mean value for sensor 1 was analysed to be 8 μg/m³, sensor 2 showed a 10 

μg/m³ mean, sensor 3 average is 6 μg/m³, sensor 4 showed an average of 9 μg/m³, and 

finally sensors 5 and 6 both showed an average of 7 μg/m³. All these values were found 

to be below the WHO’s standard for the 24-hour mean sensor 2 showed the highest 

average which was the closest to the WHO’s 24-mean of 15 μg/m³. These values would 

be categorized in the good category according to the EPA standard. (Figure 1.1). 

Across the days, PM2.5 levels rise and fall which could correlate with the daily use 

of the classroom, possibly indicating that the particulates are associated with occupancy 

and activities. If this classroom’s ventilation system is more active at higher levels, it 

might not be as effective in clearing particulates at lower levels. Alternatively, if there are 

windows or other sources of air entry at higher levels, this could explain why sensors 

placed higher show higher PM2.5 levels. When compared to the previous on-campus 

deployment, it’s notable that the scales of the two graphs are different, with this one 

showing much higher peak values. This points out the differences the change in 

deployment achieves. 
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Figure 3.2. On-campus deployment 2  

3.2. IN-HOUSE DEPLOYMENT RESULTS 

A time series analysis of PM2.5 concentrations within a residential setting was 

conducted, using data collected from four sensors located in different rooms of a house 

on November 26, 2023. Figure 3.2 indicates distinct particulate matter profiles for each 

location within the home. Sensor 1, located in the kitchen, shows two significant peaks, 

one just after midnight and another in the early afternoon. These peaks are indicative of 

activities typically associated with high particulate matter production, such as cooking. 

Sensors 2 and 3, both positioned in the living room, exhibit a different pattern, with 

sensor 2 displaying a small peak in the early hours and sensor 3 showing a gradual rise in 

PM2.5 levels before a sharp increase around midday. The variance between these two 

sensors might suggest different proximities to the particulate matter source or varied 

sensitivities.  
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Sensor 4, placed in a bedroom, records relatively stable and low PM2.5 

concentrations throughout the day, with a slight increase in the evening. The stability of 

this sensor suggests fewer particulate matter sources in the bedroom, as expected in an 

area typically associated with rest and low activity levels. The peaks observed in the 

kitchen (Sensor 1) can likely be correlated with meal preparation times, where activities 

such as frying or sautéing can significantly increase particulate matter concentrations. 

The peaks’ magnitude suggests either intense cooking activities or inadequate ventilation. 

In the living room, the difference between the readings from Sensors 2 and 3 

could result from their locations within the room. If one sensor is closer to a source of 

particulate matter, such as a doorway, a window, or a heavily trafficked area, it could 

explain the higher readings compared to the other sensor. The data from the bedroom 

sensor (Sensor 4) implies that it is a low-PM environment for most of the day, with the 

evening rise possibly attributed to activities like changing clothes or nighttime routines 

that can stir up particulates. 

For sensor 1 the mean value was calculated to be 14 μg/m³, while for sensor 2 it 

was reported to be 15 μg/m³ for the mean value, Sensor 3 Produced a mean value of 15 

μg/m³, and lastly sensor 4 recorded a mean value of 48 μg/m³. Sensors 1, 2 and 3 and in 

this deployment are at a level that is considered good by the EPA (Figure 1.1), however, 

the mean values for sensor does put it at the unhealthy for sensitive people. 

The data collectively demonstrates the dynamic nature of indoor air quality and 

how it can be affected by routine domestic activities. It also underscores the necessity of 

sensor placement strategy when monitoring particulate matter in a residential setting to 

capture a comprehensive picture of air quality. The patterns observed here provide 
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valuable insights that could be used to advise on the placement of air purifiers or to 

encourage behavior that minimizes particulate matter emissions indoors. 

 

Figure 3.3. In house deployment  

3.3. IN MINE DEPLOYMENT RESULTS 

The highlighted areas on the mine map indicate the measurement area for these 

sensors. Figure 3.5 is the zoomed-in version of the mine map, where the sensors were 

deployed. The locations of the sensors are marked on the map of the mine 1-3 where 1 is 

the closest to the door, 2 is the one in the middle and 3 is the furthest one in the middle. 

While sensors 4-6 are on the right side on the map where sensor 4 is the one closest to the 

entrance, sensor 5 is the one in the middle right after 4 and sensor 6 is the furthest one in 

on the right side, sensors 7-9, the sensors are placed similarly to the sensors on the right 

side. Where sensor 7 is the one closest to the main mine entrance, sensor 8 is in between 

sensor 7 and sensor 9 is the furthest one in on the left side of the mine deployment area. 
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Figure 3.1. Mine map 

 

Figure 3.2. Mine map zoomed in 

While sensors 4-6 are on the right side on the map where sensor 4 is the one 

closest to the entrance, sensor 5 is the one in the middle right after 4 and sensor 6 is the 

furthest one in on the right side, sensors 7-9, the sensors are placed similarly to the 

sensors on the right side. Where sensor 7 is the one closest to the main mine entrance, 
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sensor 8 is in between sensor 7 and sensor 9 is the furthest one in on the left side of the 

mine deployment area. 

Sensors 1, 2, and 3 are associated with Figure 3.6, which shows PM2.5 levels that 

are generally below 200 µg/m³. Sensors 1, 2, and 3 are placed in the middle of the mine 

walkway. These sensors had lower PM2.5 readings compared to the others, suggesting this 

area may have better air quality or is further from direct pollution sources. 

The mean values calculation for the mine deployment of sensors 1,2 and 3 was 

conducted to report the following mean values. Sensor 1’s mean value 78 μg/m³, while 

sensor 2’s mean was identified to be 111 μg/m³, next the mean for sensor 3 was found to 

be the same as sensor 2 at 111 μg/m³. all the reported averages place this deployment in 

the unhealthy category according to the EPA standards (figure 1.1) 

 

 

Figure 3.6. Sensors 1,2,3 
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Sensors 4, 5, and 6 correspond to Figure 3.7, with PM2.5 levels reaching up to 

about 350 µg/m³. Sensors 4, 5, and 6 are placed on the right side of the main mine 

walkway. The readings from these sensors were higher than the first group of sensors, 

indicating more exposure to particulate matter. Calculation of the mean values provided 

the following values for each sensor. Sensor 4 presented a mean value of 211 μg/m³, 

sensor 5 showed a value of 201 μg/m³, and finally sensor 6 showed a mean value of 203 

μg/m³. The reported values would be considered unhealthy by the EPA standards (figure 

1.1). 

 

Figure 3.7. Sensors 4,5,6 

Sensors 7, 8, and 9 are related to Figure 3.8, showing PM2.5 levels peaking near 

400 µg/m³. Sensors 7, 8, and 9 are placed on the left side of the main mine walkway. 

These sensors recorded the highest PM2.5 levels, which could suggest proximity to the 

pollution source or less efficient air circulation. For the final set of sensors that were 
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deployed in the mine. The mean values were calculated to be 228 μg/m³ for sensor 7, 

while sensor 8 showed a mean value of 231 μg/m³. and lastly sensor 9 showed a mean 

value of 227 μg/m³. Following the EPA standards for air quality shows that all the 

sensors fall within the category that would be considered unhealthy (figure 1.1). 

 

Figure 3.8. Sensors 7,8,9 

The middle walkway of the mine might be more ventilated or could be an area 

where less dust-generating activity occurs. The Left walkway of the mine indicates 

moderate exposure to particulate matter, which could mean some activity is happening 

there that generates PM2.5, but there is still some form of ventilation or air purification. 

The right walkway area indicates a zone with high PM2.5 levels, which may be due to 

insufficient ventilation, proximity to dust-generating operations, or ineffective air 

filtration. The calibration method was not used to correct the sensor outputs for the 

results of the experiments. 
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A problem that seems to be occurring in the mine measurements, is that there are 

periods of time where the sensors were not reporting data or were reporting data that was 

unusable as it was reporting constant values. That can also indicate a problem with the 

sensor units where they are reporting false data. This illustrates the need for more 

research and more opportunities for development. Deploying sensors at higher densities 

within mines to capture a more detailed spatial resolution of air quality. This could 

involve placing sensors at different heights and locations that are representative of where 

workers spend their time. Enhanced Frequency of Data Transmission, by improving the 

frequency of data transmission between sensors and the central data collection system. 

This could involve optimizing the mesh network for more robust connectivity or 

exploring alternative communication technologies that are more reliable underground. 

Power Management Innovations by exploring innovations in power management for 

sensors, such as energy harvesting technologies or simply long-life batteries, to extend 

the operational life of the sensors and reduce the need for maintenance. Expanding 

research by deploying low-cost sensor networks across a variety of mine settings, 

including different types of mines (e.g., coal, metal, non-metal) and various geographical 

locations. This diversity can provide a broader data set for understanding sensor 

performance across different environmental conditions.  
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4. CONCLUSION 

In conclusion, the study illustrates the significant potential of implementing a 

low-cost particulate matter (PM) sensor network within a mining environment, 

highlighting its flexibility and adaptability across various conditions and scenarios. The 

data acquired from the network is invaluable, providing insights into the spatial 

distribution of PM concentrations and identifying areas that might require attention due to 

higher levels of pollutants. 

The consistency of measurements obtained is crucial, reflecting the sensor 

network’s reliability within the specific deployment settings. The sensor placement 

strategy, considering factors such as proximity to potential pollution sources and 

ventilation efficiency, plays a vital role in capturing an accurate representation of the air 

quality within the mine. 

However, while the study underscores the utility of such a network, it also 

uncovers several areas for improvement and challenges that need to be addressed in 

future deployments. The discrepancies in data integrity due to incorrect timestamps 

represent a critical issue that can impair data analysis and decision-making processes. 

This calls for a more robust data management system that ensures synchronization and 

accuracy in reporting. The mine experiments show this the most where it is illustrated 

that there are timestamps where the sensors were not gathering data. 

Additionally, the communication infrastructure utilized for the sensor network, 

particularly the frequency for sensor interconnectivity, poses limitations. The study 

suggests that relying solely on a private server for data collection might be insufficient in 

today’s context, where real-time monitoring is increasingly vital. The adoption of a web-
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based platform could offer a more reliable and accessible means of data aggregation and 

visualization. Such a platform would be beneficial not just for data collection but also for 

the analysis, enabling remote monitoring and timely interventions. 

Moreover, the study indicates the necessity of an offline data storage solution as a 

backup to safeguard against data loss due to network outages or server downtime. This 

dual approach to data storage ensures continuity and integrity, which are critical for long-

term monitoring and analysis. 

The insights gleaned from deploying the sensor network demonstrate its 

advantages in providing environmental monitoring at a lower cost compared to traditional 

methods. However, the “growing pains” experienced, such as the need for enhanced data 

management and improved communication protocols, are reminders of the need for 

ongoing development in this field. 

Overall, the study is a testament to the efficacy of low-cost sensor networks in 

environmental monitoring and the potential improvements that can amplify their impact. 

The lessons learned pave the way for future advancements, indicating a shift towards 

more sophisticated, resilient, and user-friendly monitoring systems. The continued 

evolution of these networks will undoubtedly contribute to a better understanding and 

management of occupational health risks and the creation of safer work environments. 
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APPENDIX A  

THE SENSOR COMPONENTS AND NETWORK 

 



30 

 

Figure A.1. Sensor components 1 
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Figure A.2. Sensor components 2 
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Figure A.3. Sensor components 3 the completed sensors 
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Figure A.4. Sensor components 3 the private server interface 



34 

A.1. ARDUINO SENSOR CODE 

#include "DHT.h" 

#include "PMS.h" 

#include <ESP8266WiFi.h> 

#include <WiFiClient.h> 

#include <ESP8266HTTPClient.h> 

#include <SoftwareSerial.h> 

#define DHTPIN D1 

#define DHTTYPE DHT11 

 

SoftwareSerial pmsSerial(D4, D3); 

 

const char *ssid = "Bani - WiFi"; 

const char *password = "5736129023"; 

const char *serverName = "http://192.168.0.35:5000/upload-data"; 

 

// String apiKeyValue = "tPmAT5Ab3j7F9"; 

 

String sensorName = "PMTL_Sensor3"; 

String sensorLocation = "55108"; 

String httpRequestData; 

 

DHT dht(DHTPIN, DHTTYPE); 

WiFiClient wifi; 

 

PMS pms(pmsSerial); 

PMS::DATA data; 

 

void setup() 

{ 

    Serial.begin(9600); 

    pmsSerial.begin(9600); 

    dht.begin(); 

    WiFi.enableInsecureWEP(true); 

    WiFi.begin(ssid, password); 

    while (WiFi.status() != WL_CONNECTED) 

    { 

        Serial.println("Waiting"); 

        delay(500); 

    } 
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    Serial.println("Connected!!"); 

} 

 

void loop() { 

    Serial.println("Output!!"); 

    float h = dht.readHumidity(); 

    float t = dht.readTemperature(); 

    if (WiFi.status() == WL_CONNECTED) { 

        Serial.println("Output123!!"); 

        if (pms.read(data)) { 

            HTTPClient http; 

            http.begin(wifi, serverName); 

            http.addHeader("Content-Type", "application/json"); 

            String payload = "{"; 

            payload += "\"SensorID\":\"" + sensorName + "\","; 

            payload += "\"location\":\"" + sensorLocation + "\","; 

            payload += "\"temp\":" + String(t) + ","; 

            payload += "\"humidity\":" + String(h) + ","; 

            payload += "\"pm10\":" + String(data.PM_AE_UG_1_0) + ","; 

            payload += "\"pm25\":" + String(data.PM_AE_UG_2_5) + ","; 

            payload += "\"pm100\":" + String(data.PM_AE_UG_10_0) + ","; 

            payload += "\"particles03\":" + String(data.P_03); 

            payload += "}"; 

             

            int httpResponseCode = http.POST(payload); 

            Serial.println("HTTP Response code: " + String(httpResponseCode)); 

            http.end(); 

        } 

    } 

} 
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A.2. PRIVATE SERVER NETWORK CODE 

from flask import Flask, jsonify, request, render_template 

from database import DataBase 

import logging 

import datetime 

 

app = Flask(__name__)  # Create a Flask instance 

 

# Configure logging 

logging.basicConfig(level=logging.INFO) 

 

 

@app.route(“/fetch-data”, methods=[“GET”]) 

def fetch_data(): 

    draw = request.args.get(“draw”, type=int) 

    start = request.args.get(“start”, type=int) 

    length = request.args.get(“length”, type=int) 

    sensor = request.args.get(“sensor”, None) 

    start_date_str = request.args.get(“start_date”, None) 

    end_date_str = request.args.get(“end_date”, None) 

 

    db = DataBase() 

    db.connect() 

 

    if start_date_str and end_date_str: 

        start_date = datetime.datetime.strptime(start_date_str, “%Y-%m-%d % 

H:%M:%s”) 

        end_date = datetime.datetime.strptime(end_date_str, “%Y-%m-%d 

%H:%M:%s”) 

        data = db.fetch_sensor_data(sensor, start, length, start_date, end_date) 

    else: 

        data = db.fetch_sensor_data(sensor, start, length) 

 

    records_total = db.get_total_record_count() 

    records_filtered = db.get_filtered_record_count( 

        sensor, start_date_str, end_date_str 

    ) 

 

    db.close() 
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    return jsonify( 

        { 

            “draw”: draw, 

            “recordsTotal”: records_total, 

            “recordsFiltered”: records_filtered, 

            “data”: data, 

        } 

    ) 

 

 

@app.route(“/upload-data”, methods=[“POST”])  # Define a route to upload data 

def upload_data(): 

    # Log the receipt of a request 

    logging.info(“Received request to /upload-data”) 

    data = request.json  # Get JSON data from request 

    logging.info(f”l;ksdfagl;ksdfj {str(data)}”) 

    if not data: 

        # Log warning if no data provided 

        logging.warning(“No data provided in request”) 

        # Return error if no data provided 

        return jsonify({“error”: “No data provided”}), 400 

 

    # Create DataBase instance and upload data 

    db = DataBase() 

    db.connect() 

 

    try: 

        # Construct SQL query and parameters 

        query = ( 

            “INSERT INTO sensordata “ 

            “(SensorID, location, temp, humidity, pm10, pm25, pm100, particles03, 

timestamp) “ 

            “VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)” 

        ) 

        params = ( 

            data[“SensorID”], 

            data[“location”], 

            data[“temp”], 

            data[“humidity”], 

            data[“pm10”], 

            data[“pm25”], 

            data[“pm100”], 
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            data[“particles03”], 

            datetime.datetime.utcnow(), 

        ) 

 

        db.execute_query(query, params) 

        db.cnx.commit()  # Commit the transaction 

        # Log successful data upload 

        logging.info(“Data uploaded successfully”) 

    except Exception as e: 

        db.close() 

        # Log error if exception occurs 

        logging.error(f”Error occurred: {str”€}") 

        # Return error if exception occurs 

        return jsonif“({"er”or": €(e)}), 500 

 

    db.close() 

    # Return success message 

    return jso“ify({"m”ss“ge": "Data uploaded succes”fully"}), 201 

 

 

@app.“o”te("/")  # Define a route for the home page 

def home(): 

    # Render the home page using index.html 

    return render_tem“late("inde”.html") 

 

 

if __name“_ == "__”ain__": 

    app.run”host="0”0.0.0", debug=True) 
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A.3. DATABASE CODE 

import typing 

import mysql.connector 

from mysql.connector import errorcode 

import datetime 

import csv 

import pandas as pd 

import os 

from dotenv import load_dotenv 

 

load_dotenv() 

 

class DataBase: 

    def __init__(self): 

        self.username = os.getenv("DB_USERNAME") 

        self.password = os.getenv("DB_PASSWORD") 

        self.endpoint_url = os.getenv("DB_ENDPOINT") 

        self.db = os.getenv("DB_NAME") 

        self.cnx = None 

        self.cursor = None 

 

    def connect(self): 

        try: 

            self.cnx = mysql.connector.connect( 

                user=self.username, 

                password=self.password, 

                host=self.endpoint_url, 

                database=self.db, 

            ) 

            self.cursor = self.cnx.cursor() 

        except mysql.connector.Error as err: 

            if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: 

                raise ValueError("Invalid username or password") from err 

            elif err.errno == errorcode.ER_BAD_DB_ERROR: 

                raise ValueError("Database does not exist") from err 

            else: 

                raise err 

 

    def close(self): 

        if self.cursor: 
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            self.cursor.close() 

        if self.cnx: 

            self.cnx.close() 

 

    def execute_query(self, query, params=None): 

        if not self.cursor: 

            raise ValueError("Database not connected") 

        try: 

            self.cursor.execute(query, params) 

        except mysql.connector.Error as err: 

            raise err 

 

    def get_total_record_count(self): 

        query = "SELECT COUNT(*) FROM sensordata" 

        self.execute_query(query) 

        return self.cursor.fetchone()[0] 

 

    def get_filtered_record_count(self, sensor, start_date_str, end_date_str): 

        query = "SELECT COUNT(*) FROM sensordata WHERE 1=1 " 

        params = [] 

 

        if sensor: 

            query += "AND SensorID = %s " 

            params.append(sensor) 

 

        if start_date_str and end_date_str: 

            query += "AND timestamp BETWEEN %s AND %s " 

            params.extend([start_date_str, end_date_str]) 

 

        self.execute_query(query, params) 

        return self.cursor.fetchone()[0] 

 

    def fetch_sensor_data(self, sensor=None, start=0, page_size=10, 

start_date=None, end_date=None): 

        datetime_format = "%Y-%m-%d %H:%M:%S" 

        if start_date: 

            start_date = start_date.strip() 

            try: 

                start_date = datetime.datetime.strptime(start_date, datetime_format) 

            except ValueError as e: 

                raise ValueError(f"Start date is not in the correct format: {e}") 

 



41 

        if end_date: 

            end_date = end_date.strip() 

            try: 

                end_date = datetime.datetime.strptime(end_date, datetime_format) 

            except ValueError as e: 

                raise ValueError(f"End date is not in the correct format: {e}") 

 

        query = "SELECT * FROM sensordata WHERE 1=1" 

        params = [] 

 

        if sensor: 

            query += " AND SensorID = %s" 

            params.append(sensor) 

 

        if start_date and end_date: 

            query += " AND timestamp BETWEEN %s AND %s" 

            params.extend([start_date, end_date]) 

 

        query += " ORDER BY timestamp ASC LIMIT %s OFFSET %s" 

        params.extend([page_size, start]) 

 

        self.execute_query(query, params) 

        rows = self.cursor.fetchall() 

        column_names = [desc[0] for desc in self.cursor.description] 

        data = [dict(zip(column_names, row)) for row in rows] 

        return data 

 

    def export_to_csv(self, file_name, data): 

        file_loc = os.path.join(os.getcwd(), file_name) 

        with open(file_loc, mode="w", newline="") as sensorfile: 

            fieldnames = [ 

                "SensorID", 

                "location", 

                "temp", 

                "humidity", 

                "pm10", 

                "pm25", 

                "pm100", 

                "particles03", 

                "timestamp", 

            ] 

            sensor_write = csv.DictWriter(sensorfile, fieldnames=fieldnames) 
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            sensor_write.writeheader() 

 

            for row in data: 

                sensor_write.writerow(row) 

if __name__ == "__main__": 

    db_info = DataBase() 

    try: 

        db_info.connect() 

        data = db_info.fetch_sensor_data( 

            sensor="PMTL_sensor4", 

            start_date="2024-03-04 23:00:00",  

            end_date="2024-03-05 05:30:00", 

            start=0,  

            page_size=500000) 

  db_info.export_to_csv("03_04_PMTL_sensor4.csv", data) 

    except Exception as e: 

        print(f"An error occurred: {e}") 

    finally: 

        db_info.close() 
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APPENDIX B 

EXPERIMENTS DEPLOYMENT 
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Figure B.1. On campus (in classroom) 
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Figure B.2. Schematic of house deployment 
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Figure B.3. Mine entrance 1 
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Figure B.4. Sensor 7 right side 2 
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Figure B.5. Sensor 8 right side 1 
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Figure B.6. Sensor 9 right side 2 
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Figure B.7. Sensor 1 middle 1 
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Figure B.8. Sensor 2 middle 2 
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Figure B.9. Sensor 3 middle 3 
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Figure B.10. Sensor 4 right side 1 
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Figure B.11. Sensor 5 right side 2 
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Figure B.12. Sensor 6 right side 3 
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Figure B.13. LoRa Module in mine building 
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Figure B.14. Data collection monitoring station with the Raspberry Pi 
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