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ABSTRACT

With the invention of Bitcoin in 2009, as a seemingly timed response to the ongoing

financial crisis, the popularity of the cryptocurrency has since continued to grow. Just

this year, the Security Exchange Commission approved Bitcoin for exchange traded funds,

allowing major investment firms to begin product trading. With this approval, and during

this very moment of writing, Bitcoin has entered a bull market and reached a record value

of over 72,000 USD. In addition, the Bitcoin halving event in April of 2024 is expected to

increase demand even further. It has been anticipated that Bitcoin and other cryptocurrencies

will continue to grow in popularity as an alternate source of investment. The purpose of this

thesis is to review two important cryptographic algorithms currently being implemented

to validate and trade cryptocurrencies, SHA-3 and ECDSA. Furthermore, we provide a

general overview of how Bitcoin, Ethereum, and their networks operate independently

of third parties. Finally, a successful analysis using Partial Least Squares regression is

conducted to predicted the moving average price of Bitcoin with hope the methodology

could be implemented in future trading strategies.
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1. INTRODUCTION

The review of cryptographic algorithms beings with an overview of the Secure

Hash Algorithm three (SHA-3), a series of algorithms used to encode a message and the

primary algorithm used to ensure participants using a cryptocurrency remain anonymous.

The review of this algorithms specifies how a string of bits can be reoriented to entirely

different sequence of bits. Another important algorithm used in conjunction with the SHA-3

is sponge construction. This algorithm takes multiple outputs from SHA-3 and compresses

them into a predetermined length, allowing encrypted messages to be sent with minimal

use of memory. Within blockchain technology, the Merkle tree provides the structure to

store the output from the SHA-3 and sponge construction algorithms. Finally, the Elliptical

Curve Digital Signature Algorithm (ECDSA) is reviewed to provide an overview of how

participants verify signatures to ensure transactions are being received from the intended

individual.

Following the review of current cryptographic algorithms in use, we discuss the

basic concepts governing the trading of Bitcoin and its founding principles. Of which, the

most important concept was the resolution of the double spending problem, negating the

need for third party verification systems. After the review of Bitcoin, we provide a review

of Ethereum, the Virtual Machine, and its use of smart contracts. Smart contracts have

become increasingly important through out the development of cryptocurrencies and allow

participants to code functions for increased versatility in trading and exchanging different

cryptocurrencies.

Finally, on-chain data from Bitcoin was obtained to generate a model to predict the

moving average price of Bitcoin using Partial Least Squares (PLS) regression. The time

period of analysis incorporated the 2020 Bitcoin halving event, which reduced the reward

a miner can receive for validating a transaction by one half. This time period provides an
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opportunity to develop a model for price prediction during high volatility. It is our hope

that development of such a model may lead to further development of predictive models

implemented in new trading techniques for crypto-assets.
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2. CRYPTOGRAPHIC ALGORITHMS USED IN BLOCKCHAIN

2.1. SECURE HASH ALGORITHM

In 2015, the National Institute of Standards and Technology selected the KECCAK

algorithm as the standardized Secure Hash Algorithm-3 (SHA-3) for cryptographic hash

algorithms. The algorithm is comprised of four cryptographic hash functions and two

extendable-output functions (XOFs). The four cryptographic hash functions are referred to

as SHA3-224, SHA3-256, SHA3-384, and SHA3-512, each of which produce a bit hash

value equivalent in length to the number specified in the nomenclature. The remaining two

XOFs are referred to as SHAKE128 and SHAKE256, used to extend the output beyond the

specified value [1]. One of the primarily applications of the hash functions is to encrypt

transactional data stored within block-chain technology.

All six functions have a shared structure known as sponge construction. Each of

the six SHA-3 functions utilize the same underlying algorithms to generate permutations

within the sponge construction. These families of permutations are collectively known as

KECCAK-p permutations [1].

The following sections discuss the algorithms implemented in KECCAK-p permu-

tations and their application in sponge construction. First, the algorithms of KECCAK-p

will be addressed followed by a discussion of sponge construction.

2.1.1. KECCAK-p Permutations. KECCAK-p permutations have two parame-

ters. The first parameter is the length of the string intended to be permuted, denoted by b,

and called the width of the permutation. The second parameter is the number of rounds the

string undergoes, denoted by nr. Each round consists of five algorithmic transformations

known as step mappings. Overall, the permutation is expressed by KECCAK-p[b, nr], with
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the width taking any of the following values; 25, 50, 100, 200, 400, 800, 1600. Before

the string is taken through each algorithmic step mapping, it can be conceptualized as a

reoriented three-dimensional state array [1].

2.1.2. State Array. Each permutation of KECCAK-p[b, nr] consists of b bits.

While the input and output are represented by strings, the internal state undergoing trans-

formations is represented by a three dimensional 5-by-5-by-w array, known as the state

array. The variable w is equal to the permutation width, b, divided by twenty-five. Another

variable used in discussion of the KECCAK-p[b, nr] permutations is the binary logarithm

l, calculated log2(b/25). A single bit within the state array located at a coordinates (x, y, z)

is denoted as A[x, y, z] [1]. Figure 2.1 displays the representation of a three dimensional

5-by-5-by-8 state array with a width of 200. The x, y, and z coordinates of the state array

are labeled along the edge with coordinates A[0,0,0] representing the central square of the

first slice.

𝑥

𝑦

𝑧 0 1 23 4

0

1

2

3

4

0
1

2
3

4
5

6
w - 1

Figure 2.1. A 5-by-5-by-8 state array with a width of 200.
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The length of bits along a z axis are known as lanes, while the x and y directions are

known as a rows and columns respectively. Two-dimensional planes spanning the entire axes

x and y, z and x, and z and y are known as slice, plane, and sheet respectively. Converting a

string of b bits, where each individual bit is denoted by S[0], S[1], S[2], . . . , S[b-1], into a

state array is defined by equation 2.1 for all triplets (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5,

and 0 ≤ z < w. It should be noted the previously mentioned criteria for all triplets (x, y, z)

is required for all step mappings.

A[x, y, z] = 𝑆[w(5(y + x) + z] (2.1)

Once the state array has gone through the specified number of rounds in KECCAK-

p[b, nr], the output is again represented by a string of bits. Each bit within a lane can be

concatenated to the neighboring bit starting with the coordinates A[0, 0, 0]. The resulting

string from a lane is then concatenated to the next lane, until all bits are transformed into

one string. For example, the Lane (0,0) will be concatenated to Lane (1,0), and this result

will then be concatenated to Lane (2,0). Equation (2.2) expresses the concatenation of all

bits within a lane. Concatenating neighboring lanes, will from a plane, and subsequently

the concatenation of the planes will yield the string of bits, as expressed in equations 2.3

and 2.4. [1].

Lane(i, j) = A[i,j, 0] ∥ A[i,j, 1] ∥ A[i,j, 2] ∥ ... ∥ A[i,j,w − 1] (2.2)

Plane(j) = Lane(0, j) ∥ Lane(1, j) ∥ Lane(2, j) ∥ Lane(3, j) ∥ Lane(4, j) (2.3)

S = Plane(0) ∥ Plane(1) ∥ Plane(2) ∥ Plane(3) ∥ Plane(4) (2.4)

2.1.3. Overview of Step Mappings. One round of permutations within KECCAK-

p[b, nr] consists of five algorithms collectively known as step mappings, denoted by 𝜃, 𝜌,

𝜋, 𝜒, and 𝜄. Each step begins with the state array A as the input and returns the transformed
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state array A’ as the output, such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w. Within each

round the steps are applied iteratively with the output from a preceding round becoming the

input for the next. The following sections describe each of the five algorithms of the step

mappings [1].

2.1.4. Algorithm 𝜃(A). The steps to compute 𝜃(A) are defined by equations 2.5

through 2.7. The first step C[x, z] sequentially applies an exclusive OR function (XOR)

to each bit within a column, beginning with the bit located at y = 0 and ending at y = 4.

The next step D[x, z] specifies C[x, z] to be computed on the columns [(x-1) mod 5, z] and

[(x+1) mod 5, (z-1) mod w], relative to the column A[x, z]. The results of the XOR on the

two columns are subsequently XORed against one another. Finally, the bit within A[x, y, z]

is XORed against D[x, z] to derive its new value within A’[x, y, z]. These steps are applied

to each bit within the state array [1].

𝐶 [x, z] = A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕ A[x, 4, z] (2.5)

𝐷 [x, z] = 𝐶 [(x − 1) mod 5, z] ⊕ 𝐶 [(x + 1) mod 5, (z − 1) mod w] (2.6)

A’[x, y, z] = A[x, y, z] ⊕ 𝐷 [x,z] (2.7)

2.1.5. Algorithm 𝜌(A). The steps to compute 𝜌(A) are defined by equations 2.8

through 2.11. The purpose of 𝜌(A) is to rotate each bit within its lane to a new position,

called the offset. The value t is seeded prior to the execution of KECCAK-p[b, nr] and

designates all lanes in the state array zero through twenty-three, with the exception of lane

(0, 0). Step 2.11 specifies that the bit in position z is to be rotated by adding the offset along

the direction of the z-axis, modulo the length of the lane. Along with the rotation by the

offset, the entire lane is repositioned to the new lane A(y, (2x + 3y) mod 5), relative to the

initial lane A(x, y). As shown in 2.8, lane A[0, 0] remains unchanged. Executing steps 2.8
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through 2.11 returns the permuted state array A’ [1].

Let A’[0, 0, z] = A[0, 0, z] (2.8)

Let (x,y) = (0, 1) (2.9)

For t from 0 to 23: let A’[𝑥, 𝑦, 𝑧] = A[𝑥, 𝑦, (𝑧 + (𝑡 + 1) (𝑡 + 2)/2) mod 𝑤] (2.10)

Let (𝑥, 𝑦) = (𝑦, (2𝑥 + 3𝑦) mod 5) (2.11)

2.1.6. Algorithm 𝜋(A). The algorithm to compute 𝜋(A) is defined by equation

2.12. The purpose of this step is to rearrange the position of the lanes within the state

array. While the bit values along the length of a lane remain unchanged, their new position

at coordinate y is determined by the initial position of x. In other words, an initial row of

x values is transposed into a column of y values, and is applied to the entirety of a lane.

Finally, the x value is determined by [(x + 3y) mod 5]. This step is carried out for every

lane in the state array [1].

A’[𝑥, 𝑦] = A[(𝑥 + 3𝑦) mod 5, 𝑥] (2.12)

2.1.7. Algorithm 𝜒(A). The algorithm to compute 𝜒(A) is defined by equation

2.13. 𝜒(A) uses a nonlinear function to XOR a bit within the state array against the next

two bits within the same row. Relative to the bit A[x, y, z], the bit located at A[(x+1) mod 5,

y, z] first undergoes and an XOR with the value one. The result of this XOR then undergoes

the Boolean AND operation with the bit A[(x+2) mod 5, y, z]. Finally, the product of the

Boolean AND operation is XORed with the bit A[x, y, z]. This operation is conducted for

every bit within the state array [1].

A’[𝑥, 𝑦, 𝑧] = A[𝑥, 𝑦, 𝑧] ⊕ ((A[(𝑥 + 1)] mod 5, 𝑦, 𝑧] ⊕ 1) · A[(𝑥 + 2) mod 5, 𝑦, 𝑧]) (2.13)
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2.1.8. Algorithm 𝜄(A, ir). The round index ir is a parameter for 𝜄(A, ir) where the

value of the round index coincides with the current round being executed, and can fall

between 0 to (nr - 1). The effect of 𝜄(A, ir) modifies some of the bits within the lane A[0,

0] while other lanes remain unchanged. Equation 2.14 shows the round constant XORed

with the central lane [1]. For simplicity, the round constant 𝑅𝐶 [𝑘] can be expressed as a

hexadecimal, displayed in table 2.1 for twenty-four rounds in KECCAK-p[1600, 24]. The

hexadecimal represents a binary based number system. For every hexadecimal, the resulting

number can be expressed as an integer equal to the offset modulo the lane size.

Let A’[0, 0, 𝑧] = A[0, 0, 𝑧] ⊕ 𝑅𝐶 [𝑘] (2.14)

Table 2.1. Round constant 𝑅𝐶 [𝑘] with the associated hexadecimal for twenty-four rounds.

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B

RC[1] 0x0000000000008082 RC[13] 0x800000000000008B

RC[2] 0x800000000000808A RC[14] 0x8000000000008089

RC[3] 0x8000000080008000 RC[15] 0x8000000000008003

RC[4] 0x000000000000808B RC[16] 0x8000000000008002

RC[5] 0x0000000080000001 RC[17] 0x8000000000000080

RC[6] 0x8000000080008081 RC[18] 0x000000000000800A

RC[7] 0x8000000000008009 RC[19] 0x800000008000000A

RC[8] 0x000000000000008A RC[20] 0x8000000080008081

RC[9] 0x0000000000000088 RC[21] 0x8000000000008080

RC[10] 0x0000000080008009 RC[22] 0x0000000080000001

RC[11] 0x000000008000000A RC[23] 0x8000000080008008
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2.1.9. Summary and KECCAK-f [b]. The round function, denoted as Rnd, oper-

ates on the state array A and round index 𝑖𝑟 . The round function designates the order of each

step mapping the state array undergoes, with the output of each step becoming the input for

the next. The entire round function Rnd(A, 𝑖𝑟), including all step mappings associated with

one round is expressed in equation 2.15 [1].

The entirety of KECCAK-p[b, nr], starting with the unencrypted string, can be

summarized with the following steps. First, a string is converted into a state array. Next,

the round index 𝑖𝑟 can take any value values between (12+2l-𝑛𝑟) to (12+2l-1). Finally, the

result is converted back into a string using sponge construction, which will be addressed

further in the following section [1].

It should be noted there is specialized version of KECCAK-p[b, nr] known as

KECCAK-f [b]. The number of rounds, 𝑛𝑟 , is omitted from the notation given it is always

equal to (12 + 2l). For example, when l = 6, KECCAK-p[1600, 24] is equal to KECCAK-

f [1600]. It is this version of KECCAK-f [b] that is used when encrypting transactions in

electronic currency [1].

𝑅𝑛𝑑 (A, 𝑖𝑟) = 𝜄(𝜒(𝜋(𝜃 (A)))), 𝑖𝑟) (2.15)

2.2. SPONGE CONSTRUCTION

Sponge construction is the application of the cryptographic step mappings on a

string to yield a single and final encrypted string. There are three components that comprise

sponge construction; the padding rule, the parameter known as the rate, and the underlying

function of KECCAK-p[b, nr] which is executed on a fixed string length denoted as f. The

sponge function is denoted by SPONGE[f, pad, r]. Figure 2.2 displays the general diagram

of sponge construction [1].

2.2.1. Padding Rule. The padding rule takes the initial string N, otherwise known

as the message to be encrypted, and concatenates a separate string of a required length

to yield a resultant string that is a multiple of the rate. The padding rule is denoted as
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Figure 2.2. Model of sponge construction utilizing a secure hash algorithm [1].

“pad10*1”, with the asterisk symbolizing either an omitted zero bit or a repeated strings of

zero bits. The number of zero bits needed to create a multiple of the rate can be calculated

by (– len(N) – 2) modulo the rate. Calculating the padding rule is summarized by equation

2.16 through 2.18 [1].

The rate is a positive integer denoted by r, and defined as the total number of input

bits called for encryption. In other words, it is the value of the length of bits partitioned

from the message plus the padding rule, such that N+(pad(10∗1) divided by the rate equals

an integer. This step is taken to ensure that the message can be equally partitioned into

strings of length r before entering the absorption phase. Likewise, the capacity is a positive

integer and is denoted by c. The width b is greater than the rate r, and 𝑏 = 𝑟 + 𝑐. As

previously stated, 𝑁 ∥ pad(𝑟, len(𝑁)) is a multiple of the rate [1].

Let 𝑗 = (−len(𝑁) − 2) mod 𝑟 (2.16)

pad10∗1 = 1 ∥ 0 𝑗 ∥ 1 (2.17)

Let 𝑁 ∥ pad10∗1 = 𝑁 ∥ pad(𝑟, len(𝑁)) (2.18)
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2.2.2. Absorption Phase. Before the padded message is XORed into the sponge

function a string of zero bits is set equal to len(r) + len(c). During the absorption phase,

a sub-string of the message, equal to the length of the rate, is XORed to the string of zero

bits. The XORed string, concatenated to the string within the capacity, is converted into a

state array and enters the underlying function KECCAK-p[b, nr]. The next sub-string of the

message, also equal in length to the rate, is XORed to the output of the previous KECCAK-

p[b, nr] permutation. Once again, the XORed string is appended to the string representing

the capacity and enters the underlying function KECCAK-p[b, nr]. The capacity during the

second iteration is determined by the previous output. The number of sub-strings that enter

the sponge construction is equal to a multiple of the rate. This process continues until the

entire message has in essence been “absorbed” into the sponge construction [1].

2.2.3. Squeezing Phase. The squeezing phase of the sponge construction gives the

output of length d. After the last permutation of the absorbing phase, a string of length r is

extracted from the output of the KECCAK-p[b, nr] permutation. If this string is greater than

the length d, the excess bits are truncated. If the extracted string is less than length d, the

remaining bits undergo another KECCAK-p[b, nr] permutation. A second string of length r

is extracted and concatenated to the previous string of length r. Once again if the appended

string is longer than length d, the excess bits are truncated. This process continues until the

necessary length of the output d is satisfied. The entire function SPONGE[f, pad, r](N, d)

can be expressed by the following steps [1].

Let 𝑃 = 𝑁 ∥ pad(𝑟, len(𝑁)) (2.19)

Let 𝑛 = len(𝑃)/𝑟 (2.20)

Let 𝑐 = 𝑏 − 𝑟 (2.21)

Let 𝑃0, ... , 𝑃𝑛−1 be a string of length 𝑟 such that 𝑃 = 𝑃0 ∥ ... ∥ 𝑃𝑛−1 (2.22)
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Let 𝑆 = 0𝑏 (2.23)

For 𝑖 from 0 to 𝑛 − 1, let 𝑆 = 𝑓 (𝑆 ⊕ (𝑃𝑖 ∥ 0𝑐)) (2.24)

Let 𝑍 be an empty string (2.25)

Let 𝑍 = 𝑍 ∥ Trunc𝑟 (𝑆) (2.26)

if 𝑑 ≤ |𝑍 |, return Trunc𝑑 (𝑍); else continue (2.27)

Let 𝑆 = 𝑓 (𝑆), and continue with Step (2.26) (2.28)

2.3. MERKLE TREES

Merkle Trees provide a way to organize data in such a way as to minimize the

memory required by a CPU. In general, Merkle Trees can be visualized as inverted branches

spawning from the first node known as a root node. From the root node, a series of further

branching nodes extends such that all nodes can be traced back to the root node. The

primary function of this structure is to allow stores of information, update information, and

provide a reliable mechanism for queries to accurately retrieve information [2].

A series of messages, represented by 𝑥1, 𝑥2, ..., 𝑥𝑛, can be structured into a Merkle

Tree. Each message under goes a SHA-3 function, after which the output from two

neighboring messages can be concatenated and encrypted to form a new node. Once again,

the outputs can be encrypted to form the next higher level node. The process continues

until a root node is formed. Figure 2.3 displays the construction of a Merkle Tree, with the

function ℎ() representing a SHA-3 encryption [2].

Subsequently, all the information contained in the lowest levels of the Tree is en-

crypted within the root. Any singular path can be chosen and it would contain all relevant

information. This property allows for branches of the Tree to be trimmed to a single path,

thus saving CPU memory. This technique is applied to the storage of all transaction his-

tory used in electronic currency to save memory while concurrently making the record of
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transactions immutable. Each block within the block chain represents one root containing

all relevant information.

Figure 2.3. An example of a Merkle Tree [2].
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3. CRYPTOGRAPHIC SIGNATURES

3.1. ELLIPTICAL CURVE DIGITAL SIGNATURE ALGORITHM

Crypto-currencies validate transactions through Elliptical Curve Digital Signa-

ture Algorithm (ECDSA). The algorithm begins with choosing a suitable curve. Of-

ten, implementation of ECDSA for electronic currencies implements the formula 𝑦2 =

𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝), with the equation defined over the finite field F𝑝. The field is defined

with a prime number of elements to minimize the occurrence of zero as an output, hence

the modulus operator. Both Bitcoin and Ethereum use the formula 𝑦2 = 𝑥3 + 7 (mod 𝑝),

however, random selection of an elliptical function can also suffice for increased security

[7].

3.1.1. Point Addition. The algorithm makes use of point addition and point dou-

bling. Point addition is described as the addition of two points that lie along the curve.

Deriving the slope between the two points, for example point G and Q, yields a third point

of intersection along the curve, denoted −(𝐺 + 𝑄). Reflection of point −(𝐺 + 𝑄) relative

the x-axis yields a fourth intersection along the curve denoted (𝐺 +𝑄). Figure 3.1 displays

the the points G and Q along with their addition (G+Q) while the following equations 3.1

through 3.3 show steps for adding two points along an elliptical curve [8].

slope =
𝑦𝐺 − 𝑦𝑄

𝑥𝐺 − 𝑥𝑄
(3.1)

𝑥(G+Q) = {slope2 − (𝑥𝐺 + 𝑥𝑄)} (mod 𝑝) (3.2)

𝑦 (G+Q) = {slope · (𝑥𝐺 − 𝑥(𝐺+𝑄)) − 𝑦𝐺} (mod 𝑝) (3.3)
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𝑥

𝑦

𝐺

𝑄

−(𝐺 +𝑄)

𝐺 +𝑄

Figure 3.1. An elliptic curve over an infinite field displaying an example of point addition.

3.1.2. Point Doubling. Point Doubling is simply the doubling of a single point that

falls along the elliptic curve. A single point, for example point G, can be added to itself to

yield the point 2G. The first derivative of the elliptical curve function at point G yields a

tangential line that will intersect the curve at -2G. Once again, the reflection of point -2G

relative to the x-axis will give the point 2G. Figure 3.2 displays point G along with the

multiple 2G, while the following equations 3.4 through 3.6 show steps for point doubling

along an elliptical curve. It should be noted that inverse function in the following equation

3.4 represents the modular multiplicative inverse. Furthermore, combining point doubling

with point addition can significantly reduce computational time. If an integer, say i, is an

odd number, point doubling can be used to compute the integer i-1. Point addition can

subsequently be implemented to finish the computation (i-1)G+G = iG [8].



16

slope =

{𝑑 𝐸 (F𝑝)
𝑑𝑥

· (2 · 𝑦𝐺)−1
}
(mod 𝑝) (3.4)

𝑥(2G) = {slope2 − (2 · 𝑥𝐺)} (mod 𝑝) (3.5)

𝑦 (2G) = {slope · (𝑥𝐺 − 𝑥(2𝐺)) − 𝑦𝐺} (mod 𝑝) (3.6)

𝑥

𝑦
𝐺

−2𝐺

2𝐺

Figure 3.2. An elliptic curve over an infinite field with an example of point doubling.

3.1.3. Domain Parameters. ECDSA consists of five parameters. First, the prime

modulus, denoted p, defines the finite domain of the elliptic curve. the domain can be

thought of as an x and y plane with p elements along the x and y axis. Any calculated

value exceeding the value of p cycles back into the domain due the modulus operator. A

point along the curve must be a subset of the elliptical curve defined in the finite domain,

𝐺 ∈ 𝐸 (F𝑝) [7, 8]

The next parameters is the prime order, denoted n. Given a randomly selected base

point along the curve with the function existing within the finite field F𝑝, n defines number

of points possible to compute using point addition before arriving back at the initial base

point. Subsequently, the cyclic addition of points along the curve arise with order n and
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subgroups of points with coordinates G to nG exist. Therefore, (n+1)G (mod n) cycles back

to the beginning base point G. For all elliptical curve functions, the prime modulus minus

one, (p-1) is a multiple of the prime order n. [7, 8]

The elliptic curve is also defined by the parameter coefficients a and b, observed in

the equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝). Finally the last parameter is of course the base point,

denoted as G and is comprised of the coordinates (x𝐺 , y𝐺). Parameters of the ECDSA

are shown in the following expression 3.7 [7, 8]. The following figure 3.3 displays the

appearance of an elliptical curve when expressed over a finite field with p = 37 elements,

and 𝐸 (F𝑝) = 𝑦2(mod 37) = 𝑥3 + 7(mod 37), for x values 0 through 37.

𝐸 (F𝑝) = (𝑝, 𝑛, 𝑎, 𝑏, 𝐺) (3.7)

𝑥

𝑦

Figure 3.3. An elliptic curve output over a finite field.
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3.2. VALIDATING A TRANSACTION

3.2.1. Key Generation and Signature. Generation of both public and private key

begins with the selection of one random integer that becomes the private key, denoted 𝑘 𝑝𝑟𝑣,

and falls between [1, n-1]. Using point doubling and addition, the integer 𝑘 𝑝𝑟𝑣 operates

on a randomly selected base point G. The output obtained from 𝑘 𝑝𝑟𝑣 ·G gives a second pair

of coordinates Q that becomes the public key, denoted 𝑘 𝑝𝑢𝑏. After the generation of a

public and private key, a transaction, otherwise known as a message, can be sent between

participants [7].

An individual sending a transaction to another participant must provide a crypto-

graphic signature to verify that the message was indeed from the intended sender. The

signature begins with selecting a random integer i that falls between [1, n-1], Integer i is a

separately selected integer that is not 𝑘 𝑝𝑟𝑣 and must be changed for every transaction made.

The following steps 3.8 through 3.11 provide the computations for the output variables (r,

s), used to sign for a hashed message. The hashed message is converted to an integer equal

to the length in bits, denoted as t [7].

𝑖𝐺 = (𝑥𝑖, 𝑦𝑖) : Then convert 𝑥𝑖 to integer 𝑥𝑖𝑛𝑡 (3.8)

𝑟 = 𝑥𝑖𝑛𝑡 (mod 𝑛) (3.9)

𝑠 = {𝑖−1(𝑡 + 𝑟 · 𝑘 𝑝𝑟𝑣)}(mod 𝑛) (3.10)

Sender signs transaction with output variables (𝑟, 𝑠) (3.11)

3.2.2. Signature Verification. Once an individual has sent a message with a sig-

nature (𝑟, 𝑠) to a recipient, the recipient needs to verify the sender’s signature. First, the

recipient receives a copy of senders domain parameters for the elliptic curve as well as the

senders public key, recall 𝑘 𝑝𝑢𝑏 = 𝑘 𝑝𝑟𝑣 ·G. The following equations 3.12 through 3.15 show

the steps for a recipient of a message to validate the message came from the intended sender.
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As one can see, the sender does not have to reveal their private key for signature validation

as 𝑘 𝑝𝑟𝑣 is not included within the equations [7, 8].

𝑢1 = (𝑠−1 · 𝑡) (mod 𝑛) (3.12)

𝑢2 = (𝑠−1 · 𝑟) (mod 𝑛) (3.13)

𝑃 = 𝑢1𝐺 + 𝑢2𝑘 𝑝𝑢𝑏 = (𝑥𝑝, 𝑦𝑝) : Then convert 𝑥𝑝 to integer 𝑥𝑖𝑛𝑡 (3.14)

𝑣 = 𝑥𝑖𝑛𝑡 (mod 𝑛) : Accept Signature if 𝑣 = 𝑟 (3.15)
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4. BITCOIN

4.1. TRANSACTIONS THROUGH BITCOIN

Bitcoin was originally introduced as an electronic alternative to traditional methods

of modern financial transactions, all of which depend on a trusted third party. The primary

goal of Bitcoin is decentralization from financial institutions, accomplished through the

ability to conduct and validate transactions within a trusted peer-to-peer network. In order

to establish an honest network, the problem of double spending requires a solution to

institute trust for every financial exchange. Double-spending is a fraudulent transaction in

which a participant in the network reclaims the value of a transaction after receiving the

product or service. Double-spending can only occur when a fraudulent block-chain out-

competes the honest chain in length, with the longest chain accepted as the record of a valid

transaction. In addition, records of past transactions must be agreed upon by participants

within the network that cannot be subject to change. The following sections provide a

review of Satoshi Nakamoto’s proposal for an online peer to peer electronic cash system

[9].

4.1.1. Financial Transactions in an Electronic Cash System. The first character-

istic electronic cash systems require is the ability to allow monetary transactions. Transac-

tions conducted in Bitcoin consist of the literal trade of a chain of digital signatures, which

is considered to be the electronic “coin”. When the owner of the coin signs the hash of the

previous transaction and the public key of the payee, a coin is transferred to next owner with

the signatures added to the end of the chain. However, the payee does not have the ability

to confirm the coin has not been double-spent. In other words, the previous owner of the

coin can spend the coin on multiple transactions, retracting the transaction before the payee

is aware and receive the goods or services without paying [9].
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In order to overcome the double spending problem participants within the system

need to agree upon a record of all transactions that have occurred. If a reliable history is

available to the network, any chain can be validated and confirmed that double-spending

has not occurred. Therefore, providing a trustworthy history of all transactions is essential

to the creation of the peer-to-peer network [9].

A timestamp sever offers a solution to double spending problem by providing a

publicly published hash. The block of items within the hash are timestamped with the

date and time of the transaction. The timestamp provides the necessary proof a transaction

took place, and the publication provides the means for anyone to confirm that indeed the

transaction did take place. Any further transactions will be added to the block-chain along

with its own timestamp. For every timestamp that is added to the chain, the previous

transactions comprising the block-chain are reinforced and obtain a greater level of security

[9].

4.1.2. Validating Transactions through Proof of Work. In order to establish a

working timestamp server, the proof-of-work within system provides a way to validate a

transaction while simultaneously generating a record of the transaction. Once the required

work is placed into validating a transaction, the date and time are placed into the hash. The

proof-of-work begins with a predetermined value hashed and placed into the beginning of a

block, called a nonce (number only used once). When this value is encrypted with a hash, a

specific number of zero bits are returned to begin the block. The amount of work required

to find the original nonce value increases exponentially with increasing numbers of zeros

[9].

The CPU scans for a value that when found satisfies the number of zero bits. Once the

required work is put into finding the nonce, the block cannot be changed, and the transaction

is validated. As previously mentioned, the work required increases as the number of zero

bits increases. If most of the network is comprised of honest CPU power the correct

validated chain will grow at a faster rate, given that honest CPU power will begin building
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the chain earlier than competing fraudulent CPU power. The individual who mined for the

nonce receives a financial incentive for supporting the transaction. Other computers within

the network confirm the transaction by agreeing on the longest chain found that satisfies the

work requirement. This cycle continues for each transaction, with a new nonce produced

and added to the chain for each new transaction [9].

4.2. BITCOIN NETWORK

4.2.1. Participation Within the Network. The network is comprised of partici-

pating CPU’s called nodes, which mine for a nonce by completing the proof-of-work. At

the moment a transaction begins, it is broadcast across the entire network to all nodes. New

transactions are placed into a block by each node. When the work requirements are satisfied

by completing the proof-of-work, the node broadcasts to the rest of the network that it has

found a solution. Other nodes accept the transaction if all previous transaction and the

new transaction within block have not been double spent. Nodes then accept the block

by beginning the process on the next transaction, creating a new block and subsequently

producing a chain of recorded transactions. If two nodes find different solutions to the

proof-of-work, the solution with the longest chain is accepted and added to the chain [9].

4.2.2. Creating Incentive to Participate Within the Network. A new coin begins

with a unique first transaction that is validated and owned by the creator of the block. New

coins that are mined create incentive for new nodes to join the network and participate in

sustaining the currency. If the value of the coin begins to decrease a greater amount of

work can be added to create a new coin, thus controlling for inflation. Incentive also occurs

when validating a typical transaction between participants. The amount of work needed

to validate a transaction is charged as a small fee, therefore sustaining participation with

incentive to validate transactions. If the state of the network reaches a point where enough

coins are in circulation, the incentive to participate can solely rely on validating transactions

without incentive to create new coins [9].
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The incentive for creating new coins and validating transactions protects against

double spending. The amount of work required by a CPU to outpace the length of an honest

chain and steal back a transaction is greater than the amount of work required to mine for

coins and validate transactions. This systematic property protects against bad actors and

encourages participants to stay honest [9].

4.2.3. Reclaiming Memory. As transactions continue to build within a block, the

memory required maintain a chain also continues to increase. However, once a transaction

is supported by previous validated transactions, a Merkel tree can be used to save space. To

maintain the block’s hash, a Merkel tree can be used to hash the previous transactions by

trimming off the old transactions and keeping the block’s root [9].

4.2.4. Further Discussion on Payment Verification and Privacy. Verification of

transactions can be finalized without using a full network node. A full network node is a

program ran on one’s own computer that participates in the network by mining for coins and

validating other transactions. A user without a full network node can search the network

and find a record of the root and Merkel tree with the longest proof-of-work chain [9].

When combining multiple payments to reach a desired value, a single transaction

can be carried out by summing multiple transaction until the value needed is reached. This

summation of transactional values is referred to as splitting and combining. Multiple inputs

can be placed into the network to sum the value needed and at most two outputs can be

returned, one output for the value needed for the transaction and another output for the

change if needed. Splitting and combining are analogous to traditional paper money being

combined to a total sum and receiving the excess money as the change returned [9].

Privacy is still able to be maintained within the public network. While transactions

are broadcast to the community, public keys used by individuals remain anonymous. Unless

a participant displays their public key to the community, their identity cannot be known.

However, for security reasons, it is recommended that an individual acquire a new public
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key for each transaction carried out. Given that a public key is randomly given for each

transaction, acquiring a new public key would make the inference to a common owner

impossible [9].

4.3. FRAUDULENT ATTACKS

Fraudulent attacks can only occur on a transaction initiated by the attacker. Value

cannot simply be spontaneously created for an unspecified sum. The only fraudulent attack

possible within the system is reclaiming a previously spent transaction, identified earlier as

the double-spending problem. A fraudulent attacker would only be able to double-spend a

coin if they were able to generate a longer chain in comparison to the length of an honest

chain. The honest chain would begin the moment the transaction is broadcast to the network,

by necessity, the attacker would have to “catch-up” to the honest chain [9].

The probability an attacker can reach the required length can be calculated as a

Binomial Random Walk. The successful event of an honest chain extending by one block

is represented by +1, while a failure event of the attacking chain extending by one is

represented by -1. The following equation 4.1 expresses 𝑞𝑧, the probability that an attacker

will catch up from a deficit. The variables 𝑝, 𝑞, and 𝑧 represent the probability of honest

node extending by one block, the attacking node extending by one block, and the number

of blocks added after the transaction [9].

𝑞𝑧 =


1 𝑝 ≤ 𝑞

(𝑞/𝑝)𝑧 𝑝 ≥ 𝑞

(4.1)

The attacker’s probability of catching up with the honest chain decreases exponen-

tially as the number of blocks added to the honest chain increase. To ensure the payee

securely receives the transaction, they need to wait until z number of block are added to the

chain after the transaction. Each additional block increases the odds the transaction was
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added to an honest chain. Waiting for the appropriate number of blocks yields a Poisson

distribution, with the average growth expressing the attacker’s expected increase of blocks

in equation 4.2 [9].

𝜆 = 𝑧

(
𝑞

𝑝

)
(4.2)

Multiplying the Poisson distribution by probability the attacker can catch up yields

the probability the attacker can generate a longer chain and double-spend the coin. The

variable k represents the current block position of the attacker’s chain relative to the initial

block the transaction was linked to. In other words, the expected progress the attacker

has made is multiplied by the probability the attacker can match the length of the honest

chain. The expression can then be rearranged to give the probability of a successful attack,

displayed in equation 2.3 [9].

1 −
𝑧∑︁

𝑘=0

(
𝜆𝑘𝑒−𝜆

𝑘!

) (
1 − (𝑞/𝑝) (𝑧−𝑘)

)
(4.3)
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5. ETHERUEM

5.1. EVM

Ethereum is a popular block-chain based currency used in today’s market. Like Bit-

coin, it is decentralized and offers the same protections against the double-spending problem.

Ethereum validates its transaction through participant interaction with the Ethereum Vir-

tual Machine (EVM), as opposed to participants within a network mining for transactions.

While the EVM is stored on participating nodes within the network, the code to execute

transactions are implemented through the EVM.

Ethereum is the first cryptocurrency that created a platform for the construction

of smart contracts. Smart contracts are a unique feature of Ethereum that allows partici-

pants to construct executable code using a Turing-complete language, helping to facilitate

transactions, or any other desired function between parties [6]. This property distinguishes

Ethereum from other electronic currencies in that new applications are constantly being

built, saved to the EVM, and available for participants to implement. The following sub-

sections provide and overview of the Ethereum block-chain and how the EVM facilitates

transactions between individuals.

Ethereum is a state machine, changing from one state to the next for every input

executed. Transactions are stored as a Merkel tree with the tree path accepted as the

canonical version, the true transactional history [6]. The machine state, distinct from the

state machine, is capable of executing arbitrary code executed through the EVM [10].

The term state machine is generally used to describe the model of computation where the

machine can only exist in one state at any given time. Alternatively, the machine state

changes from block to block, carrying code the EVM can execute [10]. Ethereum is defined

as distributed state machine, updating the state across the network through participants.

The constantly updated and stored data is referred to as the World State, in other words,
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the current state of the entire network[6, 10]. The World State includes the history for all

accounts, balances, and arrangements between participants. Only thorough the EVM can

code be implemented by the machine state to update the World State [10].

Blocks within Ethereum function as a record of a series of transactions. A single

block records a series of transactions which the EVM subsequently ”chains” the information

to the previous block, thus the nomenclature ”block-chain”. A stack of chained blocks is

known as a ”ledger”. Each transaction is collected into a block that undergoes the Ethereum

state transition function, allowing arbitrary computation and the storage of the new state

[6]. the World State can thus be viewed as being updated with the record of each transaction

and relevant information. Therefore, Ethereum is also is a ledger of all transactions, blocks,

and smart contracts that have been created [10]. The figure 5.1 gives a general overview

of the machine state’s components which change for every transaction and who’s execution

updates the World State.

Figure 5.1. Components of the machine state and its interaction with the EVM.
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The machine state is capable of interacting with the EVM through the stack. The

stack is comprised of items with each item defined as 256 bit word to a maximum depth of

1024 items [10]. The stack is used to hold code for the inputs and outputs of transactions

and smart contracts. The program counter, located in the machine state, instructs which

code should be executed by the EVM in a sequential order and is read from the memory [6].

The memory is destroyed once a call has been executed but initially receives program code

from the virtual ROM [10]. Finally, the Gas is the transactional cost of code execution.

Every transaction must pay a small fee for execution and the fee is referred to as the gas [6].

Once a transaction is executed, the World State is updated with the relevant information

and the machine state becomes available for the next transaction. In this sense, the World

State is transient with data distributed, stored, and updated amongst participating Ethereum

nodes.

5.2. TRANSACTIONS

5.2.1. Overview of Transaction in Ethereum. Transaction are signed crypto-

graphically and provide instructions to the Ethereum network to execute a particular func-

tion [6]. The most common instruction is simply sending the Ethereum currency, ETH,

from one participants to another. Transactions are processed from two types of accounts;

externally owned accounts (EOA) and contract accounts [4]. EOAs are accounts owned by

participants in the network and include the account address, nonce, and a balance. Contract

accounts are solely used to execute smart contract and do not belong to any participant.

Instead, they are stored within the network and accessible to participants to utilize [4, 11].

EOAs are called upon for a transaction through a public key with owners having access

to their accounts through a private key. Contract accounts differ from EOAs in that while

stored on the block-chain, they contain code that can be executed when defined conditions

are met [4, 11]. A more in depth discussion on smart contract will be discussed in a

following section.
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Table 5.1. Parameters associated with all EOAs [4, 5, 6].

Nonce Transaction number of account

gasPrice Wei paid per unit of gas expended for all computations executed

gasLimit Maximum amount of gas allowed

To 160 bit address of the recipient of the transaction call

From 160 bit address of the sender of the transaction call

Value Amount of Wei to be transferred to recipient

v,r,s Values for cryptographic signature using ECDSA

input or data Code for executing smart contracts or message call

Table 5.1 displayed above specifies the parameters associated with EOAs. Each field

is required before a transaction can be sent or called upon by another account. The nonce

is the total number of transactions the sender account as executed, which differs from the

definition of nonce used in Bitcoin [6]. For a new transaction, this value would be the total

number of transaction previously completed plus one. The gasPrice is determined by a unit

called Wei, where Ether is define as 1018 Wei [6]. The gasPrice protects against infinitely

recursive code by a attaching a cost proportional to the amount of computational power

needed [12]. Thus, if a transaction exceeds the gasLimit, the transaction is cancelled with

remaining monetary values returned to the sender’s account. In addition to gasPrice and

gasLimit, a 160 bit address of the recipient is included along with the amount of Ether to

be transferred, computed in Wei [6]. Finally the recipient validates signature of the sender

to confirm the transaction. The value r and s are used to validate the signature through the

use of an Elliptical Curve Digital Signature Algorithm [6, 7].

The following figure 5.2 displays the flow chart when a transaction is called to be

executed. The transaction can be thought of as being sent to the EVM, where by if a smart

contract is called to be implemented, the argument will be executed on the transaction.

The program counter (PC) functions as a small memory for the order of instructions to
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be executed. The stack also contain ”slots” of memory for the input data where order is

determined by the program counter [6]. Smart contracts are usually written in a higher

language such as solidity, then compiled into operation code (opcode) [13]. The opcode

removes or inserts items being held within the stack and subsequently deletes them after

execution [6]. The PC and stack interact with the smart contract to order and briefly store

the base opcodes needed to execute the function specified in the smart contract. After the

operation is complete, the output of the transaction is stored within the block-chain.

Figure 5.2. Flow chart of a transaction processed through the Ethereum Virtual Machine.

5.2.2. Example of JSON Code for a Simple Transaction. The following code

displays typical code used for a transaction between to participants. The first 17 lines shows

the basic code when implementing a call from recipient to sender requesting a transfer of
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ETH. The function listed in line 2 as ”id” specifies two unique objects with in the argument;

the account of the sender listed at ”from”, and the account of the recipient listed at ”to”.

Line 3 specifies that JSON-RPC version 2.0 is being implement. The ”method”, specified in

line four, states the the code is requesting a transfer of funds and also requires the signature,

or private key, of the sender to finalize the transaction [14].

1 {

2 "id": 2,

3 "jsonrpc": "2.0",

4 "method": "account_signTransaction",

5 "params": [

6 {

7 "from": "0x1923f626bb8dc025849e00f99c25fe2b2f7fb0db",

8 "gas": "0x55555",

9 "maxFeePerGas": "0x1234",

10 "maxPriorityFeePerGas": "0x1234",

11 "input": "0xabcd",

12 "nonce": "0x0",

13 "to": "0x07a565b7ed7d7a678680a4c162885bedbb695fe0",

14 "value": "0x1234"

15 }

16 ]

17 }

The code implemented for the sender to sign a transaction is given in the following

code below. Within line 5, the ”raw” argument gives the signed transaction in Recursive

Length Prefix (RLP) . The RLP is how the machine state updates the world state by storing

the data in the block [14]. The data is then saved using a Patricia Merkle Trie [6]. The

parameters for the transaction ”tx” include signature of the sender, specified the the values
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v, r, s. While r and s were discussed in ECDSA, the parameter v defines the point of origin

as either odd of even, given that the symmetry of an elliptical curve allows the x coordinate

to have two variables along the y-axis. Finally, the transaction with the hashed signature is

specified in line 17.

1 {

2 "jsonrpc": "2.0",

3 "id": 2,

4 "result": {

5 "raw":

"0xf88380018203339407a565b7ed7d7a678680a4c162885bedbb695fe080a44401a

6e400000000000000000000000000000000000000000000000000000000000000122

6a0223a7c9bcf5531c99be5ea7082183816eb20cfe0bbc322e97cc5c7f71ab8b20ea

02aadee6b34b45bb15bc42d9c09de4a6754e7000908da72d48cc7704971491663",

6 "tx": {

7 "nonce": "0x0",

8 "maxFeePerGas": "0x1234",

9 "maxPriorityFeePerGas": "0x1234",

10 "gas": "0x55555",

11 "to": "0x07a565b7ed7d7a678680a4c162885bedbb695fe0",

12 "value": "0x1234",

13 "input": "0xabcd",

14 "v": "0x26",

15 "r":

"0x223a7c9bcf5531c99be5ea7082183816eb20cfe0bbc322e97cc5c7f71ab8b20e",

16 "s":

"0x2aadee6b34b45bb15bc42d9c09de4a6754e7000908da72d48cc770497

1491663",
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17 "hash":

"0xeba2df809e7a612a0a0d444ccfa5c839624bdc00dd29e3340d46df

3870f8a30e",

18 }

19 }

20 }

Following the signature and the transaction becoming cryptographically hashed, the

transaction is broadcast to the network. Once broadcast, the transaction is held within a

pool of other transactions awaiting validation. A participant within the network, known as

a validator, chooses which transactions to validate based upon greatest amount of gas they

can receive for successfully completing the transaction. In other words, the validator is

paid a small amount of monetary value for completing the transaction. With the transaction

completed, the history of the transaction is stored within the block-chain. The greater

the number of block added to the chain, the greater the security the transaction cannot be

altered.

5.3. SMART CONTRACTS

5.3.1. Overview of Smart Contracts. Smart contracts are implemented in trans-

actions between either an EOA and a contract account, or between two contract accounts.

A contact account is a special type of account that holds coded instructions to execute

a particular algorithm desired by a participant or participants [11, 15]. For example, if

two individuals make a bet, a smart contract can be created to execute a transaction at the

moment the event has been completed. This allows for an unambiguous execution of the

code and resolves any discrepancy between participants. However, in practical application,

a smart contract can be coded to execute any arbitrary computation.
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An important feature of smart contracts is the ability to call other smart contracts,

increasing the versatility a single computation cannot achieve on its own. Each smart

contract is assigned its own address within the block-chain and accessible to the EVM.

Once incorporated into the block-chain the code becomes immutable [10]. If a participant

wants to call a previously created smart contract, a message can be sent to the address to

implement the contract in a transaction. While several programming languages are used

to create smart contracts the most popular is Solidity, created solely for Ethereum and the

creation of smart contracts [13].

5.3.2. Uniswap Smart Contracts. Uniswap is trading platform on Ethereum that

allows participants to trade various tokens. Tokens are typically defined as any digitally

owned asset. For example, Bitcoin, ETH, and NFT’s, are all examples of tokens as well

as video game winnings. If a value can be coded it can be represented as a token. Many

trades are made with fungible tokens standardized by ERC-20 tokens. The purpose of

ERC-20 tokens is to allow values of fungible tokens to be interoperable with any other

type of fungible token. The ERC-20 utilizes an Application Programming Interface (API)

to facilitate the exchange of tokens. Tokens that are able to be traded and exchanged on

Uniswap are categorized as ERC-20 tokens [16].

Uniswap is comprised of two components, periphery and core contracts. Core

contracts contracts hold reserve assets and therefore need to be secure and separate from

the additional functions stored within periphery contracts. The periphery contracts contain

code needed to swap one token for another. Liquidity providers purchase a set amount of

two types of tokens that are capable for being traded, such as token A and token B. In return,

the liquidity providers receive a third token referred to as a liquidity token, signifying partial

ownership of the trading pool. The available trading pool fluctuates over time leading to a

decrease or increase of token value. Traders then utilize the pool of tokens to exchange one

token for another with the goal of achieving the best exchange rate. A small fee is provided

to the owners of the liquidity tokens for each exchange [17, 18].
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An exchange begins with a periphery account called and transferred a specified

amount of a token. The periphery account will be a smart contract capable of executing a

swap function on the tokens desired to be exchanged. The smart contract will identify the

amount to be exchanged and determine the initial destination for the output, token B. The

initial output is the address of the first token to be swapped, token B. Many times, if multiple

exchanges are required with multiple tokens, known as the path, there will be an address for

each output token needed. Along the path, the input token is sent with the exchange swap

function called to trade the token. The final destination of an exchange will be the address

of the trader [17].

The core contract determines the number of out tokens available plus the reserves.

The reserves are determined by the total number of output tokens available minus the

number of input tokens called for exchange. The core contract sends the final amount to the

trader’s address and updates the available output tokens with the value of reserves [17].

5.3.3. Example of Uniswap Core Contract. The following examples specifies the

arguments for a trade between two tokens and displays the base arguments used in the core

contracts . The first step is to call the necessary interfaces and libraries. In this template

example, the UniswapV2Pair.sol core contract is implemented to first gain access to the

liquidity pools [17].

1 pragma solidity =0.6.12;

2

3 import ’./interfaces/IUniswapV2Pair.sol’;

4 import ’./UniswapV2ERC20.sol’;

5 import ’./libraries/Math.sol’;

6 import ’./libraries/UQ112x112.sol’;

7 import ’./interfaces/IERC20.sol’;

8 import ’./interfaces/IUniswapV2Factory.sol’;

9 import ’./interfaces/IUniswapV2Callee.sol’;
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The contract UniswapV2Pair.sol is a core contract that allows for the exchange of

tokens. It calculates the amount needed for an exchange along a path. Given over 3.8x105

ERC-20 tokens exist, not all tokens are paired with one another. Instead, a path of multiple

exchanges can be made to reach the desired output. UniswapV2Pair.sol also allows the

minting of liquidity tokens, the creation of new token pairs. After the creation of liquidity

token the core contract updates the amount in reserves. The UniswapV2Pair.sol is the

central contract that allows access to the liquidity pools. Periphery contracts then will call

the core contracts to add liquidity token, or receive output tokens for an exchange [17].

The UniswapV2ERC20.sol is another core contract implemented that maintains

similar functionality as UniswapV2Pair.sol, but is solely focused on creating liquidity pairs

for ERC-20 tokens. This core contract maintain the pools of liquidity tokens for ERC-

20 pairs and their functions. The library Math.sol simply contains functions that allow

for the common mathematical functions needed to compute exchanges. Within line 7,

the IERC20.sol contains the standard criteria necessary for a token to be categorized and

function as an ERC-20 token. Another core contract listed is the UniswapV2Factory.sol,

which creates an address or registry for all token pairs. Finally, the UniswapV2Callee.sol

allows users to borrow tokens from one pool temporarily, whats known as a flash swap, then

return the tokens within a single transaction. The next lines of code specify the variables

required before adding addition functionality to a core contract [17].

11 contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {

12 using SafeMath for uint;

13 using UQ112x112 for uint224;

14 uint public constant MINIMUM_LIQUIDITY = 10**3;

15 bytes4 private constant SELECTOR =

bytes4(keccak256(bytes(’transfer(address,uint256)’)));

16

17 address public factory;
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18 address public token0;

19 address public token1;

20

21 uint112 private reserve0;

22 uint112 private reserve1;

23

24 uint32 private blockTimestampLast

25

26 uint public price0CumulativeLast;

27 uint public price1CumulativeLast;

28

29 uint public kLast;

30 }

UniswapV2Pair is equivalent to IUniswapV2Pair and works in conjunction with

UniswapV2ERC20. SafeMath is a library that protect against overflows and underflows,

both of which result in values that fall outside the range possible data values. Fractional com-

putations are not supported by the EVM. Therefore, to overcome this limitation, Uniswap

uses the UQ112x112 for uint224, listed in line 13. This function is 224 bits split into

two 112 bit values. The first value of 112 bits represent an integer while the second 112

bits represent the following decimal value, such as 1.5. The minimum number of liquidity

tokens is held constant at 1,000 as defined in line 14. Line 15 gives the ABI selector that

allows the core contract to interact with external contracts and periphery contracts [17].

Line 17 gives the address to the factory contract. The factory is the point where a

call can access the pool of two available tokens. Lines 18 and 19 give the address of the two

tokens, with token0 expected to be exchanged for token1. Lines 21 and 22 give the reserves,

or amount of available tokens within the pool capable of being exchanged. The following

argument in line 24 gives the timestamp of the last exchange to have occurred [17].



38

The public price of token1 and token2, displayed in line 26 and 27, is used to

calculate the average exchange rate of the tokens relative to one another. The exchange rate

is calculated using the constant kLast, which is defined as reserve0*reserve1 [17]. This

value remains constant for each exchange, therefore a decrease in the reserves of a token

necessitates an increase in value for the same token. The objective of the trader is to utilize

the liquidity pool with the best exchange rate. Some participants generate profit by finding

the pool with the lowest rate, then utilizing another pool to trade a token at a higher rate.

The following figure 5.3 displays the change of two token quantities relative to one another

in relation to the constant kLast [3].

As shown in the figure 5.3, as quantity of reserves for token A increase, the ratio

𝑘𝐿𝑎𝑠𝑡/𝑥 decreases. Thus, the value of token B will have increase to achieve a fair exchange

rate [3]. The example code given above outlines the requirements for Uniswap core contract.

A variety of functions can be added, such as addition or removal of liquidity, or the creation

of token pairs.
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Figure 5.3. An example of a function utilizing kLast to calculate the reserves tokens [3].
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5.3.4. Example of Periphery Contract. The next lines of code are an example of

an exchange that is initiated through the periphery contract UniswapV2Router02.sol [17].

1 pragma solidity =0.6.12;

2

3 import ’@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol’;

4 import ’@uniswap/lib/contracts/libraries/TransferHelper.sol’;

5

6 import ’./interfaces/IUniswapV2Router02.sol’;

7 import ’./libraries/UniswapV2Library.sol’;

8 import ’./libraries/SafeMath.sol’;

9 import ’./interfaces/IERC20.sol’;

10 import ’./interfaces/IWETH.sol’;

In line 4 the library Transfer Helper facilitates the interaction with ERC-20 tokens

and negates the return of true or false outputs when returning output tokens. The IU-

niswapV2Router02 is the main periphery smart contract. It computes the amount of tokens

necessary for each trade along a path. It is also capable of creating a new pair to exchange

as well as call core contracts to access tokens. The other periphery contract implemented is

UniswapV2Library.sol. This contract allows a user to calculate the amount of output token

they will receive for a trade. It can also be implemented to find the best path of exchanges

to maximize the return of an output token [17]

ETH is not considered an ERC-20 token and line 9 specifies the IERC20 function

that ensures enough tokens are available for an exchange. Because ETH is not considered

an ERC-20 token, IWETH.sol exchanges ETH for what is known as wrapped ETH or

WETH, capable of interacting with other ERC-20 tokens. These functions are the core of
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the periphery contract and allow the implementation of ERC-20 token exchange. The next

lines of code executes required variables before functions can be executed when exchanges

ETH [17].

11 contract UniswapV2Router02 is IUniswapV2Router02 {

12 using SafeMathUniswap for uint;

13

14 address public immutable override factory;

15 address public immutable override WETH;

16

17 modifier ensure(uint deadline) {

18 require(deadline >= block.timestamp, ’UniswapV2Router:

EXPIRED’);

19 _;

20 }

21

22 constructor(address _factory, address _WETH) public {

23 factory = _factory;

24 WETH = _WETH;

25 }

26

27 receive() external payable {

28 assert(msg.sender == WETH); // only accept ETH via fallback

29 from the WETH contract

30 }

Lines 14 and 15 state the address of the factory and WETH are immutable. The

address are then defined at lines 22 through 24. Setting them as immutable ensures they

cannot be tampered with once the contract is saved to the block chain. The modifier in line



41

17 ensures the contract is executed within the appropriate time frame. Last, the receive

external payable in line 27 is used to receive the output token ETH, after being redeemed

from WETH. The final lines of code presented for peripheral contracts gives a simple

exchange between two tokens [17].

32 function swapTokensForExactTokens(

33 uint amountOut,

34 uint amountInMax,

35 address[] calldata path,

36 address to,

37 uint deadline

38 ) external virtual override ensure(deadline) returns (uint[] memory

39 amounts) {

40 amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);

41 require(amounts[0] <= amountInMax, ’UniswapV2Router:

42 EXCESSIVE_INPUT_AMOUNT’);

43 TransferHelper.safeTransferFrom(

44 path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0],

45 path[1]), amounts[0]

46 );

47 _swap(amounts, path, to);

48 }

This function, beginning at line 32, swaps a token for a specified amount of an

output token. A user would specify the amountOut desired and the maximum amount of

token they are wiling to spend for an exchange fee. A call data path in line 35 is needed

as multiple exchanges might be required to reach the desired output token. Line 36 defines

the final address the output token are to be received. Next, line 40 defines the amount of

token to be purchased for each step along the path. If the maximum amount of output token
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is not enough to meet the desired output, the transaction is reverted. The final function for

TransferHelper, starting in line 43, allows the call swap to transfer the initial ERC-20 token

to the first pair exchange account [17].
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6. PARTIAL LEAST SQUARES REGRESSION

6.1. INTRODUCTION TO PLSR

Partial Least Squares regression (PLSR) is a statistical technique that can be utilized

when high levels of correlation or dependence exists between independent variables. PLS is

categorized as a type of supervised linear dimension reduction that uses response variabley

and the matrix of predictors X to generate linear combinations of weighted predictive

variables, called latent variables [19]. While Principal Component regression is similar to

PLS and uses the term loading to express a predictor’s contribution to a component, PLSR

does not generate orthogonal loadings. As such, a predictor’s effect on a component is

referred to as a weight in PLSR [20].

When computing latent variables from predictors, denoted as 𝑧𝑚, PLSR uses decom-

position to generate linear equation and maximize the covariance of predictors in relation

to the response variable 𝑦 [20]. In other words, this method finds new directions of vectors

that maximize the predictor’s relation to 𝑦 in order to explain the variance in both 𝑦 and X

[19, 20]. Each latent variable generated is a linear combination of the predictor variables.

The latent variable, or multiple latent variables, are then used to generate a component.

Finally, all predictor variables within the component are set orthogonal with respect to the

latent variable to ensure the component explains the covariance of 𝑦 and X to the greatest

degree [20]. The result is a sequence of latent variables, 𝑧1 through 𝑧𝑚, that remain orthog-

onal to one another when generating multiple components [19]. The following sections will

provide a more detailed explanation of PLSR and why they can be used for highly correlated

or dependent predictor variables.
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6.2. COMPUTING THE COMPONENTS

PLSR first begins with each predictor variable standardized to a mean of zero and

standard deviation of one. After the standardization of the input variables, the contribution

of each predictor variable, denoted 𝑥 𝑗 , with 𝑗 = 1, ..., 𝑝, is determined for the component.

Equations 6.1 through 6.5 give the steps to compute the first component [19].

�̂�1 𝑗 = ⟨𝑥 𝑗 , 𝑦⟩ (6.1)

𝑧1 =

𝑝∑︁
𝑗=1

�̂�1 𝑗𝑥 𝑗 (6.2)

The previous two equations give steps for computing the weights associated with

the first component. Within equation 6.1, �̂�1 𝑗 is computed from the inner product of 𝑥 𝑗 in

relation to the response variable 𝑦 and quantifies the direction a predictor has relative to

the 𝑦. This step provides the weights that are applied to a predictor variable, and shrinks

the contribution of a predictor if its correlation, or direction, is lower relative to other

predictors when summed to find 𝑧1. The first latent variable 𝑧1 can thus be viewed as linear

combination of each predictor variable 𝑥 𝑗 multiplied by its weight, �̂�1 𝑗 . The summation

of these variables yield the maximum covariance and direction of the first PLSR. The next

step is to regress y onto 𝑧1 followed by computing the first prediction �̂� (1) [19].

𝜃1 =
⟨𝑧1, 𝑦⟩
⟨𝑧1, 𝑧1⟩

(6.3)

�̂� (1) = �̄�1 + 𝜃1𝑧1 (6.4)

Within equation 6.3, the inner product ⟨𝑧1, 𝑦⟩, specifies how much of the variance in

the output y is explained by 𝑧1. Dividing this value by the squared norm, ⟨𝑧1, 𝑧1⟩, normalizes

the variance and scales the regression. Equation 6.4 then finds the fitted regression line with

the coefficient 𝜃1 multiplied by the latent variable 𝑧1. It should be noted that �̄�1 represents

the average 𝑦 multiplied by vector of ones. If we were to find the second component,
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�̂� (1) would be used to compute �̂� (2) with �̂� (2) = �̂� (1) + 𝜃2𝑧2. Finally, the last step is to

orthogonalize each predictor 𝑥1 through 𝑥𝑝 with respect to the latent variable 𝑧1. This final

step, shown in equation 6.5, ensures the original predictors will now have no correlation to

the latent variable [19].

𝑥1
𝑗 = 𝑥 𝑗 −

⟨𝑧1, 𝑥 𝑗 ⟩
⟨𝑧1, 𝑧1⟩

𝑧1 (6.5)

As shown in the previous equations, initial predictor variables are used to construct

a new latent variable that is weighted. Each latent variable is then optimized to a maximum

correlation to the output variable y. Equations 6.1 through 6.5 can be expanded to included

components beyond the first component, each of which would be orthogonal to one another.

If by chance, each input variable was orthogonal to each other, PLSR would simply yield the

least squares estimate. Steps to find second component any beyond are given in the following

equations. Each equation assumes that all predictor variables have been standardized. Also,

it is defined that �̂� (0) = �̄�1 and 𝑥
(0)
𝑗

= 𝑥 𝑗 . Each predictor and component is represented by

𝑗 = 1, ..., 𝑝 and 𝑚 = 1, ..., 𝑝 respectively. After completing the steps, sequencing the fitted

vectors �̂� (𝑚) for all necessary components will give the best prediction [19].

𝑧𝑚 =

𝑝∑︁
𝑗=1

�̂�𝑚 𝑗𝑥
𝑚−1
𝑗 (6.6)

𝜃𝑚 =
⟨𝑧𝑚, 𝑦⟩
⟨𝑧𝑚, 𝑧𝑚⟩

(6.7)

�̂� (𝑚) = �̂� (𝑚−1) + 𝜃𝑚𝑧𝑚 (6.8)

𝑥𝑚𝑗 = 𝑥𝑚−1
𝑗 −

⟨𝑧𝑚, 𝑥𝑚−1
𝑗

⟩
⟨𝑧𝑚, 𝑧𝑚⟩

𝑧𝑚 (6.9)
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6.3. INTERPRETING THE OUTPUT

From the previous equations, it can be seen in equation 6.8 that the fitted value for

𝑚 components would equate to �̄�1 plus the summation of 𝜃𝑚𝑧𝑚 from 𝑚 = 1, ..., 𝑝. This

result is indeed a linear equation with 𝜃 representing the coefficient and 𝑧𝑚 representing

the latent variable. Often when the output is generated after computing a PLSR, the

coefficient associated with the latent variables will be retrieved. While this can be useful to

understand the contribution of each latent variable, it does not provide an explanation for

the contribution of the original predictors’ effects on each component [19, 20].

A more useful metric often deployed to understand components is the accumulative

percent variance explained with the incorporation of each subsequent component. As

more components are implemented within a model, the percent variance of the response

variable 𝑦 explained by component’s incorporation will increase. Therefore, this metric is

also used to determine the number of components needed within the model. At a certain

point, the number of components implemented will be exhausted and further components

incorporated will not yield an increase in variance explained [19, 20].

To understand the effects of each predictor, the weights used to compute a latent

vector are represented by the variable �̂�𝑚 𝑗 , displayed in equation 6.6. As previously

mentioned, computing a latent variable 𝑧𝑚 is executed by the summing the product of

the weight and predictor variable. The absolute value of the weight can then be used to

quantify the contribution of a predictor variable within a component. The sign associated

with a predictor, either positive or negative, represents the directionality of the weighted

predictor’s effect on the component [19, 20]. These three outputs are obtained during the

PLSR on bitcoin value using on-chain data.
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7. MODELING OF BITCOIN VALUE DURING 2020 HALVING EVENT USING
PLS REGRESSION

7.1. INTRODUCTION TO BITCOIN HALVING

During the creation of Bitcoin, Satoshi Nakamoto limited the maximum number of

Bitcoins to a value of 21 million [9]. In order to delay circulating Bitcoins from reaching

the maximum value, approximately every four years the reward for successfully mining a

transaction or block is reduce by one half. This period of halving repeats itself for every

210,000 mined Bitcoin blocks. For example, in 2012 the emission of Bitcoin for every new

block found was reduced from 50 to 25 Bitcoin. Likewise, in 2016 the reward for finding a

new block was reduced from 25 to 12.5 Bitcoin [21]. The effect of limiting the supply of

Bitcoins to be mined is often anticipated to increase the value of the cryptocurrency. The

next halving event is expect to occur mid April 2024, incentivising individuals to invest

before the halving event in order to capture the rising value from the subsequent bull market.

However, even though the FTC has approved Bitcoin as an exchange-trade fund, such factors

such as inflation and increasing interest rates can effect investors’ trust in placing their assets

within Bitcoin.

We have attempted to model the Bitcoin price (USD) of the May 11th 2020 Bitcoin

halving using Partial Least Squares (PLS) Regression to provide insight on the changing

value of Bitcoin during high volatility. The time period we chose to analyze was a one year

period, November 11th 2019 through November 9th 2020, with the halving event directly

between each date. The variables from the on-chain data used for the analysis were the

reward in USD, the fee in US dollar, difficulty, and the number of transactions within a

block. The following sections describe the methods used for obtaining and analyzing the

data, as well as a prediction model for a 20-day moving average of Bitcoin value using PLS

regression.
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7.2. OBTAINING ON-CHAIN DATA AND DATA VISUAL ANALYSIS

7.2.1. Obtaining On-Chain Data. To acquire on-chain data of Bitcoin, most indi-

viduals utilize an extract, transform, and load (ETL) to gain access to the data. However, this

method requires a user to become an active participant and download the entire block-chain

record of verified transactions, requiring substantial memory. Only then can one acquire

a username and password to access the local host for on-chain Bitcoin data. To circum-

vent this requirement, the site blockchair.com/dumps uploads daily records of all verified

transactions within a block. A script in python was written to download all the data files

associated with each date within the defined length of time. The script also contained code

to append the data for each date to one another, generating a complete dataset for each block

represented by a total of 52,997 rows.

To obtain the closing value of Bitcoin for each day, a file was downloaded from

Yahoo finance where the necessary dates were selected. Before these two dataset were

combined, a general visual analysis of Bitcoin value in USD were generated with a moving

average of twenty days.

Figure 7.1. The value and moving average of Bitcoin in USD.
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A twenty day moving average was placed over the raw data to highlight trends.

Form the generated plot displayed in figure 7.1, the value of Bitcoin significantly drops

two months prior to the halving event, represented by the red vertical line. Following the

halving event, the value of Bitcoin rises then enters a period of exponential growth in the

final months. We decided to use the twenty day moving average of Bitcoin value as the

variable of interest, using on-chain data to predict the moving average value. Through out

the study all form of analysis were completed using scripts written in Python.

7.2.2. Predictor Variables and Data Visualization. Four variables from or de-

rived from on-chain data were selected for study; rewards in USD, difficulty, fee in USD, and

transaction count. Rewards, difficulty and transaction count are all found within on-chain

data. Fees are calculated from on-chain data. While rewards and fees are initially recorded

in the smallest unit of value, Satoshi, the data can be converted to USD. The dataset used

in this study already converted this value and was utilized for the sake of convenience.

For each of the four variable obtained, three new variables were generated; summation

of the variable per day, average value of the variable per block, and the average value of

the variable per transaction. The following table 7.1 provides definitions for each of the

on-chain variables.

Table 7.1. Definitions for each variable obtained from on-chain Bitcoin data.

Reward Newly generated Bitcoin plus the transaction fee

Difficulty Computational power needed to verify or mine a transaction

Transaction Fee Input Bitcoin value minus the output Bitcoin value

Transactions Count Number of transactions mined on one block
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Summing each variable was accomplished by grouping each variable by date and

calculating the summation upon each variable. The averaged value per block was calculated

by summing the variable, grouped by date, and dividing this value by total number of blocks

verified within the same date. Finally, the averaged value per transaction, was calculated

by grouping the data by date and summing the variable as well as summing the number of

transaction. The summed variable was then divided by the summation of the transaction

count. Given four variable from the block-chain and three calculations for each variable,

twelve variables were obtained. However, dividing the averaged number of transactions per

transaction equates to one, therefore it was removed as a variable. A 20-day moving average

for each newly generated variable was calculated and appended to a new data set, along

with the moving average of Bitcoin. The moving average of each variable was intended to

be utilized as predictor variables in the PLS regression. In total, eleven moving average

variables to predict the moving average of Bitcoin value were generated. The following

subsections discuss each predictor variable.

7.2.3. Rewards (USD). First, data visualization based on rewards were evaluated

and are displayed in figure 7.2. Viewing the total rewards all miners received in one day,

values fall between the approximate range of 8 to 20 million USD. At the point of halving,

represented by the vertical red line, the rewards can be seen to significantly drop. During

periods of high trading volume, a greater number of blocks will be verified per day given a

limit to the amount of available memory per block. When observing the moving average of

rewards per transactions, maxima and minima are less accentuated as expected. While forty

or more USD seems high for validating a transaction, rewards are also given for verifying

a block and thus add to the overall value of rewards received.

When compared the value of Bitcoin, rewards can be seen to closely mirror its

trend. Rewards can be observed to reach a local maxima around February, May, and

August. However, the halving event forces available rewards for mining a Bitcoin to briefly

move in the opposite direction before regaining a similar movement to Bitcoin. This sudden
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opposing trend, yet otherwise correlating trend, negates the rewards’ capacity to be a strong

predictor of Bitcoin value.

Figure 7.2. Daily summation, average per block, and average per transaction of rewards.
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7.2.4. Difficulty. Following the visualization of rewards, we visually assessed the

trends of the predictor difficulty. Difficulty is an arbitrary measurement of the computational

power needed to validate a transaction. The greater the difficulty, the greater computational

power needed to find the nonce. Difficulty is determined by an algorithm responding to

the number of active participants. The greater the number of participants the higher the

difficulty to find the nonce and validate the transaction. Figures for each predictor variable

calculated from difficulty can be seen figure 7.3.

Viewing the total of daily difficulty, local minima can be observed at March and May.

We reason that as the value of Bitcoin rises, the number of active participants increases,

thus causing an increase in difficulty. Overall, the total difficulty can be seen to follow a

similar trend to Bitcoin value.

When observing difficulty per block, a pattern consistent with discrete values is

seen. Clearly this confirms the level of difficulty is determined for each block. Furthermore,

the difficulty can be used an an indirect assessment of active participants in the network

responding to an increase or decrease the price of Bitcoin. Given crypto currencies suddenly

increase in price due to expectation of future value, commonly known as ”hype”, monitoring

the difficulty can be an excellent metric to assess the overall state of the network’s price

expectations.

Last, the figure 7.3 showing the trend of difficulty per transaction can be observed

to posses a shallow upward trend, in correlation with bitcoin price. All three plots display a

relationship to Bitcoin price without being directly effected by the halving event as observed

in the plots for rewards.
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Figure 7.3. Daily summation, average per block, and average per transaction of difficulty.
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7.2.5. Transaction Fee (USD. While a fee charged by the block-chain miners for

validating a transaction is similar the reward metric, the reward metric within on-chain data

represent the fee charged for transaction validation, plus the reward in bitcoin for transaction

validation, plus the reward for validating a block. In contrast, the fee is monetary value a

participant charges not counting the additional rewards they receive for validation.

Looking at all three graphs depicted in figure 7.4 and calculated from the fee metric,

nearly the exact same trend is observed for each graph. This observation can be explained

by the fact the charged fee is independent from the number of blocks and total transactions

validated in one day. Instead, the percent increase or decrease in transaction fees is more

dependent on a minor’s capacity to generate a profit. The aggregate percent change in

charged fees occurs at the transaction level. Therefore, calculating the fees charged per

block, or summed over a period of time should result in the same percent change.

At the halving point, the transaction fee can be seen to significantly increase to make

up for lost profit due to rewards being reduced by one-half. Also, as the value of bitcoin

increases, the fee charged by a minor will also increase. Still, the transaction fees appears

not only correlated to Bitcoin value, but at certain dates inversely correlated to reward and

difficulty. While the halving point definitively decrease rewards and difficulty, the fee is

observed to increase. Upon closer inspection, small differences can be discerned between

each graph depending on the scale, and hence each trend may contain information capable

of contribution towards the training of a model.
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Figure 7.4. Daily summation, average per block and transaction of transaction fees.
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7.2.6. Transaction Count. The last variable to be visualized was the transaction

count, the total number of transaction validated within a single block. The first observation

made is a clear correlation to the difficulty predictors with local minima seen to occur at

the same points in time, mid April and mid June. If transactions decrease due to fewer

participants within the network, it would be expected the difficulty would decrease to bring

transaction validation volume back to an expected baseline. Other than the minima seen

during the Bitcoin price decline in March and at the halving event in May, the volume

of transaction appears to be fairly stable. This suggests transactions volumes are mostly

affected by periods of high volatility during a downturn as participants hold on to assets

while waiting for the price to reach is minimum value. Overall, we expected transaction

fees to have a modest contribution to the prediction of Bitcoin price.

Figure 7.5. Daily summation of transaction count and moving average.
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Figure 7.6. Average per block of transaction count and moving average.

7.2.7. Correlation Matrix. Following the data visualization of the predictor vari-

ables a heat map with correlation coefficients between each predictor and the price of

Bitcoin were generated and is displayed in figure 7.7. Each variable in the matrix is the

twenty day moving average, with the intended output for prediction being the twenty day

moving average of Bitcoin price.

As expected, the variables calculated from rewards had a negative correlation be-

tween -0.19 and -0.36. These correlation values can be explained by the halving event

causing a shift in the data. Not considering the halving event, rewards can be seen to

closely mirror the trend of Bitcoin. Given the halving event is directly effecting the general

correlation to bitcoin and artificially lowering is correlation to Bitcoin price, it was decided

that it would not be incorporated in the model to predict Bitcoin price.

Looking at other variable, the total fee, summed over the date, was found to have the

highest correlation to Bitcoin price at 0.83. Similarly, the average fee per block and average

fee per transaction was found to correlate at 0.80 and 0.81 respectively. The similarity of

correlation values is unsurprising given the trends are nearly identical. Total difficulty and

average difficulty per block were found to be correlated to bitcoin price at 0.74 and 0.78
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Figure 7.7. A heat map of correlation values for all moving averaged variables.

respectfully.The average difficulty per transaction however was found to be 0.58. Finally,

predictor variables calculated from transaction count were found to correlate to bitcoin

price at 0.46 and 0.54, for total transaction count per day and transaction count per block

respectively.

When comparing the predictor variables to one another, difficulty and transaction

fee can be seen to be correlated at approximately 0.70. Other comparison of predictors can

be seen to correlate between 0.20 to 0.50. We decided to use PLS regression to account

for the moderate to high correlation between predictor variables. To generate the model,
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all predictors were decided to be incorporated except for variables based on the rewards,

leaving a total of eight variables of moving averages. While it is highly likely a subset of

the selected predictors would be sufficient, the goal of analysis was to generated a model

that predicts the price of bitcoin with a higher level of accuracy than simply using a single

predictor.

7.3. PLS REGRESSION

7.3.1. Component Analysis. Before the analyses was ran, all predictor variable

were standardized with K-fold cross validation utilized for determining an estimate of the

error. With 366 - 19 = 347 data points, the data was randomised then split into five spaces

with each possible combination of components and predictor variable used to generated

a data frame displaying the RMSE for all combinations. From the output, using all eight

predictors with eight components provided the lowest RMSE. While other combinations

might equally effective at prediction, it was decided to move forward with eight predictors

and save model selection for future work.

With eight predictors yielding the lowest RMSE , the individual RMSE was calcu-

lated each for one to eight components to determine the appropriate number of components

to analyze. This value was found by determining the RMSE for each fold used in a testing

set, then the average of all five RMSE values found over each round was calculated. In

addition, a plot of the percent variance of the output, Bitcoin value, was generated in relation

to the number of components used.

From both the table 7.2 and figure 7.8, a total of seven components was shown to be

the optimal number for use. The RMSE and the graph explaining the variance of the output

can each been seen to level off in their respective measured values when seven components

is reach. After deciding the number of component to utilize in the model, data analysis was

conducted to determine the error of the regression, the linear equation, and weights of the

components.
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Table 7.2. Root mean square error for each component.

Principal Component RMSE
1 709.7
2 617.3
3 563.7
4 556.7
5 521.4
6 498.0
7 482.9
8 482.3

Figure 7.8. A plot of the variance explained Bitcoin value in relation to components.

7.3.2. PLS Data Analysis. To begin the data analysis of the fitted regression using

PLS, the linear equation for the PLS regression was obtained when using the latent variables,

displayed in table 7.3. While the linear equation is valuable for understanding the latent

variable contribution to the regression, no valuable insight into the predictors contribution
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to the equation can be found. This lack of insight is due to the fact that latent variables are

computed from the predictor variables. The following table provides the coefficients for

each latent variable.

Along with the linear equation, the weights of each predictor and their respective

component were also obtained. From the weights displayed in table 7.4, within the first

component, predictors based upon transaction fees have a largest contribution at approxi-

mately 0.400. Following close behind are predictors based on difficulty at approximately

0.390. Predictors found using transaction count have contribution at approximately 0.250.

Each predictor also exhibits a positive contribution within the first component. It should be

noted that predictors based upon the same variable exhibit similar levels of weights suggest-

ing that model reduction is possible with further experimentation. The second component

was found to be fairly dominated by total transaction count, while the third component was

found to be fairly dominated transaction count per block.

Table 7.3. Latent variables implemented in the PLS regression and their coefficients.

Latent Variable Coefficient
𝑧1 1534.325
𝑧2 364.754
𝑧3 -250.439
𝑧4 -25.521
𝑧5 -204.830
𝑧6 164.713
𝑧7 127.867
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Table 7.4. Predictor variables implemented and their weights for components 1 through 7

Predictor Variable 1 2 3 4
Total Transaction Count 0.232 0.881 -0.013 0.150

Transaction Count per Block 0.269 0.067 0.837 -0.266
Total Fee 0.417 -0.008 -0.224 0.120

Fee per Block 0.402 -0.048 -0.250 -0.494
Total Difficulty 0.372 0.076 -0.055 0.504

Difficulty per Block 0.389 -0.274 0.318 0.164
Fee per Transaction 0.405 -0.038 -0.281 -0.452

Difficulty per Transaction 0.290 -0.366 -0.060 0.405
Predictor Variable 5 6 7

Total Transaction Count -0.182 -0.040 0.234
Transaction Count per Block 0.176 0.111 -0.297

Total Fee 0.858 -0.068 0.140
Fee per Block -0.207 -0.650 -0.247

Total Difficulty -0.143 0.075 -0.558
Difficulty per Block -0.240 -0.193 0.669
Fee per Transaction -0.163 0.712 0.099

Difficulty per Transaction -0.230 0.096 -0.090

After obtaining the linear equation and evaluating the weights of the components,

various metrics were calculated to assess the error of the PLS prediction model using K-

fold cross validation for each metric. Similar to the previous cross validation, data was

randomized and the number of folds implemented was five. Each result from the testing set

was then combined to an overall evaluation relative to the original data. The first metric

obtained was the RMSE, found to equal 486.38. The RMSE value provides an average

distance of 486.38 USD from the predicted output to the true value. The training model

was found to have an RMSE at 463.59, two relatively close values. Next, the cross validated

𝑅2 value was found to equal 0.92. Likewise, the 𝑅2 value found using the training set was

also found to equal 0.92. The closeness of these two values suggests PLS regression has

a predictive goodness of fit equivalent to the trained data. Finally, a plot of the fitted PLS

regression against the moving average of Bitcoin value and a plot of the predicted Bitcoin

price against the moving average of Bitcoin value was generated.
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Figure 7.9. The fitted PLS regression plotted against the 20-day moving average of Bitcoin.

Figure 7.10. The predicted value of Bitcoin compared to the moving average of Bitcoin.

As observed in figure 7.9, the fitted line appears to have a strong fit to the moving

average Bitcoin value. Likewise in figure 7.10, the predicted value closely resembles the

true curve of the moving average Bitcoin price. It can also be observed that the predicted

price tends to underestimate the true price before a decline in value while also exceeding
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the true price before an increase in value. This observation can been seen approximately

occurring at days 75, 180, 225, and 280 suggesting PLS regression may be able to help

anticipate moving average price movement with further exploration and refinement.
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8. CONCLUSION

From the results obtained from the study, we were successfully able to use metrics

from on-chain data to predict the moving average value of Bitcoin. On average, the distance

form the predicted value to the true moving average value was 486 US dollars. In addition,

correlation to the bitcoin value was improved to a value 0.92. We believe that implementing

such a model to predict moving averages of crypto currencies could be useful in developing

trading strategies. All crypto currencies include on-chain data and similar techniques may

be applied to a wide variety of on-chain data.

Future work that could expand upon the model obtained in the this study includes

model reduction, expansion of time period analyzed, and incorporating other on-chain

data metrics. While the model form this study used eight predictor variable, we believe

that a simpler model with adequate predictive capacity can be obtained. Trends using

transaction fee as the base variable appear nearly identical. Incorporating only one of the

three predictors may suffice. Also, the time period in which to train the data can also be

expanded to exclude the halving event. Exclusion of the halving event may allow predictors

based on rewards to be incorporated, given its trend closely resemble Bitcoin value with

the exception of the halving event. In addition, using a moving PLS regression may be

interesting to avoid the use of outdated correlations. Finally, reducing the time period for

the moving average may yield an advantage to predict the direction of movement.

Overall, the data analysis provided a successful prediction of Bitcoin’s moving

average price. While there is room for improvement, utilizing correlated on-chain data to

generate a predictive model using PLS regression appears to show promise as an analytical

technique for price and movement prediction. Utilizing this methodology on other crypto

currencies such as Ethereum that include addition on-chain metrics have the potential to

yield similar results.
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