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ABSTRACT 

Wireless devices are becoming increasingly pervasive across all aspects of 

society. Examples of such devices include radios, routers, mobile phones, tablets, and 

more. As the number of radio frequency (RF) devices continues to rise, so does the 

amount of interference and noise increase. This is why an efficient approach to 

interference detection is explored. Most research within this area has been done strictly 

within the frequency domain as viewing a signal within this domain provides many 

insights into what makes the signal. This has, however, led to the time domain being 

underutilized for this area of research. 

To explore the time domain and its uses within radio frequency interference (RFI) 

detection we propose a lightweight program that requires knowledge of the known set of 

RF devices. The program utilizes a Long-Short Term Memory model to simulate a 

known radio set; it does this by training on a set of known signals interfered with each 

other. A custom statistical discriminator is then used to compare the simulated signal to 

the received signal. The output bounds of interference are then observed to determine 

how accurately our model detects and localizes interference. 
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1. INTRODUCTION 

Radio Frequency (RF) devices are increasing in number with an average of 9 

devices per household as of 2022. RF devices permeate every aspect of modern 

existence, be it an Alexa on the counter or a medical telemetry device measuring a 

patient's vitals. These devices have become a necessity for many and tied in with the 

strictly increasing number of devices how we handle interference and noise within the RF 

spectrum becomes ever more important. 

Several approaches to RFI detection exist, predominantly within the frequency 

domain. The frequency domain represents a signal as relative amplitudes across a set of 

frequencies. This is especially useful for seeing which frequencies at what amplitudes 

make up a signal and is very effective for determining if interference is present within a 

signal. This approach, however, relies on the assumption that you have the resources and 

time to perform a Fast Fourier Transform (FFT) on a signal. The frequency domain also 

neglects any relations across time a signal may have. When dealing with high-density RF 

environments, the cost of an FFT becomes apparent, which led us to explore time domain 

detection. 

The time domain poses challenges of its own, namely signal complexity is 

increased due to a more apparent Signal-to-Noise ratio (SNR), and any signal can, in 

theory, be broken down into sub-signals thus it is a difficult problem to determine what 

signals went into creating a received signal. To address these challenges a few 

approaches and avoidant measures were taken. With these challenges addressed, time 

domain detection will be shown to be a resource-efficient alternative to frequency domain 

detection in live-radio scenarios.   
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In the following paper, we will demonstrate several aspects of time domain Radio 

Frequency Interference Detection (RaFID). Such aspects include: 

• The ability of an LSTM to simulate a known radio/radio set. 

• Overcoming time domain learning challenges with statistical detection. 

• Comparison of complexity between the FFT and our custom statistical 

detection. 
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2. LITERATURE REVIEW 

There are a plethora of machine learning approaches designed for anomaly 

detection and each holds its own benefits and costs [19]. Such requirements may include 

more strenuous preprocessing, larger data requirements, and so on. Out of all of the 

machine learning approaches, however, none surpass those within the realm of deep 

learning [12]. While many deep learning architectures can be used with decent 

effectiveness, the two most seen structures for anomaly detection are LSTMs [16][17] 

and CNNs [16], or variants thereof [1][18]. Generally, LSTMs are utilized for time 

domain datasets while CNNs are used for frequency domain datasets. There are some 

CNN variants that are built for the juxtaposition of these two domains [18] and they have 

seen great success within anomaly detection. 

The CNN structures explored in [1] are the YOLOv3 model and a Convolutional 

Auto-Encoder (CAE) [7]. Briefly, YOLOv3 is a deep 1x1 convolutional neural network 

that classifies objects in an image or video, and CAEs utilize convolutional neural 

networks to facilitate the encoding and decoding of the Auto-Encoder; auto-encoders [20] 

are unsupervised models that attempt to encode input and then decode an output as 

similar to the input as possible utilizing the generalized pattern extracted from the 

encoding process. These approaches experience reduced performance when encountering 

low SNR and SIR, a weakness shared by many CNN derivative structures. Overall, 

YOLOv3 and CAEs demonstrated 89% and 78% precisions, respectively. The TCN [18] 

structure demonstrates a great ability to detect anomalies demonstrating a higher recall 

than that of its CNN or LSTM counterparts. It does come with a high cost of requiring 

data be in a time-frequency domain format which is a level of processing that can’t be 
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guaranteed in the majority of environments. This is what brings us to LSTMs as they are 

more lightweight than their CNN counterparts. LSTMs tout an exceptional ability to 

detect anomalies in sequential data sets [6] and, standardly, have a faster run-time than 

CNNs when restricted to CPU processing; it is essential to note that with GPU 

processing, a CNN runs much faster than an LSTM [21]. While LSTMs are great for time 

series data estimation and anomaly detection, they can begin to underperform in the 

presence of high-complexity data sets (i.e., RFI). Our work addresses this issue by 

batching data into manageable sizes for an LSTM. This adjustment serves to address 

learning difficulties seen with LSTM detection [18] by offloading detection from the 

LSTM.  

Statistical analysis as a means of RFI detection has seen considerable success, as 

seen in [9] and [22]. A common trend in these papers is the treatment of a signal as a 

probability space. The first paper covers using Eigenvalue Analysis to detect RFI, 

specifically within the space environment. They successfully utilized a maximum-to-

minimum eigenvalue (MME) ratio to see if RFI was occurring. They outperformed other 

techniques that rely on full-band or spectral kurtosis analysis [23]. On the other hand, 

[22] explores using probability density function (PDF) moment calculations to determine 

if RFI is present. This paper demonstrates that the formulated approach works well with 

sinusoidal signals with a duty cycle of less than 50%. They note that there is still work 

regarding other signal parameters. Another approach utilizes compressive statistical 

sensing to detect and mitigate RFI [24]. This approach abuses the periodic nature of RF 

signals to detect where interference may occur with second-order statistical analysis. A 

method of detection created by Schoenwald et al. [23] investigates using Independent 
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Component Analysis (ICA) preprocessing with kurtosis as a test statistic to detect 

interference in an RF signal. The further the kurtosis value from 0, the more likely that 

interference was in a signal.  

While these approaches show promise for RFI detection, they are very strict and 

limited on what problems and spaces they can apply to and within. A primary limitation 

of these approaches is the difficulty of detecting interference in a signal where 

interference is present for a majority of the signal as well as with low SNR and SIR. This 

is expected as their basis for comparison is a short-term measure of the current signal. 

With low SNR and SIR, you will see an increase in difficulty with detection as the 

changes they make to any signal at any given time step are observably small. Thus, a 

clean basis of comparison is evermore necessary for discrimination. Our approach 

addresses this weakness of statistical detection by creating a clean signal LSTM generator 

that simulates a given radio set. This allows us to provide a clean basis of comparison for 

statistical detection which opens the door for low SNR and SIR detection. 

Overall, while many approaches, both machine learning and statistical, exist, very 

few combine the strengths of both to overcome their limitations. Through this 

juxtaposition of anomaly detection, the realm of time-domain learning is exhibited as 

comparable to that of its frequency-domain counterpart. 
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PAPER 

I. RAFID: A LIGHTWEIGHT APPROACH TO RADIO FREQUENCY 

INTERFERENCE DETECTION IN TIME DOMAIN USING LSTM AND 

STATISTICAL ANALYSIS 

ABSTRACT 

Recently, the utilization of Radio Frequency (RF) devices has increased 

exponentially over numerous vertical platforms such as medical instrumentation, airplane 

control system, computing hardware, smart homes, etc. This rise has led to an abundance 

of Radio Frequency Interference (RFI) that continues to plague RF systems today and can 

significantly disrupt the normal functioning of RF-incorporated devices. The continued 

crowding of the RF spectrum makes RFI’s efficient and lightweight mitigation more 

critical. Detecting and localizing the interfering signals is the foremost step for mitigating 

RFI concerns. Addressing these challenges, we propose a novel and lightweight 

approach, namely RaFID, for detecting and localizing the RFI by incorporating deep 

neural networks and statistical analysis via batch-wise mean aggregation and standard 

deviation calculations. The proposed RaFID approach investigates the generation of an 

expected signal using deep neural networks, specifically convolutional neural networks 

(CNN) and long short- term memory (LSTM), within the time domain only. We 

generated the RF data using the Phase Shift Keying modulation scheme to evaluate our 

scheme. In addition, we performed the statistical analysis to compare our generated 

expected signal with the received signal to detect the existence of interference and 

determine interference frequency. Experimental results show that signal estimation is 
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accurate, with a mean squared error of 0.012 and an average run-time of 0.5 seconds. 

Further, RaFID locates the interference within a tenth of a second from the occurrence 

location and detects interference in environments with a Signal-Noise-Ratio of more than 

1.75. 

 

1. INTRODUCTION 

The fast growth of society and the progression toward a more wireless world have led 

to a steadily growing number of Radio Frequency (RF) devices corresponding to an 

increased crowding of the RF spectrum. The overpopulation of machines within the finite 

RF spectrum has led to the growth of Radio Frequency Interference (RFI)1. Caused by a 

variety of issues such as unknown signals and noise, RFI adversely affects wireless 

performance on all fronts. It is a critical weakness that RF devices must be able to 

efficiently detect and ignore or remove, which poses three significant challenges: (i) it is 

functionally impossible to determine every source of interference within a signal, much 

less determine the potential behaviors of each point of interference [1], (ii) the problem is 

only exacerbated by the dynamic and sporadic nature of the interference [2], and (iii) the 

amount of RFI present in most systems causes the relative Signal-Noise-Ratio (SNR) and 

Signal-Interference-Ratio (SIR) to become very small [3]. Researchers have developed 

software and hardware for detecting RFI to address these challenges. Hardware 

approaches include such things as band-pass filtering and the use of spectrum analyzers 

 

1 https://cpb-eu-w2.wpmucdn.com/blogs.bristol.ac.uk/dist/6/635/files/2021/05/SWANWH2.pdf 
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[4]. Hardware approaches demonstrate superior performance in detection, whereas 

software-based techniques provide unparalleled flexibility over their hardware 

counterparts [5].  

Our work focuses primarily on the software aspect as we propose a deep learning 

approach that functions in a lightweight manner as long as minimum processing 

requirements are met. The RFI detection software methods can be categorized into (i) 

Machine Learning and (ii) Statistical Analysis. Machine learning approaches involve 

well-established model structures with common approaches involving the deep neural 

networks, most standardly the LSTM [6], and CNN [1], [7]. In brief, these approaches 

utilize classification for anomaly detection. They train a model on clean data without 

interference and then run the models on a received signal where the signal is classified as 

having interference. Some advantages of deep learning as an approach to RaFID include 

model flexibility, applicability to highly-complex problems, and recognition of 

underlying patterns. While effective at problems of this nature, disadvantages to RFI 

detection with deep learning exist. For instance, deep learning models typically have a 

much longer run-time when compared to their non-deep learning counterparts and require 

adequate time to train models. This is due to the high dimensionality needed for creating 

a deep learning model. In contrast, within the area of Statistical Analysis, there exist 

several methods of anomaly [8]. One such approach to RFI detection utilizes eigenvalues 

to find points of interference in space [9]. This 

approach calculates maximum and minimum eigenvalues to determine if interference 

exists. Given the success of both deep learning and statistical methods in RFI detection, 

we aim to combine the two fields in such a manner as to accentuate the benefits of each 
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while minimizing the detriments. By utilizing deep learning for signal estimation and 

statistical analysis via batch-wise mean aggregation, we can create a dynamic and 

flexible basis of comparison for use with our statistical detection method. 

1.1. MOTIVATIONS AND PROBLEM STATEMENT 

In 2022, there were 15.96 billion mobile devices in the world, projected to be 

18.22 billion in 2025 [10]. The steady increment of RF devices poses various threats to 

RFI towards the existing wireless communication systems. Increased amounts of RFI can 

make it hard to discern between trusted and untrusted devices. For instance, the average 

American has 13 wireless devices (i.e., cell phones, laptops, tablets, smart tv, etc.) in their 

household [11]. In households where at least this amount of devices are present, it can be 

hard to detect when an intrusive or unknown device is within the same environment. In 

the case of aircraft or unmanned aerial vehicle communications, if multiple aircraft are 

present in an environment, it may become difficult to determine when an unknown 

airliner enters the same airspace, and the ability to efficiently and actively detect 

interference becomes even more paramount. While considerable research has been 

performed in the realm of RFI detection [12][13], a large portion of that research has 

been conducted within the frequency domain [14] and left the time domain neglected. 

The time domain poses several challenges with RFI detection, including a weakness to 

highly-complex data and noise. Still, these challenges can be circumvented in such a 

manner as to provide a level of improvement in efficiency by avoiding the execution of 

the Fast Fourier Transform (FFT), which runs in logarithmic time [15]. This paper 

explores the efficacy of utilizing deep neural networks and statistical analysis with raw 
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time-series signals to detect and locate RFI within an environment efficiently and 

actively. 

1.2. CONTRIBUTIONS 

The core contributions of our proposed work are: 

• We proposed a detection and localization system for Radio Frequency 

Interference Detection, RaFID for the time domain aspects rather than the 

frequency domain by leveraging the deep neural network specifically LSTM. 

• We investigated using the LSTM to generate the expected signal for a set of 

known radios. This was done by interfering with known signals onto each other 

and batching the composite signal for use with training. The model would then 

predict the next batch provided the current batch of signals. 

• We investigate utilizing batch-wise mean aggregation and standard deviation 

calculations to detect where interference occurs by comparing the received signal 

to our expected signal at each batch. This allows for an active approach to 

detection and localization. 

• The performance of the proposed approach is analyzed using simulated RFI data. 

This data is simulated using Monte Carlo generation and M-Phase Shift Key (M-

PSK) modulation. The interfering signal additively interferes with the known 

signal set in a randomized time window, and the model then estimates where the 

interference occurs. 

Paper organization: Section II explains the related work on RFI, and the preliminaries of 

LSTM and signal estimation is provided in Section III. Section IV is devoted to our 
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proposed methodology, RaFID, followed by the experiments and discussion in Section V. 

The paper is concluded with future work in Section VI. 

 

2. RELATED WORK 

In this section, we discuss various approaches for RFI detection based on machine 

learning and statistical paradigms. 

2.1. MACHINE LEARNING-BASED APPROACHES 

Two primary deep learning frameworks are utilized for RFI detection (or, more 

generally, anomaly detection [12]). Namely, recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs) are explored in [16]. In brief, the LSTM [17], and 

TCN [18] perform comparably with equivalent layer counts. The LSTM takes longer to 

train but holds a higher precision score than the TCN. Approaches such as Naive-Bayes, 

decision trees, and K-NN clustering [19] have promising results but require precise and 

extensive preprocessing. While helpful in advancing RFI detection, these machine 

learning (ML) approaches are generally outclassed by deep learning methodologies [12] 

when comprehensive preprocessing is not possible or available; specifically CNN and 

RNN structures.  

The CNN structures explored in [1] are the YOLOv3 model and a Convolutional 

Auto-Encoder (CAE) [7]. Briefly, YOLOv3 is a deep 1x1 convolutional neural network 

that classifies objects in an image or video, and CAEs utilize convolutional neural 

networks to facilitate the encoding and decoding of the Auto-Encoder; auto-encoders [20] 

are unsupervised models that attempt to encode input and then decode an output as 
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similar to the input as possible utilizing the generalized pattern extracted from the 

encoding process. These approaches experience reduced performance when encountering 

low SNR and SIR. Overall, YOLOv3 and CAEs demonstrated precisions of 89% and 

78%, respectively.  

LSTMs have been widely used in anomaly detection and for a good reason. They 

tout an exceptional ability to detect anomalies in sequential data sets [6] and, standardly, 

have a faster run-time than CNNs when restricted to CPU processing; it is essential to 

note that with GPU processing, a CNN runs much faster than an LSTM [21]. While 

LSTMs are great for time series data estimation and anomaly detection, they can begin to 

underperform in the presence of high-complexity data sets (i.e., RFI). Our work addresses 

this issue by batching data into manageable sizes for an LSTM. 

2.2. STATISTICAL ANALYSIS-BASED APPROACHES 

Statistical analysis as a means of RFI detection has seen considerable success, as 

seen in [9] and [22]. A common trend in these papers is the treatment of a signal as a 

probability space. The first paper covers using Eigenvalue Analysis to detect RFI, 

specifically within the space environment. They successfully utilized a maximum-to-

minimum eigenvalue (MME) ratio to see if RFI was occurring. They outperformed other 

techniques that rely on full-band or spectral kurtosis analysis [23]. On the other hand, 

[22] explores using probability density function (PDF) moment calculations to determine 

if RFI is present. This paper demonstrates that the formulated approach works well with 

sinusoidal signals with a duty cycle of less than 50%. They note that there is still work 

regarding other signal parameters. Another approach utilizes compressive statistical 
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sensing to detect and mitigate RFI [24]. This approach abuses the periodic nature of RF 

signals to detect where interference may occur with second-order statistical analysis. A 

method of detection created by Schoenwald et al. [23] investigates using Independent 

Component Analysis (ICA) preprocessing with kurtosis as a test statistic to detect 

interference in an RF signal. The further the kurtosis value from 0, the more likely that 

interference was in a signal. While these approaches show promise for RFI detection, 

they are very strict on what problems and spaces they can apply to and within. A primary 

limitation of these approaches is the difficulty of detecting interference in a signal where 

interference is present for a majority of the signal as well as with low SNR and SIR. 

 

3. PRELIMINARIES 

This section consists of preliminary information that may be useful in 

understanding some of the aspects of this paper. 

3.1. LONG SHORT-TERM MEMORY (LSTM) 

LSTMs are a type of RNN that utilize the RNN structure with an added Short-

Term element. LSTMs use a cell state to maintain long-term learning; this cell state 

adjusts without weight or bias. Short-Term Memories lie within the hidden state of the 

cell; these are changed with weights and biases. In short, long-term memory allows older 

inputs to affect current estimations but also takes a more remarkable account of local 

trends in the inputs with short-term memory. This combination of long and short-term 

memory allows the LSTM to mitigate the vanishing/exploding gradient within basic 
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RNN structures. For more information on LSTM, please refer to [17]. LSTMs use gates 

of 3 types: input, output, and forget. The generic equations for each are as follows: 

𝑖𝑡 = σ(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = σ(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (1) 

𝑓𝑡 = σ(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

For these equations, wi denotes the weight for the respective gate, ht−1 denotes the 

output of the previous LSTM block at time t−1, xt denotes the current timestamp’s input, 

bi denotes the bias for the respective gate, and σ denotes the sigmoid activation function. 

The role of these gates is to determine if a feature is kept for further use. The input gate 

determines which current features to keep and which to ignore, the forget gate determines 

which previous state features to keep and discard, and the output gate controls the output 

of the current cell state. The current cell state, candidate cell state, and final output are 

calculated as follows: 

ct̃ = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃� (2) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) 

For these equations, ct denotes the current cell state, ct denotes the candidate cell 

state, and ht denotes the final output. With this information, a given cell state determines 

which information is necessary and which to forget, hence the Long Short-Term name. 

3.2. SIMULATED SIGNAL ESTIMATION 

Our methodology uses an LSTM architecture to learn a known radio set and 

estimate an expected signal based on the received signal. This estimation provides a basis 
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for comparison between received and expected signals. LSTMs allow us to make a 

simple model that applies to most if not all, signals modulated with M-Phase Shift Key 

(M-PSK). It is important to note that further experimentation needs to be performed on 

other modulation schemes to confirm if this model structure also works for them (QAM – 

Quadrature Amplitude Modulation, AM - Amplitude Modulation, FM - Frequency 

Modulation, etc.). 

𝑆𝑛(𝑡) = √2𝐸𝑠/𝑇𝑠 cos(2π𝑓𝑐𝑡 + (2𝑛 − 1)π/𝑀) (3) 

Eq. 3 represents modulating a signal with an M-PSK modulation scheme 

mathematically. Es denotes the energy of the waveform, Ts denotes the duration of the 

signal, fc denotes the carrier frequency expressed as an angular frequency, t denotes the 

current time index, n denotes the symbol duration, and M denotes the number of phases. 

 

4. PROPOSED METHODOLOGY 

This section introduces our proposed radio frequency interference detection 

scheme, RaFID, followed by the method of simulated data generation. 

4.1. RAFID SCHEME 

We propose a supervised learning approach for quick and efficient RFI detection. 

While convolutional neural networks (CNNs) have been successfully employed in RFI 

detection, they need raw time-domain signals to be converted into frequency-domain 

using Fast Fourier Transformation (FFT). Using the FFT, a time domain signal can be 

quickly converted to the frequency domain with an x-axis of Frequency and a y-axis of 

decibels. The frequency domain provides insights into constructing a signal outside of 
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time, making detecting and localizing interference quite simple. While effective, the FFT 

algorithm runs in logarithmic time, disregarding other preprocessing that may be 

necessary. This cost of CNN leads us to leverage the LSTM to detect RFI in the time 

domain only. It is important to note that while the frequency domain does demonstrate 

essential aspects of the signal mathematical (i.e., energy distribution over a range of 

frequencies, phase-shift information), these mathematical factors remain accounted for in 

our overall method rendering the use of a CNN unnecessary. The pictorial presentation of 

the RaFID approach is presented in Figure 1. 

To perform the comparative statistical analysis, we must first provide a statistical 

distribution for our received signal to be compared against. We train an LSTM on a given 

known radio set to define this distribution. Utilizing Eqs. 1-2 defined in Section III-A, we 

can further understand the LSTM portrayed in Figure 1. From left to right, each part is as 

follows: forget gate, input gate, current cell state, output gate, candidate cell state, and 

final output. This LSTM model is then used to estimate a signal given a small sample of 

the received signal, roughly 10 data points. Our approach assumes that the first batch of 

data is without interference which can be guaranteed and continues until a signal is not 

needed to compare. Under these assumptions, the first batch is considered to have no 

interfering signals and is used to initialize our saved mean squared error (MSE) set, say μ. 

This also allows us to run this model actively alongside a signal being received. Once the 

expected signal is generated, it is compared to the received signal in batches of 10 input 

sets. The pseudo-code for our proposed scheme is provided in Algorithm 1. 
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Figure 1: Psuedo-code for our statistical discriminator. 

 

 

 

The distribution obtained by LSTM training is utilized to calculate the current 

batch’s standard deviation, say σ, from our pre-saved list of batches without interference. 

With a sufficiently strict standard deviation, we can accurately detect and capture when 

the interference starts and ends within 10-time steps (which can be fractions of a second 

dependent on measurement rate) and runs in a very lightweight manner. Once the 

detection has occurred, the data can be passed to desired ML models to process aspects of 

the interfering signals for further classification. 

This method for the statistical detection of interference was created by analyzing 

how signals can be broken down into sums of cosines utilizing Discrete Cosine 

Transforms (DCTs). This allows us to treat each signal as a sum of cosines and, thus, 

Algorithm 1 Statistical Detection 

Input: 1 batch from received and expected signal 

Output: Indices for interference start and stop 

1: while Signal being received OR Radio on do 

2:  Calculate MSE of Received and Estimated signal 

3:  if isInitial(curr_signal_batch) then 

4:  MSE_List[0] = MSE 

5:  CONTINUE 

6: end if 

7: Calculate Mean of MSE_List as µ 

8: Calculate Standard Deviation of Received 

9: if σ < 0.2 and history_avg < 0.3 then 

10:  MSE_List.append(current_batch) 

11: else 

12:  Save current batch number/index 

13: end if 

14: end while 
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each batch of a signal as a potential cosine wave. Another critical part of our statistical 

approach is treating each signal as a distribution and each signal batch as a sub-

distribution. Given our treatment of each signal batch as a cosine wave, we consider each 

signal batch as a cosine distribution; it should be noted cosine distributions are effective 

approximations for normal distribution, allowing us to treat each batch as its Gaussian 

distribution to improve computational complexity. After evaluating the most similar 

distributions of the received signal to our saved batches, we can detect batches having 

distributions outside what we have defined as known. More explicitly, we are calculating 

a batch-wise mean aggregate for each batch. This results in a single mean value that 

functionally encodes the statistical aspects of each batch. At each step, the standard 

deviation of the current batch is calculated concerning the previous batches, and the three 

most recent standard deviations are stored as a short-term history which is averaged to 

create historyavg (as seen in Algorithm 1). This history of standard deviations assists in 

avoiding misrepresenting a spurious drop in difference as the end of interference. The 

current standard deviation is then compared to the ceiling accepted value of 0.2, and the 

current historyavg is compared to 0.3. If the conditions are met, then the current batch is 

added to the list of saved batches as it closely resembles those batches, whereas if the 

conditions are not met, then the current index is stored as the start of an interfering signal. 

When the conditions are met again, the index is stored as the end of an interfering signal, 

and the algorithm continues to execute in the same overall manner. This approach to 

RaFID detection introduces localization as a byproduct. The use of active detection and 

batching allows this approach to locate where a signal interference occurs reliably. 
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Figure 2: Our proposed architecture utilizes an LSTM to generate an expected signal 

using the previously generated batch to predict the currently expected signal batch. Each 

batch is compared to the current received signal batch. Interference has been detected 

when that comparison results in a large enough standard deviation. 

 

 

4.2. SIMULATION DATA 

Deep neural networks (DNNs) used to solve RF-based problems rely on a signal’s 

indicative features like time-frequency domain data, angle of arrival, etc. Diversity in the 

dataset contributes to the robust learning of the model with the assumption of the 

availability of multiple feature types in all spaces. Our scheme looks at circumventing 

this assumption by only using the raw time domain signals that would be received 

directly by radio. However, time domain data inherits only a single type of feature, 

making a significant concern for training DNNs, due to the heavy time-based 

relationships within the signal. Therefore, to enhance the robustness of model training, 

the data is batched into batches of 10-time steps with a window shift of 10-time steps; 

these time steps are roughly a hundredth of each second. Moreover, we expand our single 
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feature input into a ten-feature input set where each feature is the next time-step, and each 

batch is the next ten time steps. Time domain data also suffers from various noises in 

real-world scenarios. To this end, our data set must replicate the noise experienced in the 

real world. Thus, we have included white Gaussian noise, with each signal acting as a 

representative noise experienced as a result of hardware abnormalities and faults. 

To simulate real-world interference, we considered multiple signals overlapping 

when they interfere, ensuring our approach can detect interference even when multiple 

RF signals exist in the same time frame. Treating them as a single interfering signal in 

situations where multiple signals overlap in the same time frame is mathematically 

acceptable. Thus, the case of multiple signals interfering at multiple times with no 

overlap is adequately covered. The equation for signal interference and the equations for 

SNR, SIR, and SINR are as follows: 

𝑆𝑐 = 𝑆𝑜 + 𝑆𝑖 (4) 

𝑆𝑁𝑅 = 𝑃𝑠/𝑃𝑛 (5) 

𝑆𝐼𝑅 = 𝑃𝑠/𝑃𝑖 (6) 

𝑆𝐼𝑁𝑅 = 𝑃𝑠/(𝑃𝑖 + 𝑃𝑛) (7) 

As is seen here, interfering with two signals is simply an additive process. For the 

equations above, Sc denotes the composite or interfered signal, So denotes the signal 

being interfered upon, Si denotes the interfering signal, Ps denotes the power of the signal 

being interrupted upon, Pn denotes the power of the noise, and Pi denotes the power of 

the interfering signal. It can then be inferred that as more interfering signals and noise 

occupy an environment, the lower the SNR, SIR, and SINR get relative to our chosen 

signal. 
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4.3. LIGHTWEIGHT ARCHITECTURE 

To determine the lightweight characteristics of our proposed approach, we 

analyze various metrics such as memory usage, storage, model robustness, and run-time. 

4.3.1. Memory Usage and Storage. We shall define good memory usage as 

small enough in demand so that our model can run on a UAV without hindering other 

operations to a detrimental degree. To test memory usage, the tracemalloc library in 

Python 3.0 is used. 

After 20 executions of our program, we determined that our program used a 

ceiling value of 10.7 MB and an average of 9.9 MB of memory throughout signal 

estimation and interference detection, as reported in Figure 2. The reported memory 

could be further reduced by refactoring the code into a more function-based design. The 

current program only requires a ceiling of 3 Mb of storage, a significantly small program 

with relatively low memory requirements compared to other deep-learning models. This 

is achieved by reducing the hidden layer dimensionality of the LSTM through batching 

and avoiding costly preprocessing steps like converting to the frequency domain. 

4.3.2. Robustness. We shall define robustness as the ability of our model to 

perform accurately and efficiently regardless of the relevant spectrum of the interfering 

signals to our known signal(s). To test the overall robustness of RaFID, we utilized 

Monte Carlo generation to randomly generate various signal and modulation parameters 

with a uniform distribution. Our modulation scheme is M-PSK, and our randomized 

parameters were M (the number of constellations, Eq. 3) and the carrier frequency, which 

is used for signal creation as stated in Eq. 3. We generated a few hundred signals, all of 
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which performed similarly to the signal used for the results displayed in Section V. This 

continued positive outcome demonstrates the robustness of our model in the time domain. 

4.3.3. Run-time. We define an excellent run-time of an algorithm as the run-time 

taken in pseudo-real time with CPU processing. We evaluate our scheme’s run-time with 

an input signal of 10,000-time steps (or 10 seconds of signal). Our model can process a 

signal of this size within a ceiling value of 9.5 seconds, indicating that the detection takes 

0.95 seconds to process 1 second of data. Contrasting, the training time is a metric 

considered in DNNs-based approaches. Thus, it is essential to note that our approach 

works on the assumption that the model is trained beforehand on the central server, not 

actively, making the evaluation of training time irrelevant. 

 

 

 

Figure 3: Memory usage over 20 executions of RaFID. 
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5. EXPERIMENTS AND RESULTS 

In this section, we conducted various experiments to evaluate our proposed 

RaFID and perform a detailed discussion of the reported results. 

5.1. SYSTEM REQUIREMENTS 

We performed all our experiments on 64-bit Windows 10 OS, version 10.0.19044, 

build 19044, with AMD Ryzen 7 5800X 8-Core Processor and 32 GB RAM. The IDE is 

Visual Studio Code version 1.74 with a Python 3.10.4 Jupyter Notebook. 

5.2. EVALUATION DATASET 

Our data set comprises ten signals with 10,000 data points each that are generated 

randomly and modulated with an M-PSK modulation scheme and represent a total time 

frame of 10 seconds. The static hyperparameter values are an energy value of 1, sample 

rate of 1000, sample count of 10000, and samples per symbol of 16. The data points are 

generated with a discrete uniform distribution. For modulation, the carrier frequency and 

phase count are randomly generated to cover a wide range of potential signals with 

ranges of [10000, 20000) and [2, 10), respectively. Our train, validation, and test 

percentage spread is 40%, 15%, and 45%, respectively. This spread was used to 

demonstrate the ability of our model to apply learning to data it had never encountered. 

5.3. RADIO ESTIMATION MODEL 

First, we must show that we can accurately simulate a radio and estimate radio 

signals’ appearance. We used an LSTM model trained for 200 epochs on our generated 
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known signal set. Our model consists of the linear activation function, ADAM 

optimization, and mean-squared error as a loss function. Initially, the model is trained 

with an environment of one radio, which takes input as ten-time steps of a time-series 

signal and outputs the next ten time steps. The known radio scenario is trained 100 times 

with Monte Carlo-generated signals and performed similar training throughout each 

execution. 

Learning one radio signal is achieved with a simple deep-learning model. The 

main issue with one model per radio becomes apparent when considering UAV 

environments where multiple known radios exist within the same airspace. We avoid 

treating these radios as interfering radios. For this case, we tested training a single model 

on the complete known radio set signal, represented as one signal where each radio has 

interfered with the other signals; it should be noted that the same model is used for this 

case as the previously mentioned single radio scenario. Despite the slight increment in the 

incorrect estimations and the degree of incorrect, the model could still correctly estimate 

specific signals when trained on the complete known radio set’s signal. Demonstrating 

transferable learning allows our methodology to scale to various known radios. It can be 

applied to one model per radio problem or environments where a combination of their 

signals represents all radios. Conclusively, we can train our model on a signal where each 

known radio is interfered with one another and use it to estimate an expected signal even 

when only one of the original radios is operational within the same environment. 

The estimated signals obtained by our proposed scheme over the expected signals 

are reported in Figures 3-4. In Figure 3, we compare an expected signal estimated by our 

LSTM and the accurate signal generated via Monte Carlo methods. In contrast, Figure 4 
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shows the signal split into sub-signals to assist with visualizing the similarity. The signal 

similarity and Mean Squared Error (MSE) between the expected and estimated signals 

are mentioned above each sub-figure. The MSE and similarity values are calculated via 

the Dynamic Time Warping (DTW) algorithm by analyzing two sequential datasets 

outside of phase. 

 

 

 

Figure 4: Signal estimation when trained over known signals. 

 

5.4. INTERFERENCE DETECTION 

Continuing the scenario mentioned earlier, our approach for RFI detection can 

accurately determine the locations of interference that begins and ends actively. We 

perform detection analysis after successfully evaluating the similarity between expected 

and estimated signals in the previous section. We have generated a few hundred signals, 

all of which perform to a similar degree as those seen in this paper. As seen below in 
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Figure 5, it is quite apparent where the interference occurs as our approach dramatically 

increases the visibility of the interference to a point where it can be mathematically 

determined. 

Our overall approach, RaFID, for detection starts by utilizing batch-wise mean 

aggregation to reduce the dimensionality and overall complexity of the data into an 

indicative value for each batch of the received signal. It is important to note that the 

initial batch’s mean is treated as having no noise and stored in a list. After the first batch, 

batch-wise mean aggregation is performed on each batch. The standard deviation of each 

batch-wise mean aggregate is then calculated about the average of the list of stored 

means. The standard deviation is saved in a history variable that keeps track of the three 

most recent standard deviations. If a calculated standard deviation is less than 0.2 and the 

average of the history variable is less than 0.3, the batch-wise mean aggregate for the 

current received signal batch is appended to the stored mean list; else, it a flag is raised, 

and the index of the current batch is stored as a starting point for interference. Once the 

standard deviation conditions are satisfied again, the current index is stored as an ending 

point of interference. This algorithm continues to run this way for as long as desired. 

Interference Detection with Varying SNR. As shown in Figure 5, when 

supplied with an SNR of 1.75, the points where interference begins and ends can be 

accurately and actively detected with our approach. As we now have a functioning 

model, we explore and perform edge-case analysis to test the conditions where RaFID 

breaks, specifically regarding noise. We experimented with SNR values of 1.5, 1.75, 2, 

and 5 with a noise type of white Gaussian noise, and the obtained signals are depicted in 

Figure 6. This allows us to know how applicable our approach is when encountering 
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various amounts of noise. Specifically, low-noise environments where the SNR will be a 

large number of high-noise environments where the SNR will be quite small. 

Shown in Figure 6, with an SNR of at least 1.75, our proposed approach 

adequately and distinctly detects interference in multi-radio environments where noise is 

present. Other comparable works [25] can detect interference, but these schemes are 

presented for scenarios in which signals have a sufficiently large SNR (low-noise 

environments). However, for non-white noise, our approach performs similarly for white 

Gaussian with an SNR of more than 4. This is different from white Gaussian noise but is 

expected as non-white noise could be treated as an interfering signal. To this end, it is 

essential to classify the noise native to known radios. 

5.5. INTERFERENCE DETECTION WITH VARIOUS NON-WHITE NOISE 

For the case of non-white noise, we opted to test out Brownian noise SB, Pink 

noise SP, and Blue noise SBL, defined in Eqs. 8-10 respectively, with SNR values of 

1.25, 1.75, 2, and 4. Non-white noise calculations can be thought of as equations 

representative of the relationship between power level and frequency. Based upon the 

desired non-white noise the relationship between power level and frequency is calculated. 

𝑆𝐵 = ∫
𝑑𝑊(τ)

𝑑τ

0

𝑡

 𝑑 (8) 

𝑆𝑃 =
𝑊(τ)

𝑓
(9) 

𝑆𝐵𝐿 = √𝑓 ∗𝑊(τ) (10) 

W indicates White Gaussian noise with equal power at each frequency and f denotes the 

frequency of the signal. 
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Figure 5: Batches of size 100 to illustrate the estimation ability of RaFID. The Dynamic 

Time Warping algorithm determines Similarity. 
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Figure 6: Our proposed scheme detects the interference occurrence between points 31 and 

90 (or time steps 3100 and 9000 of our received signal). 

 

 

 

 

Figure 7: Detection Results with various SNR values. The higher the SNR value, the 

greater the difference in power level between the signal and associated noise. 
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The detected signals for each noise are reported in Figures 7-8. We observed that 

for Brownian and Pink noise, with 4 RaFID performs well with SNR values greater than 

or equal to 4. In contrast, RaFID detects interference with Blue noise for SNR values of 

more than 2. Given these results, we can say that our model handles RaFID with Blue 

noise better than that of Brownian or Pink noise as we are looking to determine the 

smallest SNR in which our approach still functions. Thus, we can infer that there are 

certain non-white noise types whose power level as a function of frequency are better 

suited for our approach and others that are not. From the included non-white noises the 

pattern appears to lie in low-frequency dominance (pink/brownian) vs high-frequency 

dominance (blue) noise. 

 

 

Figure 8: Detected signals using RaFID for Brownian noise. 
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It happens due to the high false positive rate that non-white noise introduces to 

varying degrees. The false positive rate results from the varying power levels relative to 

the frequencies within each type of noise. Across these types of non-white noise, it can be 

observed that our approach has a higher SNR floor with which it executes successfully. 

Investigation into determining the prevalent noise type within an interfered signal at the 

preprocessing step may prove beneficial for RFI detection in non-white noise. 

Interference Detection with Varying SIR. Some interfering signals may have a 

lower or higher power level relative to our known signals. The SIR is considered to 

further expand upon potential occurrences in real-world signals. To this end, we have 

tested SIRs of 0.5, 1.25, 2, and 4. These tests are performed after previous experiments 

and comparisons have been completed and are disjointed. It is important to note that 

Figures 10-7 used different signal combinations. 

 

 

Figure 9: Detected signals using RaFID for Pink noise. 
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Figure 10: Detected signals using RaFID for Blue noise. 

 

 

 

 

Figure 11: Detection Results with various SIR values. The higher the SIR value, the 

greater the power level of the known signal vs. the interfering signal, and vice versa. 
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As shown in Figure 10, with the interference’s power level getting smaller than 

that of our known signal, the model begins to not detect interference as well with a SIR as 

low as 2. This makes logical sense, however, as the greater the SIR, the less impact the 

interfering signal has upon our known signal. It is also demonstrated that, inversely, with 

increasingly smaller SIR values, the model performs with a greater degree of success. 

As is demonstrated in Figure 11, interference is reliably detected in the windows 

of occurrence. One important observation is how it operates across the two 

representations: overlapping and non-overlapping signals. In the case of non-overlapping 

signals, our approach can accurately indicate where the interference for each radio of this 

type begins and ends. However, in the case of overlapping interference, our solution finds 

the complete time frame where it exists until such a time that interference is not present. 

We observe that it is an acceptable outcome as this problem looks to solve RFI detection 

with a byproduct of localization, not to determine the number of interfering devices 

present. 

 

6. CONCLUSION 

This paper proposes a lightweight deep-learning model to detect interference upon 

a known radio set. The proposed methodology utilizes an LSTM to generate an expected 

signal and defines our desired signal as our determined distribution. The determined 

distribution is then compared to the received signal, and interference is detected as per 

Algorithm 1. Our simulations have shown that deep learning techniques can be used with 

statistical analysis to accurately and distinctly detect when RFI begins and ends within 

the time domain. This method’s degree of success depends upon the relative SNR and 
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SIR values, as sufficiently low SNR and sufficiently high SIR begin to demonstrate a 

reduction in overall detection ability. This paper provides an evidence-driven basis for 

utilizing both deep learning and statistical analysis to offset the limitations apparent in 

time-domain RFI detection. 

This paper also laid the groundwork for the proof of transferable learning between 

multi-signal and single-signal environments when trained on a signal consisting of all 

known signals. In our tests to adequately explore and reduce the initial issues of a single-

radio model, we discovered that a model trained on a known signal set’s combined signal 

performs comparably to that of having a model per radio. While we can’t rule out the 

possibility that there are cases where this approach may not work, more research can 

indeed be performed to explore the uses and limitations of this approach. One limitation 

of this approach is the reliance on the assumption that the initial signal measuring has no 

interference from outside noise. This assumption can be accounted for by keeping a 

stored reference point to initialize the detection. We foresee potential future explorations, 

including interference classification, modulation algorithm expansion, and interference 

estimation. 
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SECTION 

3. UNPUBLISHED WORK 

The potential of expanding upon this research is to determine signal trust based on 

noise levels within a known signal. This research was recently started and will not be 

completed by the time of this publication. 

The use of this work in more real-world environments and stress tested within 

those environments. We started exploring real-world data but that research will not be 

published by the time of this publication. 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

4.1. CONCLUSIONS  

This thesis presented a paper introducing time domain learning as an efficient 

alternative to frequency domain RFI detection utilizing an LSTM signal simulator and a 

statistical analysis discriminator. This work exhibits that in a dense RF environment, the 

overall complexity and memory requirements of time domain detection are superior to 

that of frequency domain detection and can be effectively used with live signals being 

actively received. Our work also demonstrated the differences between different types of 

noise and how they affect the detection of interference in an environment. 

We also established the validity of transferable learning in time domain signal 

simulation. The ability to train a single standard LSTM on a set of known signals 



 

 

39 

interfered with each other and still accurately simulate any subset of those signals will be 

a boon to future research within RFI detection. This demonstration holds great promise 

and warrants future exploration. 

4.2. RECOMMENDATIONS 

We recommend further exploring this approach and its interactions with varying 

signal modulation schemes, noise types, and RF environments. For instance: QPSK, 

QAM, etc. While we did begin investigating these other modulation schemes we were 

unable to complete explorations and comparisons.  

We also recommend exploring the use of this approach with more real-world 

environments as we did find that noise in real-world data does require some additional 

tuning for comparable results. Overall, from what we were able to find up to this point 

results were similar despite the large increase in ambient noise. 

A final recommendation is to adequately consider and research expanding the 

use-case(s) of this research to include areas such as trust determination and signal 

extraction. Trust determination, as described in Unpublished Work, would utilize our 

approach to determine a signal’s trustworthiness based on SNR/SIR levels as compared 

to our generated signal. The ability to isolate noise is similarly implicit in the design of 

our approach as signal interference is additive, but the difficulty comes with determining 

how many signals may be interfered to create the residual signal. 
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