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ABSTRACT

Forecasting financial product volatility and price is crucial for informed decision-

making in investment and risk management. The models considered include GARCH,

LSTM, GRU, BiLSTM, and hybrid models that incorporate various combinations of these

models. We present a comparative analysis of forecasting volatility and price using the

aforementioned models.

We also introduce a user-friendly dashboard for model training and evaluation,

enabling users to upload datasets and customize model parameters. The dashboard allows

users to select the type of model, specify the dataset range for training, determine the number

of epochs, adjust the number of layers for deep learning methods, and set the window size

for data processing. After selection of parameters, models are trained in the backend and

the dashboard presents comprehensive results that includes graphical representations and

performance metrics. These metrics facilitate comparison between the models in terms of

accuracy, robustness, and computational efficiency.

Through empirical analysis, we demonstrate the effectiveness of different models

in forecasting financial product volatility and price. Our findings provide insights into the

strengths and limitations of single and hybrid models.
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1. INTRODUCTION

1.1. BACKGROUND

Financial volatility forecasting is a critical component of risk management and

investment decision-making in financial markets [1]. Volatility is defined as the degree of

variation of returns for a given financial asset over a specific period of time, and plays a

crucial role in determining market dynamics and asset pricing [2]. Financial institutions

rely on volatility forecasts to assess portfolio risk and develop trading strategies by hedging

against the downside.

One of the earliest efficient models for volatility forecasting is the Autoregressive

Conditional Heteroskedasticity (ARCH) model developed by Engle in the 1980s. Engle

captured the volatility’s time-varying behavior, or the conditional variance, using the past

lagged squared returns [1]. The extension of the ARCH model, called the GARCH model,

considered both the lagged squared returns and recent historical volatility data to make

more accurate predictions [3]. In recent years, advancements in computing techniques and

the availability of high-frequency data have resulted in the development of increasingly

complex volatility forecasting models with the ability to capture complicated non-linear

relationships between the variables. The machine learning algorithms, including Random

Forests, Gradient Boosting, and deep learning architectures like Long Short-Term Memory

(LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU) networks have

gained popularity in volatility and price forecasting [4].

Despite the advancement of forecasting models, challenges remain in the form of

non-linear relationships and unpredictable market events. Researchers continue to explore

new methodologies and techniques to enhance the accuracy and robustness of volatility

forecasts, with the goal of improving risk management practices and promoting financial

stability in global markets.
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1.2. OVERVIEW OF FORECASTING MODELS

The traditional time series forecasting models studied in this thesis include the

ARCH and the GARCH models. The ARCH model is adept at capturing time-varying

volatility in financial time series data by modeling the variance as a function of past squared

returns. Building on the ARCH model, GARCH models offer enhanced flexibility by

incorporating both lagged squared residuals and lagged conditional variances to capture the

volatility more effectively.

On the other hand, machine learning techniques studied here are, Lasso Regres-

sion, Random Forest, and Gradient Boosting, which have emerged as powerful tools for

forecasting. Lasso Regression employs L1 regularization to encourage only the significant

regression coefficients to remain in the model, aiding in feature selection and improving

model interpretability [5]. Random Forest, introduced by Breiman (2001), is an ensemble

learning technique that improves performance by aggregating multiple predictions made

from several decision trees [6]. Gradient Boosting was proposed by Friedman in 2001, and

it improves model performance by iteratively building the decision trees while minimizing

a loss function [7].

In the domain of deep learning, Long Short-Term Memory (LSTM), Gated Recurrent

Unit (GRU), and Bidirectional Long Short-Term Memory (BiLSTM) networks have revo-

lutionized sequence modeling. LSTM networks, proposed by Hochreiter and Schmidhuber

(1997), excel at capturing long-range dependencies in sequential data through specialized

memory cells instead of the traditional neurons in neural networks [8]. GRU is a simplified

variant of LSTM that offer comparable performance with reduced computational complex-

ity (Chung et al., 2014). BiLSTM networks is an extension of LSTM that process input

sequences in two directions, enabling the model to capture dependencies from both past

and future contexts [9].
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1.3. RESEARCH OBJECTIVES

The primary objective of this thesis is to conduct a comprehensive comparative

analysis of volatility and price forecasts using various models, including ARCH, GARCH,

Lasso Regression, Random Forest, Gradient Boosting, LSTM, GRU, and BiLSTM. The

aim is to evaluate the performance and effectiveness of these models in forecasting both

volatility and price movements of Bitcoin using its daily closing price data. The existing

methodologies in price and volatility forecasting is ambiguous and difficult to reproduce.

This research also aims to develop an interactive dashboard that enables users to upload their

dataset, train forecasting models using the selected methodology or their own hybrid models

built by combining the available methodologies, and analyze the performance metrics and

prediction charts to compare different models.

By developing an interactive dashboard, this research aims to make the advanced

forecasting techniques more accessible to practitioners and decision-makers in finance. The

user-friendly interface of the dashboard allows users to upload their datasets, select the de-

sired forecasting model, and analyze the results without requiring expertise in programming

or data science. The interactive dashboard facilitates empirical analysis by enabling users

to train forecasting models on their own datasets and assess their performance by analyzing

the performance metrics and visualizing the prediction charts.

1.4. OUTLINE

The document is structured into several sections, each focusing on different the-

ories and methodologies related to data analysis and forecasting. Section 1 provides the

background study in volatility and price forecasting. It also introduces various forecasting

techniques that have been developed over the decades. The research objective for this thesis

is also illustrated in this section. Section 2 provides the description of previous research in

the field of financial forecasting.
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In Section 3, the theory background concerning the various forecating models

are described in depth. The first subsection provides the fundamental concepts such as

probability density function (pdf), cumulative distribution function (cdf), and expected

values. The second part delves into time series analysis, introducing various statistical

models for time series data, including white noise, random walk, and autoregressive models.

The third part explains the concept of machine learning, starting with linear regression and

progressing to more complex ensemble methods such as bagging, random forest, and

gradient boosting. Building on that, the forth part explores Neural networks, beginning

with an explanation of neurons and activation functions. This subsection then covers

forward propagation, loss functions, and the mathematics of backpropagation for updating

the network parameters. The next subsection focuses on Sequence Modeling with Recurrent

Neural Networks (RNNs), discussing the challenges of traditional RNNs and introducing

solutions like Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The

fifth part concludes with the definition of Bidirectional LSTM (BiLSTM).

Section 4 presents the results, starting with descriptive statistics for Bitcoin, Ethereum,

and their volatilities. The section then discusses forecasting methodologies for both price

and volatility of Bitcoin, including performance metrics such as RMSE, MAPE, and ad-

justed R-squared. Results of price forecasting for various models are provided, along with

volatility forecasting using GARCH and LSTM. This section ends by presenting the Interac-

tive Dashboard, outlining its elements and providing a screenshot of the homepage. Finally,

Section 5 provides the conclusion of the thesis, highlighting the key findings, implications,

and future works.
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2. LITERATURE REVIEW

Financial volatility and price forecasting have been the topic of interest for financial

institutions for decades. The capacity to accurately forecast the evolution of financial market

dynamics over time has broadened the scope of research interest in diverse econometrics

and machine learning techniques. Traditional econometric models, ARCH and GARCH,

developed by Engle and Bollersev respectively have been studied to predict the volatility

of various market instruments. Due to the revolution in computational capacity in modern

computers have led way to powerful deep learning architectures like LSTM and GRU, which

can usually outperform the traditional models in most scenarios. The paper by Ze Shen

et al, compares the performance of these conventional econometrics models (GARCH and

EWMA) and a machine learning model (Recurrent Neural Network) in forecasting Bitcoin

return volatility [10]. The results show that the RNN outperforms both GARCH and EWMA

in average forecasting performance measured by MAE performance metric. It also shows

that RNN is less efficient at capturing extreme events in Bitcoin compared to the tradtional

models.

Gustavo Di-Giorgi et al proposed a new methodology for volatility forecasting in

time series by combining GARCH models (EGARCH, IGARCH, TGARCH, ALL-GARCH)

with recurrent neural networks (LSTM, BiLSTM, GRU). The results show that the proposed

approach, especially using the BiLSTM model, outperforms the individual GARCH and

recurrent neural network models in terms of various performance metrics like RMSE, MAE,

MAPE, R-squared, and Spearman correlation [4].

Hum Nath Bhandari et al used LSTM to predict the next day closing price of S&P 500

index using nine indicators, including macroeconomic data and technical indicators. They

developed single and multi-layer LSTM models and concluded that single layer LSTM

outperformed in forecasting the price [11]. Many of the research in volatility and price
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forecast use closing price of the asset with sliding window approach to make predictions.

However, this paper used eight more features in addition to the closing price to make final

forecasts.

Monghwan Seo and Geonwoo Kim developed hybrid forecasting models that com-

bine GARCH family models with machine learning approaches like Artificial Neural Net-

works (ANN) and Higher Order Neural Networks (HONN). They experimented with various

hybrid models using different input variables like GARCH model outputs, Google Trends

data, and VIX index and found that the hybrid models based on HONN provided the most

accurate forecasts for Bitcoin volatility [12].
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3. THEORETICAL BACKGROUND

3.1. PROBABILITY AND DISTRIBUTION

3.1.1. Univariate Random Variable. A random variable is a variable that takes on

values corresponding to the outcomes of a random event. Each possible value of a random

variable is linked to a probability, and the collection of all potential values along with their

probabilities is referred to as the probability distribution of the random variable. Random

variables can be univariate, bivariate, and multivariate. Univariate random variable deals

with only one variable or attribute. We can analyze the probability distribution, expected

value, and its variance as follows:

Cumulative distribution function (CDF):

A cumulative distribution of a random variable X is a function that gives the probability

that X is less than equal to x. It is given by 𝐹𝑋 (𝑥) = 𝑃(𝑋 ≤ 𝑥) for all −∞ < 𝑥 < ∞.

The random variable X is continuous if its corresponding cumulative distribution 𝐹𝑋 (𝑥) is

continuous for all values of x.

Probability density function (PDF):

If X is a continuous random variable with CDF 𝐹𝑋 (𝑥), then the probability density function

is defined as the derivative of 𝐹𝑋 (𝑥) with respect to x. The PDF is given by 𝑓 (𝑥) = 𝑑
𝑑𝑥
𝐹𝑋 (𝑥)

for all x for which the derivative exists.

Expected Value:

The expected value of a random variable is a measure of the center or average of its

probability distribution. It represents the mean or long-term average value that one would

expect to obtain if the random experiment were repeated a large number of times. For a

continuous random variable with probability density function 𝑓 (𝑥), the expected value is

computed through integration:
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𝐸 [𝑋] =
∫ ∞

−∞
𝑥 · 𝑓 (𝑥) 𝑑𝑥.

Properties of expected value

1. Linearity

𝐸 [𝑎𝑋 + 𝑏𝑌 ] = 𝑎𝐸 [𝑋] + 𝑏𝐸 [𝑌 ] .

2. Expectation of a Constant:

𝐸 [𝑐] = 𝑐.

3. Expectation of a Function:

𝐸 [𝑔(𝑋)] =
∫ ∞

−∞
𝑔(𝑥) · 𝑓 (𝑥) 𝑑𝑥.

Variance:

The variance of a random variable 𝑋 is a measure of the spread or dispersion of its probability

distribution. It is denoted by 𝑉𝑎𝑟 (𝑋) or 𝜎2 and is defined as the average of the squared

differences between each value of 𝑋 and the expected value (𝐸 [𝑋]).

For a continuous random variable with probability density function 𝑓 (𝑥), the vari-

ance is obtained through integration:

𝑉𝑎𝑟 (𝑋) = 𝐸 [(𝑋 − 𝐸 [𝑋])2] =
∫ ∞

−∞
(𝑥 − 𝐸 [𝑋])2 · 𝑓 (𝑥) 𝑑𝑥.

The square root of the variance is called the standard deviation (𝜎), providing a measure of

the typical distance between the values of 𝑋 and its mean. Variance can also be calculated

using the formula:

𝑉𝑎𝑟 (𝑋) = 𝐸 [𝑋2] − (𝐸 [𝑋])2.
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In finance and statistics, variance is commonly used as a measure of volatility.

Volatility refers to the degree of variation of a trading price series over time. A higher

variance indicates a greater level of price variability, and consequently, higher volatility

(Sharpe, 1964).

Property of Variance:

1. Non-negativity:

Var(𝑋) ≥ 0.

2. Linear combination:

Var(𝑎 + 𝑏𝑌 ) = 𝑏2Var(𝑌 ).

3.1.2. Bivariate Random Variable. A bivariate random variable refers to a cat-

egory of random variable that encompasses two variables simultaneously. It comprises a

pair of random variables typically represented as (𝑋,𝑌 ).

Joint Cumulative distribution function:

The joint cumulative distribution function (CDF) of two random variables 𝑋 and 𝑌 is a

function that provides the probability that both 𝑋 and 𝑌 are less than or equal to certain

values. It is denoted as 𝐹𝑋,𝑌 (𝑥, 𝑦) and is defined as:

𝐹𝑋,𝑌 (𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) for 𝑥, 𝑦 ∈ (−∞,∞).

The joint CDF is an important tool in understanding the joint behavior of two random

variables. It also allows us to get the relation between two random variables through

covariances and correlations.

Joint Probability density function:

Like the univariate random variable, the probability density function can be obtained as

a mixed partial differentiable with respect to x and y, for all x and y where the partial
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derivatives exist.

Mathematically, if 𝐹𝑋,𝑌 (𝑥, 𝑦) is the joint CDF of random variables 𝑋 and 𝑌 , then the joint

PDF 𝑓𝑋,𝑌 (𝑥, 𝑦) is given by:

𝑓𝑋,𝑌 (𝑥, 𝑦) =
𝜕2𝐹𝑋,𝑌 (𝑥, 𝑦)

𝜕𝑥𝜕𝑦
.

The joint PDF satisfies the properties:

∫ ∞

−∞

∫ ∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1.

This integral reflects the total probability under the joint distribution.

Expected value:

The expectation (expected value) of a bivariate continuous random variable (𝑋,𝑌 ) is given

by:

𝐸 [𝑋,𝑌 ] =
∫ ∞

−∞

∫ ∞

−∞
𝑥 · 𝑦 · 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

Here, 𝑓𝑋,𝑌 (𝑥, 𝑦) is the joint probability density function (PDF) of the bivariate random

variables 𝑋 and 𝑌 .

Covariance:

The covariance of random variables X and Y measures the degree of variance of the X and

Y together. It is evaluated in terms of expectations as:

Cov(𝑋,𝑌 ) = 𝐸 [𝑋𝑌 ] − 𝐸 [𝑋] · 𝐸 [𝑌 ] .

The covariance can be positive, negative, or zero.

Cov(X, Y) > 0 indicates positive linear relationship between the variables.

Cov(X, Y) < 0 indicates negative linear relationship.

Cov(X, Y) = 0 represents no linear relationship between the variables X and Y. There are
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useful properties of covariance:

1. Bilinearity:

Cov(𝑎𝑋 + 𝑏𝑊, 𝑐𝑌 + 𝑑𝑍)

= 𝑎𝑐 · Cov(𝑋,𝑌 ) + 𝑎𝑑 · Cov(𝑋, 𝑍) + 𝑏𝑐 · Cov(𝑊,𝑌 ) + 𝑏𝑑 · Cov(𝑊, 𝑍).

2. Symmetry:

Cov(𝑋,𝑌 ) = Cov(𝑌, 𝑋).

3. Covariance with Itself:

Cov(𝑋, 𝑋) = Var(𝑋).

Correlation:

The correlation of bivariate random variables X and Y, denoted by 𝜌𝑋,𝑌 , is defined as the

covariance divided by the standard deviation of X and Y.

𝜌𝑋,𝑌 =
Cov(𝑋,𝑌 )
𝜎𝑋 · 𝜎𝑌

.

Here, Cov(𝑋,𝑌 ) is the covariance, 𝜎𝑋 is the standard deviation of 𝑋 , and 𝜎𝑌 is the standard

deviation of 𝑌 . The range of correlation is given by −1 ≤ 𝜌 ≤ 1.

𝜌𝑋,𝑌 = 1 indicates perfect positive linear correlation

𝜌𝑋,𝑌 = −1 indicates perfect negative linear correlation

𝜌𝑋,𝑌 = 0 indicates no correlation between the random variables X and Y.

Correlation is very important in the prediction of volatility, especially when examining the

connection between features that is used to predict the volatility of an asset.
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3.1.3. Multivariate Random Variable. The bivariate distribution can be extended

to represent more than two random variables. The multivariate cumulative distribution

function for a set of 𝑛 random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛, defined as:

𝐹 (x) = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, . . . , 𝑋𝑛 ≤ 𝑥𝑛).

Here, x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) represents a vector of specific values for each random variable.

For continuous random variables, the probability density function 𝑓 (x) is defined as:

𝐹 (x) =
∫ 𝑥1

−∞

∫ 𝑥2

−∞
. . .

∫ 𝑥𝑛

−∞
𝑓 (𝑢1, 𝑢2, . . . , 𝑢𝑛) 𝑑𝑢1 𝑑𝑢2 . . . 𝑑𝑢𝑛.

Here, 𝑓 (𝑢1, 𝑢2, . . . , 𝑢𝑛) is the multivariate probability density function.

Multivariate distribution is used to capture the underlying patterns and uncertainties in the

sequential data to allow for forecasting.

Gaussian distribution:

Gaussian distribution is a continuous probability distribution that is symmetric around

its mean. It is also called the normal distribution and is represented by two parameters:

mean and variance. In time series analysis, the normal distribution plays an important role

in modeling the distribution of random variables and the associated noise. It simplifies

the parameter estimation when using likelihood function, and also allows to model the

distribution of forecast error. [13]

The probability density function (PDF) of the Gaussian distribution is given by:

𝑓 (𝑥 |𝜇, 𝜎2) = 1
√

2𝜋𝜎2
exp

(
− (𝑥 − 𝜇)2

2𝜎2

)
.

Here, 𝜇 is the mean, also known as the location parameter and 𝜎2 is the variance or the

scale parameter of the distribution
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3.2. TIME SERIES

3.2.1. Introduction. Time series analysis is a systematic approach addressing the

correlations between observations in time. Its impact spans various fields such as economics,

where stock market fluctuations and unemployment rates are tracked [13]. This thesis uses

time series to forecast the volatility of a cryptocurrency. Cryptocurrencies are one of the

most volatile and risky assets to invest in today’s market. Forecasting the volatility of these

cryptocurrencies using time series and deep learning would enable sound decision making

when buying and selling them.

Before doing the analysis, it is essential to first identify whether time series represen-

tation is appropriate for a given dataset. This example showcases the annual returns of the

S&P 500 spanning from 1920 to 2023 (Figure 3.1) [13]. It illustrates a consistent upward

trend in returns over time and allows us to calculate an average return of approximately 7%

across this entire period. Additionally, the returns exhibit considerable volatility. Analysis

of cryptocurrency is similar to that for a stock market index. Forecasting the volatility of

future returns poses a challenge when analyzing this kind of financial data. Various models

like ARCH, GARCH, and stochastic volatility models have been created to address these

challenges [13]. In this thesis, our objective is to estimate return volatility in similar datasets

by employing LSTM alongside GARCH models.

3.2.2. Time Series Statistical Models. Time series analysis aims to create mathe-

matical models that accurately describe sample data, especially data that appears to fluctuate

randomly over time. It defines a time series as a set of random variables ordered by their

occurrence in time.

Mean function:

The mean function 𝜇𝑡 for a stochastic process {𝑋𝑡 : t = 0, 1, 2, . . . ,} is defined as:

𝜇𝑡 = 𝐸 (𝑋𝑡).
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Figure 3.1. S&P 500 Annual Returns from 1920 to 2023

Autocovariance:

Autocovariance measures the linear dependence between observations at different times.

The autocovariance (𝛾𝑡,𝑠) of an observation at time 𝑡 and 𝑠 is given by

𝛾𝑡,𝑠 = 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑠) = 𝐸 (𝑌𝑡𝑌𝑠) − 𝐸 (𝑌𝑡)𝐸 (𝑌𝑠).

Autocorrelation:

The correlation between an observation at time 𝑡 and 𝑠 is called autocorrelation (𝜌𝑡,𝑠) and

is defined as:

𝜌𝑡,𝑠 =
𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑠)√︁

𝑉𝑎𝑟 (𝑋𝑡) 𝑉𝑎𝑟 (𝑋𝑠)
=

𝛾𝑡,𝑠

𝜎𝑡 𝜎𝑠
.

𝜌𝑡,𝑠 = ± 1 indicates strong linear dependence between 𝑋𝑡 and 𝑋𝑠.

𝜌𝑋,𝑌 = 0 indicates no correlation between 𝑋𝑡 and 𝑋𝑠.

Measuring trends:

Time series is a study of patterns and trends over time, which could be stochastic or

deterministic. Deterministic trends can be measured with higher certainty using regression
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as it is caused by a non random process [13]. An example of a model that measures the

linear and quadratic trends are given by:

𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡 (Linear trend).

𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝜀𝑡 (Quadratic trend).

Here, 𝜀𝑡 is the error (innovation) term in the model.

Stochastic trends are caused by random variation and can be represented by a set of random

variables {𝑋𝑡 : 𝑡 = 0, 1, 2, . . . }. These trends cannot be measured in a deterministic way

as presented earlier, but can be analyzed by exploiting the autocorrelation between the

observations [13].

3.2.2.1. White noise. White noise is a series of uncorrelated random variables with

mean 0 and a finite variance that shows no discernible patterns. A useful white noise series

is the Gaussian white noise denoted by 𝑤𝑡 ∼ i.i.d 𝑁 (0, 𝜎2
𝑤). This series has a mean 0 and

variance 𝜎2
𝑤, and is often added to the time series model to represent the uncertainty in

predictions. White noise is used to model new information as time progresses that cannot

be learned from the past, and is fundamental to more complex time series models [13].

Stationarity:

A time series 𝑋𝑡 is stationary if it satisfies the following conditions:

• The mean function 𝐸 [𝑋𝑡] is constant over time.

• The covariance between 𝑋𝑡 and 𝑋𝑠 depends only on time lag, which is the difference

between the time points t and s, represented by 𝑙𝑎𝑔 |𝑡 − 𝑠 |.

A white noise process is stationary because its mean is constant, usually 0, and possesses

constant variance given by

𝑉𝑎𝑟 (𝑋𝑡) = 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡) = 𝐶𝑜𝑣(𝑋𝑠, 𝑋𝑠) = 𝑉𝑎𝑟 (𝑋𝑠).
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Stationarity is important in the analysis of time series because it makes the statistical

analysis more tractable as the probabilistic behavior does not change over time. Prior to

building time series models, stationarity is usually induced in non-stationary observations

by various methods such as log transformation, differencing, smoothing (Moving averages

or exponential smoothing), removing outliers, and so on [13].

3.2.2.2. Random walk. Random walk is a stochastic process where the current

observation is obtained by adding current white noise to the previous observation. It is a

type of non-stationary time series where the observations are independent of each other,

and no discernible patterns are present [13]. It is mathematically described as:

𝑋𝑡 = 𝑋𝑡−1 + 𝜀𝑡 .

Using repeated substitutions, it can also be represented as:

𝑋𝑡 = 𝑋0 + 𝑎
𝑡∑︁
𝑖=1

𝜀𝑖 .

Mean and Variance of random walk process:

𝐸 [𝑋𝑡] = 𝑋0 +
𝑡∑︁
𝑖=1

𝐸 [𝜀𝑖] = 𝑋0 + 𝑡𝜇,

𝑉𝑎𝑟 (𝑋𝑡) =
𝑡∑︁
𝑖=1
𝑉𝑎𝑟 (𝜀𝑖) = 𝑡𝜎.

Here, 𝜇 and 𝜎 are the constant mean and constant variance of the white noise process.

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑠) = 𝐶𝑜𝑣(
𝑡∑︁
𝑖=1

𝜀𝑖,

𝑠∑︁
𝑖=1

𝜀𝑖) = 𝐶𝑜𝑣(
𝑡∑︁
𝑖=1

𝜀𝑖,

𝑡∑︁
𝑖=1

𝜀𝑖 +
𝑠∑︁

𝑖=𝑡+1
𝜀𝑖),

= 𝐶𝑜𝑣(
𝑡∑︁
𝑖=1

𝜀𝑖,

𝑡∑︁
𝑖=1

𝜀𝑖) = 𝑡𝜎.
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Here, 𝑡 < 𝑠 and the covariance only depends on time s.

3.2.2.3. Autoregressive model. Autoregressive (AR) models are obtained by re-

gressing on the past observations to obtain current observation. A 𝑝𝑡ℎ-order Autoregressive

model, AR(p) is defined as follows [13]:

𝑋𝑡 = 𝜙0 + 𝜙1 𝑋𝑡−1 + 𝜙2 𝑋𝑡−2 + . . . + 𝜙𝑝 𝑋𝑡−𝑝 + 𝜀𝑡 .

Here, 𝜙 is the model parameter. Thus, an AR(p) model evaluates the current value by

regressing on past 𝑝 values and adding a current white noise process.

First order Autoregressive, AR(1): The first order AR process is mathematically defined as;

𝑋𝑡 = 𝜙0 + 𝜙1 𝑋𝑡−1 + 𝜀𝑡 .

The stationarity of this model can be preserved by keeping the model parameter |𝜙| < 1.

Setting the model parameter in such a way ensures that the series does not explode as time

increases, and the stability is maintained [13].

Model Properties of AR(1) [13]:

Mean function:

𝐸 [𝑋𝑡] = 𝜙0 + 𝜙1 𝐸 [𝑋𝑡−1] .

Assuming stationarity, the expectation at time 𝑡 is equal to the expectation at time 𝑡 − 1. So,

the expected value will be:

𝐸 [𝑋𝑡] =
𝜙0

1 − 𝜙1
.

Variance function:

𝑉𝑎𝑟 (𝑋𝑡) = 𝜙2
1 𝑉𝑎𝑟 (𝑋𝑡−1) +𝑉𝑎𝑟 (𝜀𝑡).
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The variance is constant over time because of stationarity. So, the variance of the series is

given as follows:

𝑉𝑎𝑟 (𝑋𝑡) =
𝜎2
𝜀

1 − 𝜙2
1
.

Autocorrelation function:

The covariance of 𝑋𝑡 and 𝑋𝑡−𝑘 is obtained as,

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑘 ) = 𝜙1 𝐶𝑜𝑣(𝑋𝑡−1, 𝑋𝑡−𝑘 ).

Inductively, the covariance will be:

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑘 ) = 𝜙𝑘1 𝐶𝑜𝑣(𝑋𝑡−𝑘 , 𝐶𝑜𝑣𝑡 − 𝑘) = 𝜙
𝑘
1 𝑉𝑎𝑟 (𝑋𝑡).

Now, the lag-k autocorrelation can be defined as:

𝜌𝑘 =
𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑘 )
𝑉𝑎𝑟 (𝑋𝑡)

= 𝜙𝑘1 .

Since, |𝜌𝑘 | < 1, the magnitude of autocorrelation decreases exponentially with lag k. Figure

3.2 shows the exponential decay of autocorrelation with lag.

When 𝜙 > 0, the autocorrelations are all positive and decreasing with increasing lag as

shown in the following figure.

When 𝜙 < 0, the autocorrelations alternate between positive and negative, but still expo-

nentially decreasing with increasing lag.

Heteroskedastic time series models:

The earlier models discussed had stationary random variables, which means constant mean

and variance over time. Heteroskedastic refers to a sequence of random variables for which

the variance changes as time progresses. In financial modeling, and specifically volatility

forecasting, the conditional variance of the series is evaluated using the time series models

like Autoregressive conditional heteroskedasticity (ARCH) models to forecast the volatility
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Figure 3.2. Autocorrelation function (ACF) plot for AR(1) model with different model
parameters.

over a time period.

For a time series {𝑋𝑡}, the conditional variance of 𝑋𝑡 given the past values {𝑋𝑡−1, 𝑋𝑡−2, . . . }

measures the uncertainty in deviation of 𝑋𝑡 from the conditional mean of the series

𝐸 [𝑋𝑡 |𝑋𝑡−1, 𝑋𝑡−2, . . . ].

Returns of the time series:

The returns of a heteroskedastic time series {𝑋𝑡} is defined as [4],

𝑟𝑡 = 𝑙𝑜𝑔(𝑋𝑡) − 𝑙𝑜𝑔(𝑋𝑡−1).

The returns 𝑟𝑡 is usually a series of uncorrelated random variables with zero mean. The

conditional variance of the return is denoted by 𝜎2
𝑡 |𝑡−1, where the variance at time 𝑡 is

conditioned upon the return in time 𝑡 − 1. The squared of the returns signifies the amount

of volatility, where a series of large squared return may predict a higher volatile period and

a quiet period when the series of squared return is relatively small [4].
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3.2.2.4. Autoregressive conditional heteroskedastic (ARCH) model. A general

ARCH(p) model was introduced by Engle in 1982 and is defined as [1]:

𝜎2
𝑡 |Ω(𝑡−1) = 𝜔 + 𝛼1 𝑟

2
𝑡−1 + 𝛼2 𝑟

2
𝑡−2 + ... + 𝛼𝑝 𝑟

2
𝑡−𝑝 .

Here, Ω(𝑡 − 1) contains the information of the series from time 𝑡 − 𝑝 to time 𝑡 − 1. 𝜔 > 0

and 𝛼1, 𝛼2, . . . , 𝛼𝑝 are the non-negative parameters of the model.

ARCH(1) model:

ARCH(1) is the first order model that evaluates the one step conditional variance based on

immediate past observation. It assumes that the series is generated as follows:

𝑟𝑡 = 𝜀𝑡 𝜎𝑡 |𝑡−1.

Here, {𝜀𝑡} is a sequence of independent and identically distributed random variables with

zero mean and unit variance. The ARCH(1) model is defined as:

𝜎2
𝑡 |𝑡−1 = 𝜔 + 𝛼 𝑟2

𝑡−1.

Assuming that the return series is stationary, we can take the expectations of this equation

to yield:

𝐸 [𝜎2
𝑡 |𝑡−1] = 𝐸 [𝜔] + 𝐸 [𝛼 𝑟

2
𝑡−1] .

𝜎2 = 𝜔 + 𝛼 𝜎2.

𝜎2 =
𝜔

1 − 𝛼 .

So, it is necessary and sufficient to have 0 ≤ 𝛼 < 1 to preserve stationarity [13].



21

This model can be used to predict k step ahead conditional variance. First, the one

step ahead forecast can be obtained by [13]:

𝜎2
𝑡+1|𝑡 = 𝜔 + 𝛼 𝑟2

𝑡 = (1 − 𝛼)𝜎2 + 𝛼 𝑟2
𝑡 .

It can be seen that one step ahead conditional variance is the weighted average of long-run

variance and current squared return. Then, the k-step ahead forecast is obtained as [13]:

𝜎2
𝑡+ℎ |𝑡 = 𝐸 [𝑟

2
𝑡+ℎ |𝑟𝑡 , 𝑟𝑡−1, . . . ] .

Iterating the expectation through time, the conditional variance takes the recursive form

[13]:

𝜎2
𝑡+ℎ |𝑡 = 𝜔 + 𝛼 𝜎2

𝑡+ℎ−1|𝑡 .

3.2.2.5. Generalized autoregressive conditional heteroskedastic (GARCH) model.

In the ARCH(p) model, the forecast of conditional variance at time t is represented as the

weighted sum of past squared returns up to time 𝑡 − 𝑝. The GARCH model, presented by

Bollerslev in 1986, also introduces 𝑞 lags of the conditional variance in addition to the 𝑝

squared returns. GARCH(p, q) is defined as follows [3]:

𝜎2
𝑡 |Ω(𝑡−1) = 𝜔 + 𝛼1 𝑟

2
𝑡−1 + ... + 𝛼𝑝 𝑟2

𝑡−𝑝 + 𝛽1 𝜎
2
𝑡−1|𝑡−2 + ... + 𝛽𝑞 𝜎2

𝑡−𝑞 |𝑡−𝑞−1.

Similar to the ARCH(p) model, the coefficients in a GARCH model must also be nonnegative

as the conditional variance must be nonnegative.

A time series of size 500 is simulated from the GARCH(1,1) model with parameters𝜔 = 0.1,

𝛼 = 0.2, and 𝛽 = 0.7. The innovation term is obtained from standard normal distribution

and the plots are shown in Figure 3.3 and 3.4. Volatility clustering can be observed in the

returns plot, where large variations are usually followed by large fluctuations and vice versa.
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From the ACF plot, it can be observed lag 1 is highly significant, which means a high

correlation with immediate past value.

To describe the necessary condition for a GARCH model to be weakly stationary, the return

process is assumed to be weakly stationary. Now, taking expectations on both sides of the

model equation of GARCH(1,1) model described earlier:

𝜎2 = 𝜔 + 𝜎2(𝛼1 + 𝛽1).

𝜎2 =
𝜔

1 − (𝛼1 + 𝛽1)
.

Therefore, 𝛼1 + 𝛽1 < 1 is necessary for the model to be stationary.

Figure 3.3. Simulated GARCH(1,1) returns with 1000 observations.

If 𝛼1+𝛽1 = 1, then the GARCH(1,1) model is nonstationary and this specific model is called

Integrated GARCH(1,1) model [13]. In this case, the conditional variance is evaluated as

follows:

𝜎2
𝑡 |𝑡−1 = (1 − 𝛽) (𝑟2

𝑡−1 + 𝛽 𝑟
2
𝑡−2 + 𝛽

2 𝑟2
𝑡−3 + ...).

Here, the conditional variance is an exponentially weighted average of the past squared

returns, which means that exponentially less weight is provided to the observation further

away in the past [13].
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Figure 3.4. Autocorrelation Function of Simulated GARCH(1,1)

3.3. MACHINE LEARNING

3.3.1. Linear Regression. Linear regression is a method used to find the relation-

ship between dependent and independent variables, assuming this relationship is linear.

The dependent variable in our case is the closing price at time 𝑡, while the independent

variables are the past closing prices. The number of independent variables depends on the

selected window size, which refers to the number of past observations to consider. After

determining the independent variables, we aim to find the best-fitting line (or hyperplane in

higher dimensions) that describes the data. This line is determined by coefficients assigned

to each independent variable. We adjust these coefficients to minimize the squared differ-

ence between the actual data points and the predicted values given by the linear equation.

The linear relationship can be represented as:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛 + 𝜀.

Here, 𝑦 is the dependent variable, 𝑥1, 𝑥2, ..., 𝑥𝑛 are the independent variables, 𝛽0, 𝛽1, ..., 𝛽𝑛

are the coefficients (parameters) to be estimated, and 𝜀 represents the error term.
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The coefficients 𝛽0, 𝛽1, ..., 𝛽𝑛 are estimated by minimizing the sum of squared residuals

below:
𝑁∑︁
𝑖=1

(𝑦𝑖 − (𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ... + 𝛽𝑛 𝑥𝑖𝑛))2.

Here, 𝑁 is the number of observations.

This can be solved using Ordinary Least Squares method. To minimize this sum of

squared residuals, we take the derivative of the expression with respect to each coeffi-

cient (𝛽0, 𝛽1, ..., 𝛽𝑛) and set them equal to zero. The resulting systems of equations are then

solved to find the coefficients.

First, the derivative with respect to 𝛽 𝑗 is given as:

𝜕

𝜕𝛽 𝑗

𝑁∑︁
𝑖=1

(𝑦𝑖 − (𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ... + 𝛽𝑛 𝑥𝑖𝑛))2 = 0.

Evaluating the derivative, we get:

𝑁∑︁
𝑖=1

2[𝑦𝑖 − (𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ... + 𝛽𝑛 𝑥𝑖𝑛)] (−𝑥𝑖 𝑗 ) = 0.

There are 𝑛 + 1 sets of equations that can be solved to yield the estimates for the coefficients

𝛽0, 𝛽1, ..., 𝛽𝑛.

3.3.2. Lasso Regression. Lasso regression, introduced by Tibshirani in 1996,

builds upon linear regression by adding a penalty term to the optimization process. This

penalty term helps to prevent overfitting and encourages simpler models by forcing some

of the coefficients to be exactly zero. In the estimation of volatility or price, if some of the

past closing prices are not significant, the coefficients of those observations would be set to

zero. In this way, Lasso performs feature selection by shrinking some coefficients down to

zero, effectively removing them from the model [5]. This is particularly useful in sequence

modeling where we may consider a large window size, for instance, equal to 50. Some
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of the past observations may be highly correlated, in which case their coefficients would

be zero and the observations would not contribute to the model. The amount of penalty

applied is controlled by a parameter called lambda, which is used to balance between model

complexity and goodness of fit [14].

The loss function of Lasso regression can be represented as [14]:

Loss = MSE + 𝜆
𝑝∑︁
𝑗=1

|𝛽 𝑗 |.

MSE =
1
𝑛

𝑁∑︁
𝑖=1

(𝑦𝑖 − (𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ... + 𝛽𝑛 𝑥𝑖𝑛))2.

Here, 𝜆 is the regularization parameter that controls the strength of the penalty term, 𝑝 is the

number of predictors (independent variables), |𝛽 𝑗 | is the absolute value of the coefficients.

The first part of this objective function is the same ordinary least squares cost function from

simple linear regression, and the second part is the penalty term of lasso regression. The

minimization of the objective function is achieved through gradient descent.

Gradient descent in optimization of Lasso objective function:

The first step in gradient descent is to find the partial derivatives of the loss function

with respect to each coefficient 𝛽 𝑗 . The gradient of MSE with respect to coefficient 𝛽 𝑗 is

evaluated as [3],

𝜕MSE
𝜕𝛽 𝑗

=
1
𝑛

𝑁∑︁
𝑖=1

𝜕

𝜕𝛽 𝑗
(𝑦𝑖 − (𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ... + 𝛽𝑛 𝑥𝑖𝑛))2.

= −2
𝑛

𝑁∑︁
𝑖=1

(𝑦𝑖 − (𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ... + 𝛽𝑛 𝑥𝑖𝑛))𝑥𝑖 𝑗 = −2
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)𝑥𝑖 𝑗 .

Here, 𝑥𝑖 𝑗 is the value of feature 𝑗 for data point 𝑖.
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The gradient of the regularization term is evaluated as,

𝜕

𝜕𝛽 𝑗
𝜆

𝑝∑︁
𝑗=1

|𝛽 𝑗 | = 𝜆
𝜕 ( |𝛽 𝑗 |)
𝜕𝛽 𝑗

= 𝜆 sign(𝛽 𝑗 ).

After evaluating the gradients, the values of the coefficients are iteratively updated:

𝛽 𝑗 := 𝛽 𝑗 − 𝛼
(
𝜕MSE
𝜕𝛽 𝑗

+ 𝜆 sign(𝛽 𝑗 )
)
.

Here, 𝛼 is the tuning parameter typically determined through cross-validation, aiming to

minimize the error by selecting the optimal value.

3.3.3. Decision Trees. Decision trees are used for regression and classification

tasks. In this work, we use decision trees for regression to forecast the price and volatility

of an asset. The decision tree involves segmenting the predictor space into several simpler

regions. The prediction for a given observation is given as the mean of the training

observations to which it belongs. The process of building the regression tree is as follows

[14]:

1. The predictor space is divided into K distinct and non-overlapping regions (𝑅1, 𝑅2, ..., 𝑅𝐾).

The regions could have any shape, however, for simplicity, high-dimensional boxes

represent them.

2. The prediction of an observation belonging to a particular region 𝑅 𝑗 is equal to the

mean of the observations in that region.

The objective function of a decision tree is given as follows [14]:

Minimize
𝐾∑︁
𝑗=1

∑︁
𝑖∈𝑅 𝑗

(𝑦𝑖 − �̂�𝑅 𝑗
)2.

Here, �̂�𝑅 𝑗
is the mean of training observations in 𝑗 𝑡ℎ box.

Recursive binary splitting is used to divide the predictor space as follows:
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• Recursive binary splitting is an approach that is used to divide the predictor space

into distinct and non-overlapping regions [14].

• At each node starting with the root, the algorithm evaluates all possible splits on all

features and selects the one that minimizes the sum of squared error.

• The process of splitting is repeated recursively until a stopping criterion is met. The

stopping criteria could be the maximum tree depth or a relationship between the

number of nodes and samples.

When performing recursive binary splitting at each step, the predictor 𝑋 𝑗 and a cutoff point

𝑠 are selected such that splitting the predictor space into regions 𝑅1 and 𝑅2 defined below

leads to the lowest sum squared error (SSE) [14].

𝑅1( 𝑗 , 𝑠) = {𝑋 |𝑋 𝑗 < 𝑠} and 𝑅2( 𝑗 , 𝑠) = {𝑋 |𝑋 𝑗 ≥ 𝑠}.

SSE =
∑︁
𝑖:𝑥𝑖∈𝑅1

(𝑦𝑖 − �̂�𝑅1)2 +
∑︁
𝑖:𝑥𝑖∈𝑅2

(𝑦𝑖 − �̂�𝑅2)2.

Here, �̂�𝑅1 and �̂�𝑅2 are the mean responses for training observations in 𝑅1( 𝑗 , 𝑠) and 𝑅2( 𝑗 , 𝑠)

respectively.

Cost complexity pruning:

The recursive binary splitting algorithm produces an efficient tree that does well with the

training observations. However, the tree might be too bulky and overfitting. It occurs when

the tree becomes too complex and captures the noise in the training data, resulting in poor

generalization of the test data. Building a smaller tree with fewer terminal nodes may lead

to lower variance at the cost of a small amount of bias, leading to a better test performance

[14].

Cost complexity pruning is a way to reduce the size of the tree using a penalty term similar

to the Lasso regression. The objective function with cost complexity pruning is defined as
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follows:

𝑆𝑆𝐸 =

|𝑇 |∑︁
𝑗=1

∑︁
𝑖:𝑥𝑖∈𝑅 𝑗

(𝑦𝑖 − �̂�𝑅 𝑗
)2 + 𝛼 |𝑇 |.

Here, |𝑇 | is the number of terminal nodes, �̂�𝑅 𝑗
is the mean response in 𝑗 𝑡ℎ terminal node,

and 𝛼 is the tuning parameter.

Tuning parameter (𝛼):

• The tuning parameter controls the tree’s size, represented by the number of terminal

nodes. For each value of 𝛼, we can get a sequence of subtrees 𝑇𝛼 for the original tree

𝑇0.

• If 𝛼 = 0, no penalty term is applied and we get the original tree 𝑇0.

• If 𝛼 increases, the original tree is more heavily penalized, shrinking the tree 𝑇𝛼.

• Cross-validation is used to select the ideal 𝛼 from a grid of values that leads to the

smallest error.

3.3.4. Bagging. Bagging, or bootstrap aggregating, is a procedure that builds upon

decision trees to reduce variance in prediction. In this method, we create B bootstrap

samples from the training data set, build regression tree models on the training sets, and

average the predictions. [14] It is defined as follows:

𝑓𝑏𝑎𝑔 (𝑥) =
1
𝐵

𝐵∑︁
𝑏=1

𝑓𝑏 (𝑥).

Here, 𝑓𝑏 is the prediction for the bootstrap sample 𝑏.

Bagging reduces the variance of the prediction by averaging the predictions as follows [14]:

𝑉𝑎𝑟 [ 𝑓𝑏𝑎𝑔 (𝑥)] =
1
𝐵
𝑉𝑎𝑟 [ 𝑓𝑏 (𝑥)] .
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3.3.5. Random Forest. Bagging involves creating trees from bootstrapped samples

using the full set of predictors at every split. This usually results in the trees being correlated,

which impacts the model’s ability to predict the unseen data. If one predictor contributes

significantly more than the others in prediction, all the trees would consider that predictor in

their first split, resulting in similar trees. Random forest is a variant of bagging where only

a set of 𝑚 from a total of 𝑝 predictors are used at every split when creating regression trees

[6]. This leads to an even larger reduction in variance when the predictions are averaged.

Typically feature size, 𝑚 =
√
𝑝. We can also visualize what features are more influential in

predicting the response values using feature importance and partial dependence plots [14].

The following plots (Figure 3.5) show the influential features when predicting the Bitcoin

price forecast. The input features are the past closing prices, and each feature represents the

price at a certain time 𝑡 in the past.

Figure 3.5. Feature importance plot (left) and Partial dependence plot (right) for Random
Forest regression model with window size 10.

When predicting the price at time 𝑡, the index 1 and index 2 in the first plot represent the

prices at times 𝑡 − 1 and 𝑡 − 2, and so on. Based on this plot, the immediate past observation

is highly influential, accounting for around 95% among all the features. Similarly, in

the second plot, feature 1 corresponds to the immediate past observation and feature 10

corresponds to the last considered observation for window size 10.
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3.3.6. Boosting. Boosting is similar to bagging and random forest as it also involves

creating decision trees to make predictions. However, the trees are grown sequentially, where

each tree is grown based on the previously grown trees by fitting them on a modified version

of the original training data [15]. The modified training data corresponds to the residuals

of the previously grown trees. For instance, if a regression decision tree 𝑓 1 is fitted to the

original training data, then the residuals of the predictions are given as follows [14]:

𝑟𝑖 = 𝑦𝑖 − 𝑓 1(𝑥𝑖).

The residuals are the part of the training data not explained by the first regression tree.

Now, a second decision tree 𝑓 2 fits the residuals from the first tree, and the new prediction

is represented as the sum of predictions from the first and second trees. A shrinkage

parameter is applied to the predictions made from the residuals to control the learning

process as follows [14]:

𝑓 (𝑥) = 𝑓 1(𝑥) + 𝜆 𝑓 2(𝑥).

This prediction process from residuals is continued for 𝑏 = 1, 2, , , 𝐵. The residual and

prediction are updated as follows:

𝑓 (𝑥) = 𝑓 (𝑥) + 𝜆 𝑓 𝑏 (𝑥).

𝑟𝑖 = 𝑟𝑖 − 𝜆 𝑓 𝑏 (𝑥𝑖).

Here, the regression trees at each step 𝑏, are fit with 𝑑 splits, or 𝑑+1 terminal nodes. Finally,

the output from the boosted model can be represented as follows:

𝑓 (𝑥) =
𝐵∑︁
𝑏=1

𝜆 𝑓 𝑏 (𝑥).

The tuning parameters of the boosting method are as follows [14]:



31

• Number of trees (𝐵): This parameter determines the amount of time the residuals

and the predictions get updated. A large value of B may result in overfitting.

• Shrinkage parameter (𝜆): This parameter controls the learning rate, with a smaller

value resulting in the trees growing slowly.

• Number of splits (𝑑): This parameter determines the complexity of the trees. Usually,

we take 𝑑 = 1, which implies that each tree has two leaves.

3.4. NEURAL NETWORKS

3.4.1. Neuron. In a neural network, a neuron takes a set of input values 𝑥1, 𝑥2, . . . , 𝑥𝑛,

evaluates their weighted sum, adds a bias, and passes it through an activation function to

produce outputs. Neurons are the building block of a neural network, where the inter-

connected neurons work together to produce the desired results from a set of inputs. A

network can have multiple layers and each layer can have multiple neurons, all of which are

interconnected through weights. The weight between a connection of neurons represents

how an output is related to an input. A bias is also added to the connection to build a

more complex relationship between inputs and outputs. In a neural network, the output of

a neuron 𝑗 in layer 𝑙 is given by [16],

𝑧
(𝑙)
𝑗

= 𝜎

(
𝑛∑︁
𝑖=1

𝑤
(𝑙)
𝑖 𝑗
𝑥
(𝑙−1)
𝑖

+ 𝑏 (𝑙)
𝑗

)
.

Here, 𝑤 (𝑙)
𝑖 𝑗

is the weight between 𝑖-th input and 𝑗-th neuron in layer 𝑙, 𝑥 (𝑙−1)
𝑖

is the 𝑖-th input

from the previous layer, 𝑏 (𝑙)
𝑗

is the bias term, and 𝜎 is the activation function.

3.4.2. Activation Function. An activation function is an operation applied to the

weighted sum of the inputs plus a bias to introduce non-linearity to the output. This allows

the neural network to learn complex patterns and relationships in the data and produce

meaningful outputs. The four common activation functions are defined as follows [17]:
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1. Rectified Linear Unit (ReLU): ReLU takes an input and outputs the maximum value

between 0 and the input.

𝜎(𝑧) = max(0, 𝑧).

2. Sigmoid function: It is defined as

𝜎(𝑧) = 1
1 + 𝑒−𝑧 .

3. Hyperbolic tangent function (tanh): It produces an output between -1 and 1, and is

defined as

𝜎(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 .

4. Softmax function: A softmax function results in an output in terms of probabil-

ities. The output of this function is between 0 and 1. For a vector of outputs

𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑁 ), the softmax function evaluates the output probabilities as

𝜎(𝑧𝑖) =
𝑒𝑧𝑖∑𝑁
𝑗=1 𝑒

𝑧 𝑗
.

It outputs a value between 0 and 1.

3.4.3. Forward Propagation. Forward propagation involves the calculation of out-

put of each neuron starting from the input layer, propagating through the hidden layers to

the output layer [16]. The input layer contains the neurons with input data features. The

first hidden layer is evaluated as

𝑧
(1)
𝑗

=

𝑛∑︁
𝑘=1

𝑤
(1)
𝑗 𝑘
𝑥𝑘 + 𝑏 (1)𝑗 .

𝑎
(1)
𝑗

= 𝜎(𝑧(1)
𝑗
).
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Figure 3.6. Common activation functions used in Neural Network

Here, 𝑧(1)
𝑗

is the weighted sum for neuron 𝑗 and 𝑎 (1)
𝑗

is its output after applying the activation

function 𝜎.

Figure 3.7. A neural network with k and n neurons in layers 𝐿 − 1 and 𝐿 respectively

The output of each neuron in L layers are evaluated as:

𝑧
(𝐿)
𝑗

=

𝐾∑︁
𝑘=0

𝑤
(𝐿)
𝑗 𝑘
𝑎
(𝐿−1)
𝑘

+ 𝑏 (𝐿)
𝑗
.

𝑎
(𝐿)
𝑗

= 𝜎(𝑧(𝐿)
𝑗

).
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3.4.4. Loss Function. A loss function measures the difference between true values

and predicted values from the neural network. An ideal loss function for volatility forecasting

is the sum squared error, which measures the sum of squared difference between the

predicted outputs and the actual outputs [18]. The loss function for one training data is

defined as

𝐶0 =

𝑛𝐿−1∑︁
𝑗=0

(𝑎 𝑗 − �̂� 𝑗 )2.

If we have N training data, the loss of the network is the average of losses for all training

examples.

𝐶 =
1
𝑁

𝑁∑︁
𝑛=0

(𝐶𝑛).

Gradient of Loss function:

The gradient gives the direction and the magnitude of steepest increase of the loss function.

Minimizing the loss function involves iteratively updating the network parameters in the

direction of the negative gradient using a process called gradient descent. The gradient of

loss function with respect to the two parameters are the partial derivatives that are evaluated

at iteratively until the loss function is minimized. A learning rate is defined when creating

the neural network, and is used to update the gradients each iteration [18].

Gradient of Loss with respect to weights (𝑤 (𝑙)
𝑗 𝑘

) and biases (𝑏 (𝑙)
𝑗

) are given as follows [18]:

Weights:
𝜕𝐶

𝜕𝑤
(𝑙)
𝑗 𝑘

.

Biases:
𝜕𝐶

𝜕𝑏
(𝑙)
𝑗

.

3.4.5. Backpropagation. When training a neural network, the network parameters

that include the weights and biases need to be tuned to minimize the loss function. Back-

propagation is an algorithm that accomplishes this task by adjusting the gradients of the

loss function with respect to the network parameters (weights and biases). There are four
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equations that describe the gradient calculation step of the backpropagation algorithm [18].

Equation 1: Error in output layer

The error of neuron 𝑗 in layer 𝑙, denoted by 𝛿(𝐿)
𝑗

, is defined by

𝛿
(𝐿)
𝑗

=
𝜕𝐶

𝜕𝑧
(𝑙)
𝑗

=
𝜕𝐶

𝜕𝑎
(𝐿)
𝑗

·
𝜕𝑎

(𝐿)
𝑗

𝜕𝑧
(𝑙)
𝑗

=
𝜕𝐶

𝜕𝑎
(𝐿)
𝑗

· 𝜎′(𝑧(𝐿)
𝑗

).

Here,
𝜕𝐶

𝜕𝑎
(𝐿)
𝑗

= 2(𝑎 (𝐿)
𝑗

− �̂� 𝑗 ).

Equation 2: Error of layer 𝑙 in terms of the error of next layer (𝛿(𝑙+1)
𝑗

)

𝛿
(𝑙)
𝑗

=
𝜕𝐶

𝜕𝑧
(𝑙)
𝑗

=
∑︁
𝑘

𝜕𝐶

𝜕𝑧
(𝑙+1)
𝑘

·
𝜕𝑧

(𝑙+1)
𝑘

𝜕𝑧
(𝑙)
𝑗

=
∑︁
𝑘

𝑤
(𝑙+1)
𝑘 𝑗

𝛿
(𝑙+1)
𝑘

𝜎′(𝑧(𝑙)
𝑗
).

Here,

𝑧
(𝑙)
𝑗

=
∑︁
𝑘

𝑤
(𝑙)
𝑗 𝑘
𝑎
(𝑙−1)
𝑘

+ 𝑏 (𝑙)
𝑗
.

Equation 3: Rate of change of cost with respect to bias

𝜕𝐶

𝜕𝑏
(𝑙)
𝑗

= 𝛿
(𝑙)
𝑗
.

⇒ 𝜕𝐶

𝜕𝑏
= 𝛿.

Equation 4: Rate of change of cost with respect to weight

𝜕𝐶

𝜕𝑤
(𝑙)
𝑗 𝑘

=
𝜕𝐶

𝑧
(𝑙)
𝑗

·
𝑧
(𝑙)
𝑗

𝜕𝑤
(𝑙)
𝑗 𝑘

= 𝛿
(𝑙)
𝑗
𝑎
(𝑙−1)
𝑘

.
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Here,

𝑧
(𝑙)
𝑗

=
∑︁
𝑘

𝑤
(𝑙)
𝑗 𝑘
𝑎
(𝑙−1)
𝑘

+ 𝑏 (𝑙)
𝑗
.

Parameter update:

The weight and bias parameters of the neural network are iteratively updating after each

calculation of gradients in the above equations 1 through 4. A hyperparameter called the

learning rate, which controls the size of the step taken during gradient descent, is specified

when building the neural network. If the learning rate is too small, the minimization of the

loss function would converge slowly, however, when the learning rate is too large, the loss

function would oscillate without converging to a minimum. The value of learning rate is

typically between 0.1 and 0.0001.

The following equations are used when updating the weights and biases after each successful

iteration [19]:

𝑤
(𝑙)
𝑗 𝑘

= 𝑤
(𝑙)
𝑗 𝑘

− 𝛼 𝜕𝐶

𝜕𝑤
(𝑙)
𝑗 𝑘

.

𝑏
(𝑙)
𝑗

= 𝑏
(𝑙)
𝑗

− 𝛼 𝜕𝐶

𝜕𝑏
(𝑙)
𝑗

.

3.5. SEQUENCE MODELING WITH RECURRENT NEURAL NETWORK

3.5.1. Recurrent Neural Network. They are a class of neural networks that can

analyze sequence data one element at a time while retaining an internal state that stores the

past information observed up to that point [17]. Time series forecasting at time 𝑡 requires

building connection to the observed data until 𝑡 − 1. RNN does that by maintaining a

hidden state ℎ𝑡−1 for each time step 𝑡. The network parameters are shared across all neurons
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as shown in Figure 3.9, and so the RNNs are trained using the same backpropagation

algorithm, where the gradients are computed by unfolding the network through time and

using the chain rule to evaluate the partial derivatives [17].

RNNs have a cell state, ℎ𝑡 , that is updated at each time step t as a sequence of data,

𝑥𝑡 is processed. The cell state is evaluated as a function of input 𝑥𝑡 and the old state ℎ𝑡−1

[17]. The hidden states are updated as follows:

ℎ𝑡 = 𝜎(𝑊𝑇
ℎℎ ℎ𝑡−1 +𝑊𝑇

𝑥ℎ 𝑥𝑡).

Here, 𝑊ℎℎ and 𝑊𝑥ℎ are the weight matrices that need to be optimized when training the

network and 𝜎 is the activation function.

The output vector of the network is obtained as:

𝑦𝑡 = 𝑊
𝑇
ℎ𝑦 ℎ𝑡 .

Figure 3.8. A simple RNN structure

Long term dependencies:

Recurrent neural networks use the same weight parameters and operations at each repeated

step, giving rise to vanishing or exploding gradient problems. For instance, if a computa-

tional graph consists of a path that includes repeatedly multiplying by a weight matrix 𝑊 ,
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Figure 3.9. Unfolding the graph across time t. The weights are reused for each instance of
the graph.

then it is equivalent to multiplying by𝑊 𝑡 . The eigendecomposition of W can be represented

as𝑊 = 𝑉 𝑑𝑖𝑎𝑔(𝜆)𝑉−1, and𝑊 𝑡 can be evaluated as [17]:

𝑊 𝑡 = (𝑉 𝑑𝑖𝑎𝑔(𝜆) 𝑉−1)𝑡 = 𝑉 𝑑𝑖𝑎𝑔(𝜆𝑡) 𝑉−1.

Two cases follow when any absolute value of eigenvalue is not equal to 1:

• If 𝜆 < 1, the magnitude of 𝜆𝑡 will diminish exponentially with t.

• If 𝜆 > 1, the magnitude of 𝜆𝑡 will explode as the number of repeated operations (t)

increases.

The exploding and vanishing gradient problem arises as the gradients are scaled according

to 𝑑𝑖𝑎𝑔(𝜆𝑡). In the case of vanishing gradients, it is difficult to identify which direction the

parameters should change to minimize the cost function, while exploding gradients makes

the learning process unstable [17].

Assuming that the recurrent neural network is stable and there is no problem of exploding

or vanishing gradient, there is still an issue of long term dependency of the recurrent neural

network. The weights assigned to past information decrease exponentially as the hidden

state is iteratively updated. Because of this reason, the network is unable to keep track of
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earlier information which might be useful to give current predictions. An effective way to

solve this issue is by using gated recurrent neural networks called long short term memory

(LSTM), which utilizes both long term and short term information to give an output [17].

3.5.2. Long Short Term Memory. LSTM has the basic structure similar to RNN,

but the neurons are replaced by memory blocks with each memory block containing three

non-linear units called gates [8]. A single LSTM unit (Figure 4.2) makes decision by

considering the current input, previous output and previous memory and it generates a new

output and updates the memory. The three gates are called input gate, forget gate, and

output gate.

Figure 3.10. A block diagram of LSTM unit

The gate operations are defined as follows [4]:

Forget gate:

A forget gate controls the amount of information kept (or forgotten) from the previous cell

state and is defined as:

𝑓𝑡 = 𝜎(𝑊 𝑓 𝑥𝑡 +𝑈 𝑓 ℎ𝑡−1 + 𝑏 𝑓 ).
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Input gate:

The input gate controls the amount of information stored in the cell state from the current

input. The input operation is defined as:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑥𝑡 +𝑈𝑖 ℎ𝑡−1 + 𝑏𝑖).

Output gate:

An output gate controls the amount of cell state used to describe the output in terms of the

new hidden state ℎ𝑡 .

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥𝑡 +𝑈𝑜 ℎ𝑡−1 + 𝑏𝑜).

Hidden state:

It is the output of a LSTM cell at a time step t and defined as:

ℎ𝑡 = 𝜙(𝑐𝑡) · 𝑜𝑡 .

Cell state:

The cell state stores the long-term memory that is passed with each time steps. It can

selectively add or remove information through the use of gates and is defined as:

𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝑔𝑡 ,

where

𝑔𝑡 = 𝜙(𝑊𝑐 𝑥𝑡 +𝑈𝑐 ℎ𝑡−1 + 𝑏𝑐).

Here, 𝑊 𝑓 , 𝑊𝑖, 𝑊𝑜, 𝑊𝑐, 𝑈 𝑓 , 𝑈𝑖, 𝑈𝑜, 𝑈𝑐 are the weight matrices, 𝑏 𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐 are the

corresponding biases. 𝜎 and 𝜙 are sigmoid and tanh activation functions respectively. The

initial values are 𝑐0 = 0 and ℎ0 = 0.
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A single LSTM unit does not produce the desired result. Several units need to be used

together as shown in the following figure. In this study, we used between 5 to 15 LSTM

units to train the model.

Figure 3.11. Information flow between two LSTM units from time 𝑡 to 𝑡 + 1

3.5.3. Gated Recurrent Unit. A GRU has simpler architecture compared to LSTM,

consisting of two gates: update gate and reset gate [20]. A LSTM unit has a separate cell

state that retains long term information to update hidden state, while GRU does not have

such a cell state. Instead a GRU unit updates their hidden state directly, containing both

short term and long term state in a single unit. Because of a simpler design of GRU, it is

computationally less extensive to train compared to LSTM. In this work, both LSTM and

GRU are used to train and forecast the sequential data. The gate operations are defined as

follows:

Update gate:

It determines the amount of past information to keep and the amount of hidden state to add.

The gate operation is as follows [4]:

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧).
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Reset gate:

It determines the amount of past hidden state to forget (or, to consider) and its operation is

defined as:

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟).

Hidden state:

The hidden state of a GRU unit is defined as:

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 +𝑈ℎ (𝑟𝑡 · ℎ𝑡−1) + 𝑏ℎ).

Output state:

The output of the GRU unit is given as:

ℎ𝑡 = ℎ𝑡−1 · (1 − 𝑧𝑡) + 𝑧𝑡 · ℎ̃𝑡 .

Here,𝑊𝑧,𝑊𝑟 ,𝑊ℎ,𝑈𝑧,𝑈𝑟 ,𝑈ℎ are the weight matrices, 𝑏𝑧, 𝑏𝑟 , 𝑏ℎ are the corresponding biases.

3.5.4. Bidirectional Long Short Term Memory. A BiLSTM extends the capabil-

ities of an LSTM network by combining both past and future information. It processes input

data in two directions, forward and backward, capturing dependencies in both directions.

After processing input sequences, the outputs of the forward and backward LSTM layers at

each time step 𝑡 are combined. These combined outputs are either passed through additional

layers for further processing or used directly to make predictions [4].

The parameters of BiLSTM, including the weights and biases of the LSTM units, are trained

using backpropagation algorithm described earlier. Figure 3.13 shows the block diagram

of BiLSTM with three units.
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Figure 3.12. A block diagram of GRU unit (top) and information flow between two GRU
units from time 𝑡 to 𝑡 + 1 (bottom)

Figure 3.13. BiLSTM architecture with three BiLSTM units for inputs at 𝑡 − 1, 𝑡, and 𝑡 + 1
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4. RESULTS AND DISCUSSION

4.1. DESCRIPTIVE STATISTICS OF DATA

The descriptive statistics of Bitcoin and Ethereum were analyzed and displayed in

Table 4.1. The range of Bitcoin data considered is from September 17, 2014 to March 5,

2024, totaling 3458 trading days. During this range, the minimum price was $178.10 and

the maximum was $68330.41. The standard deviation, which is used to measure volatility

of an asset, is equal to $16679.57. This is remarkably high compared to other assets today,

making it one of the most volatile asset. The skewness of Bitcoin is 1.14, which suggests

that the distribution of Bitcoin returns is moderately right-skewed. This indicates that there

might be more positive returns compared to negative returns, with the tail of the distribution

longer on the positive side. The kurtosis value of 0.22 indicates that the distribution of

Bitcoin returns is relatively close to a normal distribution (kurtosis = 0), but with slightly

lighter tails and a flatter peak compared to a normal distribution.

The volatility of bitcoin returns at time 𝑡 was evaluated as the standard deviation

of the past seven day returns. Since volatility requires the past seven returns, we only

have the volatility values starting from the 8𝑡ℎ day. The minimum and maximum volatility

are 1.02 and 4476.66 respectively while the standard deviation is 696.65, indicating high

fluctuations as expected. It has a skewness value of 2.25, which suggests that the distribution

is significantly right-skewed. This indicates that there might be more instances of high

volatility compared to low volatility, with the tail of the distribution longer on the high

volatility side. The kurtosis of bitcoin volatility is 5.57, which indicates that it has leptokurtic

distribution, which means heavier tails and a sharper peak compared to a normal distribution.

This suggests extreme volatility compared to the normal distribution.
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Table 4.1. Descriptive statistics for Bitcoin, Ethereum, and their corresponding volatilities

Bitcoin Bitcoin Vol Ethereum Ethereum Vol
Count 3458 3451 2309 2302
Mean 15204.46 491.95 1277.23 50.02
Median 8493.89 206.08 1107.07 27.42
Standard dev 16679.57 696.65 1127.68 59.15
Minimum 178.10 1.02 84.31 0.70
Maximum 68330.41 4476.66 4812.09 504.16
Skewness 1.14 2.25 0.87 2.34
Kurtosis 0.22 5.57 -0.05 8.29

Ethereum is the second dataset that was considered with the range between November

9, 2017 to March 5, 2024, totaling 2309 trading days. During this range, the minimum price

was $84.31 and the maximum was $4812.09. The deviation from the mean of $1277.23 is

evaluated as $1127.68. Ethereum has a skewness value of 0.87, suggesting a moderately

right-skewed distribution. This indicates a similar pattern to Bitcoin, with more positive

returns compared to negative returns, and a longer tail on the positive side. It has a kurtosis

value of -0.052, which indicates that the distribution is close to a normal distribution, but

with slightly lighter tails and a flatter peak.

The volatility of Ethereum returns at time 𝑡 was also evaluated as the standard

deviation of the past seven day returns. The minimum and maximum volatility are 0.70 and

504.16 respectively while the standard deviation is 59.15, indicating high swings similar to

Bitcoin. It has a skewness value of 2.34, suggesting significantly right-skewed distribution

of Ethereum volatility. This indicates a similar pattern of more instances of high volatility

compared to low volatility similar to Bitcoin volatility. It has a kurtosis value of 8.29, which

indicates that the distribution is highly leptokurtic, with even heavier tails and a sharper

peak compared to Bitcoin volatility. This suggests that extreme volatility events are even

more common in Ethereum compared to Bitcoin.
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4.2. FORECASTING METHODOLOGY

In this thesis, we forecast price and volatility of Bitcoin using various time series and

machine learning models. The price and volatility forecasting methodology are described

separately as follows [4]:

4.2.1. Price Forecast.

• The Bitcoin dataset is obtained from Yahoo finance as a downloaded csv file.

• The available features in the dataset are: Open, High, Low, Close, Adj Close, and

Volume. Only the closing price (Close) is chosen for our analysis.

• The dataset is checked for any missing values, and split into training (60%), validation

(20%), and test (20%) sets.

• We forecast current price using the past closing prices. The number of past observa-

tions is defined as window size. The optimal window size is estimated by comparing

the performance metrics of the models for the window sizes between 1 and 50.

• The trained models have several model parameters that need to be pre-defined, called

the hyper-parameters. These parameters are selected based on the model perfor-

mances similar to how the optimal window size is obtained.

• After optimizing the window size and hyper-parameters, prediction results are ob-

tained including various charts and performance metrics.

• The performance metrics of various models obtained in the previous step are com-

pared. The models used here are: Lasso Regression, Random Forest Regression,

Gradient Boosting, LSTM, GRU, and BiLSTM.
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4.2.2. Volatility Forecast.

• The closing price extracted in Price forecast procedure is also used to forecast volatil-

ity. The log returns of the closing price are evaluated to introduce stationarity to the

dataset. Stationarity is assumed when using ARCH and GARCH models to estimate

volatility.

• The volatility of bitcoin returns at time 𝑡 is evaluated as the standard deviation of

the past seven day returns. Volatility is defined as the seven-day moving standard

deviation through time.

• Partial Auto Correlation Function (PACF) plot is created to analyze the autocorrelation

between observations through time. This is helpful in determining the number of past

observations to consider when training the model.

• The models are trained with the optimal window size identified using the PACF plot.

The models trained to forecast volatility are: GARCH, LSTM, GRU, and BiLSTM.

• Rolling forecast is generated for the test set. Based on the forecasts, the performance

metrics are evaluated and compared between the models defined in the previous step.

4.3. PERFORMANCE METRICS

The performance metrics used to evaluate and validate the trained models are as

follows [4]:

1. Root Mean Square Error: It is defined as the square root of the average of squared

errors.

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2.

2. Mean Absolute Percentage Error: It is defined as the average of absolute percentage

difference between the predicted and actual values.
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MAPE =
1
𝑛

𝑛∑︁
𝑖=1

���� 𝑦𝑖 − �̂�𝑖𝑦𝑖

���� × 100%.

3. Coefficient of determination: It is defined as the proportion of variation in the

dependent variable (current price) that is explained by the independent variables

(past prices).

𝑅2 = 1 −
∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2 .

Here, �̂�𝑖 is predicted value, 𝑦𝑖 is true value, �̄� is the mean of the true values, and 𝑛 is

the number of observations.

We used adjusted coefficient of determination to account for the number of predictor

variables (window size) in the model. The optimal window size may vary with the

models trained.

Adjusted R2 = 1 −
(

𝑛 − 1
𝑛 − 𝑝 − 1

)
× (1 − 𝑅2).

4.4. TRAINING THE MODEL: PRICE FORECAST

4.4.1. LSTM Model. The LSTM model is trained using the bitcoin dataset to

predict the current closing price based on the historical prices. The model configuration of

the LSTM model is as follows:

• Number of LSTM units: 14

• Optimizer: Adam (A stochastic gradient-based optimization algorithm)

• Loss metric: mean squared error and r squared

• Activation function: ReLU

• Number of epochs: 25
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• Range of dataset: 08/05/2020 to 03/05/2024

• Training size: 60%, Validation size: 20%, and Test size: 20%

The model is trained using different window sizes (1 to 50), and the best model is

selected based on the highest adjusted R squared and least mean square error. The Optimal

window size estimation using these performance metrics are shown in Figure 4.1 and 4.2.

Figure 4.1. Optimal window size for LSTM model based on Adjusted R-squared

Figure 4.2. Optimal window size for LSTM model based on Mean squared error
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From the plots, the optimal window size for LSTM model is equal to 3. This

window size equal to 3 is used to train the LSTM model and predictions are evaluated. The

prediction plot (Figure 4.3) and performance metrics (Table 4.2) are obtained.

Figure 4.3. LSTM Price Forecast for Window size = 3

Table 4.2. LSTM performance metrics for Window size = 3

Train Test
RMSE 1807.64 1156.56
MAE 1333.64 745.52
MAPE 3.98 1.98
R-squared 0.986 0.982

4.4.2. GRU Model. The GRU model is trained similar to the LSTM model and has

the same model configuration. The only difference is that the 14 LSTM units are replaced

by 14 GRU units. The GRU model is also trained for different window sizes (1 to 50), and

the best model is selected based on the highest adjusted R squared and least mean square

error. The Optimal window size estimation using these performance metrics are shown in

Figure 4.4 and 4.5.

From the plots, the optimal window size for GRU model is equal to 2 (compared to 3

for LSTM). This window size equal to 2 is used to train the GRU model and predictions are

evaluated. The prediction plot (Figure ) and performance metrics (Table 4.3) are obtained.
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Figure 4.4. Optimal window size for GRU model based on Adjusted R-squared

Figure 4.5. Optimal window size for GRU model based on Mean squared error

Figure 4.6. GRU Price Forecast for Window size = 2
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Table 4.3. GRU performance metrics for Window size = 2

Train Test
RMSE 1595.86 986.52
MAE 1106.52 612.11
MAPE 2.99 1.62
R-squared 0.989 0.987

4.4.3. BiLSTM Model. The BiLSTM model is trained similar to the LSTM and

GRU models and has the same model configuration. It is also trained for different window

sizes (1 to 50), and the best model is selected based on the highest adjusted R squared

and least mean square error. The Optimal window size estimation using these performance

metrics are shown in Figure 4.7 and 4.8.

Figure 4.7. Optimal window size for BiLSTM model based on Adjusted R-squared

From the plots, the optimal window size for BiLSTM model is equal to 2, which is

similar to the GRU model . This window size equal to 2 is used to train the BiLSTM model

and predictions are evaluated. The prediction plot (Figure 4.9) and performance metrics

(Table 4.4) are obtained.
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Figure 4.8. Optimal window size for BiLSTM model based on Mean squared error

Figure 4.9. BiLSTM Price Forecast for Window size = 2

Table 4.4. BiLSTM performance metrics for Window size = 2

Train Test
RMSE 11601.72 968.16
MAE 1142.39 669.26
MAPE 3.36 1.86
R-squared 0.989 0.988
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4.4.4. Random Forest Regression. The random forest model is trained using the

following model configuration:

• Number of decision trees: 100

• Number of predictors (m): √𝑝

• Loss metric: mean squared error

• Range of dataset: 08/05/2020 to 03/05/2024

• Training size: 80% and Test size: 20%

Similar to the previous deep learning models, Random forest is trained using different

window sizes (1 to 50), and the best model is selected based on the highest adjusted R

squared. The Optimal window size estimation using this performance metrics is shown in

Figure 4.10.

Figure 4.10. Optimal window size for Random Forest Regression model based on Adjusted
R-squared
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From the plot, the optimal window size for Random forest model is equal to 4. For

the window sizes greater than 4, the test accuracy of the model slowly decreases. The

window size equal to 3 is used to train the Random forest regression model and predictions

are evaluated. The prediction plot (Figure 4.11) and performance metrics (Table 4.5) are

obtained.

Figure 4.11. Random Forest Price Forecast for Window size = 3

Table 4.5. Random Forest performance metrics for Window size = 3

Train Test
RMSE 502.06 1061.59
MAE 320.22 793.57
MAPE 1.06 2.27
R-squared 0.999 0.985

4.4.5. Gradient Boosting. The gradient boosting model is trained using the fol-

lowing model configuration:

• Number of decision trees: 100

• Shrinkage parameter: 0.3

• Number of splits: 6

• Loss metric: squared error
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• Range of dataset: 08/05/2020 to 03/05/2024

• Training size: 80% and Test size: 20%

Gradient boosting is trained using different window sizes (1 to 100), and the best model

is selected based on the highest adjusted R squared. The Optimal window size estimation

using this performance metrics is shown in Figure 4.12:

Figure 4.12. Optimal window size for Gradient Boosting model based on Adjusted R-
squared

From the plot, the optimal window size for Gradient boosting model is equal to 35,

which is significantly higher compared to the previous models. The window size equal to 35

is used to train the Gradient boosting model and predictions are evaluated. The prediction

plot (Figure 4.13) and performance metrics (Table 4.6) are obtained.

Table 4.6. Gradient Boosting performance metrics for Window size = 35

Train Test
RMSE 60.61 1157.15
MAE 42.26 838.89
MAPE 0.15 2.23
R-squared 1.000 0.982
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Figure 4.13. Gradient Boosting Price Forecast for Window size = 35

4.4.6. Random Forest and Gradient Boosting Hybrid. In this hybrid model, the

Bitcoin price data is predicted through the random forest model, and the residuals are

extracted. The residuals are then predicted using the gradient boosting model. The final

prediction is made by adding the first and second predictions.

The hybrid model is trained alongside Random forest and Gradient boosting using different

window sizes (1 to 100), and the best model is selected based on the highest adjusted R

squared and the least Mean absolute percentage error. The Optimal window size estimation

using this performance metrics is shown in Figure 4.14 and 4.15.

Figure 4.14. Comparison between models based on Adjusted R squared for different window
sizes
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Figure 4.15. Comparison between models based on MAPE for different window sizes

It is evident from the comparison plots that the hybrid model (red) outperforms both

Random forest and gradient boosting in terms of both the adjusted R squared and MAPE

performance metrics. The best hybrid model with maximum adjusted R squared (0.994)

for the test set is achieved for window size equal to 42. However, minimizing the mean

absolute percentage error leads to the selection of the hybrid model with window size 98.

This is significantly large window size considering that our sample size is 1476. Table 4.7

provides the additional performance metrics for the optimal window size of 42, where it

can be observed that the hybrid model outperforms the others in terms of all four metrics.

Table 4.7. Comparison between Random Forest, Gradient Boosting, and their hybrid for
the optimal Window size = 42

Random Forest Hybrid Gradient Boosting
RMSE 1163.01 1093.38 1257.04
MAE 792.01 734.47 840.34
MAPE 2.42 2.22 2.52
R-squared 0.993 0.994 0.992
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4.5. TRAINING THE MODEL: VOLATILITY FORECAST

4.5.1. Simulated GARCH model. A simulated data was created using the GARCH(1,1)

process with 1000 observations. The model parameters used to create the simulated data

are: 𝜔1 = 0.1, 𝛼1 = 0.2, 𝛽1 = 0.7. The GARCH(1,1) model was created to make the

forecast and the model summary is given in Table 4.8.

Table 4.8. GARCH (1,1) Model Summary for simulated data

Coefficient P-value 95% Conf. Int
𝜔 0.0349 0.1500 [-0.0126, 0.0825]
𝛼1 0.1370 0.0041 [0.0434, 0.231]
𝛽1 0.8217 0.0000 [0.680, 0.963]

The trained model parameters obtained are: 𝜔1 = 0.0349, 𝛼1 = 0.1370, 𝛽1 =

0.8217. Some similarities and differences between the trained model parameters and the

actual model parameters can be observed. The 95% confidence interval of the parameter

estimates contains the actual model parameters except for 𝜔. The volatility prediction of

the test set using GARCH(1,1) was obtained. Figure 4.16 shows the variation between

the actual volatility and the predicted volatility. The difference is because of the way the

Figure 4.16. Volatility prediction of a simulated data using GARCH(1,1).
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volatility is defined in GARCH model. It is defined as the product of an error term and the

series. The error term is obtained from standard normal distribution. The coefficient of

determination for this model is 0.92.

4.5.2. Simulated GARCH-LSTM Model. The data generated from GARCH(1,1)

process was also trained using LSTM model. Two layers, each with 16 LSTM units, were

used to train 60% of the observation, while 20% was used for validation and the remaining

20% for test. The model was trained for 100 epochs and predictions were obtained. The

predictions were plotted against the actual values and shown in Figure 4.17.

Figure 4.17. Volatility prediction of a simulated data using GARCH-LSTM.

Only the immediate past volatility was used to predict the current value. GARCH

(1,1) model described earlier used both the immediate past volatility as well as the past

returns to predict the current volatility. This could be the reason why GARCH (𝑅2 = 0.92)

performed better than LSTM (𝑅2 = 0.72).

4.5.3. GARCH model. The bitcoin dataset was used to create a GARCH model.

Only the higher volatility period between February 19, 2021 and March 5, 2024 was chosen

to improve predictions. A PACF plot (Figure 4.18) was created to identify the number of

past observations to consider in forecast. It can be seen that lag 1 is highly significant. Lag 2

also appear to be significant, however, the performance does not significantly improve when

adding the second lag term. So, we continued the analysis based only on the immediate

past observation (lag 1), and the model summary is shown in Table 4.9.
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Table 4.9. GARCH (1,1) Model Summary for Bitcoin volatility

Coefficient P-value 95% Conf. Int
𝜔 0.0434 0.0164 [0.0079, 0.0788]
𝛼1 0.4017 0.0000 [0.296, 0.508]
𝛽1 0.5983 0.0000 [0.472, 0.724]

Figure 4.18. PACF plot for bitcoin dataset.

Figure 4.19. Volatility prediction of bitcoin using GARCH model
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The rolling forecasts were made by re-training the GARCH model after each time

step. The forecasts and actual values are plotted and shown in Figure 4.19. The volatility

predictions made by GARCH model are not very accurate with a coefficient of determination

equal to 0.52 for the test set. This means that we cannot effectively estimate the bitcoin

volatility based on the immediate past observation using a GARCH model. This could be

because the series data that is used to make volatility prediction has an underlying error

term obtained from a standard normal distribution. However, the noise in volatility may not

be effectively defined by the normal distribution. If the noise were normally distributed,

we would have been able to obtain better predictions similar to the simulated garch returns,

which has an accuracy of 92%.

4.5.4. Deep Learning Models (LSTM, GRU, BiLSTM). The volatility was esti-

mated using an LSTM model with one layer containing 64 units. The model was trained

for 200 epochs until the validation and training error had minimized. The LSTM model

achieved significantly better performance compared to the traditional GARCH model. The

prediction were plotted alongside the actual values and shown in Figure 4.20 and 4.21.

Figure 4.20. Train and test set of bitcoin volatility using LSTM model
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Figure 4.21. Volatility prediction of bitcoin volatility using LSTM model

GRU and BiLSTM models were also trained with similar configurations to the

LSTM model, with 64 units each trained for 200 epochs. The performance metrics of the

models is shown in Table 4.10. As evidenced from the performance metrics, LSTM, GRU,

and BiLSTM performed similarly with very close RMSE, and MAE values. The MAPE for

BiLSTM was the lowest, while the R squared for GRU was the highest.

Table 4.10. Comparison of test performances for volatility forecasting

GARCH LSTM GRU BiLSTM
RMSE 0.5090 0.2359 0.2305 0.2356
MAE 0.3484 0.1602 0.1535 0.1564
MAPE 157.5 35.88 35.88 32.32
R-squared 0.526 0.894 0.899 0.895

4.6. INTERACTIVE DASHBOARD

A user friendly dashboard is created as part of the thesis. In the dashboard, users can

upload their dataset and perform predictive analysis using the various defined time series

and machine learning models. The following models are available for analysis:

• Time series Models: ARCH and GARCH.
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• Machine Learning Models: Random Forest, Gradient Boosting, Support Vector

Regression, and Lasso Regression.

• Deep Learning Models: LSTM, GRU, BiLSTM.

The user can select certain parameters before training, which are describes as follows:

• Model Selection: Any model defined earlier can be selected for analysis.

• Range of dataset: Any range of dates can be selected as desired. In most of the

analysis discussed here, the range of dataset selected was between 08/05/2020 and

03/05/2024.

• First Layer Units (or Neurons): This parameter is only applicable for the deep learning

models, where the user can select the number of first layer units in their model.

• Second Layer Units (or Neurons): This parameter is also only applicable for deep

learning models. By default, the number of second layer units is set to 0.

• Number of epochs: The number of epochs is the number of times the deep learning

model is trained against the validation data.

• Window size: It is the number of past observations to consider for forecasting, and is

used for all the models defined.

• Forecast Period (Days): The forecast period represents the number of days ahead for

which the prediction is made. The prediction power of the defined models goes down

as the forecast period increases.

The home page of the dashboard is shown in Figure 4.22.
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Figure 4.22. Interactive Dashboard for model training and evaluation
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5. CONCLUSIONS

This thesis presented a comparative study of crypto volatility and price forecasting,

employing a mixture of time series and machine learning models, including GARCH,

LSTM, GRU, BiLSTM, and their hybrids as defined in [4], [10], [12]. The research aimed at

exploring the effectiveness of these models in forecasting the volatility and price movements

of cryptocurrencies, specifically focusing on their application to Bitcoin data. Through

empirical analysis, it was demonstrated that different models have varying degrees of

effectiveness, depending on the nature of the data and the specific forecasting requirements.

The development of an interactive dashboard for model training and evaluation rep-

resents a significant contribution to the field, enabling users to customize model parameters,

train models, and compare their performance through an intuitive interface. This tool de-

mocratizes access to advanced forecasting techniques, making them accessible to a broader

audience without requiring in-depth technical expertise.

Key Findings:

• Hybrid models obtained by combining various machine learning and time series

methodologies showed promising results, indicating that this combination approach

might be beneficial in capturing the complex dynamics of cryptocurrency markets.

• The user-friendly dashboard facilitated the empirical analysis by providing a platform

for building sophisticated financial models.

Implications:

• The findings suggest that financial analysts and investors could significantly benefit

from adopting a hybrid modeling approach for volatility and price forecasting in the

highly volatile cryptocurrency market.
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• The dashboard serves as a practical tool for real-time data analysis, model training,

and evaluation, offering potential applications in educational settings and financial

institutions.

Future Works:

• Further exploration of hybrid models with more diverse combinations of machine

learning and time series methodologies could uncover more effective forecasting

strategies.

• Extending the dashboard’s functionality to include real-time data feeds and incor-

porating more financial assets (stocks and options) could enhance its utility and

applicability.

• Expanding the impact of additional features, such as macroeconomic data or mar-

ket sentiment data, on model performance could provide deeper insights into the

predictive capabilities of the models.

In conclusion, this thesis reinforces the findings obtained by [4], [10], and [12], and

introduces an innovative tool for model evaluation. The findings underscore the importance

of continuous exploration and adaptation of forecasting tools to keep pace with the rapidly

evolving financial landscape.
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