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ABSTRACT 

With climate change concerns escalating, international agreements such as the 

Kyoto Protocol, the US Presidential Policy, and the Paris Agreement aim to reduce 

greenhouse gas (GHG) emissions, targeting significant reductions by 2050. The mining 

sector, a notable contributor to GHG emissions primarily through diesel-powered 

material haulage, emits approximately 68 million tons of CO2 annually. Transitioning to 

Battery Electric Trucks (BETs) presents a viable mitigation strategy by replacing diesel 

trucks with electric alternatives, thus eliminating CO2 emissions. 

However, the effectiveness of BETs hinges on optimized battery swapping and 

charging procedures. This study employs Discrete Event Simulation (DES), a 

computational methodology for simulating system operations as discrete events, to 

optimize these procedures in underground mining. The approach entails developing a 

DES model to evaluate and enhance battery swapping and charging efficiency, focusing 

on critical metrics like truck availability, charging unit utilization, queues generated 

during battery charging, and battery wait times post-charging. 

Using Arena® software, a DES model was created to replicate the overall system 

and evaluate the key performance metrics. The base case scenario ensured 100% truck 

availability but had inefficiencies in charger utilization and battery waiting times. 

Scenario 53, involving eight batteries, four trucks, and four chargers, emerged as the most 

efficient, balancing charger utilization and battery waiting time while maintaining 100% 

truck availability without queues at the charging station. This finding is crucial for the 

mining industry as BETs gain prevalence, offering a sustainable solution for reducing 

GHG emissions. 
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NOMENCLATURE 

Symbol Description 
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BEV  Battery Electric Vehicle 
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1. INTRODUCTION 

1.1. BACKGROUND 

The world envisions a carbon-free environment that ends climate change and the 

associated consequences. Thus, all nations and companies around the globe are working 

towards achieving net-zero carbon emissions by the year 2050 [1]. The mining sector 

must contribute towards making this goal a reality. The industry contributes about 4-7% 

of greenhouse gas emissions (GHGs) [2].  Carbon capture and sequestration strategies for 

reducing GHGs have been difficult to implement by the mining industry [3]. Therefore, 

the mining industry is adapting to new ways of reducing these emissions[4], electric 

propelling vehicles [5].   

Smith (1981) presented a paper on the potential and concerns of using diesel and 

electric trucks for haulage. The author noted that one of the significant concerns of 

diesel-powered trucks is the amount of carbon dioxide released into the atmosphere [6]. 

Moreover, the Environmental Protection Agency (EPA) (2012), under the Clean Air Act, 

noted that to cut down on GHG emissions and the use of petroleum fuels, all 

transportation fuels sold in the United States must have a certain percentage of renewable 

energy [6].  

Over the years, various studies have been conducted on the emissions of toxic 

gases and heat produced during diesel equipment operation in both underground and 

surface mining environments. Exposure to these conditions has been associated with 

increased susceptibility to lung cancer and other airborne diseases in individuals [7]. As a 

result, the utilization of Battery Electric Vehicles (BEVs) is gaining much attention due 
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to their use of renewable energy [8]. Implementing BEVs in underground mines reduces 

ventilation demands and associated costs, owing to their capacity to generate lower heat 

and fewer exhaust emissions [9]. This is illustrated below in Figure 1.1.  

 

 

Figure 1.1. Typical sources of underground mine heat generation [10]  

 

Using these equipment units reduces mining costs and dramatically improves 

efficiency with less maintenance [11]. BEVs, however, face challenges with battery 

capacities. The BEV technology also depends on the current charging infrastructures, 

locations, and availability [12]. That is why consumers rank BEV cost, driving range, and 

charging problems as their top concerns [13]. Various approaches have been adopted to 

improve on these drawbacks. Some of these include improvements in the charging 

processes, the utilization of new battery technologies, and the use of Artificial 

Intelligence (AI) for locating the charging infrastructure [14].  
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For a typical mining project, uncertainties exist in the various unit operations, 

such as drilling, blasting, loading, and hauling [15]. Thus, the introduction of the DES 

technique is a significant tool for modeling the stochastic processes of uncertainties 

associated with these unit operations. In addition to modeling uncertainties, the DES 

technique provides appropriate environments and platforms for virtual simulation 

experiments to mimic real-world experiments [16]. The DES technique has been used 

extensively to model several mining systems. These include mine planning and 

scheduling, material handling and logistics, optimizing equipment utilization and 

availability, modeling efficient scenarios regarding certain operations, and so on [17]. 

Other researchers have used the DES tool as a reference for a model-based system 

engineering framework [18] 

In a BEV’s operation, the battery swapping and charging processes occur at 

specific points in time, and the system state changes only at these events. Multiple events 

occur as these units go through these states of change. Figure 1.2 shows that events, such 

as the arrival of a BEV at a charging facility, its battery swapping or charging processes, 

and its departure after swapping and returning to the production stations occur at specific 

points in time and are subject to random fields. Thus, the DES technique is appropriate 

for modeling these BEV processes due to its ability to handle discrete, event-driven 

systems with uncertainties using probability distributions and random variables. These 

distributions can further be used to estimate the various procedures undergone by the 

batteries of BEVs. 

As the mining industry dives towards adopting electrically powered vehicles, it is 

essential to understand the randomness surrounding its operation. This will not only assist 
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in lowering carbon emissions but also enhance productivity. Critical aspects, such as 

energy management, charging infrastructure, repair, and maintenance need to be 

addressed for optimal BEV operations [14]. 

 

 

 

 

 

 

 

 

 

Figure 1.2. Nature of Events in Battery Swapping/Charging 

 

Generally, since mining costs increase when trucks are parked for an extended 

period, it is essential to understand the various uncertainties surrounding this equipment 

battery charging and swapping procedures. The DES technique can be used to model the 

base case and multiple scenarios to replicate a natural system. 

1.2. PROBLEM STATEMENT  

The mining industry, traditionally a significant contributor to global GHG 

emissions, is increasingly under pressure to reduce its carbon footprints [19]. The 2015 

Arrival of Battery at 

the Charging Bay 

Swapping/Charging 

of Battery 

Departure of Battery 

from the Bay 

Battery Working 

Phase 
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Paris Agreement states that over 190 countries are committed to reducing GHG emissions 

[20]. This has triggered a global transition from fossil fuels to renewable energy. In 

October 2021, the International Council of Mining and Metals (ICMM) stated its 

engagement for achieving carbon neutrality by 2050 [21]. Following the ICMM’s 

statement on engagement, major mining companies like BHP-Billiton, Rio Tinto, Anglo 

American, and Freeport McMoRan set ambitious goals to achieve net-zero emissions, 

underlining the strategic importance of GHG emissions reduction in their operations.  

BHP-Billiton aims to achieve net-zero operational emissions by 2050, alongside a 

goal to reduce operational GHG emissions by 30% by 2030 [22]. Similarly, Rio Tinto 

aims for net-zero emissions by 2050 and aims to invest approximately $1 billion in 

climate-related projects over the next five years [23].  Anglo-American and Freeport-

McMoRan, two prominent players in the global mining sector, have also set ambitious 

carbon neutrality goals, reflecting a strong commitment to environmental sustainability. 

Anglo-American aims to achieve carbon neutrality in Scope 1 and 2 emissions across its 

operations by 2040, specifically focusing on reducing direct and indirect greenhouse gas 

emissions [24]. Freeport-McMoRan, on the other hand, has set a target to reach net zero 

carbon emissions by 2050, detailed in their updated Climate Report, which includes 

comprehensive plans for reducing greenhouse gas emissions and improving energy 

efficiency [25]. Both companies are focused on innovative solutions and industry-wide 

collaborations to meet these challenges, signaling a significant shift towards sustainable 

and responsible mining practices in the industry, overall productivity, and efficiency of 

the mining operation [24], [25]. 
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One key strategy to achieve these ambitious targets is decarbonization and 

electrification in most operations, especially trucks and shovels [26]. The strategic 

importance of BEVs in the mining industry is multi-faceted. Figure 1.3 shows that the 

application of BEVs reduces the dependence of mining operations on fossil fuels (diesel 

particulate matter), significantly reducing CO2 and other GHG emissions [27]. These 

reductions can improve health and safety conditions by reducing air and noise pollution 

in the mining environment [28]. There is a potential reduction in operational costs in the 

long run with lower maintenance, ventilation, and fuel costs [29]. All these cost 

reductions will contribute to sustainability, a safe working environment, social license to 

operate, and mine economics [30]. 

 

 

Figure 1.3. Heat Generated by ICE and BEV according to their payloads and travel 

grades [27] 
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However, the current state of BEVs in the mining sector still has several 

challenges. There is a significant concern about energy density, charging infrastructure, 

and requirements [31]. There is evidence that the batteries play a pivotal role in the 

operation of the trucks [32]. Hence the magnitude of the latter is significant since the 

technology is still in the nascent stages and requires complex techniques and 

infrastructure to overcome the associated challenges. Available literature recognizes the 

necessity to advance the frontier of battery technology [32]  

As the mining sector embraces the idea of utilizing BEVs to reduce carbon 

emissions, it is critical to understand and optimize these trucks charging and swapping 

procedures. The industry must employ techniques that ensure their highest utilization 

without compromising the usage and efficiency of these batteries. However, the problem 

of battery depletion in BEVs is a multifaceted issue influenced by various factors that can 

significantly affect the performance and reliability of these vehicles. These factors 

include temperatures, humidity, travel range, terrain, speed, and even driving habits. 

For this research case study, the process used by the manufacturer to swap and 

charge a BEV’s battery in an underground mine involves allocating a truck with two 

batteries and a charging device to a single bay. The overarching goal is to determine 

which possible outcomes represent the optimal case scenario for this operation. A 

scenario is described as optimal when trucks are available close to 100% of the time for 

work and the system is devoid of queues. In such a scenario, the charger utilization 

should be substantially high with minimal battery waiting times post-charging. This is 

essential due to the cost of blasting and constructing a charging bay for each truck. 
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Again, certain complexities, such as battery replacement and charging, present a 

challenge that must be addressed to understand how those parameters affect truck 

availability. This is important since production loss is due to long queues at the charging 

facility. Other performance metrics, such as the charging system utilization, must be 

understood to improve the system.  

Therefore, developing a DES model capable of replicating the system 

complexities, verifying the base case scenario, and adjusting the model to ascertain the 

optimized model for the decision-making process is essential. The potential of DES in 

replicating and modeling this system is the long-term goal of this research. 

1.3. OBJECTIVES AND SCOPE OF RESEARCH 

The primary research objective is to design an efficient multi-service bay for a 

BEV battery swapping and charging system that maximizes truck availability and 

utilization. The specific objectives include: 

• Developing a DES model of a multi-service BEV battery swapping and charging 

system. 

• Verifying and simulating the base case scenario. 

• Evaluating critical performance metrics such as charging unit utilization, battery 

waiting time before being utilized, and truck availability to improve the base case 

scenario. 

• Simulating several scenarios using the improved base case model to develop 

multiple maps of the multi-service BEV swapping and charging systems for 

optimal decision-making. 
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1.4. RESEARCH CONTRIBUTIONS  

This research advances a pioneering effort to address challenging problems 

associated with BEV battery swapping and charging systems. The study also advances 

frontiers and knowledge in BEV haulage and emissions reduction within the mining 

industry. The solutions to these challenges and problems also meet the industry's need to 

use BEVs to reduce GHG emissions. These reductions also contribute to the drive 

towards meeting the Paris and Kyoto Accords and the US Presidential Policy for 

reducing GHG emissions by 52% by 2050. The research results also improve the 

efficiency of deploying BEVs for material haulage in the mining and transportation 

industries.  

1.5. STRUCTURE OF THESIS 

This introduction is the first of five sections that make up the thesis. Section 2.0 

presents a detailed examination of all the relevant literature, an extensive assessment of 

Battery Electric Vehicles (BEVs), and a discussion of DES and its use in mining.  This 

section also discusses the research gaps and a summary of each heading. Section 3.0 

focuses on a framework for using DES for the charging/swapping procedures of BEVs in 

underground mining. Section 4.0 presents the discussion and analysis of the results from 

the experiments. Section 5.0 focuses on the conclusion and recommendations for future 

works. 
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2. REVIEW OF LITERATURE 

This section of the thesis thoroughly analyzes the pertinent literature on relevant 

subjects relating to BEVs. The author discusses battery technology, which is crucial for 

BEVs, its challenges, and the charging technologies. The review examines, in greater 

detail, battery swapping and charging procedures as applied in the mining industry. The 

DES technique is also discussed, along with optimizing battery charging and swapping 

protocols. 

Simulation comprises a wide range of techniques and tools used to replicate 

natural operating systems, typically using computer software [33]. It has been used 

extensively across many disciplines to understand and improve complex systems. In 

sectors ranging from manufacturing to healthcare and logistics to finance, as well as in 

system engineering to mining, their ability to replicate real-world processes without 

direct field interventions underscores the significance of their application [34], [35]. 

Continuity and characteristics of a system modification is usually used in the 

classification simulation [36]. The types include Monte Carlo Simulations, Agent-Based 

Modelling and Simulation and Discrete Event Modelling simulations [35]. 

Discrete Event Simulation focuses on systems where changes occur at specific 

points in time rather than continuously [34]. It has been applied in systems whose 

operations occur at discrete points in time, such as manufacturing, construction, 

healthcare, marketing, supply chain, and mining [34] [35], [37] – [39]. 

The rapid proliferation of BEVs has highlighted the challenges associated with 

efficient charging and energy management [40].  Traditional plug-in charging methods, 

while effective, may only sometimes cater to the demands of high vehicle utilization, 
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considering time constraints [41], [42]. Battery swapping, where depleted batteries are 

swiftly replaced with fully charged ones, emerges as a potential solution [41]. However, 

this procedure brings its complexities: inventory management of charged batteries, 

prediction of demand surges, and scheduling and planning of swapping stations. With its 

ability to model and analyze sequential and interdependent events of complex systems, 

DES offers a pathway to address these challenges. 

2.1. BATTERY ELECTRIC VEHICLES 

BEVs are electric-based vehicles that generate energy from a battery pack without 

an internal combustion engine (ICE) [43]. They have existed for over a century, emerging 

as innovative technology after the Industrial Revolution. [44]. Parker (1834) crafted the 

first functional electric vehicle. The Porsche electric vehicle was launched in 1899 

because of its advantages over its gasoline counterparts. They had even existed before the 

invention of Internal Combustion Engine Vehicles (ICEVs). After its dormancy for 

nearly 70 years, EVs regained popularity in the 1970s. The final decade of the 19th 

century marked a flourishing era for the initial growth of EVs [44]– [46]. However, their 

popularity began to wane in the second decade of the 20th century. This was because the 

ICEVs experienced significant advancement [46]. The price tag on ICEVs was very low 

as compared to EVs. Even the range at which they could drive was very low. This caused 

a decline in their commercialization.   

In the 1970s, the resurgence of BEVs was driven by energy concerns stemming 

from the oil crisis in the Middle East, which was revived due to the energy [45]. Their 

revival was not just because of the latter but also for environmental conservation [46]. 

Their ability to recover the energy they use through braking makes them highly 
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economical [40]. With the global focus on reducing carbon emissions, they play an 

instrumental role in shaping the sustainable future of transportation systems. Their 

implementation will aid in addressing the global energy crisis and environmental issues 

[47]. Also, their evolution over the years, aside from the above, is mainly due to 

technology advancements, policy requirements, and consumer acceptance [44], [48]. 

Even though certain countries deem it a pressure on their electric grid, many countries 

adapt their applications due to their advantages over ICEs [49],[44].  

EVs can be categorized into three main types, namely: pure electric vehicles 

(PEVs), fuel cell electric vehicles (FCEVs), and hybrid electric vehicles (HEVs) [44], 

[50], [51]. They are differentiated according to the energy source provided to the vehicle, 

as their names imply. The purely electric vehicles are powered entirely by batteries. The 

hybrid usually will have a dual power source: an electric system and an ICE system. On 

the other hand, the FCEV is powered by fuel cells instead of batteries. The main 

components that form the powertrain of a pure EV include:  

• Electric Machine 

• Traction battery 

• Gearbox 

• Power electronics [48] 

 

For this research, the vehicle under consideration was purely electric, and the 

onboard battery can be detached and charged separately. The simple architecture of a 

pure EV is illustrated in Figure 2.1.  
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Figure 2.1. Architecture of a BEV 
 

 

Despite the advantages of BEVs, literature indicates that they encounter 

significant challenges. Some of these include: 

• Battery driving range.  

• Charging infrastructure 

• Vehicular and Battery costs 

• Battery life and safety features 

• Consumer acceptance and perceptions [40] [50], [52], [53] 

From the above challenges, it is evident that the primary challenge of BEVs is 

related to their batteries. Thus, it is crucial to conduct in-depth research on BEV batteries, 

as their performance can significantly influence the success or failure of these vehicles in 

the transportation industry [49].  

Due to its contributions towards solving the global warming challenge, the mining 

industry is implementing BEV technologies in several mining operations [52]. Even 

Battery 

Motor Controller 

Charger 
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though ICE trucks have remained the preferred choice for moving material due to the 

high energy demand of such an operation, BEVs have made significant advancements in 

this regard [49]. An extensive focus has been on enhancing BEV technologies, 

particularly the powertrain, battery, and charging infrastructure [53]. The battery 

endurance and range remain the primary focus even for this large equipment [52]. Battery 

technology, as the primary component of BEVs, is, therefore, an exciting research 

frontier for research and technological innovations.  

Sen et al. (2018) investigated the necessary battery capacity for BEVs, 

considering the demands for long-distance transportation. Their study revealed that, 

typically, the battery in these vehicles would restrict the payload capacity to only 80% of 

what a standard ICE truck can transport. However, this might be deemed acceptable 

when considering average payload usage [54]. Burak et al. (2017) also emphasized the 

need for extensive research because electric-propelling heavy-duty equipment 

technologies are expected to grow exponentially [55].  

The technological shift from ICE engines to EVs will impact economic, social, 

and political dimensions. The analytical survey of the literature will provide a 

comprehensive review of BEVs, including the challenges of battery technology and 

charging infrastructure, equipment battery swapping and charging procedures, and how 

they affect their availability.  

2.1.1. Battery Technology. Battery technology is an essential component of 

BEVs since it influences the driving range, fuel economy, and overall performance of the 

vehicles [44], [48]. In automotive history, battery technology has evolved through 

research and innovations in electrochemistry, material science, and design to achieve 
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unmatched energy density [46] [56].  Over the years, battery technologies have seen 

continuous advancements, with significant improvements [44]. 

The earliest EVs relied on lead acid batteries, a technology traced back to Plantes' 

1859 innovation [44], [46]. While reliable for the era, their weight and energy constraints 

called for optimizing their energy density while managing their weight [44]. This drive 

for innovation paved the way for Nickel-metal weight Hydride (NiMH) batteries in the 

late 20th century, embodying advancements in energy storage and efficiency [44]. Battery 

technology has evolved from nickel-based to ZEBRA batteries, culminating in advanced 

lithium-based variants [57]. As BEVs rely solely on traction batteries for their propulsion 

systems, advancements in traction battery technology play a crucial role in shaping the 

electric vehicle industry [48], [58]. 

Figure 2.2 shows that the battery capacity for BEVs has increased over the years 

[58]. This is a result of high consumer demand and the need for manufacturers to improve 

their battery capacities [56]. As illustrated in Figure 2.2, the production and patronization 

of EVs are expected to increase with time [41].  

However, these improvements come at a higher cost than a regular ICE vehicle 

[57]. Also, these batteries are usually bulky and take up space [59]. As we venture deeper 

into advanced energy storage solutions, the challenge is not just to improve EVs' mileage 

or limit the charging duration; it is also about understanding and manipulating the 

molecular and atomic interactions within the battery cells [56].  
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            Figure 2.2.  Evolution of Battery Capacity with Time [58] 

 

2.1.1.1. Types of batteries. The evolution of battery technology, driven by the 

demand for more efficient and sustainable energy storage solutions, has led to the 

emergence of various types of batteries [44]. From the early lead-acid batteries that paved 

the initial path to the lithium-ion solutions powering most modern BEVs and the 

promising solid-state technologies on the horizon, each battery type has its strengths and 

limitations [44]. As illustrated in Table 2.1, their comparison is usually based on energy 

density, power density, cycle life, calendar life, and cost per kWh [49], [50]. As such, the 

BEV battery is typically determined by the energy needed to achieve a specific distance 

[40]. 

• Lead-acid battery (Pb-PbO2). This is one of the oldest batteries for 

powering electric vehicles [46], dating to the late 19th and 20th centuries 

[45], [46]. It features lead dioxide as the cathode and sponge lead as the 

anode, both submerged in a sulfuric acid electrolyte characterized by a low 
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specific energy between 20 and 40 Wh/Kg [44], [49], [60]. While their 

simple construction and abundant availability of materials made them 

cost-effective, they posed significant challenges [44]. The heavy build and 

size contributed to a lower energy density, reducing driving range [49]. 

Also, the life cycle needed to be more stable, necessitating frequent 

replacements and making it less efficient for long-term vehicle usage [49]. 

Due to the detrimental effects of lead on the environment and human health in its 

production, use, and disposal, lead acid battery recovery and recycling rates have surged 

to 95-99% in Europe and the US [44]. This battery is not used on a large scale due to its 

environmentally unfriendly nature and low energy density [44].  

Usually, the lifespan is influenced by factors such as overcharging, 

undercharging, operating temperature, and storage conditions [61] [56]. This makes the 

State of Charge (SOC) and Depth of Depletion (DOD) of these batteries critical features 

to analyze [61].  Horkos et al. (2015) demonstrated the different techniques for charging 

lead acid batteries. They discussed all the different techniques, such as the conventional 

method, the pulse method, the negative pulse technique, the superimposed pulse 

frequency technique, and the intermittent charge control, and their limitations and 

strengths. Interruptive charge control, the latest technique, ensures long battery life and 

reduces the effect on temperature during charge [61].  

• Nickel-Cadmium battery (Ni-Cd). In the 20th century, nickel-cadmium 

(NiCd) batteries entered the market [50]. This battery was constructed 

with nickel oxide hydroxide as the cathode and cadmium as the anode, 

enveloped within an alkaline electrolyte [50]. It offered a superior energy 
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density compared to its lead-acid counterparts, making it an attractive 

choice for early electric vehicles [50].  

Its durable nature and ability to sustain high discharge rates were desirable 

features [57]. However, it had its challenges, including the memory effect, which 

gradually reduced its capacity. Additionally, the cadmium component posed 

environmental toxicity challenges, casting shadows over their sustainability [57]. 

• Nickel-Metal Hydride Battery.  Following the Nickel-Cadmium era, the 

Nickel-Metal Hydride (NiMH) battery emerged as a beacon of hope for 

electric mobility [44], [50]. The positive electrode consisted of nickel 

hydroxide, while the negative electrode was composed of various 

materials, and the electrolyte used was a solution of potassium hydroxide. 

[62], [63] [44]. It was developed to provide a more environmentally 

friendly solution, integrating nickel oxide hydroxide as the cathode and a 

metal hydride for the anode [44] [64].  

Widely adopted, especially for hybrid vehicles (Toyota Prius), it showcased a 

commendable energy density [49], [63]. The absence of memory effect made it superior 

to NiCd batteries [49]. However, its weight, bulkiness, and underperformance in high-

temperature scenarios limited its efficiency [44], [50]. 

• Lithium-ion battery. The dawn of the Lithium-Ion (Li-ion) battery in the 

late 20th century marked a paradigm shift in BEV power sources [44]. 

Rapidly becoming mainstream in the 1990s and 2000s, this battery has 

dominated the electric vehicle landscape [44], [49]. Characterized by a 

lithium compound cathode, graphite anode, and a lithium salt in an 
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organic solvent acting as the electrolyte, its lightweight and high energy 

density are unparalleled [56]. The most widely used material as the 

positive electrode include lithium cobalt oxide (LiCoO2), lithium 

manganese oxide (LiMn2O4), and lithium iron phosphate (LiFePO4) [44], 

[65] 

Vehicles powered by Li-ion batteries offer longer ranges, thus addressing a major 

limitation of earlier battery types [49]. Recently, they have been employed by BMW i3, 

and Tesla [44]. These batteries are renowned for a wide range of applications because of 

their benefits, which include high power density, extended lifespan, capability to operate 

at low temperatures, high voltage, and low volatility  [56]. However, these batteries are 

limited due to safety concerns, mainly associated with overheating risks [66]. The 

industry’s reliance on rare and potentially expensive materials for construction is a 

pressing issue [67].  

They have been researched extensively in recent years as they suffer longevity, 

reliability, and charging rates [44]. Current research suggests that adding graphene can 

improve performance [50], [66],[67].  Also, Li-rich, Zn-air, and Li-sulfur systems are 

great frontiers to be advanced due to their cheaper rate and high energy density[57] [41], 

[67]. LiFePo4, employed as the cathode, has garnered attention recently owing to its 

superior power density, longer life cycle, and enhanced safety [57] [64]. Research into 

low-temperature plasma technology has been pursued, given its efficacy and eco-friendly 

nature [68]. 

• Solid-state battery. In the continuous quest for optimizing electric 

mobility, the solid-state battery has emerged as the next frontier [49]. 
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Unlike conventional batteries, it replaces the liquid electrolyte with a solid 

variant, promising significant improvements in energy density. 

Preliminary results indicate that it could offer a safer experience by 

reducing fire risks inherent in some liquid electrolyte batteries. It also 

provides a greater energy density and quicker charging times [56]. Its 

limitations lie in streamlining manufacturing processes and navigating the 

economic landscape to make them cost-effective solutions for the masses 

[69]. 

• Other emerging trends. The horizon of battery technology for BEVs is 

expansive, with several emerging contenders. For instance, lithium-sulfur 

(Li-S) batteries harness sulfur as the cathode and have been projected to 

achieve higher energy densities than conventional Li-ion batteries [44]. 

Then there are the experimental Lithium-Air (Li-Air) batteries, which 

intriguingly utilize oxygen from the air as the cathode [57]. Their 

theoretical energy density approaches that of gasoline, though practical 

applications are still in their infancy [58]. Lastly, the Redox Flow 

Batteries present a novel approach by storing energy in a liquid electrolyte 

separated from the electrode, though their automotive applications remain 

in the exploratory stages [40]. 

In conclusion, the quest for reliable battery technology lies in the potential of the 

batteries to a) fully recycle, b) be environmentally and biologically friendly, and c) 

possess superior electricity generation and storage capabilities [40]. 
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Table 2.1. Comparison of Battery Types 

Battery 
Type 

Energy density 
(Wh/Kg) 

Nominal 
Voltage 
(V) 

Specific 
Power 
(W/Kg) 

Self-Discharge      
(%) per month 

 Pb-
acid 35 2 180    <5 
 Ni-Cd 50-80     1.2 200     10 
Ni-MH 70-95     1.2 200-300        20 
ZEBRA 90-120     2.6 155        <5 
Li-ion 118-250     3.6 200-430        <5 
LiPo 130-225     3.7 260-450        <5 
LiFePO4 120     3.2 2000-4500        <5 
Zn-air 460     1.65 80-140        <5 
Li-S 350-650      2.5 -        8-15 
Li-air 1300-2000      2.9 -        <5 

 

2.1.1.2. Battery management systems: a tool for battery efficiency and safety. 

Battery Management Systems (BMS) form an integral part of the efficiency of BEVs 

[70]. Lee et al. (2021) emphasized how significant BMS algorithms impact the 

optimization of charging and discharging cycles [71]. The overall energy efficiency of 

BEVs directly correlates to optimizing the battery cycles [72]. Another critical aspect of 

the energy efficiency of BEV batteries is cell balancing [73]. In his study, Jian Qi (2014) 

pointed out how cell balancing technology within BMS is critical to maintaining the 

efficiency of the battery pack, which indirectly affects vehicle efficiency. This balance is 

critical in ensuring that all battery pack cells contribute equally, avoiding scenarios where 

inefficiencies in one cell diminish the overall system performance [74]. 

 BMS is a tool that ensures the safety and reliability of BEV batteries [71]. There 

is currently extensive research in preventing thermal runaway, a dangerous condition that 

can lead to battery fires [75]. Qingsong et al. (2012) elaborated on advanced BMS 

capabilities to detect and mitigate conditions that could lead to thermal runaways. A 

system that monitors and keeps track of battery utilization and parameters like 
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temperature, voltage, and current is essential for the safety and reliability of these 

batteries [76]. This will ensure that BEVs operate within safe limits. The longevity of 

batteries in such a system depends on BMS capabilities. Wang et al. (2020) demonstrated 

how advanced BMS algorithms can significantly prolong battery life. This is done by 

preventing scenarios such as deep discharge and overcharging, which contribute to the 

degradation of battery health [77]. The early detection of potential issues leads to a 

reduction in the frequency and the cost associated with BEV maintenance [76].  Despite 

the advancements, BMS faces significant technical challenges. Hossain et al. (2021) 

discussed the issues related to sensor accuracy and the complexity of BMS algorithms 

[78]. The effectiveness and responsiveness of the system are limited due to the challenge 

of real-time data processing, which is critical for immediate decision-making and system 

adjustments [78]. Again, the cost involved in setting up a sophisticated system can 

increase the overall cost of the vehicles.  

This cost factor can be crucial for manufacturers, stakeholders, and consumers. 

Another technical hurdle is integrating the systems with the vehicular systems [79]. 

Cheng et al. and Johnson (2021) discussed ensuring seamless communication and 

coordination between these systems. They highlighted that this is important for the 

optimal performance of BEVs, but it is challenging to implement. Integrating AI and 

machine learning tools in BMS is an emerging technique [80]. Dapai et al. (2022) 

elaborated on how these technologies offer improved predictive analytics in BMS. They 

allow for more accurate forecasting of battery health and performance, which leads to 

better decision-making and efficiency of BEVs [81].  BMS tools are central to BEVs' 

performance, safety, and efficiency. While they have come a long way in terms of 
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technology and functionality, challenges in sensor accuracy, system complexity, cost, and 

integration with other vehicle systems persist. However, there are emerging technologies 

with the advancements in AI, machine learning, and wireless technologies paving the 

way for more efficient, reliable, and intelligent BMS in BEVs. 

 2.1.2. Charging Technology and its Impact on Batteries. The revolution of 

charging technology is pivotal in the widespread adoption and efficiency of BEVs [82]. 

The advancements in charging technology have impacted battery performance and 

longevity, particularly in the context of BEVs used in mining operations. The current 

stage of charging technology has undergone significant transformations, with innovations 

focusing on increasing charging speed and efficiency while minimizing adverse effects 

on batteries [83]. As documented by Camilo Suarez (2019), rapid advancements in this 

field have led to the development of ultra-fast charging stations capable of charging BEV 

batteries to 80% within minutes. However, this technological leap brings inherent 

challenges related to battery health and the electrical grid capacity [82]. Fast charging, 

while advantageous in reducing downtime, imposes stress on BEV batteries, particularly 

lithium-ion cells. This stress can manifest in accelerated degradation, reducing battery 

life and efficiency [84]. Li and Zhang (2020) indicated that repeated fast charging can 

increase internal resistance and decrease energy capacity in lithium-ion batteries. 

Furthermore, thermal management becomes critical when rapidly charged batteries, as 

excessive heat generation can lead to safety risks and further degradation [77]. 

Researchers are exploring various solutions to mitigate the adverse effects of rapid 

charging. These include improved battery chemistry, advanced thermal management 

systems, and intelligent charging strategies that balance charging speed with battery 
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health. For instance, Green et al. (2022) highlights the development of BMS that optimize 

charging parameters in real-time. This advancement aims to prolong battery life while 

ensuring efficient energy storage. Charging technology plays a vital role in battery health 

and performance, particularly in the deployment and operation of BEVs. This aspect 

becomes even more crucial in challenging environments, such as in the mining industry. 

Ongoing research and development in this field are essential to ensure that advancements 

in charging technology contribute positively to the efficiency, sustainability, and 

economic viability of BEV adoption in various sectors.  

2.1.2.1. Charging infrastructure: the challenge. The transition to BEVs in 

various sectors, including mining, has necessitated the development of robust charging 

infrastructures. This section explores the multifaceted challenges of establishing such 

infrastructure, focusing on technological, economic, and logistics aspects. The primary 

technological challenge in developing charging infrastructure for BEVs is the need for 

high-powered charging systems. These systems require advanced electrical components 

and grid connections capable of handling high currents without compromising safety and 

reliability. Jones et al. (2020) showed the complexity of integrating high-powered 

charging systems into existing electrical grids, particularly in remote or off-grid mining 

locations. Furthermore, the harsh environmental conditions in mining areas demand 

robust and durable charging solutions that can withstand dust, moisture, and extreme 

temperatures. The economic aspect of charging infrastructure development includes the 

initial investment in equipment and installation and the ongoing costs associated with 

maintenance and electrical consumption. As Smith and Brown (2019) outlined, the return 

on investment for charging infrastructure in mining is complicated by the sporadic nature 
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of mining operations and the potential for site relocation. Logistically, installing charging 

stations in remote or underground locations presents significant challenges. Limited 

space, extensive cabling, and ensuring consistent power supply are critical considerations 

highlighted by the case study in Doe and Andrews (2021). 

Another dimension of the challenge is the impact of charging infrastructure on 

battery health and efficiency. Rapid charging technologies, while beneficial for reducing 

downtime, can adversely affect battery longevity and performance. Zhang et al. (2018) 

showed that frequent fast charging can lead to accelerated degradation of lithium-ion 

batteries, a common type in BEVs. This degradation reduces the overall life expectancy 

of batteries and impacts their efficiency and operational range. 

Bespoke solutions are required to address these challenges from the mining 

perspective. Innovations in charging technology, such as modular and mobile charging 

stations, are being explored to offer flexibility and resilience in mining operations. As 

Taylor et al. (2022) discussed, these solutions provide scalable and adaptable charging 

options that can evolve with mining charging needs and locations.  

Developing charging infrastructure for BEVs in mining is a complex undertaking, 

fraught with technological, economic, and logistical challenges. However, it is critical for 

successfully implementing and operating BEVs in this sector. Ongoing research and 

development are essential in overcoming these challenges and ensuring that the transition 

to electric vehicles in mining is both efficient and sustainable. 

2.1.2.2. Consumer acceptance. The widespread adoption of BEVs heavily 

depends on consumer acceptance. This section examines the factors influencing 

consumer attitudes towards BEVs, barriers to acceptance, and strategies to enhance 
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consumer adoption, especially in the mining industry context. Multiple factors influence 

consumer acceptance of BEVs, including perceived benefits and drawbacks. The key 

aspects include the initial cost of BEVs, range anxiety, charging infrastructure 

availability, and environmental consciousness. Thompson et al. (2020) have shown that 

while environmental benefits are significant motivators, concerns over range and lack of 

charging facilities can deter potential users. Moreover, the perceptions of the 

performance and reliability of BEVs play a role in shaping consumer attitudes. 

 The economic aspect, particularly the upfront cost and long-term savings, is 

critical to BEV acceptance. According to Kim and Choi (2021), consumers often weigh 

the higher initial purchase price against potential fuel savings and lower maintenance 

costs. Government incentives and subsidies also play a role in making BEVs more 

economically attractive. The availability of charging infrastructure is pivotal in 

influencing consumer acceptance. As highlighted by Evans and Ritz (2019), consumers 

are likelier to adopt BEVs if they have access to convenient and fast charging options. 

Therefore, developing widespread and efficient charging networks is critical to boosting 

consumer confidence in BEVs. 

Range anxiety remains one of the primary barriers to BEV adoption. Efforts to 

address this concern include improving battery technology to extend driving ranges, 

enhancing the predictability of battery health and depletion monitoring, and range 

prediction, as by Lee (2022), which can help alleviate range anxiety. To improve 

consumer acceptance, improvements in the BEV charging technology and infrastructure 

can shift consumer perceptions. Additionally, policies and incentives to reduce the 
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purchase price and expand charging infrastructure are essential, as indicated by the policy 

analysis by Green and Smith (2023). 

In conclusion, consumer acceptance of BEVs is influenced by a complex interplay 

of factors, including economic considerations, technological advancements, and 

infrastructural developments. It is imperative to tackle these problems in their entirety in 

order to boost the adoption rate of BEVs, not only in the general consumer market but 

also in niche industries such as mining. 

2.2. BATTERY ELECTRIC TRUCKS (BETs) IN MINING 

 BETs in the mining industry mark a significant shift towards sustainable and 

efficient operations. BETs offer several operational benefits in mining environments. 

Their electric drive systems provide high torque at low speeds, ideal for hauling heavy 

loads in rough terrain. As Jones and Murphy (2021) pointed out, BETs contribute to 

improved air quality in underground mines by eliminating diesel emissions, which is 

crucial for worker health and safety. The reduced noise level of electric trucks also 

enhances the working conditions in mines. While the upfront cost of BETs can be higher 

than traditional diesel trucks, their long-term economic benefits are compelling. As 

detailed by Lee and Watson (2022), BETs incur lower operating costs, attributed to their 

fewer moving parts, diminished maintenance needs, and reduced energy expenses. 

However, the economic viability of BETs also depends on factors like the cost of 

electricity, battery depletion rates, battery replacement costs, and the required charging 

infrastructure.  

 The transition to BETs in mining is not without challenges. One of the primary 

concerns is the need for a reliable and efficient charging infrastructure, as highlighted by 
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Patel and Kumar (2021). Additionally, concerns about battery life, performance under 

extreme mining conditions, and the need for specialized maintenance skills pose 

challenges to widespread adoption, as discussed by Moreno et al. (2021). The future of 

BETs in mining looks promising, with ongoing advancements in battery technology, 

charging solutions, and vehicle design. Innovations in battery technology that increase 

energy density and reduce charging times are particularly relevant. Furthermore, 

integrating renewable energy sources for charging BETs can enhance their environmental 

and economic benefits, as Zhang et al. (2023) explored. 

 In summary, BETs represent a transformative technology for the mining industry, 

offering operational, environmental, and economic advantages. While challenges remain 

in their widespread implementation, ongoing technological advancements and research 

pave the way for their successful integration into mining operations. 

2.2.1. Factors Affecting Battery Depletion. The performance and longevity of 

BEVs are significantly influenced by various factors that contribute to battery depletion. 

The operational factors of BEVs contribute to battery depletion. These factors include 

driving habits, vehicle load, and frequency of use. Aggressive driving styles characterized 

by rapid acceleration and braking, as indicated by Patel and Kumar (2020), contribute to 

faster battery drainage. Similarly, heavy loads increase energy consumption, leading to 

quicker battery depletion. The distance covered by the equipment also dramatically 

affects the battery depletion rate. The greater the distance covered, the more the battery is 

depleted. Smith and Lee (2021) highlighted how the range of BEVs directly correlates 

with battery capacity and depletion rates. Long distances, particularly without convenient 

charging infrastructure, pose a significant challenge for BEV usage, especially in 
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applications like long-haul transportation or extensive mining operations. Again, the 

speed at which a BEV is driven profoundly impacts battery depletion. Higher speeds 

require more power, leading to quicker battery drain. Zhao et al. (2022) showed that 

BEVs operating at higher speeds exhibit increased consumption per mile due to factors 

like air resistance and the efficiency of electric motors at different speeds. This is 

particularly relevant in highway driving scenarios compared to urban settings, where 

lower speeds are the norm. 

 The terrain and driving conditions also play a critical role in battery depletion. 

During uphill or rough terrain, common in mining and off-road applications, more energy 

is depleted faster. Conversely, driving downhill can aid in battery regeneration through 

regenerative braking systems. Johnson and Kumar (2020) showed that BEVs used in hilly 

or mountainous regions may have a reduced range compared to those operated on flat 

terrain. Again, environmental conditions, such as temperature, humidity, and weather, 

significantly affect battery performance. Extreme hot and cold temperatures can reduce 

battery efficiency and increase the depletion rate. Patel and Wang (2019) have 

demonstrated how cold temperatures can increase the internal resistance of batteries 

leading to faster depletion, while high temperatures can cause overheating and 

accelerated degradation.  

2.2.2. Battery Swapping and Charging and Its Effect on BET Availability. 

The availability and operational efficiency of BETs are significantly influenced by 

battery swapping and charging strategies. Battery swapping offers a rapid solution to 

replenish a BET’s energy source, substantially reducing downtime compared to 

traditional charging. Battery swapping can be a game-changer in mining operations 
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where continuous vehicle availability is crucial. Wang and Zhang (2021) demonstrated 

how battery swapping stations can facilitate quick turnaround for BEVs, thereby 

increasing their availability and operational efficiency. This system, however, requires a 

significant initial investment in infrastructure and a pool of charged batteries, which 

might be challenging in remote mining areas. 

 While battery swapping offers speed, traditional charging infrastructure is still 

prevalent due to its lower initial cost and widespread applicability. The charging (slow or 

fast charging) plays a crucial role in determining the availability of BEVs. Li et al. (2022) 

showed that fast charging technologies could reduce downtime but may impact the 

battery’s longevity and overall vehicle availability in the long term due to faster 

degradation. Integrating battery swapping with traditional charging systems can provide a 

balanced approach to maintaining BEV availability. Such integration allows the 

flexibility to choose between rapid swapping or slower, more battery-preserving charging 

methods based on operational demands and constraints. Feyijimi et al. (2019) pointed out 

the importance of designing an autonomous battery-swapping system due to the range 

anxiety problem encountered by these units. However, Ahsanul et al. (2022) argued that 

while battery swapping is critical to solving that problem, it can cost about 48% more 

than the fast-charging technique, even though it gives higher productivity. 

Due to the energy demands of BEVs, innovation in battery technology that allows 

for faster charging with minimal degradation and improvements in swapping station 

design for quicker and safer batteries is crucial. As a result, the long-term savings in 

operational costs need to be weighed against the initial setup and maintenance costs. 
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2.3. DISCRETE EVENT SIMULATION AND ITS MINING APPLICATIONS 

DES models in mining can include variables like equipment availability, 

workforce schedules, and environmental conditions, allowing for a comprehensive 

operational efficiency analysis. This section explores the application of DES in mining, 

highlighting its advantages, applications, and challenges. 

2.3.1. Simulation. Simulation is a practical method for replicating the behavior of 

real-world systems and employs symbolic or mathematical representations [85]. Its 

cornerstone of problem-solving and optimization is applied across various fields, such as 

energy, healthcare, public services, and mining [35].  The use of computer simulations 

for complex systems problem-solving has become prevalent [86]. A robust simulation 

model effectively mirrors the actual system, providing reliable insights into system 

queries [87]. Creating such models involves defining the system’s state variables for 

thorough evaluation and analysis [85]. These variables can be categorized as discrete or 

continuous, static or dynamic, and deterministic or stochastic [88]. In discrete event 

models, variable changes occur at specific moments, whereas continuous models see 

variables evolving steadily over time in a continuous process [85].  

Simulations offer several benefits, such as understanding system operations, 

testing concepts before implementation, and gathering vital data without disrupting the 

natural system [89]. They enable rapid experimentation with system alternatives [90]. 

Computer simulations facilitate system analysis with minimal analytical input, handling 

complex elements like stochastic variables and time delays that are challenging in 

analytical approaches [35]. Simulations can address both qualitative and quantitative 

aspects of problems unresolvable through qualitative methods alone [91]. However, they 
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cannot provide the optimal solution independently and rely heavily on the accuracy of 

input data [92]. As such, repetitive iterations are essential in testing the sensitivity of the 

results.  

There are several kinds of simulation. These include: 

• Agent-based simulations. This type of simulation is a technique where 

individual agents, each with their intelligence, memory, and rules, are 

created to interact among themselves and with their environment. This 

interaction leads to behaviors, patterns, and structures emerging over time. 

These outcomes, derived from the complex interplay of agents, are utilized 

for various purposes [35], [93].   

• System dynamics simulation. This kind of simulation uses feedback 

loops and time delays to represent the interactions and dynamics of system 

components. It focuses on understanding and modeling complex systems 

over time. It is mainly applied in strategic planning and policy 

development, especially in social, economic, and ecological systems[86] 

[93]. 

• Discrete Event Simulations. In this type of simulation, the state variables 

undergo changes at specific, discrete moments in time. [35] [87].  

• Hybrid Modelling. This often combines DES and system dynamics to 

model complex models more comprehensively. Its primary advantage lies 

in combining various simulation techniques and incorporating empirical 

data from multiple sources to achieve comprehensive results [93]. 
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This research uses DES to enhance BEVs' battery swapping and charging 

procedures in underground mining operations as they are becoming prevalent in the 

mining industry. 

2.3.2. Discrete Event Simulation. DES is a sophisticated modeling method that 

can replicate complicated systems like natural systems [35], [94]. This computer-based 

approach ensures the creation, simulation, and examination of complex systems into a 

series of events. DES originated in the post-World War II era with advancing operations 

research and computer technology. The early applications arose from the need to simulate 

complex military and telecommunications systems. This allowed for the development of 

the core concepts of DES, such as the representation of such systems as a series of 

distinct events whose states change with time. The General-Purpose Simulation System 

(GPSS) is the oldest simulation language. It was developed by Geoffrey Gordon in the 

1960s. This was a milestone in providing a standardized approach to DES modeling [95]. 

GPSS mainly was utilized for models involving queues. Compared to other languages, it 

lacked the flexibility and capability to alter the system's state [96].  Some other popular 

simulation languages include: 

•  SIMAN. This is the shortened form for SIMulation ANalysis and is 

mainly utilized in modeling discrete event simulation systems [96]. Arena, 

the software utilized in this research, uses this simulation language to 

model a discrete, continuous, or hybrid of both[96]  [91]. In Siman, users 

can model various experiments yielding multiple results [91]. The 

downside of this language is its demanding feature in demand-driven 

modeling systems [97]. SLAM. Simulation Language for Alternative 
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Modelling, as the name implies, aids analysts in modeling in multiple 

paradigms for flexibility and problem requirements [91]. A more 

significant advantage of this language is its ability to construct integrated 

models encompassing different system orientations, such as discrete-

event, process-oriented, and object-oriented [98]. It has quite a steeper 

learning curve due to its hybrid nature [98], [99] 

• SIMSCRIPT. The original version was by Markowitz under the U.S. Air 

Force [100]. This is often used for discrete event simulation systems using 

the object-oriented approach [96], [99]. This language, however, imposes 

higher constraints on the process definitions [96]. It incorporates object-

oriented programming concepts, which allow for the creation of modular, 

reusable, and scalable simulation models [85], [99] 

• AnyLogic. This language supports seamless switching between 2D and 

3D modeling [101]. It has advanced statistical analysis and 

experimentation tools, making it easier to analyze and interpret the results 

of simulated experiments [101]. These are its significant advantages over 

the other simulation languages.  

In typical DES modeling, a system is under study, and a model is developed to 

replicate the system [102]. In a detailed context, activities and events determine entities' 

processes. Entities may have different attributes depending on the system under 

consideration. They are modeled to go through the system as the state variables change 

[87], [94], [103]. Current DES models use simulation languages like GPSS, SIMAN, and 

SLAM [96]. 
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In developing a DES model, four conceptual frameworks have been applied since 

the evolution of DES models [95],[100]. These include: 

• Event scheduling. This framework offers a localized concept of time with 

a complete focus on an event occurrence [100]. The events occur when 

entities allocated for an activity are released by resources or processes. 

The analyst is thus required to monitor the current and future events by 

making changes in the model once these processes and activities are 

defined for the DES model [91]. 

• Activity scanning. This framework offers a localized concept of state, 

emphasizing the conditions and actions of entities. The model assumes a 

different state with the probability of a particular condition occurring 

[100]. The framework requires analysts to ensure that all appropriate 

conditions are feasible before taking the required actions. Usually, this 

framework is prolonged since analysts usually perform numerous 

simulations at specific intervals [100].  

• Process interaction. This framework offers a localized concept of an 

object with emphasis on model specifications. The overall action sequence 

of the object in question is monitored as it moves through the various 

processes in the model [100]. 

• Three-phase approach. This multiple approach focuses on the stages that 

entities advance through events, activities, and resources. In the first 

phase, a state change is acknowledged only when there has been a change 

in time. The second phase ensures that resources scheduled for an activity 



36 

 

 

are released after performing their schedules. The last phase completes the 

process as activities are marked as completed when resources avail 

themselves to be used by entities [99].   

2.3.3. DES Application in Mining. The quest to build a DES model requires 

expertise and training, which can be costly and time-consuming [85]. Various industries 

apply DES models to develop optimal designs and configurations of real-world systems 

[104], [105]. The cheap and easy ways of modeling complicated systems using DES have 

made their application prevalent [102].  

 The application of DES has been extensively applied in the mining industry to 

optimize operations and advance several making processes [103], [106], [107]. The early 

stages of its application focused on streamlining mining operations and logistics. Material 

handling, equipment scheduling, and process optimization are the key areas where their 

implementation has been highlighted according to relevant literature [84], [85], [63]. It 

has been applied primarily on surface mines compared to its underground counterparts 

[108]. According to the reviewed literature, DES has not been used extensively for BEVs, 

which is gaining an audience in mining. 

 In summary, integrating BEVs in the mining environment presents promising 

opportunities and significant challenges, as highlighted in the thesis' comprehensive 

literature review. Central to these challenges is the effective management of battery 

technology, where limitations such as restricted life spans and prolonged charging times 

pose operational constraints. The impact of various charging technologies on battery 

health and efficiency introduces further complexities. Moreover, as discussed in the 

literature, the driving range of BEV is a significant factor worth probing into. Since harsh 
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conditions and fluctuating demands characterize mining, these challenges are 

accentuated, necessitating robust and adaptive charging and swapping technologies. This 

is where DES becomes crucial. DES offers a dynamic tool to model, simulate, and 

analyze the complex interplay of these factors.  

By simulating diverse scenarios, DES can inform the development of optimized 

charging protocols that align with the unique operational needs of mining, evaluate the 

efficiency and practicality of different battery swapping methods, and assess the overall 

impact of these strategies on the productivity and sustainability of BEV use in mining 

operations. DES serves as a bridge between the challenges identified in the literature and 

the practical solutions, providing a platform to test and refine BEV battery management 

strategies to enhance operational efficiency and demands. 
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3. DISCRETE EVENT SIMULATION (DES) IN SWAPPING/CHARGING OF 

BATTERY ELECTRIC VEHICLES IN UNDERGROUND MINING 

3.1. INTRODUCTION 

This Section deals with the specific framework utilized for this study. A detailed 

DES model, with a comprehensive case study, has been developed, focusing on the 

assumptions. This Section investigates the application of DES for evaluating the critical 

performance metrics of BEVs' battery swapping and charging procedures, such as 

charging unit utilization, battery waiting time before utilization, availability of trucks, and 

the frequency of queues with a change in the number of trucks and/or batteries. An 

existing underground BEV was used as a case study to showcase the application of DES 

for solving the associated problems.  

Understanding the processes that the BEV’s battery experiences throughout the 

working phase is critical. A continuous flow of events within such a system without 

queues was the optimal goal. A longer waiting time for trucks at the charging bay for 

batteries will lead to lower productivity. Moreover, a charged battery sitting at the 

charging bay will imply the under-utilization of batteries. The maximum utilization of the 

charging unit is also a key component for an optimal system for this case study. 

This study also assessed the possible queues that the system can generate during the 

working phase. This was used to develop multiple maps of the multi-service BEV 

swapping and charging systems for optimal decision-making. The DES model can 

determine the utilization of the charging unit, trucks, and batteries and the time a charged 

battery is idle after charging. 
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3.2. DES MODEL FRAMEWORK 

 Advancements in computer simulation have significantly reduced the intricacy 

and time required to tackle significant optimization challenges. In underground mining, 

integrating BEV technologies demands robust frameworks for efficient operations. DES 

is an indispensable tool for modeling and analyzing BEVs' swapping and charging 

mechanisms. 

The ultimate goal of this thesis is to optimize the battery swapping and charging 

processes of battery electric trucks, particularly in underground mines. With the battery 

being a pivotal contributor to the powertrain of the equipment [44], it is significant to 

examine the series of events it undergoes before, during, and after each shift. If we can 

understand the sequence of events the battery undergoes throughout a shift, we can model 

those uncertainties as a series of events.  

The methodology applied in this study aims to: 

1. Build a DES model of the base case scenario to replicate the natural system. 

2. Examine the performance metrics of the base model. 

3. Build other experiments and compare them with the base case scenario.  

4. Select the optimal scenario. 

3.3. MODEL ASSUMPTIONS 

 This thesis makes fundamental assumptions for the DES model to be functional 

and reliable. Some of the critical assumptions are highlighted below: 

1. The underground mine maintains constant operational hours, and the BEVs 

operate within the specified time frames without unscheduled halts or failures 

except for battery depletion. 
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2. BEVs have uniform battery lifespan and depletion rates. Battery degradation over 

time is not considered in this study. 

3. The speeds of BEVs differ depending on the terrain in which they move. The 

gradient of the haul roads was not considered in the model. 

4. The model did not consider the status of BEVs, either loaded or unloaded, while 

visiting the charging bay. The bay can be accessed by the truck even in its loaded 

state. 

5. The model assumes a single charging bay for the base case and all other 

scenarios.  

6. The model did not incorporate the shift breaks. As such, the base model assumes a 

20-hour per day shift. 

3.4. CASE STUDY 

A case study of a BEV used in an underground mine is presented in this section to 

highlight the approach discussed in Section 3.2. Kelton et al. (2003) stated that a typical 

simulation study has seven major components [33]. The subsequent discussions will, 

however, be explicitly based on the battery and charging model of the BEVs in the 

underground working environment. 

3.4.1. Build DES Model. The study delves into the approach and procedures used 

to build the Arena model. It discusses the model specifics, including the entities' 

processes, variables, and attributes. 
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3.4.1.1. Problem formulation.   The primary objective of this research is to 

examine and optimize the battery swapping and charging procedures used by Battery 

Electric Vehicles (BEVs) in an underground mining setting. To achieve this, a Discrete 

Event Simulation (DES) model was developed utilizing Arena® software. This model 

meticulously mirrors the actual operational environment, incorporating various attributes 

and variables representative of a real-world system. 

The core functionality of the DES model is to forecast the utilization of trucks, 

chargers, and batteries within the mine. This is achieved by analyzing and predicting the 

formation of queues in the system, which is a key indicator of process efficiency. This 

approach is particularly relevant in addressing the primary concern of the study, i.e., 

assessing and enhancing the efficiency and effectiveness of the battery swapping and 

charging procedures for BEVs in underground mining scenarios. 

A critical outcome of this study is determining the ideal number of batteries to be 

assigned to a specific number of trucks and chargers. This is not a straightforward 

calculation, as the model seeks to establish the most efficient scenario that balances 

operational demands with resource availability. This is highly relevant due to the cost of 

establishing a single bay for each truck, which is the current setup. 

Furthermore, an essential aspect of this study is the cost implications of the 

battery charging process. The charging procedures must not lead to a surge in operational 

costs. This concern introduces an additional layer of complexity into the model, as it must 

identify the optimal intervals for charging and swapping batteries. The goal is to predict 

and mitigate potential bottlenecks in these processes, thereby ensuring a smooth and cost-

effective operation. 
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In summary, the DES model in this study is an intricate tool designed to optimize 

battery charging and swapping of BEVs for underground mining. It does so by balancing 

the need for efficiency in battery swapping and charging to maintain a system with fewer 

queues, which will increase production. 

3.4.1.2. System and simulation specification. The study focuses on an 

underground mine that employs the sub-level stoping method for ore extraction. This 

mining operation utilizes Battery Electric Vehicles (BEVs) to transport materials. These 

materials are moved from the mining areas, known as stopes, to designated ore passes. 

The materials are conveyed to the surface through a hoist shaft system from these ore 

passes. The model only considers the truck's movement from the stope to the ore passes. 

A noteworthy aspect of this mining operation, as shown in Figure 3.1, is the 

logistics surrounding the BEVs. Each truck is allocated a specific set of resources: one 

charging bay, an individual charger, and a pair of batteries. This setup is crucial for the 

efficient functioning of the transport system within the mine. The precise distances these 

trucks travel, starting from the loading stations to the ore passes and then to the charging 

stations, have been methodically tabulated in Table 3.2. 

The study also incorporates a model designed to simulate and verify the efficiency 

of this system. This model is not merely a theoretical construct; it includes a basic 

animation feature visually representing the system’s operation. Data was sourced directly 

from the manufacturer of the equipment and vehicles used in the mine to construct this 

model. The various fields in the data were cleaned using box plots in Excel. 
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               Figure 3.1. Typical Charging Bay Setup 

 

This raw data underwent a thorough analytical process using the Input Analyzer 

tool in the Arena software. The purpose of this analysis was to formulate distributions for 

all the parameters that are essential to the model. The Input Analyzer employs statistical 

techniques such as the Chi-squared and Kolmogorov-Smirnov (KS) tests, leveraging their 

strengths to enhance the robustness and precision of distribution fitting in the simulation 

models. The rationale behind this dual approach is rooted in the complementary nature of 

these tests. With its non-parametric foundation, the KS test offers flexibility in assessing 

the fit of a wide range of data types without pre-assuming any specific distribution [109]. 

This is highly efficient since the data distributions were unknown. On the other hand, the 

fact that the Input Analyzer tool utilizes the Chi-squared test, which is parametric, makes 

it worth implementing [110]. By incorporating both tests, Arena’s Input Analyzer caters 
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to a comprehensive spectrum of data analysis scenarios, from general explanatory 

assessments to specific distribution fits [33]. This dual methodology ensured that the 

chosen distributions were not only statistically valid but also the most representative of 

the real-world scenarios being modeled, thereby enhancing the credibility and 

effectiveness of the simulation results. These tests are critical in evaluating each 

distribution's suitability or 'goodness of fit.' The input parameters are highlighted in 

Figures 3.2 – 3.8. 

Some of the critical data pivotal to the model include the duration of battery 

charging, the time taken for battery swapping, and the average speeds of the BEVs 

traveling over different terrains. Table 3.1 comprehensively presents these specific 

details. 

  

                                  

Figure 3.2. Average battery swapping time                      Figure 3.3. Average payload 
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      Figure 3.4. Total distance traveled                      Figure 3.5. Average speed uphill 

 

                

        Figure 3.6. Average speed level                       Figure 3.7. Average speed downhill 
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Figure 3.8. Average charging duration 

 

Table 3.1. Input data 

Activity Distribution(s) P-value 

Loading time (min) 
 

TRIA (7, 11,12) <0.005 

Dumping time (min) TRIA (5, 8, 10) <0.005 

Speed level (Km/h) TRIA (7, 8.54, 15) <0.005 

Speed Uphill (Km/h) 

8 + 3.96 * BETA (3.53, 

2.98) <0.005 

Speed Downhill 

(Km/h) 

7 + 7.88 * BETA (3.34, 

3.68) <0.005 

Cycle time (hrs) From model    

Payload (tons) NORM (40, 4.74) <0.005 

Battery swapping 

time (min) 10 + ERLA (2.53, 3) <0.005 

Charging (hrs) TRIA (0.82, 0.965, 1.4) <0.005 
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3.4.1.3. Model formulation.  The DES modeling framework is structured around 

a detailed specification of the entities, resources, and processes constituting the system 

under examination. This specification is critical for the analyst, who must accurately 

define and integrate these components to create a realistic and functional model. Entities 

are the distinct items or units that move through the system. They are central to the 

simulation as their movements and interactions represent the operational dynamics of the 

system. In this model, the BEV’s batteries were modeled as entities. These entities have 

attributes that change as they move about in the model. An example is the attribute state 

of charge (SOC), which determines how low the battery is and asks it to be recharged if it 

falls below a certain threshold.  

 Resources in the DES model are elements entities required to complete various 

processes. The charging unit is modeled as a resource for this model implementation. The 

charging unit as a resource seizes the battery when it enters the charging process for the 

duration shown in Table 3.1 and releases it after charging to be transported by a truck. 

The availability and utilization of these resources significantly impact the efficiency and 

effectiveness of the system. 

 Processes are the sequence of steps or actions entities undergo within the system. 

The DES model must logically define these processes to reflect real-world operations. In 

this model, the batteries (entities) go through the loading, dumping, and charging process. 

The modeling considers the battery swapping time during the charging process, as shown 

in Table 3.1. The model incorporates several designated stations to accommodate these 

processes, each tailored to facilitate a specific part of the battery’s journey through the 

system. 
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 For an entity to move from one station to another, it requests to be transported by 

a Transporter. Transporters, in a DES model, are mobile entities used to simulate the 

movement of items between locations in the model.  For this study, BETs are modeled as 

Transporters. As shown in Table 3.1, the transporter changes its speed based on the 

entities between terrain and its direction of travel.  The distance traveled by the 

Transporter to moving stations is highlighted in Table 3.2. 

 

Table 3.2. Distance between stations 

Station Names Distance (km) 

  From To  

Loading Ore pass 0.1 

Charging bay Ore pass 0.02 

Charging bay  Loading 0.03 

 

• Analysis of battery depletion in BEVs using multiple regression: The model required 

analysis of the raw data to ascertain how the various fields correlate with battery 

depletion. Table 3.3 shows the correlation between battery depletion and the remainder of 

the variables in the input data. 

A comprehensive approach was adopted in the initial stage of the multiple regression 

analysis for this project. This involved considering the entire spectrum of variables 

available in the raw data set provided by the manufacturer. The multiple regression 

model is represented in Equation 3.1. 

• 𝑦 =  𝛽0  + 𝛽1𝑥1 +  𝛽2𝑥2  +  … … +  𝛽𝑝𝑥𝑝                             (3.1) 

 

• Dependent variable (y) = Battery depletion (kWh Used);  

• Multiple variables (𝑥1, 𝑥2, 𝑥3, … 𝑥p) = All the independent variables.  

• 𝛽0 = intercept. 
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The raw data was systematically divided into two distinct sets: training and testing 

datasets. This division followed the standard practice of using a larger portion for training 

(70%) and a smaller portion for testing (30%). Such a split was relevant in developing a 

robust, well-trained model on most of the data and effectively validated against an 

independent dataset. The purpose of the more extensive training set was to train the 

regression model, which improves the model’s parameters (coefficients) to fit the dataset 

best. The testing data will further validate the model’s performance.  

The data presented in Figure 3.9 and Figure 3.10 indicate that the regression 

model is highly effective in predicting the rate at which the battery depletes. This high 

level of accuracy and certainty in the predictions made by the model lends credibility to 

the assumption that the equation derived from the regression model can be reliably used 

to represent the battery depletion rate within the Arena simulation model. 

Furthermore, the efficacy and performance metrics of the regression model are 

comprehensively detailed in Table 3.4 and Table 3.5. These tables present the model’s 

accuracy on the training and testing data sets. The strong performance of the regression 

model on the test data, as shown by the metrics in Table 3.5, reinforces the validity of 

employing its derived equation in the Arena model to simulate and understand the battery 

depletion dynamics realistically. 

For the specific requirements of this project, the multiple regression model was 

adapted to focus on a subset of six variables deemed most critical in predicting the 

battery depletion rate in BEVs. This decision was based on the preliminary data analysis 

and Arena compatibility of certain input variables. An important aspect of this process 

was selecting the variables that were highly correlated to battery depletion according to 
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Table 3.3. As highlighted in Section 2.2.1 of the literature, only four main variables were 

selected after critical evaluation. In this model, battery depletion depends on: 

✓ Cycle time. 

✓ Payload. 

✓ Average speed (uphill, downhill, or level terrain). 

✓ Distance of travel. 

 

Table 3.3. Correlation between Battery Depletion (kWh Used) and the independent 

variables 

kWh Used                     1.000000 

Cycle Time                   0.425157 

Distance Traveled            0.472540 

Avg. Machine Speed          -0.101398 

Max Machine Speed           -0.132704 

Avg. Speed Uphill           -0.580605 

Avg. Speed Downhill         -0.259224 

Avg. Speed Level            -0.568464 

Tons                         0.325817 

            TKPH                        -0.055498 

Tons/Hr                     -0.146593 

kWh/Ton                      0.461023 

Uphill kWh                   0.979949 

kWh/km Uphill                0.657516 

Downhill kWh                -0.704163 

kWh/km Downhill             -0.288437 

Max of Max Front ATF Temp    0.239708 

Max of Max Rear ATF Temp     0.190569 

Max Hydraulic Tank           0.255842 

Max Front Cell Temp          0.155283 

Max Rear Cell Temp           0.086404 
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Figure 3.9. Plot of the regression model’s performance on training data 

 

     

Figure 3.10. Plot of the regression model’s performance on testing data 
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Table 3.4. Performance of the regression model 

Metric 

Training 

data 

Test 

data 

R-squared 0.99 0.97 

MAE N/A 1.74 

MSE N/A 4.61 

RMSE N/A 2.14 

 

The revised form of Equation 3.1 is presented in Equation 3.2 for this model. 

Estimating the coefficient of the variables using regression techniques is what the model 

tends to predict [87]. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑈𝑠𝑒𝑑 (𝑘𝑊ℎ)  

=  𝛽0  +  𝛽1  ×  𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 +  𝛽2 ×  𝑇𝑜𝑛𝑠 (𝑃𝑎𝑦𝑙𝑜𝑎𝑑)  

+  𝛽3 ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝑈𝑝ℎ𝑖𝑙𝑙 +  𝛽4 ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙 

+  𝛽5   ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝐿𝑒𝑣𝑒𝑙 

+  𝛽6   

×  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑                                                                                                    (3.2) 

The statistical analysis involved fitting the regression model on the proposed 

variables. The model's performance on the training and testing data of the proposed 

variables is presented in Figure 3.11 and 3.12.  

Table 3.5. Performance of the regression model 

Metric Training Test 

R-

squared 0.99 0.97 

MAE N/A 1.74 

MSE N/A 4.61 

RMSE N/A 2.14 
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Figure 3.11. Plot of the regression model’s performance on training data 

 

 

Figure 3.12. Plot of the regression model’s performance on testing data 
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Figure 3.13. Flowchart of DES model logic 
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3.4.1.4. Verification and validation.  For the verification of the model, an 

animation of the system was built to ensure that the model was performing as expected in 

its theoretical compositions. In detail, the model tracked some system and user-defined 

variables, such as a graphical representation of the battery depletion after each cycle. 

Again, the model was verified by identifying the charger utilization and frequency of 

queues generated at the charging bay when there is an increase or decrease in the number 

of batteries and/or trucks.  

Since the model aims to predict the number of queues generated when the number 

of entities and transporters changes, the subsequent sections will discuss how the 

variations affect the performance metrics discussed earlier. 

In the context of this project, the model will not undergo the traditional validation 

approach. This is because the data utilized in constructing the model lacks corresponding 

real-world data for our specific output deliverables. This limits the ability to validate the 

simulation results directly against actual operational outcomes.  

Half-width represents the range on either side of the estimated mean within which 

the population's true mean will likely fall. This implies that the lesser the half-width, the 

lesser the uncertainty, indicating the model’s performance [87]. The main outputs of the 

simulation were charger utilization, truck availability, frequency of queues, and battery 

waiting time post-charging. The output's functions are the cycle time, payload, average 

speed, and distance traveled. However, since the simulation results only present cycle 

time and payload, we considered these two metrics and the outputs in determining the 

relevant metrics of the half-width. As such, we chose the number of replications such that 
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their half-widths were less than 3% of the mean. After the examination, we discovered 

that 240 replications were required to achieve the required half-width.  

 𝐻𝑎𝑙𝑓 − 𝑤𝑖𝑑𝑡ℎ = 𝑡𝑛−1,1−𝛼/2∗
𝑆

√𝑛
 ,                                                               (3.3) 

 

where 𝑡𝑛−1,1−𝛼/2 = tables values, n = number of replications, s = standard deviation. 

 

3.4.2. Evaluating the Key Performance Metrics. As highlighted earlier, the 

model needs to evaluate specific key parameters, such as charger utilization, truck 

utilization, and the frequency of queues. The results of the simulation yield numerous 

outputs. However, discussions will focus on only the key performance metrics. 

The charging bay has zero queues for the base case scenario, which is always the 

case since only a single truck is in the base model. This verified the performance of the 

DES model for the base case scenario. The average utilization of the charging unit, as 

shown in Figure 3.13, was very low. This clearly demonstrates how the charging unit is 

generally under-utilized. The high efficiency of the charger is attributed to the cycle time 

of the trucks and the battery charging duration.  

 It is evident from Figure 3.14 that the operational efficiency of truck was 

maximized, with trucks being readily available for use at any given time, signifying an 

optimal state of vehicle utilization within the system. However, a contrasting situation is 

observed regarding the battery charging and utilization process, as depicted in Figure 

3.15. Even though the batteries were charged and ready for deployment, they remained in 

the charging bay for an extended duration of approximately 5 hours post-charging as 

shown in Figure 3.16.  
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Figure 3.14. Average charger utilization across 30 replications 

 

 

 

Figure 3.15. Average truck availability across 30 replications 
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Figure 3.16. Average battery waiting time after charging 

 

Table 3.6. Average of averages of the replications 

Metric Average of 240 

replications 

Charging queue (hrs) 0 

Battery waiting time (hrs) 5.55 

Charger Utilization (%) 0.524 

Truck Availability (%) 100 
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3.5. SUMMARY 

 This project analyzed the potential of DES for optimizing the battery swapping 

and charging procedures of battery electric vehicles (BEVs) in underground mining 

operations. Data from a BEV manufacturer was used as input parameters for the DES 

model.  

The DES model can be used to assess performance metrics, such as charger 

utilization, truck availability and utilization, and the number of queues generated with a 

change in the number of entities and transporters. The overall result of the base case 

scenario is presented in Table 3.6. Therefore it can be gihlighted that model has 

successfully been verified for the base case scenario. From the base case study, the 

following conclusions can be drawn: 

• The simulation results from this case study showcased the capability of 

DES to model the complexities and uncertainties surrounding such an 

operational system. Although comprehensive validation of the model was 

constrained due to the absence of specific comparative data, the successful 

verification of the model underscores its reliability and effectiveness. 

• The model's significant strength lies in its adaptability. It allows for 

modifications for critical input variables without redeveloping the entire 

model. This means that adjustments for variables, such as the trucks' 

speed, can be made relatively easily, offering a high degree of flexibility. 

• The base case scenario guaranteed 100% truck availability but 

significantly under-utilized charger and had batteries waiting the longest  
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to be used after charging. This insight points to potential areas for 

optimizing charger and battery usage to enhance overall operational 

efficiency. 
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4. EVALUATING THE RESPONSE OF THE INPUT PARAMETERS 

4.1. OVERVIEW 

This section focuses on the DES model's experimentation. It explores how 

changing critical input parameters, such as the number of trucks, batteries, and chargers, 

impacts critical metrics in the DES model. These metrics include queue frequency, 

charger utilization, truck availability, and battery wait times post-charging.  

The study aims to identify an optimal combination model that minimizes queues 

and battery wait times while maximizing truck availability and charger utilization. To 

achieve this, different scenarios developed during the experiment design phase will be 

thoroughly evaluated.  

Subsequent subsections provide detailed insights into each experiment, focusing 

on various parameter combinations tailored to the specific mining setup under study. 

These experiments will show how alterations in input variables influence performance 

metrics, as discussed in Subsection 3.4.2. The author leverages Arena, a simulation 

modeling software, specifically its Process Analyzer tool, to conduct these experiments, 

showcasing the effectiveness of DES in addressing the problem at hand.  

4.2. DESIGN OF EXPERIMENTS 

 Design of experiments (DoE) is a methodological and thorough approach, used in 

improving and optimizing processes. It enables researchers and practitioners to evaluate 

the changes in output variables in response to alterations in input factors, thereby 

establishing cause-and-effect relationships.  
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Full factorial design. The study utilized the full factorial experimental design 

approach to determine the effects of multiple factors and their interactions on the 

response variables. In this design approach, experiments are conducted considering all 

possible combinations of factors and their levels. The factors considered were the number 

of trucks, batteries, and chargers. Even though it is crucial to understand the interactions 

between these factors and the output parameters, it will be an exhaustive approach to 

rebuild the model for each scenario.  

The maximum number of factors to be considered was selected after consultation 

with experts of the mine under consideration (anon, personal communication, December 

3, 2023). The maximum number of trucks and chargers was equal to four. The maximum 

number of batteries was equivalent to eight. Thus, a truck is roughly assigned to two 

batteries. The possible combinations based on the above were determined using Equation 

4.1. 

Total combinations 

=  Levels of trucks  ∗  levels of batteries ∗  levels of chargers         (4.1) 

The possible number of combinations could be 112 experiments. After careful 

review, based on the maximum number of factors and ignoring certain combinations, 

only 53 experiments were conducted, as shown in Table 4.1 (Run Experiments) and 

Table 4.2 (Ignore Experiments). These experiments were evaluated to ascertain how their 

effects contributed to the various performance metrics, trucks availability for work, 

battery waiting times post-charging, charging queues, and the chargers’ utilization. 

Arena’s process analyzer was used to build and run the experiments. The tool 

allows the user to create controls (same as factors) and responses (same as key output 
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Table 4.1 Run Experiments 

Run Experiments   Run Experiments   

Scenario Trucks Batteries Chargers Scenario Trucks Batteries Chargers 

1 1 2 1 29 4 5 1 

2 2 2 1 30 4 6 1 

3 2 3 1 31 4 7 1 

4 2 4 1 32 4 8 1 

5 2 2 2 33 4 2 2 

6 2 3 2 34 4 3 2 

7 2 4 2 35 4 4 2 

8 2 2 3 36 4 5 2 

9 2 3 3 37 4 6 2 

10 2 4 3 38 4 7 2 

11 3 2 1 39 4 8 2 

12 3 3 1 40 4 2 3 

13 3 4 1 41 4 3 3 

14 3 5 1 42 4 4 3 

15 3 6 1 43 4 5 3 

16 3 2 2 44 4 6 3 

17 3 3 2 45 4 7 3 

18 3 4 2 46 4 8 3 

19 3 5 2 47 4 2 4 

20 3 6 2 48 4 3 4 

21 3 2 3 49 4 4 4 

22 3 3 3 50 4 5 4 

23 3 4 3 51 4 6 4 

24 3 5 3 52 4 7 4 

25 3 6 3 53 4 8 4 

26 4 2 1     

27 4 3 1     

28 4 4 1     
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Table 4.2 Ignored Experiments 

Ignored Experiments  Ignored Experiments  
Scenario           Trucks Batteries Chargers Scenario Trucks Batteries Chargers 

1 1 3 1 31 2 8 1 
2 1 4 1 32 2 5 2 
3 1 5 1 33 2 6 2 
4 1 6 1 34 2 7 2 
5 1 7 1 35 2 8 2 
6 1 8 1 36 2 5 3 
7 1 2 2 37 2 6 3 
8 1 3 2 38 2 7 3 
9 1 4 2 39 2 8 3 

10 1 5 2 40 2 2 4 
11 1 6 2 41 2 3 4 
12 1 7 2 42 2 4 4 
13 1 8 2 43 2 5 4 
14 1 2 3 44 2 6 4 
15 1 3 3 45 2 7 4 
16 1 4 3 46 2 8 4 
17 1 5 3 47 3 7 1 
18 1 6 3 48 3 8 1 
19 1 7 3 49 3 7 2 
20 1 8 3 50 3 8 2 
21 1 2 4 51 3 7 3 
22 1 3 4 52 3 8 3 
23 1 4 4 53 3 2 4 
24 1 5 4 54 3 3 4 
25 1 6 4 55 3 4 4 
26 1 7 4 56 3 5 4 
27 1 8 4 57 3 6 4 
28 2 5 1 58 3 7 4 
29 2 6 1 59 3 8 4 

30 2 7 1     

 

parameters). Each of the 53 experiments, guided by the run experiments in Table 4.1, was 

scrutinized based on key performance metrics outlined in Section 3.4.2. These 

experiments and their configuration are further illustrated in Figure 4.1.  
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The model underwent modifications to establish experimental controls, enabling 

input factors to be variables. This approach differed from the base case scenario, where 

inputs were initially hard-coded and fixed. This change allowed for flexibility and 

adaptability in experimenting with different combinations of input factors in Process 

Analyzer. The outputs (response) were based on the average of averages after the 240 

runs, as highlighted in Section 3.4.1.4.  

 

 

Figure 4.1. Interface of Arena’s Process Analyzer 
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Table 4.3 Average of averages of the simulation experiments 

  Controls Responses 
Scen- 

ario 
No.  
of 
Trucks 

No.  
of 
Batteries 

No. of 
Chargers 

Truck 
Availability 
(%) 

Charger 
Utilization 
(%) 

Charged 
battery 
waiting 
time 
(hrs) 

Charging 
Queue 
(hrs) 

1 1 2 1 100 0.5 5.547 0 
2 2 2 1 23 0.8 0 0.183 
3 2 3 1 53.6 1 2.394 0.151 
4 2 4 1 100 1.1 4.758 0.2 
5 2 2 2 33.5 0.4 0 0 
6 2 3 2 54.2 0.5 2.515 0 
7 2 4 2 100 0.5 4.878 0 
8 2 2 3 33.5 0.3 0 0 
9 2 3 3 54.2 0.3 2.515 0 
10 2 4 3 100 0.4 4.878 0 
11 3 2 1 15.4 0.8 0 0.183 
12 3 3 1 18.4 1.2 0 0.411 
13 3 4 1 41.3 1.4 1.454 0.354 
14 3 5 1 68.3 1.6 2.884 0.469 
15 3 6 1 100 1.6 4.402 0.516 
16 3 2 2 22.3 0.4 0 0 
17 3 3 2 26.3 0.6 0 0.06 
18 3 4 2 43.2 0.7 1.573 0.046 
19 3 5 2 68.2 0.8 3.163 0.048 
20 3 6 2 100 0.8 4.691 0.061 
21 3 2 3 22.3 0.3 0 0 
22 3 3 3 29.1 0.4 0 0 
23 3 4 3 43.2 0.5 1.585 0 
24 3 5 3 68.2 0.5 3.184 0 
25 3 6 3 100 0.5 4.723 0 
26 4 2 1 11.5 0.8 0 0.183 
27 4 3 1 13.8 1.2 0 0.411 
28 4 4 1 16.8 1.5 0 0.639 
29 4 5 1 32.6 1.8 0.974 0.559 
30 4 6 1 54.3 2 1.945 0.713 
31 4 7 1 76 2.1 2.944 0.867 
32 4 8 1 100 2.1 4.08 0.906 
33 4 2 2 16.7 0.4 0 0 
34 4 3 2 19.8 0.6 0 0.06 
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Table 4.3 Average of averages of the simulation experiments (cont.) 

35 4 4 2 27.4 0.8 0 0.122 
36 4 5 2 37.4 0.9 1.133 0.098 
37 4 6 2 52.9 1 2.221 0.106 
38 4 7 2 76.2 1 3.414 0.131 
39 4 8 2 100 1 4.561 0.139 
40 4 2 3 16.7 0.3 0 0 
41 4 3 3 21.9 0.4 0 0 
42 4 4 3 32.5 0.6 0 0.02 
43 4 5 3 38.8 0.6 1.148 0.016 
44 4 6 3 52.8 0.7 2.289 0.016 
45 4 7 3 76.1 0.7 3.486 0.018 
46 4 8 3 100 0.7 4.63 0.025 
47 4 2 4 16.7 0.2 0 0 
48 4 3 4 21.9 0.3 0 0 
49 4 4 4 31.6 0.4 0 0 
50 4 5 4 36.5 0.5 1.167 0 
51 4 6 4 53.1 0.5 2.286 0 
52 4 7 4 76.3 0.5 3.5 0 
53 4 8 4 100 0.5 4.647 0 

 

4.3. EFFECT ON TRUCK AVAILABILITY: RESULTS AND DISCUSSION  

 The efficiency and productivity of mining operations heavily rely on the 

availability and effective utilization of trucks. This study delved into how the various 

combinations of the controls affected the BEV's availability and how it could be 

maximized for production operations. The designed experiments were examined to 

determine the BEV's availability. The results of these experiments are presented in Table 

4.3. 

Figure 4.2 shows the experimental results for the 53 combinations in Table 4.1. 

The results show a range of truck availability across different scenarios. This variability 
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indicated that combining the control variables significantly impacts truck availability. As 

indicated in Figure 4.2, some scenarios resulted in trucks being available 100% of the 

time for work, while others were as low as 11%. These fluctuations could be due to 

delays at the charging bay and scheduling conflicts. Scenarios 1, 4, 7, 10, 15, 20, 25, 32, 

39, 46 and 53 had the highest truck availability. Moreover, Scenario 26 had the least 

truck availability since four trucks used two batteries and a single charging unit. 

 High truck availability scenarios suggest an optimal balance of resources, leading 

to enhanced productivity and reduced downtime. However, low truck availability 

scenarios imply potential bottlenecks, such as trucks competing for resources like 

batteries and chargers, which leads to queues and reduced productivity. These insights are 

pivotal for mining operations, guiding strategic decisions in resource allocation, 

infrastructure investment, and scheduling optimizations. Moreover, they align with the 

broader objectives of maximizing efficiency, reducing operational costs, and adhering to 

sustainable mining practices. 

The correlation matrix illustrated in Figure 4.3 shows a weak negative correlation 

between truck increment in the model and truck availability. This suggests that increasing 

the number of trucks decreases truck availability for work and vice versa. This results 

from trucks competing for limited resources, leading to longer waiting times and, hence, 

reduced availability and utilization in the long run. Understanding and addressing the 

underlying reasons for this weak correlation is crucial for optimizing truck availability 

and mining operations in general. It is, therefore, vital to consider other factors like 

resource allocation, scheduling, and infrastructure capacity to improve truck availability 

in this sense to boost the overall mine’s productivity. 
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Figure 4.2. Truck availability of the experiments 

  

 Moreover, as illustrated in Figure 4.3, the results show a strong positive 

correlation between the number of batteries and truck availability, suggesting that 

introducing more batteries in the model significantly enhances truck availability. This 

highlights the contribution of adequate battery availability and management to BEV 

availability. The number of chargers shows no correlation to truck availability, 

suggesting that the number of chargers doesn’t have a straightforward impact on truck 

availability. 

 The strong positive correlation between the number of batteries and truck 

availability, as shown in 4.3, emphasizes battery availability's critical role in maintaining 

high truck availability. The findings indicate that increasing the number of batteries in the 

model significantly improves the availability of trucks for work. This strong correlation 

with the number of batteries underscores their importance in maintaining high truck 
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availability. Efficient battery management contributes a critical factor in achieving this 

optimality. This includes the availability of batteries and how they are managed- such as 

through effective charging strategies and battery swapping systems. These management 

practices will ensure that batteries are always available when needed, minimizing truck 

downtime.  

Additionally, even though the number of chargers did not have a strong 

relationship with truck availability, the impact of the charging duration on truck 

availability contributes to the higher availability of batteries in the model. It suggests that 

the time it takes to charge batteries is a crucial factor influencing the effectiveness of the 

chargers. Shorter charging durations can significantly enhance truck availability, as 

trucks spend less time idle at charging stations. This finding points to the importance of 

investing in fast charging technology or optimizing charging schedules to reduce 

charging times, which would positively impact truck availability and the overall mining 

operation. 

 

 

Figure 4.3. Correlation matrix of the factors and truck availability 
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4.4. EFFECT ON CHARGER UTILIZATION: RESULTS AND DISCUSSION 

Ensuring adequate utilization of the charging unit for mining operations is critical. 

This will minimize downtime and charging queues and maximize operational 

efficiencies. This study assessed how the various combinations contribute to the charger’s 

utilization. The multiple experiments conducted, and their respective charger utilizations 

are shown in Figure 4.4.   

The results showed that the charger utilization changes across the various 

scenarios, significantly affected by the factors outlined in Section 4.2.  From Figure 4.4, 

the highest and lowest charger utilization was around 2% and 0.2%, respectively, 

showing a very low utilization rate of the charging unit. This extremely low utilization of 

the charging units implies that the charger has the potential to handle more batteries, 

provided it won’t lead to queuing in the system. 

 

 

              Figure 4.4. Charger Utilization across scenarios 
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 Scenarios 31 and 32 made the best use of the charging unit, recording the highest 

charging utilization. These scenarios recorded the highest utilization due to the higher 

number of batteries in the experiments. This means that having a more significant number 

of batteries relative to charging units leads to more efficient use of the charging 

infrastructure. If the ultimate goal of the mine is to increase the utilization of the charging 

infrastructure, then it should consider increasing the number of batteries. 

 On the other hand, scenario 47, which recorded the lowest charger utilization, 

presents a contrasting situation. The experiment involved four charging units but only 

two batteries in this scenario. This disproportion between the number of chargers and 

batteries resulted in the extreme underutilization of the charging unit. With fewer 

batteries to charge, the chargers were left idle for more extended periods, indicating an 

imbalance in the resource allocation within this scenario.  

 Figure 4.5 shows a weak positive correlation between the number of trucks. This 

correlation suggests that an increase in the number of trucks is slightly associated with 

higher charger utilization. This is due to more frequent charging needs as the number of 

batteries increases.  

 This finding is essential for planning and optimizing resource allocation in an 

underground mining operation. It suggests that adding more trucks only marginally 

improves the charger’s utilization. Thus, a balanced approach considering the number of 

trucks, batteries, and chargers, along with efficient scheduling and management 

strategies, is necessary to optimize the use of the charging infrastructure and enhance 

operational efficiency. 
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However, a moderate positive correlation exists between the number of batteries 

and the charger’s utilization. This indicates a significant relationship where increasing the 

number of batteries leads to higher utilization of chargers. This is logical, as more 

batteries in such a system would naturally require more frequent charging, increasing the 

demand for charging units. The moderate strength of this correlation suggests that while 

the number of batteries is an essential factor worth considering in such a system, it is not 

the sole determinant of charger utilization. Factors such as the charging duration, battery 

capacity, and operational scheduling might also influence this relationship. 

Conversely, there exists a strong negative correlation between the number of 

chargers and their utilization, according to Figure 4.5. This implies that as we add more 

chargers to the system, the utilization of each charger decreases significantly. It is 

therefore critical for the mining operation to consider a reasonable number of chargers to 

ensure optimal charging infrastructure utilization. 

These correlations are essential for optimizing resource allocation and 

infrastructure planning in underground mining operations. They suggest that simply 

increasing the number of batteries or chargers is not a straightforward solution to 

improving operational efficiency. A more nuanced approach is essential, considering the 

balance between the number of trucks, batteries, and chargers, along with efficient 

scheduling.  

4.5. EFFECT ON CHARGED BATTERY WAITING TIME: RESULTS AND 

DISCUSSIONS 
 

The optimal utilization of charged batteries is achieved when they are utilized as 

soon as possible after being fully charged. This practice ensures the stored energy is used. 
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productively, minimizing the time batteries remain idle post-charging. Monitoring this 

output is crucial as it is a key indicator of effective energy management and operational 

efficiency within the system. This focus on prompt battery utilization underscores the 

importance of streamlining energy usage and workflow processes. As a result, the author 

assessed this metric for all the scenarios in Table 4.1. 

 

 

Figure 4.5. Correlation matrix of the factors and charger availability 

 

As illustrated in Figure 4.6, there is a noticeable variability in battery waiting 

times across different scenarios. This implies that the various configurations of trucks, 

batteries, and chargers significantly impact battery waiting times post-charging. For 



75 

 

 

instance, in scenario 1, batteries experienced over 5 hours of waiting time post-charging, 

suggesting low utilization. This is regarded as an inefficiency since batteries that remain 

idle post-charging could have been used to keep trucks operational, thereby enhancing 

the overall throughput of the mining operation.  

There is an opportunity for the mine to consider increasing the number of trucks 

in such cases to ensure that batteries are deployed within the shortest possible time after 

charging. Addressing this inefficiency would require a more balanced and strategic 

approach to matching the number of trucks with the appropriate number of batteries, 

considering the operational demands and charging infrastructure. Optimizing this balance 

is crucial to reducing battery waiting times, ensuring that batteries are used effectively 

and contribute positively to the operational efficiency of the mining system. 

 Conversely, scenarios such as 2 and 5 recorded zero hours of waiting times, 

indicating more efficient usage where charged batteries were promptly deployed. These 

scenarios suggest an optimal alignment between the number of trucks, batteries, and the 

charging infrastructure. In such cases, the operational flow is seamless, with minimal 

downtime for trucks waiting for batteries. This efficient usage not only maximizes the 

productivity of the mining operation but also ensures that the energy storage resources 

(batteries) are utilized to their fullest potential, contributing to overall energy 

management efficiency. This contrast underscores the significance of aligning resource 

availability with operational demands to optimize energy management and workflow.  

 This contrast in different scenarios reveals the significance of strategic planning 

in resource allocation and scheduling within underground mining operations.  It 

emphasizes the need for a holistic approach to managing trucks, batteries, and chargers, 
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considering the quantity of each resource and how they interact and are synchronized to 

support continuous and efficient operation. By fine-tuning these elements, a mining 

operation can achieve optimized energy management and improved workflow, leading to 

enhanced productivity and reduced operational costs. 

 

 

Figure 4.6. Charged battery waiting time across scenarios 
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several factors influencing battery waiting times. Therefore, to ensure that battery waiting 

times are minimal, it is important to investigate other factors such as the efficiency of the 

charging system and the number of batteries in the system. 

 A strong positive correlation exists between this metric and the number of 

batteries, as shown in Figure 4.7. This indicates that more batteries in the system result in 

longer waiting times for charged batteries. This shows that as the number of batteries 

increases in the model, managing them becomes more challenging due to the rate at 

which the batteries charge, leading to longer waiting times for the batteries. As a result, it 

depicts that there is an imbalance system since the number of batteries exceeds the 

operational demand or capacity of the trucks. In such scenarios, even though batteries are 

available and charged, they may have to wait longer due to a lack of trucks ready to 

receive them. As such, if the charging infrastructure or the scheduling system is not 

scaled or optimized in tandem with the increase in battery numbers, it leads to 

bottlenecks where batteries, despite being charged, await deployment. 

 It is critical to address these challenges, which require an increase in the number 

of batteries and a strategic approach to enhance the overall management of these 

resources. This may include optimizing charging schedules, improving the efficiency of 

battery swapping, and ensuring that the growth in battery numbers is proportionate to the 

operational capacity and demand of the mining trucks. By effectively aligning these 

factors, the mining operation can achieve a balanced system where the battery increase 

contributes positively to operational efficiency rather than creating additional waiting 

time and potential inefficiencies. 
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The number of chargers show a very weak correlation, suggesting that the number 

of chargers minimally impacts the waiting time for the charged batteries. This indicates 

that the critical factor to this metric is the charging duration, not the number of chargers, 

due to the fast rate at which batteries are charged. This means that the existing charging 

infrastructure is already sufficient to handle the charging needs of the batteries efficiently 

or that the operational bottleneck lies elsewhere in the system. 

In practical terms, this finding indicates that efforts to reduce battery waiting 

times in such a mining operation would be better focused on optimizing other aspects of 

the system rather than merely increasing the number of chargers. This could include 

enhancing the efficiency of battery swapping procedures, improving scheduling and 

coordination for battery usage, or even further exploring ways to reduce charging times. 

Understanding and addressing these factors can lead to a more streamlined operation 

where the waiting time for batteries is minimized, thereby enhancing the overall 

productivity and efficiency of the mining operation. 

These insights from the results point to the importance of effective battery 

management, especially in scenarios with many batteries. Optimizing battery charging 

schedules, turnaround times, and swap strategies could be more effective. 

4.6. EFFECT ON CHARGING QUEUE: RESULTS AND DISCUSSIONS 

 Effective charging queue management directly influences the operational 

efficiency of BEVs in material handling within the mining environment. It determines the 

readiness of trucks, thereby affecting productivity, energy utilization, and operational 

scheduling. When queues within such a system are poorly managed, they lead to 

extended downtimes, decreased equipment utilization, and potential bottlenecks in the 
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material handling process. Thus, this project evaluated this critical metric to determine 

what the optimal scenario will look like.  

 

 

Figure 4.7. Correlation matrix of the factors and charged battery waiting time 

  

Figure 4.8 shows a noticeable variation in charging queue times across the 

scenarios, indicating that the configuration of trucks, batteries, and chargers substantially 

impacts queuing. Scenario 32 was seen to generate the highest frequency of queues at the 

charging bay. From Table 4.1, this scenario had four trucks, eight batteries, and a single 

charger, which means the charger is highly correlated to this performance metric. There 
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were quite a few scenarios that resulted in no queues. For instance, scenarios 5-7 had zero 

queue frequency. In these scenarios, enough chargers were available to recharge the 

batteries whenever they reached the bay. 

These observations highlight the critical role of charger availability in managing 

charging queues and overall operational efficiency in mining operations. Ensuring a 

proper balance between the number of trucks, batteries and chargers is key to minimizing 

queuing times and maximizing the productivity of the mining operation. 

The heat map in Figure 4.9 shows that an increase in the number of trucks is 

associated with longer charging queues. This implies that more trucks lead to increased 

demand for charging, resulting in longer queues. A moderate positive correlation exists 

between the number of batteries and the frequency of the charging queue. The correlation 

suggests that having more batteries in the system can lead to longer charging queues. The 

frequency of charging sessions due to the battery increment is the reason for this 

correlation.  

A strong negative correlation exists between the number of chargers and the 

charging queue’s frequency, as shown in Figure 4.9. The relationship indicates that an 

increase in the number of chargers significantly reduces the length of the charging queue. 

This effectively will reduce the bottlenecks at the charging bay, leading to a smoother 

and more efficient charging process. It suggests that even though the charger’s utilization 

is low across all the scenarios, investing in additional chargers can significantly enhance 

operational efficiency, particularly where the number of trucks and batteries creates a 

high demand for charging. The costs and physical space are constraints worth considering 

in that regard.  
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Figure 4.8. Frequency of charging queues across scenarios 

 

 

 

Figure 4.9. Correlation matrix of the factors and charging queue 
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4.7. SELECTING THE OPTIMAL AND CRITICAL CONFIGURATIONS 

4.7.1. Optimal Configuration.  A crucial aspect of this project was determining 

the optimal scenario: maximizing the use of factors such as the charging unit, trucks, and 

batteries. The analysis focused on this aspect, exploring various configurations of these 

factors to identify the most effective setup. All 53 scenarios were critically evaluated 

based on the performance metrics. The optimal scenario is selected based on the 

combination that offers the best balance regarding truck availability, charger utilization, 

battery waiting time post-charging, and charging queue time.  

The objective was to select the scenario with 100% truck availability, ideally 

close to 100% charger utilization, lower charging queues, and the least charged battery 

waiting times.  

 

 

             Figure 4.10. Correlation matrix of the factors and performance metrics 
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                 Figure 4.11. Comparative analysis of the performance metrics 

 

Figures 4.10 and 4.11 showed that considering all four metrics makes selecting a 

single scenario as optimal difficult. Therefore, we prioritized truck availability and 

charging queues. These metrics were believed to be the key contributors to production. 

Based on the prioritized criteria, several scenarios emerged as optimal. Table 4.4 presents 
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a list of the possible scenarios that were considered optimal. It can be observed that all 

scenarios had trucks available 100% of the time and zero charging queue hours.  

 Finally, scenario 53 was selected as the most optimal since it had the lowest 

battery waiting post-charging rate at a high charger utilization rate. 

 

Table 4.4 Optimal scenarios 

Scenario 

Number 

of 

Trucks 

Number 

of 

Batteries 

Number 

of 

Chargers 

Truck 

Availability 

(%) 

Charger 

Utilization 

(%) 

Charged 

Battery 

Waiting 

Time 

(hrs) 

Charging 

Queue 

(hrs) 

1 1 2 1 100 0.5 5.547 0 

7 2 4 2 100 0.5 4.878 0 

10 2 4 3 100 0.4 4.878 0 

25 3 6 3 100 0.5 4.723 0 

53 4 8 4 100 0.5 4.647 0 

 

 

4.7.2. Critical Configurations.  The essence of this investigation is rooted in the 

hypothesis that a strategy in resource allocation can significantly enhance fleet 

operations, reducing downtimes and ensuring a higher rate of truck availability. We 

contend that additional resources may not benefit these performance metrics 

proportionally beyond a certain threshold, potentially leading to diminishing returns. The 

research further study is pioneering in its approach, offering a comprehensive analysis 

that could guide fleet managers in making informed decisions, thus fostering more 

sustainable and efficient logistics operations.  

At this stage, our analysis was segmented based on the number of trucks within 

the fleet, considering scenarios with 2,3 and 4 trucks to reflect a range of operational 

scales from small to moderately large fleets. By employing heatmaps, we provide a visual 
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and analytical representation of how varying the number of batteries and chargers 

influences the aforementioned performance metrics. This methodical examination not 

only identifies the optimal configurations for different fleet sizes but also highlights the 

point at which the addition of more batteries or chargers ceases to yield significant 

improvements, marking a critical juncture in resource allocation strategy. 

4.7.2.1. Results and discussion: truck availability. Truck availability remains 

relatively high across various configurations, suggesting that with 2 trucks, the system is 

less prone to bottlenecks caused by insufficient batteries or chargers. However, the 

highest availability is observed with a moderate battery increase, indicating that having a 

surplus ensures trucks are seldom idle due to charging constraints. The heatmap in Figure 

4.12 suggests that 2 trucks' availability diminishes when the number of batteries is 

reduced to 3 with a single charger. The optimal charger-to-battery ratio for 2 trucks 

appears to be 1 charger to 4 batteries.    

 When there are 3 or 4 trucks, the optimal threshold for truck availability changes, 

moving away from 100% when the battery count is less than double the number of trucks. 

However, adding extra chargers for the same number of batteries increases the truck’s 

availability. While adding chargers also plays a role, the number of batteries consistently 

emerges as a critical factor in ensuring high truck availability across all scenarios. 

4.7.2.2. Results and discussion: charger utilization. This metric reflects the 

balance between the availability of charging resources and their actual use, offering 

insights into how well the charging infrastructure supports the operational demands of the 

fleet. As the fleet size varies from 2 to 4 trucks, the study meticulously identifies the 

optimal number of chargers that can service the fleet without leading to underutilization 
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or overextension. Figure 4.13 shows how adding batteries and chargers affects the 

charger’s utilization. The dark blue regions in the heatmap show the peak utilization of 

the chargers. 

 

          

 

 

 

      Figure 4.12. Critical effect of increasing the number of factors on truck availability 
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The results from the heatmap suggest that the charger’s utilization is reduced 

when more chargers are introduced into the system. For 2 trucks, there appears to be high 

charger utilization when there are 4 batteries and a charger in the system. Reducing the 

number of batteries and incrementing the number of chargers tends to reduce the 

chargers' utilization. On the other hand, for 3 trucks, 6 or 5 batteries result in the exact 

charger utilization but reduce when there are 4 batteries in the system. These results 

remain the same considering 4 trucks.   

4.7.2.3. Results and discussion: charged battery waiting time. This analysis 

sheds light on how variations in the number of batteries and chargers relative to the fleet 

size influence the downtime of the trucks and underutilization of the batteries. Ideally, 

batteries should not remain idle in the charging bay after charging. Therefore, we 

examined the configurations beyond which introducing more factors (batteries and 

chargers) increased or decreased battery waiting times post-charging. Figure 4.14 shows 

a heatmap of the various trucks and their combinations, as highlighted in Section 4.2. For 

2 trucks, as the number of chargers reduces for the same number of batteries, charged 

batteries spend less time at the charging bay. The charged battery waiting times for 3 and 

4 trucks are also reduced when the number of chargers is reduced for the same number of 

batteries.  

4.7.2.4. Results and discussion: charging queue. The research also identified 

the crucial thresholds at which adding more batteries and chargers increased or decreased 

queues at the charging facility. 
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      Figure 4.13. Critical effect of increasing the number of factors on charger utilization 
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This analysis is crucial in assessing how much time trucks wait to swap or charge 

batteries. A minimized charging queue directly translates to reduced vehicle downtime, 

ensuring that essential mining operations can proceed with minimal interruption.  

 

    

                      

 

Figure 4.14. Critical effect of the increasing number of factors on charged battery waiting 

time 
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Figure 4.15. Critical effect of the increasing number of factors on charging queue 

 

The results highlighted in Figure 4.15 show that, across all truck quantities, 

charging queue times improve as the number of batteries and chargers increases up to a 
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specific threshold. For 2 trucks, this point is at 2 chargers, aligning with the optimal 

battery count of 4. However, for 3 and 4 trucks, the critical point moves slightly higher, 

suggesting that 3 chargers are sufficient to minimize queue times without leading to 

resource underutilization. The results highlighted in Figure 5.3 show that, across all truck 

quantities, charging queue times improve as the number of batteries and chargers 

increases up to a specific threshold. For 2 trucks, this point is at 2 chargers, aligning with 

the optimal battery count of 4. However, for 3 and 4 trucks, the critical point moves 

slightly higher, suggesting that 3 chargers are sufficient to minimize queue times without 

leading to resource underutilization. 

 These insights show that balancing the number of batteries and chargers can 

substantially decrease charging queue times, thus reducing vehicle downtime and 

enhancing fleet availability and efficiency. 

4.8. SUMMARY 

 This thesis section presented experiments to evaluate the model performance to 

input parameters. In this Section, the author designed experiments using the full factorial 

approach. Certain experiments were rejected based on industrial recommendations on the 

maximum number of trucks, batteries, and chargers. Arena’s Process Analyzer tool was 

used to evaluate the experiments' configuration.  

 The findings of the experiments are highlighted below: 

• The DES model can evaluate the performance of such a system. The critical metrics, such 

as truck availability, charger utilization, charging queue, and battery waiting times post-

charging, were ascertained for all the scenarios. 
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• The DES model is sensitive to input variables such as the number of trucks, batteries, 

and chargers. As these factors change, the response variables change 

substantially.  

• The optimal scenario was selected by prioritizing truck availability and charging 

queue metrics. Based on the configuration of the mine under study and the metrics 

prioritized, scenario 53 was selected as the optimal combination. 

• The specific thresholds for which the model ceases to contribute significantly to 

operational efficiencies across the various metrics were highlighted.  
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5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1. OVERVIEW 

This project represents a rigorous study focused on enhancing the operational 

efficiency of battery electric vehicles (BEVs) in underground mining by optimizing their 

battery swapping and charging procedures. As such, we sought to bridge the gap between 

theoretical modeling and practical engineering solutions, employing a discrete event 

simulation (DES) approach to navigate the complexities of this mining operation. 

The central objective was to design a multi-service bay system for BEVs that 

would effectively minimize truck wait times and queue lengths at the charging station 

without compromising truck availability and utilization. This goal resulted from a 

pressing need for more sustainable and efficient operation in loading and hauling material 

in the underground environment as BEVs are becoming prevalent in the industry.  

 To achieve this goal, a DES model was built to replicate the mining environment 

and the overall processes of the BEVs. The base case model utilized data provided by the 

manufacturer of the BEV, and the mine architecture was based on input from mining 

experts (anon, personal communication, December 3, 2023) and mining practice. This 

model allowed comprehensive mining experiments with analysis of the existing 

operational scenarios and experimentations with different trucks, batteries, and chargers 

configurations. This approach enabled the quantification of the impact of these variables 

on key operational metrics, such as charger utilization, truck availability, battery waiting 

times post-charging, and frequency of queues generated at the charging station. The 

model’s adaptability to input variables was a significant advantage, allowing for real-time 
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modifications and updates without necessitating a complete rebuild, making it highly 

applicable in practical mining scenarios.  

In the experimentation phase, we applied the full factorial experimental design. 

This phase was critical in determining the most effective operational configuration, 

considering the interplay between the number of trucks, batteries, and chargers. The 

outcome was a refined understanding of the operational dynamics of BEVs in 

underground mining operations, surpassing simple analytic models to offer a multi-

faceted view of the system’s capabilities and limitations. 

5.2. CONCLUSIONS 

This research makes the following conclusions based on the analysis of the base 

case and the experimentations: 

• With respect to the first and second objectives (building and verifying the DES 

model of BEVs battery swapping and charging procedures): 

✓ The DES model effectively showcased its capability in optimizing battery 

swapping and charging processes for BEVS, a critical component in 

underground mining operations. The model was successfully developed to 

accurately replicate the specific procedures involved in battery swapping 

and charging for BEVs, demonstrating the practical applicability potential 

of DES in enhancing operational efficiencies in this domain. 

✓ The base model demonstrated the capability of Arena’s Input Analyzer to 

determine the distributions that best fit the various input parameters. The 

model's animation verified the model's prowess in depicting the processes 

the BEVs undergo from one station to the other.  
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• With respect to the third objective (evaluating the critical performance metrics):  

✓ The base case scenario verified that the truck will be available for work 

100% of the time, as evidenced by the absence of queues at the charging 

station. However, this scenario had batteries sitting at the charging bay for 

about 5 hours post-charging, showing the underutilization of the spare 

battery. This served as the basis for building the other experiments.  

• With respect to the final objective (simulating several experiments to determine 

the optimal configuration for the decision-making process):  

✓ The model evaluated several scenarios to ascertain the optimal scenario. 

This was done by altering factors, such as the number of trucks, batteries, 

and chargers and determining their effect on the key performance metrics. 

The author used the full factorial experimental design approach to 

determine the various combinations of the factors. 

✓ A key strength of the DES model was its adaptability and flexibility, 

allowing for modifications in input variables as per the experimental 

design phase without rebuilding the model entirely. 

✓ From the experimentation, scenario 53 emerged as the most optimal 

configuration, offering the best balance regarding truck availability, 

charging queue generated, and battery waiting times post-charging.  

✓ The threshold configurations for the model were also analyzed to fully 

comprehend the critical points beyond which the addition of any of the 

factors become inefficient. 
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5.3. RECOMMENDATIONS FOR FUTURE WORK 

 The following recommendations for future work will enhance the DES model 

performance and advance the frontiers of this research: 

• A proposition is made for continuous improvement and refinement of the DES 

model to accommodate better complexities and variations, such as failures and 

breaks of the BEVs. 

• The author proposes that optimization techniques should be utilized to improve 

the regression model performance. The regression model must incorporate more 

input variables for future research. This can approximate the battery depletion rate 

to a higher degree. 

• Future work should take into consideration the size of the charging facility. This 

ensures the model can be applied to different fleet sizes. 

• Finally, the DES model should be applied to different mining environments and 

conditions to test its applicability and adaptability in varied scenarios. 
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