
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2024

The Deep BSDE Method The Deep BSDE Method

Daniel Kovach
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Mathematics Commons

Department: Department:

Recommended Citation Recommended Citation
Kovach, Daniel, "The Deep BSDE Method" (2024). Masters Theses. 8178.
https://scholarsmine.mst.edu/masters_theses/8178

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/8178?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

THE DEEP BSDE METHOD

by

DANIEL GERALD KOVACH II

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

2023

Approved by:

Jason Murphy, Advisor
Daozhi Han

Yanzhi Zhang

Copyright 2023

DANIEL GERALD KOVACH II

All Rights Reserved

iii

ABSTRACT

The curse of dimensionality is the non-linear growth in computing time as the

dimension of a problem increases. Using the Deep Backwards Stochastic Differential

Equation (Deep BSDE) method developed in [1], I approximate the solution at an initial

time to a one-dimensional diffusion equation. Although we only approximate a one-

dimensional equation, this method extends well to higher dimensions because it overcomes

the curse of dimensionality by evaluating the given partial differential equation along

“random characteristics”. In addition to the implementation, I also present most of the

mathematical theory needed to understand this method.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Murphy for his expertise and guidance with partial

differential equations and the theory and implementation behind the Deep BSDE method

and neural networks. Additionally, I would like to thank Dr. Wenqing Hu for his expertise

in deep learning and help in understanding the various optimization methods traditionally

used in statistical learning, and Jacob Hauck, a PhD student and Kummer Fellow, who was

kind enough to assist with the PyTorch implementation. I would also like to thank Dr.

Chen-Murphy, whose applied matrix theory course and other pure math courses improved

my ability to write proofs and understand the theory necessary for this paper. Last, but not

least, I would like to thank the members of my family who supported me and without whom

I could not have completed this. Namely, my parents and grandparents.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

SECTION

1. INTRODUCTION. 1

2. STOCHASTIC THEORY . 2

2.1. PROBABILITY THEORY . 2

2.1.1. Preliminaries . 2

2.1.2. Independence . 5

2.1.3. Conditional Expectation. 6

2.2. STOCHASTIC PROCESSES . 7

2.2.1. Brownian Motion . 8

2.2.2. Introduction to Stochastic Integrals . 12

2.2.3. Itô’s Integral . 18

2.2.4. Stochastic Differential Equations . 21

3. NEURAL NETWORKS . 31

3.1. INTRODUCTION . 31

3.2. GENERAL STRUCTURE. 31

3.2.1. Activation Functions . 33

3.2.2. Architectures . 35

3.2.3. Loss Functions . 35

3.2.4. Optimization Algorithms. 36

vi

3.2.5. Gradient-Based Methods . 37

3.3. APPLICATIONS . 39

4. THE DEEP BSDE METHOD . 41

4.1. AN INTRODUCTION TO DEEP BSDE . 41

4.2. EXPLICIT PDE SOLUTION . 45

4.3. A 1-D IMPLEMENTATION . 48

4.3.1. Step 1: Simulate Brownian Motion. 48

4.3.2. Step 2: Simulate an X-Path . 49

4.3.3. Step 3: Solve the PDE along the X-Paths and Recover 𝝃 51

4.3.4. Step 4: Repeat 1-4 Until 𝑢(𝑥, 0) is Recovered . 54

4.4. CONCLUSION . 54

APPENDIX . 56

REFERENCES . 65

VITA . 67

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1. Haar Functions . 10

2.2. Schauder Functions . 11

2.3. Hermite Polynomials . 23

3.1. A Neural Network with Finite Width and Depth . 32

3.2. Activation Functions . 34

4.1. Brownian Motions. 49

4.2. Sample Paths . 50

4.3. A Pointwise Reconstruction of 𝑢(𝑥, 0) . 54

1. INTRODUCTION

The role of neural networks in solving the issues today has expanded at an even

greater pace in recent years. In our setting, we apply them to partial differential equations

by using stochastic differential equations as training data with a method that generalizes

well to high dimensions. This method was first established in [1], so we are only presenting

most of the theory required to understand it and an implementation of it. We emphasize

that we did not discover this method, and due to technical limitations, we present only

a one-dimensional model. A survey of related methods can be found in [2]. There are

two branches of mathematics needed to understand the Deep BSDE method: stochastic

differential equations and nonlinear optimization. We begin with the former, continue with

the latter, then present the implementation of [1].

2

2. STOCHASTIC THEORY

The following assumes familiarity with measure theory. See the appendix for more

information.

2.1. PROBABILITY THEORY

2.1.1. Preliminaries. We first review some definitions from probability theory.

Definition: A probability space is a triple (Ω,U, P) where Ω ⊂ R𝑛 is a collection

of open sets, U is a 𝜎-algebra which acts on subsets of Ω, and P is a probability measure

on U. That is, a probability space is a measure space where the measure is a probability

measure.

Definition: We say P : U → [0, 1] is a probability measure on the 𝜎-algebraU if

the following holds:

1. P(∅) = 0, P(Ω) = 1.

2. Countable sub-additivity: If 𝐴1, 𝐴2, . . . ∈ U, then

P(∪∞𝑘=1) ≤
∞∑︁
𝑘=1
P(𝐴𝑘),

with equality holding if 𝐴𝑘 ’s are disjoint.

3. Monotonicity: If 𝐴, 𝐵 ∈ U : 𝐴 ⊆ 𝐵, then P(𝐴) ≤ P(𝐵).

Definition: A mapping

X : Ω→ R𝑛

is called an 𝑛-dimensional random variable if for each 𝐵 ∈ B, we have

X−1(𝐵) ∈ U,

3

where B is the Borel subsets of R𝑛. Note that

X−1(𝐵) ∈ U = P(X ∈ 𝐵)

and

∃Φ : 𝑌 = Φ(X) ⇐⇒ ∃𝑌 ∈ U(X).

Definition: The expected value of a vector-valued random variable is

E(X) :=
ˆ
Ω

X𝑑P.

Definition: The variance of a vector-valued random variable is

V(X) :=
ˆ
Ω

|X − E(X) |2𝑑P.

Definition: The distribution function of X is the function

𝐹X : R𝑛 → [0, 1]

defined by

𝐹X := P(X ≤ 𝑥),∀𝑥 ∈ R𝑛.

If we have a collection of vector-valued random variables, we generalize the previous

definition to

𝐹X1,...,X𝑚
: (R𝑛)𝑚 → [0, 1]

defined by

4

𝐹X1,...,X𝑚
:= P(X1 ≤ 𝑥, . . . ,X𝑚 ≤ 𝑥𝑚),∀𝑥𝑘 ∈ R𝑛, 𝑘 = 1, . . . , 𝑚.

Definition: Let X : Ω → R𝑛 be a random variable with distribution function

𝐹 = 𝐹X. If there exists a non-negative, integrable function 𝑓 : R𝑛 → R such that

𝐹 (𝑥) = 𝐹 (𝑥1, . . . , 𝑥𝑛) =
ˆ 𝑥1

−∞
. . .

ˆ 𝑥𝑛

−∞
𝑓 (𝑦1, . . . , 𝑦𝑛)𝑑𝑦𝑛 . . . 𝑑𝑦1,

then 𝑓 is called the density function for X.

Then we also have

P(X ∈ 𝐵) =
ˆ
𝐵

𝑓 (𝑥)𝑑𝑥,∀𝐵 ∈ B.

Definition: A random variable X : Ω→ R with density

𝑓 (𝑥) = 1
√

2𝜋𝜎2
𝑒
− |𝑥−𝜇 |

2

2𝜎2 (𝑥 ∈ R)

is called Gaussian with mean 𝜇 and variance 𝜎2.

Theorem: If the distribution of X is given by P, with density 𝑓 (X), then for any

function 𝑔(X) ∈ B ⊂ Ω,

E(𝑔(X)) =
ˆ
Ω

𝑔(X)𝑑P =
ˆ
Ω

𝑔(X) 𝑓 (X)𝑑X.

So E(𝑔(X)) is a linear functional ℓX : C(R𝑛;R) → R. So by the Riecz Represen-

tation theorem (see appendix A), we know there exists a unique Borel measure 𝜇X such

that

∀𝑔 ∈ C(R𝑛),E(𝑔(X)) =
ˆ
Ω

𝑓 𝑑𝜇X.

5

Definition: The characteristic function of a density function is the Fourier trans-

form...

2.1.2. Independence. Definition: The conditional probability of an event 𝐴 ∈ U,

given the occurrence of an event 𝐵 ∈ U, is denoted P(𝐴|𝐵), and defined to be

P(𝐴|𝐵) :=
P(𝐴 ∩ 𝐵)
P(𝐵) , P(𝐵) > 0.

Definition: Events 𝐴1, 𝐴2, . . . ∈ U are said to be independent if P(⋂𝑖∈N 𝐴𝑖) =∏
𝑖∈N P(𝐴𝑖). Note that P(𝐵) = 0 is allowed under this definition. Similarly, a collection of

random variables

X1,X2, . . . ,X𝑘 are said to be independent if

∀𝐵𝑖 ∈ B, P(X1 ∈ 𝐵1,X2 ∈ 𝐵2, . . . ,X𝑘 ∈ 𝐵𝑘) =
𝑘∏
𝑖=1
P(X𝑖 ∈ 𝐵𝑖).

Equivalently, the set {U(X𝑖)}𝑖∈N of 𝜎-alebgras are independent sets.

If {X𝑖}𝑖∈N are independent, then

E(
𝑛∏
𝑖=1

X𝑖) =
𝑛∏
𝑖=1
E(X𝑖) and V(

𝑛∑︁
𝑖=1

X𝑖) =
𝑛∑︁
𝑖=1
V(X𝑖).

If X1 ∼ 𝑁 (𝜇1, 𝜎
2
1),X2 ∼ 𝑁 (𝜇2, 𝜎

2
2), then

X1 + X2 ∼ 𝑁 (𝜇1 + 𝜇2, 𝜎
2
1 + 𝜎

2
2).

Proof. We have

𝜇1 = E(X1) =
ˆ
Ω

X1𝑑P,

𝜇2 = E(X2) =
ˆ
Ω

X2𝑑P.

6

By linearity,

𝜇1 + 𝜇2 = E(X1 + X2).

Now,

𝜎1 =

ˆ
Ω

|X1 − 𝜇1 |2𝑑P,

𝜎2 =

ˆ
Ω

|X2 − 𝜇2 |2𝑑P.

Again by linearity,

𝜎1 + 𝜎2 =

ˆ
Ω

|X1 − 𝜇1 |2 + |X2 − 𝜇2 |2𝑑P

=

ˆ
Ω

⟨X1 − 𝜇1,X1 − 𝜇1⟩ + ⟨X2 − 𝜇2,X2 − 𝜇2⟩𝑑P

=

ˆ
Ω

⟨X1 − 𝜇1 + X2 − 𝜇2,X1 − 𝜇1 + X2 − 𝜇2⟩𝑑P

=

ˆ
Ω

|X1 − 𝜇1 + X2 − 𝜇2 |2𝑑P

=

ˆ
Ω

|X1 + X2 − (𝜇1 + 𝜇2) |2𝑑P

2.1.3. Conditional Expectation. Definition: E(𝑋 |𝐵) = 1
P(𝐵)
´
𝐵
𝑋𝑑P.

Definition: 𝐿2(Ω,U) denotes the set of all square-integrable, U-measurable

functions supported on a set Ω acted on by a 𝜎-algebraU and is endowed with the norm

∥X∥𝐿2 (Ω) := (
ˆ
Ω

|X|2𝑑P) 1
2 < ∞.

7

Note that each element of 𝐿2 is actually an equivalence class of all functions with the same

measure, not a particular function.

Remark: Let V ⊂ U, be another 𝜎-algebra, and define V = 𝐿2(Ω;V). Then V

is a closed subspace of 𝐿2(Ω;U).

Remark: Given X ∈ 𝐿2(Ω;U). E(X|V) = projVX. (𝐿2 projection formula).

2.2. STOCHASTIC PROCESSES

Definitions:

1. A collection {X(𝑡) |𝑡 ≥ 0} of random variables is called a stochastic process.

2. For each point 𝜔 ∈ Ω, 𝑡 ↦→ X(𝑡, 𝜔) is the corresponding sample path.

Definition: Let 𝑋 (·) be a stochastic process. Then

U(𝑡) := U(𝑋 (𝑠) | 0 ≤ 𝑠 ≤ 𝑡),

the 𝜎-algebra generated by the random variables 𝑋 (𝑠) for 0 ≤ 𝑠 ≤ 𝑡, is called the history of

the process up to and including the time 𝑡 = 0.

Definition: We call 𝑋 (·) a martingale if ∀𝑡 ∈ R,E(|𝑋 (𝑡) |) < ∞ and

∀0 ≤ 𝑠 ≤ 𝑡,E(𝑋 (𝑡) |U(𝑠)) = 𝑋 (𝑠).

We have the following martingale inequalities, respectively called Doob’s mertingale

inequality and Doob’s maximal inequality. (The martingale inequality theorems on p. 35-36

in [3].)

1. For all 𝜆 > 0, 𝑡 ≥ 0,

P(max
0≤𝑠≤𝑡

𝑋 (𝑠) ≥ 𝜆) ≤ 1
𝜆
E(max(0, 𝑋 (𝑡))).

8

2. For 1 < 𝑝 < ∞,

E(max
0≤𝑠≤𝑡

|𝑋 (𝑠) |𝑝) ≤ (𝑝

𝑝 − 1
)𝑝E(|𝑋 (𝑡) |𝑝).

2.2.1. Brownian Motion. Definition: A stochastic process𝑊 (·) is called a Brow-

nian motion (or Wiener process) if

1. 𝑊 (0) = 0 a.s.,

2. 𝑊 (𝑡) −𝑊 (𝑠) is 𝑁 (0, 𝑡 − 𝑠) for all 𝑡 ≥ 𝑠 ≥ 0,

3. For all times 0 < 𝑡1 < . . . < 𝑡𝑛, the random variables

𝑊 (𝑡1),𝑊 (𝑡2) −𝑊 (𝑡1), . . . ,𝑊 (𝑡𝑛) −𝑊 (𝑡𝑛−1)

are independent.

Proposition: Using these definitions, we may show that the following properties

of Brownian motion hold.

1. E(𝑊 (𝑡)) = 0, E(𝑊2(𝑡)) = 𝑡 (𝑡 ≥ 0) and

2. E(𝑊 (𝑡)𝑊 (𝑠)) = 𝑡 ∧ 𝑠 = min{𝑠, 𝑡} where 𝑡, 𝑠 ≥ 0.

Proof. Since 𝑊 (𝑡) ∼ N (0, 𝑡), E(𝑊 (𝑡)) = 0 immediately follows. 𝑡 = (V(𝑊 (𝑡))) 1
2 =

E((𝑊 (𝑡) − 𝐸 (𝑊 (𝑡)))2) = E(𝑊2(𝑡)) follows from this as well. Next, without loss of

generality, take 0 ≤ 𝑠 ≤ 𝑡. Then by adding zero, we see that

E(𝑊 (𝑡)𝑊 (𝑠)) = E([𝑊 (𝑠) +𝑊 (𝑡) −𝑊 (𝑠)]𝑊 (𝑠))

= E(𝑊2(𝑠) + [𝑊 (𝑡) −𝑊 (𝑠)])

= E(𝑊2(𝑠)) + E[𝑊 (𝑡) −𝑊 (𝑠)]

= 𝑠.

9

Construction:

Let {𝜓𝑛}∞𝑛=0 be a complete, orthonormal basis of 𝐿2(0, 1) such that the basis func-

tions 𝜓𝑛 : [0, 1] → R are deterministic. Then

∃ random 𝐴𝑛 ∈ R : ∀𝜉 (𝑡) ∈ 𝐿2(0, 1), 𝜉 (𝑡) =
∞∑︁
𝑛=0

𝐴𝑛𝜓𝑛 (𝑡).

Multiplying by 𝜓𝑚 on both sides of the equality, integrating against time, and using

orthonormality, we obtain

𝐴𝑛 =

ˆ 1

0
𝜉 (𝑡)𝜓𝑛 (𝑡)𝑑𝑡.

We can think of a particular 𝜉 (𝑡) as the one dimensional time-derivative of Brownian

motion. Note that this is the derivative in the sense of we have integrate against the function

to get the original function.

So then we have

𝑊 (𝑡) =
ˆ 𝑡

0
𝜉 (𝑠)𝑑𝑠 =

∞∑︁
𝑛=0

𝐴𝑛

ˆ 𝑡

0
𝜓𝑛 (𝑠)𝑑𝑠.

Theoretically any orthonormal basis will work, but we will use a basis that is the

family of Haar functions.

Definition: The family of Haar functions, {ℎ𝑘 }∞𝑘=0 are defined for 𝑡 ∈ [0, 1] such

that for some positive 𝑛 with 2𝑛 ≤ 𝑘 < 2𝑛+1, we have

ℎ𝑘 (𝑡) :=



2𝑛/2 for 𝑘−2𝑛
2𝑛 ≤ 𝑡 ≤

𝑘−2𝑛+1/2
2𝑛

−2𝑛/2 for 𝑘−2𝑛+1/2
2𝑛 < 𝑡 ≤ 𝑘−2𝑛+1

2𝑛

0 otherwise.

We also define ℎ0(𝑡) := 1 for 𝑡 ∈ [0, 1]. See Figure 2.1 for a graph of some members

of this family.

10

Figure 2.1. Haar Functions

Proposition: This family of functions forms an orthonormal basis.

Proof. Normality is fairly straightforward. For 𝑘 = 0,
´ 1

0 ℎ
2
0(𝑡)𝑑𝑡 = 1 holds. For 𝑘 > 0, we

have

ˆ 1

0
ℎ2
𝑘 (𝑡)𝑑𝑡 =

ˆ 𝑘−2𝑛+1
2𝑛

𝑘−2𝑛
2𝑛

ℎ2
𝑘 (𝑡)𝑑𝑡 =

ˆ 𝑘−2𝑛+1
2𝑛

𝑘−2𝑛
2𝑛

2𝑛𝑑𝑡 = 2𝑛 [𝑘 − 2𝑛 + 1
2𝑛

− 𝑘 − 2𝑛

2𝑛
] = 1.

It’s obvious that ∀𝑘 > 0,
´ 1

0 ℎ𝑘𝑑𝑡 = 0.

We have two cases for the orthogonality proof.

1. If their supports are disjoint, then ∀ℓ > 𝑘 ≥ 0, ℎ𝑘ℎℓ = 0.

2. If their supports are not disjoint, then ℎ𝑘 is constant on the support of ℎℓ. Thus we

have ˆ 1

0
ℎℓℎ𝑘𝑑𝑡 = ±2𝑛/2

ˆ 1

0
ℎℓ𝑑𝑡 = 0.

11

Definition: From Haar functions, we introduce the family of Schauder functions,

depicted in Figure 2.2. The 𝑘-th Schauder function for 𝑘 = 0, 1, . . . , and 𝑡 ∈ [0, 1], is

𝑠𝑘 (𝑡) =
ˆ 𝑡

0
ℎ𝑘 (𝑠)𝑑𝑠.

Figure 2.2. Schauder Functions

Proposition: A sample path of Brownian motion, 𝑡 ↦→ 𝑊 (𝑡, 𝜔) is uniformly Hölder

continuous for each exponent 0 < 𝛾 < 1/2, but nowhere Hölder continuous with exponent

1/2 < 𝛾. More specifically, this mapping is a.s. nowhere differentiable and is of infinite

variation for each time interval.

It is possible to use the integral of Haar functions, known as Schauder functions, to

form an orthonormal basis of 𝐿2 and explicitly construct Brownian motion from this basis,

but we will not do so here.

The lack of differentiability can be partially explained by the Markov property of

Brownian motion.

12

Definitions:

1. Earlier we defined the conditional expectation. We will now define the conditional

probability. That is, if V ⊆ U is a 𝜎-algebra with V ⊆ U, then the conditional

probability of 𝐴 givenV is

𝑃(𝐴|V) := E(𝜒𝐴 |V) for 𝐴 ∈ U.

2. A stochastic process X(·) ⊂ R𝑛 is a Markov process if it satisfies

∀0 ≤ 𝑠 ≤ 𝑡,∀ Borel subsets 𝐵, 𝑃(X(𝑡) ∈ 𝐵 |U(𝑠)) = 𝑃(X(𝑡) ∈ 𝐵 |X(𝑠))𝑎.𝑠.

2.2.2. Introduction to Stochastic Integrals. We are going to need to work with

a different kind of integral in order to integrate against Brownian motion. This integral is

similar in nature to Riemann-Stieljes integrals, but Brownian motion is of infinite variation

so this will not work. Therefore we have to use the Itô integral which is a Riemann sum. We

will need some definitions to establish this. First we will use the Paley-Wiener-Zygmund

integral.

Definition: Let 𝑔 : [0, 𝑇] → R be continuously differentiable and deterministic

such that 𝑔(0) = 𝑔(𝑇) = 0 (𝑔 is zero on the boundary). Then we can define a formula

similar to integration by parts:

ˆ 𝑇

0
𝑔𝑑𝑊 := −

ˆ 𝑇

0
𝑔′𝑊𝑑𝑡.

Lemma: The following properties hold for the Paley-Wiener-Zygmund integral:

1. E(
´ 𝑇

0 𝑔𝑑𝑊) = 0,

2. E((
´ 𝑇

0 𝑔𝑑𝑊)2) =
´ 𝑇

0 𝑔
2𝑑𝑡.

13

Proof. From the previous definition and Fubini’s theorem, we have

E(
ˆ 𝑇

0
𝑔𝑑𝑊) = E(

ˆ 𝑇

0
𝑔′𝑊𝑑𝑡) =

ˆ 𝑇

0
E(𝑔′𝑊)𝑑𝑡 =

ˆ 𝑇

0
(𝑔′)E(𝑊)𝑑𝑡 =

ˆ 𝑇

0
(𝑔′)0𝑑𝑡 = 0.

Again, by Fubini’s,

E((
ˆ 𝑇

0
𝑔𝑑𝑊)2) = E((

ˆ 𝑇

0
𝑔′𝑊𝑑𝑡) (

ˆ 𝑇

0
𝑔′𝑊𝑑𝑠)) = (

ˆ 𝑇

0

ˆ 𝑇

0
𝑔′(𝑡)𝑔′(𝑠)E(𝑊 (𝑠)𝑊 (𝑡))𝑑𝑡𝑑𝑠).

We’ve previously found that E(𝑊 (𝑠)𝑊 (𝑡)) = min(𝑡, 𝑠). Take 𝑠 = min(𝑡, 𝑠) So using

the above conditions on 𝑔 and integrating by parts, we have

(
ˆ 𝑇

0

ˆ 𝑇

0
𝑔′(𝑡)𝑔′(𝑠)E(𝑊 (𝑠)𝑊 (𝑡))𝑑𝑡𝑑𝑠) =

ˆ 𝑇

0

ˆ 𝑇

0
𝑔′(𝑡)𝑔′(𝑠)𝑠𝑑𝑡𝑑𝑠 =

ˆ 𝑇

0
𝑔′(𝑡) [

ˆ 𝑡

0
𝑔′(𝑠)𝑠𝑑𝑠 +

ˆ 𝑇

𝑡

𝑔′(𝑠)𝑠𝑑𝑠]𝑑𝑡 =
ˆ 𝑇

0
𝑔′(𝑡) [

ˆ 𝑡

0
𝑔′(𝑠)𝑠𝑑𝑠 +

ˆ 𝑇

𝑡

𝑡𝑔′(𝑠)𝑑𝑠]𝑑𝑡 =

ˆ 𝑇

0
𝑔′(𝑡) [(𝑡𝑔(𝑡)−

ˆ 𝑡

0
𝑔(𝑠)𝑑𝑠)+(

ˆ 𝑇

𝑡

𝑡𝑔′(𝑠)𝑑𝑠)]𝑑𝑡 =
ˆ 𝑇

0
𝑔′(𝑡) [(𝑡𝑔(𝑡)−

ˆ 𝑡

0
𝑔(𝑠)𝑑𝑠)+𝑡 (−𝑔(𝑡))]𝑑𝑡 =

ˆ 𝑇

0
𝑔′(𝑡) [−

ˆ 𝑡

0
𝑔(𝑠)𝑑𝑠]𝑑𝑡 =

ˆ 𝑇

0
𝑔2𝑑𝑡.

14

Claim: If 𝑔𝑛 → 𝑔 in 𝐿2 with 𝑔𝑛 (0) = 𝑔𝑛 (𝑇) = 0, then {
´ 𝑇

0 𝑔𝑛 (𝑡)𝑑𝑡}∞𝑛 is Cauchy in

𝐿2.

Proof. Since 𝑔𝑛 → 𝑔 in 𝐿2, it is Cauchy in 𝐿2. From the above lemma, we also know that

ˆ 𝑇

0
(𝑔𝑛 − 𝑔𝑚)2𝑑𝑡 = E((

ˆ 𝑇

0
(𝑔𝑛 − 𝑔𝑚)𝑑𝑊)2).

We can now define

lim
𝑛→∞

ˆ 𝑇

0
𝑔𝑑𝑊 = lim

𝑛→∞

ˆ 𝑇

0
𝑔𝑛𝑑𝑊,

with the limit being understood in the 𝐿2(Ω) sense. Our integral only works for deterministic

functions.

Definitions:

1. Given a partition in time 𝑃, the mesh size of 𝑃 is the largest gap between time

intervals. That is,

|𝑃 | := max
0≤𝑘≤𝑚−1

|𝑡𝑘+1 − 𝑡𝑘 |.

2. Let 0 ≤ 𝜆 ≤ 1 be fixed and let 𝑃 be a partition of [0, 𝑇]. Then we define

𝜏𝑘 := (1 − 𝜆)𝑡𝑘 + 𝜆𝑡𝑘+1.

3. Given the previous two definitions, we can now construct the Riemann sum approxi-

mation of the integral ˆ 𝑇

0
𝑊𝑑𝑊

15

with the Riemann sum

𝑅 := 𝑅(𝑃, 𝜆) =
𝑚−1∑︁
𝑘=0

𝑊 (𝜏𝑘) (𝑊 (𝑡𝑘+1) −𝑊 (𝑡𝑘)).

Depending on our choice of 𝜆, we will have different Riemann approximations. If

𝜆 = 0, this will be the approximation used to for the Itô integral. If 𝜆 = 1/2, it will

be the Stratonovich integral. We will eventually see that the choice of 𝜆 impacts the

chain rule used in Stochasic calculus. Itô’s chain rule is different from the typical

chain rule seen in classical calculus, but Stratonovich’s definition actually does not

differ. In this paper, we will only be dealing with Itô’s integral.

The Quadratic Variation Lemma:

Let [𝑇0, 𝑇] ⊂ [0,∞) be an interval with 𝑛 (different) partitions collectively denoted

by

𝑃𝑛 := {𝑇0 = 𝑡𝑛0 < 𝑡
𝑛
1 < . . . < 𝑡

𝑛
𝑚𝑛

= 𝑇} such that |𝑃𝑛 | → 0 as 𝑛→∞.

Then

𝑚𝑛−1∑︁
𝑘=0
(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 → 𝑇 − 𝑇0 𝑖𝑛 𝐿
2(Ω).

Proof. Telescoping, we have

𝑚𝑛−1∑︁
𝑘=0
(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑇 − 𝑇0) =
𝑚𝑛−1∑︁
𝑘=0
(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘).

16

Taking the expectation of this squared, we have

E([
𝑚𝑛−1∑︁
𝑘=0
(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑇 − 𝑇0)]2)

=

𝑚𝑛−1∑︁
𝑘=0

𝑚𝑛−1∑︁
𝑗=0
E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)] [(𝑊 (𝑡 𝑗+1) −𝑊 (𝑡 𝑗))

2 − (𝑡𝑛𝑗+1 − 𝑡
𝑛
𝑗)]).

If 𝑘 ≠ 𝑗 , we can see that

E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡
𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)] = E[(𝑊 (𝑡

𝑛
𝑘+1))

2 − 𝑡𝑘 + (𝑊 (𝑡𝑛𝑘))
2 − 𝑡𝑘 − (𝑡𝑛𝑘+1 − 𝑡

𝑛
𝑘)])

= E[(𝑊 (𝑡𝑛𝑘+1))
2 − 𝑡𝑛𝑘 + (𝑊 (𝑡

𝑛
𝑘))

2 − 𝑡𝑛𝑘 − (𝑡
𝑛
𝑘+1 − 𝑡

𝑛
𝑘)]

= E(𝑊 (𝑡𝑛𝑘+1))
2 − 𝑡𝑛𝑘 + E(𝑊 (𝑡

𝑛
𝑘))

2 − 𝑡𝑛𝑘 − (𝑡
𝑛
𝑘+1 − 𝑡

𝑛
𝑘)

= 𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘 − (𝑡

𝑛
𝑘+1 − 𝑡

𝑛
𝑘)

= 0.

So then the above summation reduces to

𝑚𝑛−1∑︁
𝑘=0
E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)]

2).

Note that

E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡
𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)]

2) = E([
(𝑊 (𝑡𝑛

𝑘+1) −𝑊 (𝑡
𝑛
𝑘
))2

(𝑡𝑛
𝑘+1 − 𝑡

𝑛
𝑘
) − 1]2 [(𝑡𝑛𝑘+1 − 𝑡

𝑛
𝑘)]

2).

Let 𝑋𝑘 =
(𝑊 (𝑡𝑛

𝑘+1)−𝑊 (𝑡
𝑛
𝑘
))

(𝑡𝑛
𝑘+1−𝑡

𝑛
𝑘
) .

Since𝑊 (𝑡) −𝑊 (𝑠) ∼ 𝑁 (0, 𝑡 − 𝑠), we have that 𝑋𝑘 ∼ 𝑁 (0, 1).

17

Then we have

𝑚𝑛−1∑︁
𝑘=0
E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)]

2) =
𝑚𝑛−1∑︁
𝑘=0
E([𝑋2

𝑘 − 1]2) [(𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)]

2.

Furthermore, we have that 𝑋𝑘 is a discrete martingale, since it is just Brownian

motion rescaled by the time steps.

Then by the Doob’s maximal inequality, we have

E([𝑋2
𝑘 − 1]2) = E([𝑋4

𝑘 − 2𝑋2
𝑘 + 1])

= 1 + E([|𝑋𝑘 |4 − 2|𝑋𝑘 |2])

≤ 1 + E(max
1≤𝑖≤𝑘

[|𝑋 𝑗 |4))

≤ 1 + (4/3)4E(|𝑋𝑘 |4)

Let 𝐶 = 1 + (4/3)4E(|𝑋𝑘 |4). Then we have

𝑚𝑛−1∑︁
𝑘=0
E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)]

2) ≤
𝑚𝑛−1∑︁
𝑘=0

𝐶 (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)

2

≤
𝑚𝑛−1∑︁
𝑘=0

𝐶 (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)

2

≤ 𝐶
𝑚𝑛−1∑︁
𝑘=0
|𝑃𝑛 | (𝑡𝑛𝑘+1 − 𝑡

𝑛
𝑘)

= 𝐶 |𝑃𝑛 | (𝑇 − 𝑇0).

18

It follows that

lim
𝑛→∞
|𝑃𝑛 | = 0 =⇒ lim

𝑛→∞
𝐶 |𝑃𝑛 | (𝑇 − 𝑇0) = 0

=⇒ lim
𝑛→∞

𝐶 |𝑃𝑛 | (𝑇 − 𝑇0) = 0

=⇒ lim
𝑛→∞

𝑚𝑛−1∑︁
𝑘=0
E([(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 − (𝑡𝑛𝑘+1 − 𝑡
𝑛
𝑘)]

2) = 0.

So we have

𝑚𝑛−1∑︁
𝑘=0
(𝑊 (𝑡𝑛𝑘+1) −𝑊 (𝑡

𝑛
𝑘))

2 → 𝑇 − 𝑇0 𝑖𝑛 𝐿
2(Ω).

2.2.3. Itô’s Integral. Itô’s integral is built from 𝜎-algebras and sequences that

agree with time-steps of stochastic processes known as step processes. We introduce the

definitions below.

1. The 𝜎-algebras

W(𝑡) := U(𝑊 (𝑠) |0 ≤ 𝑠 ≤ 𝑡)

and

W+(𝑡) := U(𝑊 (𝑠) −𝑊 (𝑡) |𝑡 ≤ 𝑠)

are respectively called the history and future of the given Brownian motion.

2. A filtration is a nonanticipating family F (·) of 𝜎-algebras. It is nonanticipating with

respect to𝑊 (·) if

(a) For all 0 ≤ 𝑠 ≤ 𝑡, F (𝑠) ⊆ F (𝑡),

(b) For all 𝑡 ≥ 0,W(𝑡) ⊆ F (𝑡),

(c) For all 𝑡 ≥ 0, F (𝑡) is independent ofW+(𝑡).

19

3. Stochasic processes are called nonanticipating (or adapted) if they are measurable

with respect to some filtration for all 𝑡 ≥ 0. Informally, if the process is jointly

measurable with respect to all 𝜔 ∈ Ω and 𝑡 ≥ 0, it is called progressively measurable.

4. L2(0, 𝑇) is the space of all real-valued, progressively measurable stochastic processes

𝐺 (·) such that

E(
ˆ 𝑇

0
𝐺2𝑑𝑡) < ∞.

5. Similarly, L1(0, 𝑇) is the space of all real-valued, progressively measurable stochastic

processes 𝐹 (·) such that

E(
ˆ 𝑇

0
|𝐹 |𝑑𝑡) < ∞.

6. A step process is a process 𝐺 ∈ L2(0, 𝑇) that if given a partition 𝑃 defined as before,

we have

𝐺 (𝑡) ≡ 𝐺𝑘 for 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1.

Note that since 𝐺 (·) is non-anticipating, we have that 𝐺𝑘 is F (𝑡𝑘)-measurable.

7. The Itô stochastic integral is defined to be

ˆ 𝑇

0
𝐺𝑑𝑊 =

𝑚−1∑︁
𝑘=0

𝐺𝑘 (𝑊 (𝑡𝑘+1 −𝑊 (𝑡𝑘))).

Lemma:

If 𝐺 ∈ L2(0, 𝑇), there exists a sequence of bounded step processes 𝐺𝑛 ∈ L2(0, 𝑇)

such that as 𝑚𝑛 →∞,

E(
ˆ 𝑇

0
|𝐺 − 𝐺𝑛 |2𝑑𝑡) → 0.

We omit the proof. See [3] p. 68.

Definition:

20

The Itô integral is defined as follows. Let𝐺 ∈ L2(0, 𝑇) with the same step processes

used in the lemma. Then as 𝑛, 𝑚 →∞, we have

E((
ˆ 𝑇

0
𝐺𝑛 − 𝐺𝑚𝑑𝑊)2) = E(

ˆ 𝑇

0
𝐺𝑛 − 𝐺𝑚𝑑𝑡) → 0.

Thus we have an integral which makes sense in 𝐿2(Ω). Namely,

ˆ 𝑇

0
𝐺𝑑𝑊 := lim

𝑛→∞

ˆ 𝑇

0
𝐺𝑛𝑑𝑊.

Itô Product Rule:

Suppose 𝑑𝑋1 = 𝐹1𝑑𝑡 + 𝐺1𝑑𝑊 and 𝑑𝑋2 = 𝐹2𝑑𝑡 + 𝐺2𝑑𝑊 . Then

𝑑 (𝑋1𝑋2) = 𝑋1𝑑𝑋2 + 𝑋2𝑑𝑋1 + 𝐺1𝐺2𝑑𝑡.

Integrating both sides, we have the integration by parts formula

ˆ 𝑟

𝑠

𝑋1𝑑𝑋2 = 𝑋1(𝑟)𝑋2(𝑟) − 𝑋1(𝑠)𝑋2(𝑠) −
ˆ 𝑟

𝑠

𝑋1𝑑𝑋2 −
ˆ 𝑟

𝑠

𝐺1𝐺2𝑑𝑡.

Itô Chain Rule:

Let 𝑋 (·) be a real stochastic process satisfying

𝑋 (𝑟) = 𝑋 (𝑠) +
ˆ 𝑟

𝑠

𝐹𝑑𝑡 +
ˆ 𝑟

𝑠

𝐺𝑑𝑊.

Then we say 𝑋 (·) has the stochastic differential

𝑑𝑋 = 𝐹𝑑𝑡 + 𝐺𝑑𝑊

for all times 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑇 with 𝐹 ∈ L1(0, 𝑇), 𝐺 ∈ L2(0, 𝑇).

21

Let 𝑢 : R × [0, 𝑇] → R be differenitable in time and twice differenitable in space

such that these derivatives are continuous. Then if 𝑌 (𝑡) := 𝑢(𝑋 (𝑡), 𝑡), we have

𝑑𝑌 = 𝑑𝑢(𝑋 (𝑡), 𝑡) = 𝑢𝑡𝑑𝑡 + 𝑢𝑥𝑑𝑋 +
𝑢𝑥𝑥

2
𝐺2𝑑𝑡 = (𝑢𝑡 + 𝑢𝑥𝐹 +

𝑢𝑥𝑥

2
𝐺2)𝑑𝑡 + 𝑢𝑥𝐺𝑑𝑊.

In the equivalent integral form (which exists by continuity), we have

𝑌 (𝑟) − 𝑌 (𝑠) = 𝑢(𝑋 (𝑟), 𝑟) − 𝑢(𝑋 (𝑠), 𝑠) =
ˆ 𝑟

𝑠

(𝑢𝑡 + 𝑢𝑥𝐹 +
𝑢𝑥𝑥

2
𝐺2)𝑑𝑡 +

ˆ 𝑟

𝑠

𝑢𝑥𝐺𝑑𝑊.

We omit the proof but give a sketch. For the full proof, see [3] p. 75-77.

The proof is broken into three steps. First, you consider the function 𝑢(𝑥) = 𝑥𝑚.

Then you consider a separation of variables of 𝑢(𝑥, 𝑡) into two polynomials. Then Stone-

Weierstrass implies that this holds for all 𝑢.

2.2.4. Stochastic Differential Equations. Definitions:

F (𝑡) = U(W(𝑠),X0), where 𝑡 ≥ 0 and 0 ≤ 𝑠 ≤ 𝑡

is the 𝜎- algebra generated by X0 ∈ R𝑛 and the history of the Brownian motion up

to and including time 𝑡.

Let 𝑇 > 0 be given, and let the functions b : R𝑛 × [0, 𝑇] → R𝑛,B : R𝑛 × [0, 𝑇] →

M𝑛×𝑚 also be given. Then ∀𝑡 ∈ [0, 𝑇],X(·) is a solution of the Itô stochastic differential

equation


𝑑X = b(X, 𝑡)𝑑𝑡 + B(X, 𝑡)𝑑W

X(0) = X0

if

22

1. X(·) is progressively measurable with respect to F (·),

2. F := b(X, 𝑡) ∈ L1
𝑛 (0, 𝑇)

3. G := B(X, 𝑡) ∈ L2
𝑛×𝑚 (0, 𝑇),

4. ∀𝑡 ∈ [0, 𝑇],X𝑡 = X0 +
´ 𝑡

0 b(X(𝑠), 𝑠)𝑑𝑠 +
´ 𝑡

0 B(X(𝑠), 𝑠)𝑑𝑊 a.s.

Examples:

Consider the stochastic differential equation


𝑑Y = 𝜆Y𝑑𝑊

Y(0) = 1,

where 𝜆 is a constant.

Consider the process 𝑋 (·) = 𝑊 (·), and let

𝑌 (·) := 𝑢(𝑋 (𝑡), 𝑡) = 𝑒𝜆𝑋 (𝑡)− 𝜆2𝑡
2 .

Since 𝑢𝑡 = −𝑢𝑥𝑥2 , applying Itô’s chain rule yields the stochastic differential

𝑑𝑢(𝑋 (𝑡), 𝑡) = 𝑢𝑥𝑑𝑊 = 𝜆𝑢𝑑𝑊.

Since 𝑢(𝑋 (0), 0) = 1, we have a solution process for the given SDE. Note that 𝑢(𝑥, 𝑡) under

Itô’s chain rule acts like 𝑒𝜆𝑥 under the deterministic chain rule.

Now for 𝑘 = 0, 1, . . . consider the sequence of functions defined by

ℎ𝑘 (𝑥, 𝑡) =
(−𝑡)𝑘
𝑘!

𝑒
𝑥2
2𝑡
𝑑

𝑑𝑥𝑘
(𝑒 −𝑥

2
2𝑡).

Then without proof, we claim

∞∑︁
𝑘=0

𝜆𝑘ℎ𝑘 (𝑥, 𝑡) = 𝑒𝜆𝑥−
𝜆2𝑡

2 .

23

I.e., there is a generating function of 𝑢(𝑥, 𝑡) expressed in terms of ℎ𝑘 (𝑥, 𝑡), which

are called Hermite polynomials.

Figure 2.3. Hermite Polynomials

Just as in the Maclaurin expression 𝑒𝑥 =
∑∞
𝑛=0

𝑥𝑛

𝑛! , we have that the components of

the series can be resurviely defined through deterministic differentiation:

𝑆𝑛 (𝑥) :=
𝑥𝑛

𝑛!
with

𝑑

𝑑𝑥
𝑆𝑛 (𝑥) = 𝑆𝑛−1(𝑥),

a similar notion holds for the Hermite polynomials with respect to Itô’s stochastic

differentiation.

Theroem:

The stochastic indefinite Itô integral is defined to be

𝐼 (𝑡) :=
ˆ 𝑡

0
𝐺𝑑𝑤

where 𝐺 ∈ L2(0, 𝑇).

24

Then

ˆ 𝑡

0
ℎ𝑛 (𝑊 (𝑠), 𝑠)𝑑𝑊 = ℎ𝑛+1(𝑊 (𝑡), 𝑡) or 𝑑ℎ𝑛+1(𝑊 (𝑡), 𝑡) = ℎ𝑛 (𝑊 (𝑡), 𝑡)𝑑𝑊.

Proof. Consider the process 𝑋 (·) = 𝑊 (·), and let

𝑌 (·) := 𝑢(𝑋 (𝑡), 𝑡) = 𝑒𝜆𝑋 (𝑡)− 𝜆2𝑡
2 .

Since


𝑑Y = 𝜆Y𝑑𝑊

Y(0) = 1,

we can integrate to obtain

𝑌 (𝑡) = 1 + 𝜆
ˆ 𝑡

0
𝑌𝑑𝑊 =⇒

∞∑︁
𝑛=0

𝜆𝑛ℎ𝑛 (𝑊 (𝑡), 𝑡) = 1 + 𝜆
ˆ 𝑡

0

∞∑︁
𝑛=0

𝜆𝑛ℎ𝑛 (𝑊 (𝑡), 𝑡)𝑑𝑊.

Using absolute (though we only need uniform) convergence,

𝜆

ˆ 𝑡

0

∞∑︁
𝑛=0

𝜆𝑛ℎ𝑛 (𝑊 (𝑡), 𝑡)𝑑𝑊 =

∞∑︁
𝑛=0

𝜆𝑛
ˆ 𝑡

0
𝜆ℎ𝑛 (𝑊 (𝑡), 𝑡)𝑑𝑊 =

∞∑︁
𝑛=0

𝜆𝑛
ˆ 𝑡

0
ℎ𝑛−1(𝑊 (𝑡), 𝑡)𝑑𝑊.

Since 𝜆 is arbitrary, we must have that ℎ𝑛 (𝑊 (𝑡), 𝑡) =
´ 𝑡

0 ℎ𝑛−1(𝑊 (𝑡), 𝑡).

25

Existence and Uniqueness of Solutions:

Uniqueness of solutions to stochastic differential equations means that given two

stochastic processes X(·) and Y(·) which both solve the given equation, we have that

For all 0 ≤ 𝑡 ≤ 𝑇,X(𝑡) = Y(𝑡) 𝑎.𝑠.

There is a more general proof provided in [3], where the author also allows time

dependence on 𝝁,𝝈 defined below.

The 𝑛-dimensional stochastic differential equation that describes stocks (with sta-

tionary volatility and drift) is given by the geometric Brownian motion and initial condition


𝑑X = 𝝁(X)𝑑𝑡 + 𝝈(X)𝑑W

X(0) = 𝝃,

where 𝝁 : R𝑛 → R𝑛,𝝈 : R𝑛 → M𝑚×𝑛 satisfy for some 𝐿 ∈ R

|𝝁(X1) − 𝝁(X2) | ≤ 𝐿 |X1 − X2 |

and

|𝝈(X1) − 𝝈(X2) | ≤ 𝐿 |X1 − X2 |

for all 𝑡 ∈ [0, 𝑇] and X1,X2 ∈ R𝑛. Suppose also that

|𝝁(X) | ≤ 𝐿 |X + 1|

and

|𝝈(X) | ≤ 𝐿 |X + 1|

for all 𝑡 ∈ [0, 𝑇] and X ∈ R𝑛.

26

Lastly, let 𝝃 be independent of the the future of the 𝑚-dimensional Browian motion

starting from 𝑡 = 0 and suppose the expected value of 𝝃 is square-integrable.

Then the above SDE has a unique solution X ∈ L2
𝑛 (0, 𝑇).

Proof. We have continuity in time and Lipschitz continuity in space, so we will prove

existence with successive approximations.

Let X0(𝑡) ≡ 𝝃 and define

X𝑘+1 := 𝜉 +
ˆ 𝑡

0
𝝁(X𝑘)𝑑𝑠 +

ˆ 𝑡

0
𝝈(X𝑘)𝑑W (𝑘 = 0, 1, . . .).

Let the expected value of the squared magnitude of differences between increments

of the process be denoted by

𝐷𝑘 (𝑡) := E(|X𝑘+1(𝑡) − X𝑘 (𝑡) |2), 𝑘 = 0, 1,

Suppose for all 𝑘 , 𝐷𝑘 (𝑡) ≤ (𝐴𝑡)
𝑘+1

(𝑘+1)! for some 𝐴 ∈ R.

Then expanding the quadratic and applying the Cauchy-Schwartz inequality, we

have

E(max
0≤𝑡≤𝑇

|X𝑘+1(𝑡) − X𝑘 (𝑡) |2) = E(max
0≤𝑡≤𝑇

|
ˆ 𝑡

0
𝝁(X𝑘 (𝑠)) − 𝝁(X𝑘−1(𝑠))𝑑𝑠

+
ˆ 𝑡

0
𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠))𝑑W(𝑠) |2)

≤ 2E(max
0≤𝑡≤𝑇

|
ˆ 𝑡

0
𝝁(X𝑘 (𝑠)) − 𝝁(X𝑘−1(𝑠))𝑑𝑠 |2)

+ 2E(max
0≤𝑡≤𝑇

|
ˆ 𝑡

0
𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠))𝑑W(𝑠) |2)

≤ 2𝑇E(max
0≤𝑡≤𝑇

ˆ 𝑡

0
|𝝁(X𝑘 (𝑠)) − 𝝁(X𝑘−1(𝑠)) |2𝑑𝑠)

+ 2E(max
0≤𝑡≤𝑇

|
ˆ 𝑡

0
𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠))𝑑W(𝑠) |2).

27

Continuing with using quadratic variation and the Lipschitz condition, we have

= 2𝑇E(max
0≤𝑡≤𝑇

ˆ 𝑡

0
|𝝁(X𝑘 (𝑠)) − 𝝁(X𝑘−1(𝑠)) |2𝑑𝑠)

+ 2E(max
0≤𝑡≤𝑇

ˆ 𝑡

0
|𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠)) |2𝑑𝑠)

≤ 2𝑇𝐿2E(
ˆ 𝑇

0
|X𝑘 (𝑠) − X𝑘−1(𝑠) |2𝑑𝑠)

+ 2E(max
0≤𝑡≤𝑇

ˆ 𝑡

0
|𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠)) |2𝑑𝑠).

Then by Doob’s maximal inequality,

2E(max
0≤𝑡≤𝑇

ˆ 𝑡

0
|𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠)) |2𝑑𝑠) ≤ 8𝐿2

ˆ 𝑇

0
E(|X𝑘 (𝑠) − X𝑘−1(𝑠) |2)𝑑𝑠.

Thus

E(max
0≤𝑡≤𝑇

|X𝑘+1(𝑡) − X𝑘 (𝑡) |2) ≤ 2𝐿2(4 + 𝑇)
ˆ 𝑇

0
E(|X𝑘 (𝑠) − X𝑘−1(𝑠) |2)𝑑𝑠

= 2𝐿2(4 + 𝑇)
ˆ 𝑇

0
𝐷𝑘−1(𝑠)𝑑𝑠

≤ 2𝐿2(4 + 𝑇)𝑇 (𝐴𝑇)
𝑘

𝑘!

= 𝐶
(𝐴𝑇)𝑘
𝑘!

if we take 𝐶 = 2𝐿2(4 + 𝑇)𝑇 .

Then Chebyshev’s inequality ([3] p. 21) tells us

P(max
0≤𝑡≤𝑇

|X𝑘+1(𝑡) − X𝑘 (𝑡) |2 > 1
2𝑘
) ≤ 4𝑘E(max

0≤𝑡≤𝑇
|X𝑘+1(𝑡) − X𝑘 (𝑡) |2) ≤ 4𝑘𝐶

(𝐴𝑇)𝑘
𝑘!

.

28

So we have

∞∑︁
𝑘=1
P(max

0≤𝑡≤𝑇
|X𝑘+1(𝑡) − X𝑘 (𝑡) |2 > 1

2𝑘
) ≤ 𝐶𝑒4𝐴𝑇 .

Therefore by the Borel-Cantelli lemma,

P(max
0≤𝑡≤𝑇

|X𝑘+1(𝑡) − X𝑘 (𝑡) |2 > 1
2𝑘

i.o.) = 0.

Therefore for a.e. 𝜔, we have uniform convergence on [0, 𝑇] as 𝑘 → ∞ for a

telescoping sum

X𝑘 = X0 +
𝑘−1∑︁
𝑗=0

X 𝑗+1(𝑡) − X 𝑗 (𝑡).

Let X(𝑡) = lim𝑘→∞X𝑘 (𝑡). Then

X(𝑡) = X0 + lim
𝑘→∞

𝑘−1∑︁
𝑗=0

X 𝑗+1(𝑡) − X 𝑗 (𝑡)

= 𝝃 + lim
𝑘→∞

𝑘−1∑︁
𝑗=0

ˆ 𝑡

0
𝝁(X 𝑗 (𝑠))𝑑𝑠 +

ˆ 𝑡

0
𝝈(X 𝑗 (𝑠))𝑑W

− (
ˆ 𝑡

0
𝝁(X 𝑗−1(𝑠))𝑑𝑠 +

ˆ 𝑡

0
𝝈(X 𝑗−1(𝑠))𝑑W)

= 𝝃 + lim
𝑘→∞

𝑘−1∑︁
𝑗=0

ˆ 𝑡

0
𝝁(X 𝑗 (𝑠)) − 𝝁(X 𝑗−1(𝑠))𝑑𝑠

+
ˆ 𝑡

0
𝝈(X 𝑗 (𝑠)) − 𝝈(X 𝑗−1(𝑠))𝑑W

= 𝝃 +
ˆ 𝑡

0
lim
𝑘→∞

𝑘−1∑︁
𝑗=0

𝝁(X 𝑗 (𝑠)) − 𝝁(X 𝑗−1(𝑠))𝑑𝑠

+
ˆ 𝑡

0
lim
𝑘→∞

𝑘−1∑︁
𝑗=0

𝝈(X 𝑗 (𝑠)) − 𝝈(X 𝑗−1(𝑠))𝑑W.

29

Note that we have made use of the uniform continuity for the interchanging of

summation and integration. Of course, when 𝑗 = 0, 𝝈(X 𝑗−1(𝑠)) and 𝝁(X 𝑗−1(𝑠)) do not

exist and are not present in the summation, so telescoping and taking the limit yields

X(𝑡) = 𝝃 +
ˆ 𝑡

0
𝝁(X(𝑠))𝑑𝑠 +

ˆ 𝑡

0
𝝈(X(𝑠))𝑑W(𝑠).

We have proved that there exists a solution under the assumption that for all 𝑘 =

0, 1, . . ., there exists some 𝐴 ∈ R such that

𝐷𝑘 (𝑡) ≤ (𝐴𝑡)
𝑘+1

(𝑘 + 1)! .

We proceed with induction.

Note that in the previous argument with the inequalities on E(max0≤𝑡≤𝑇 |X𝑘+1(𝑡) −

X𝑘 (𝑡) |2), we already showed the first line of the following

𝐷𝑘 (𝑡) ≤ 2𝑇𝐿2E(
ˆ 𝑡

0
𝐷𝑘−1(𝑠)𝑑𝑠) + 2E(

ˆ 𝑡

0
|𝝈(X𝑘 (𝑠)) − 𝝈(X𝑘−1(𝑠)) |2𝑑𝑠)

≤ 2𝑇𝐿2E(
ˆ 𝑡

0
𝐷𝑘−1(𝑠)𝑑𝑠) + 2𝐿2E(

ˆ 𝑡

0
𝐷𝑘−1(𝑠)𝑑𝑠)

= 2𝐿2(1 + 𝑇)E(
ˆ 𝑡

0
𝐷𝑘−1(𝑠)𝑑𝑠)

≤ 2𝐿2(1 + 𝑇)E(
ˆ 𝑡

0

(𝐴𝑠)𝑘
𝑘!

𝑑𝑠)

≤ (𝐴𝑡)
𝑘+1

(𝑘 + 1)! ,

taking 𝐴 ≥ 2𝐿2(1 + 𝑇).

For 𝑘 = 0, it is trivial using the assumptions on 𝝁,𝝈 we have not yet used.

30

For uniqueness, we have similar inequalities to 𝐷𝑘 (𝑡). That is, given two processes

X1(𝑡),X2(𝑡), we have

E(|X1(𝑡) − X2(𝑡) |2) ≤ 2𝑇𝐿2(
ˆ 𝑡

0
E(|X1(𝑠) − X2(𝑠) |2)𝑑𝑠)

+ 2𝐿2(
ˆ 𝑡

0
E(|X1(𝑠) − X2(𝑠) |2)𝑑𝑠)

= 2𝐿2(1 + 𝑇) (
ˆ 𝑡

0
E(|X1(𝑠) − X2(𝑠) |2)𝑑𝑠).

Since

E(|X1(𝑡) − X2(𝑡) |2) ≤ 0 + 2𝐿2(1 + 𝑇) (
ˆ 𝑡

0
E(|X1(𝑠) − X2(𝑠) |2)𝑑𝑠),

by Gronwall’s inequality, we must have that

E(|X1(𝑡) − X2(𝑡) |2) ≤ 0𝑒(2𝐿
2 (1+𝑇))𝑡 = 0.

We refer the reader to [3] p.92 for the remainder of the proof that the solution lies

in L2
𝑛 (0, 𝑇).

31

3. NEURAL NETWORKS

3.1. INTRODUCTION

The study of neural networks has exploded in the past decade with hundreds of

thousands of papers having been written. As such, our presentation of the more recent topics

shall be discussed later and only highlighting material relevant to the numerical estimation

of high-dimensional PDE. Neural networks are formed from their “hyperparameters”, so one

may define the study of the theory of neural networks as the study of these hyperparameters,

given some domain. We restrict our attention to the domain of R𝑛 and give a brief history

of results concerning these hyperparameters as well as some notable applications.

3.2. GENERAL STRUCTURE

In its simplest form, a neural network 𝑁 : R𝑃 × R𝑛 → R𝑚 is a non-linear mapping

from the parameters 𝜃 ∈ R𝑃 and an input vector x ∈ R𝑛 to an output vector 𝒚̂ ∈ R𝑚.

This mapping uses some chosen hyperparameters to construct a solution from a specified

architecture.

The architecture hyperparameters include

1. Depth: Number of hidden layers, 𝐻.

2. Widths: Number of parameters 𝐿𝑖 within each layer. Note that parameters may also

be referred to as neurons, units, or weights.

3. Activation function: A non-linear function𝜎(·) applied component-wise to the output

of every layer except the output layer.

We will only be considering fully-connected feedforward neural networks. These

neural networks are “feedforward” in the sense that information is fed in one-direction to

obtain an output. They are “fully-connected” in the sense that each activated parameter is

32

connected to every parameter in the next layer (there are 𝐿𝑖−1𝐿𝑖 parameters here for each

𝑊𝑖). From the depth and widths, we know that 𝑃 =
∑𝐻
𝑖=1 𝐿𝑖−1𝐿𝑖 + 𝐿𝑖 where the additional

𝐿𝑖 term represents the parameters of the bias vectors b𝑖.

In Figure 3.1, we give the network diagram displaying the architecture of a neural

network of depth 𝐻 with layer widths 𝐿𝑖, we use the following notation to aid in readability.

Let 𝑆 𝑗 =
∑ 𝑗

𝑖=1 𝐿𝑖 and 𝜎(𝜃𝑘) = 𝜃𝑘 . The activated parameters are also indicated by nodes

directed from red arrows used to denote 𝜎(·). 𝑁 (𝜃, 𝑥) = 𝑦 is the output.

x

𝜃1

𝜃2

...

𝜃𝐿1

𝜃1

𝜃2

...

𝜃𝐿1

𝜃𝐿1+1

𝜃𝐿1+2

...

𝜃𝑆2

𝜃𝐿1+1

𝜃𝐿1+2

...

𝜃𝑆2

. . .

. . .

...

. . .

𝜃𝑆𝐻−1+1

𝜃𝑆𝐻−1+2

...

𝜃𝑆𝐻

𝜃𝑆𝐻−1+1

𝜃𝑆𝐻−1+2

...

𝜃𝑆𝐻

𝒚̂

Figure 3.1. A Neural Network with Finite Width and Depth

Given the architecture hyperparameters, we have the remaining learning hyperpa-

rameters.

1. Loss function: A measurable function L that compares the target output to the output

of the neural network.

2. Optimization algorithm: A mapping from the loss function to the parameters. This

is also known as training.

3. Batch size: Amount of training data used in the optimization algorithm.

4. Epochs: Number of iterations used in training.

33

5. Learning rate: A scalar 0 < 𝜂 < 1 that sets the magnitude of the adjustment for each

iteration.

For each epoch, the neural network performs a forward pass then a backward pass.

Let 𝜃 = {𝜃𝑘 }𝑆𝐻𝑘=1. The forward pass is the mapping simply the mapping 𝑁 (𝜃, 𝑥) where

𝑁 (𝜃, x) = Λ𝐻 ◦ 𝜎 ◦ Λ𝐻−1 ◦ . . . ◦ 𝜎 ◦ Λ2 ◦ 𝜎 ◦ Λ1(x).

For 1 < 𝑖 ≤ 𝐿, where 𝐿 is the number of layers, Λ𝑖 : {𝜃𝑘 }𝑆𝑖−1
𝑘=𝑆𝑖−2

↦→ {𝜃𝑘 }𝑆𝑖𝑘=𝑆𝑖−1

is a linear mapping which maps the input vector of dimension equal to the width of the

previous layer to a vector of dimension equal to the width of the current layer. Specifically,

𝜆𝑖 (·) = 𝑊𝑖 (·) + 𝑏𝑖, where 𝑊𝑖 is a weight matrix, and 𝑏𝑖 is a bias vector. Note that Λ1 maps

the input vector to a vector of dimension equal to the width of the first layer, and Λ𝐻 is the

only hidden layer that does not get activated. x is sometimes referred to as the input layer

and 𝑁 (𝜃, x) is sometimes referred to as the output layer.

The backward pass is a mapping L(𝑁 (𝜃, x), 𝜃) : R𝑃 × R𝑛 × R𝑃 → R𝑃 with the

forward pass and parameters as inputs to the loss function and updates the parameters based

off the optimization algorithm.

3.2.1. Activation Functions. To list a few activation functions, we have

1. The linear activation function: 𝜎(𝑥) = 𝑥. That is, the identity mapping is the

activation function.

2. The logistic/sigmoidal activation function: 𝜎(𝑥) = 1/(1 + 𝑒−𝑥).

3. The rectified linear unit (ReLU) or ramp function: 𝜎(𝑥) = max{0, 𝑥}.

4. The smooth ReLU or softplus: 𝜎(𝑥) = log(1 + 𝑒𝑥).

5. The hyperbolic tangent: 𝜎(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 .

6. The arc tangent function: 𝜎(𝑥) = arctan(𝑥).

34

7. The bipolar function: 𝜎(𝑥) = sign(𝑥) if 𝑥 is non-zero.

8. The bipolar sigmoid: 𝜎(𝑥) = 1−𝑒−𝑥
1+𝑒−𝑥 .

For ease of comparison, we have plotted each of the functions on the same plot in

Figure 3.2, but we also include the plots of each individual activation function.

Figure 3.2. Activation Functions

Aside from the logistic activation function, all the 𝑆-shaped activation functions

may be referred to as “sigmoidal.” Except for the linear activation function, all the above

functions have found uses in binary classification problems, but may also be used to

35

approximate well-behaved functions. This was proven by Cybenko in [4]. Note that if the

activation function between each layer is the linear activation function, then the network is

reduced to a single-layer model. The linear activation function is always applied from the

last second to last layer to the output layer.

3.2.2. Architectures. The role of architectures in neural networks is still not en-

tirely understood, with many open questions surrounded the theory of infinite depth. How-

ever, for shallow neural networks, Cybenko’s theorem in [4] was the first to show that

two-layer neural networks of infinite width may be used as “universal appproximators.”

This was then improved by [5] who showed that one-layer networks of infinite-width are

universal approximators. Hornik then went on to prove that the choice of activation func-

tion does not induce the approximation property, but rather this property is induced by the

architecture [6]. For a further discussion of architectures, we refer the reader to [7].

Two notable theorems in neural network theory are the following:

Universal Approximation Theorem:

Cybenko and others went on to find more approximation theorems, culminating in

the present-day theorem established in [8]. This theorem roughly states that continuous

functions on a compact subset ofR𝑛 can be approximated to arbitrary precision by increasing

the number of parameters.

No Free Lunch Theorem:

Developed by Wolbert in [9], this theorem states that when averaged across all data-

generating distributions, every algorithm has the same error rate when classifying points

outside the data. In some sense, there is no general algorithm that is better than the rest.

3.2.3. Loss Functions. The following loss functions are used for regression prob-

lems: 𝐿2 Loss:

L(y, 𝑁 (𝜃, x)) = ∥y − 𝑁 (𝜃, x)∥22

𝐿1 Loss:

L(y, 𝑁 (𝜃, x)) = ∥y − 𝑁 (𝜃, x)∥21

36

𝐿0 Loss: This loss function counts the number of non-zero elements in the vector.

The following loss functions are used for classification problems:

Hinge Loss:

L(y, 𝑁 (𝜃, x)) = max(0, 1 − y · 𝑁 (𝜃, x))

Exponential Loss:

L(y, 𝑁 (𝜃, x)) = 𝑒−y·𝑁 (𝜃,x)

Cross-Entropy Loss:

Let 𝑝(·), 𝑞(·) be the respective densities of probability distributions P,Q with sup-

port X. Then cross-entropy between the distributions is given by

L(y, 𝑁 (𝜃, x)) = −
∑︁
x∈X

𝑝(x) log(𝑞(x)).

3.2.4. Optimization Algorithms. We shall only discuss the regime of empirical

risk minimization (ERM). That is, when minimizing the loss function, we take an average

over the various losses

𝜃∗𝑚 = argmin𝜃
1
𝑚

𝑚∑︁
𝑖=1

𝐿 (𝑦𝑖, 𝑁 (𝜃, x𝑖)).

We will note that there is also the regime of regularized risk minimization, or (R-

ERM) that is ERM with an additional penalty/reward term, but we will not discuss it here.

The parameters are trained with

𝜃∗𝑚 = arg min𝜃
1
𝑚

𝑚∑︁
𝑖=1

𝐿 (𝑦𝑖, 𝑁 (𝜃, x𝑖)) + 𝜆𝑅(𝜃).

37

We will also only be focusing on gradient-based methods. In practice, these meth-

ods are very fast to compute because of the autograd algorithm developed in [10] which

calculates the gradient of the neural network (with respect to its paramters) based on the

computational graph. For more information on computational graphs, see [11].

Mini-batch:

Mini-batching is when the program takes random samples from the data and trains

random parameters based off this data. This is more efficient than training on the whole

dataset, but we do not explore this here.

3.2.5. Gradient-Based Methods.

Gradient-based methods use the gradient of the loss function with respect to the

parameters of the neural network and update the parameters by taking a small step (𝜂𝑘) in

the direction of the parameters that would produce true solution.

Consider a neural network with three hidden layers and the 𝐿2 loss function used

for training, as we will use later in the Deep BSDE method. Then

𝑁 (𝜃, 𝑥) = Λ3 ◦ 𝜎 ◦ Λ2 ◦ 𝜎 ◦ Λ1(x)

= 𝑊3(𝜎(𝑊2(𝜎(𝑊1(x) + b1)) + b2)) + b3.

Thus

𝜕

𝜕𝜃
L(𝑦, 𝑁 (𝜃, 𝑥)) = 𝜕

𝜕𝜃
L(𝑦, 𝑁 (𝜃, 𝑥))

= −2
𝜕𝑁 (𝜃, 𝑥)
𝜕𝜃

= −2
𝜕

𝜕𝜃
[𝑊3(𝜎(𝑊2(𝜎(𝑊1(x) + b1)) + b2)) + b3] .

38

Substituting for brevity and using the chain rule, we have

𝜕

𝜕𝜃
L(𝑦, 𝑁 (𝜃, 𝑥)) = −2

𝜕

𝜕𝜃
[𝑊3(𝜎(𝑊2(𝜎(𝑊1(x) + b1)) + b2)) + b3]

= −2[𝜕𝑊3
𝜕𝜃
[𝜎′(Λ2)]

𝜕

𝜕𝜃
[𝜎(Λ2)] +

𝜕b3
𝜕𝜃
]

= −2[𝜕𝑊3
𝜕𝜃
[𝜎′(Λ2)] [

𝜕𝑊2
𝜕𝜃
[𝜎′(Λ1)]

𝜕

𝜕𝜃
[𝜎(Λ1)] +

𝜕b2
𝜕𝜃
] + 𝜕b3

𝜕𝜃
]

= −2[𝜕𝑊3
𝜕𝜃
[𝜎′(Λ2)] [

𝜕𝑊2
𝜕𝜃
[𝜎′(Λ1)] [

𝜕𝑊1
𝜕𝜃
[𝜎′(x)] + 𝜕b1

𝜕𝜃
] + 𝜕b2

𝜕𝜃
] + 𝜕b3

𝜕𝜃
] .

Seeing as how complicated this can be with more layers, autograd has significantly

improved the ease of implementing gradient-based learning algorithms.

Algorithm 1: Gradient Descent
Input: 𝑁 (𝜃0, ·), 𝜂𝑘 , 𝐾;
Output: 𝜃𝐾 ;
for 𝑘 ← 0 to 𝐾 do

Calculate ∇𝜃𝑁 (𝜃, ·;);
𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃L(𝑦, 𝑁 (𝜃, ·));

end

Algorithm 2: Stochastic Gradient Descent (SGD)
Origin: [12];
Require: 𝜑𝑘 ∼ P i.i.d.;
Require: E(𝑀 (𝜃𝑘 , ·; 𝜑𝑘)) = ∇𝜃𝑁 (𝜃𝑘 , ·).;
Input: 𝑁 (𝜃0, ·), 𝜂𝑘 , 𝐾;
Output: 𝜃𝐾 ;
for 𝑘 ← 0 to 𝐾 do

Sample 𝜑𝑘 ;
Calculate ∇𝜃𝑀 (𝜃𝑘 , ·; 𝜙𝑘);
𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃L(𝑦, 𝑀 (𝜃, ·; 𝜑𝑘));

end

Other popular gradient-based methods include

1. Adaptive Moment Estimation (ADAM) developed in [13].

39

2. Heavy-Ball Method developed in [14].

3. Accelerated Gradient Descent (AGD) developed in [15].

3.3. APPLICATIONS

Neural networks have found countless applications in today’s society. Google’s

AlphaZero is one of the best chess engines in the world, consistently beating Deep Blue,

the chess engine that was once considered a point of no return for humans against programs

since its famous match Deep Blue vs Kasparov (1997). Games aside, neural networks have

aided in reducing pesticides for farmers [16], finding faster matrix multiplication algorithms

[17], and finding new protein structures that might have otherwise taken years [18]. Of

course, generative a.i. models such as ChatGPT have been growing in popularity ever

since GPT-3. In some instances, these models confidently present incorrect information; a

problem known as “hallucinations.” Despite these issues, popularity surrounding the recent

advancements has led to neural networks often being used without rigorous justification

of their effectiveness. With artificial general intelligence still in the distant future, it’s

important to question whether the neural network approach is best for the given task.

Neural networks have found fruitful applications in the following categories of tasks:

1. Classification: The program estimates a function that maps an input to a category.

2. Regression: The program estimates a function that performs a least-squares regression

to predict the outcome of a given input.

3. Transcription: Take in unstructured data and output text. For example, reading

handwritten digits.

4. Machine Translation: Take in a sequence of symbols of one language and convert it

to a sequence of symbols of another language.

40

5. Anomaly Detection: In this type of task, the program searches for statistical outliers

with respect to its training data.

6. Synthesis and sampling: Generation of data given the training data. One example is

Stable Diffusion.

7. Imputation of missing values: Given incomplete data, recover the missing values.

8. Denoising: Given corrupted data, recover the clean data.

9. Density estimation: Recover the probability density function of the distribution of

the training data.

41

4. THE DEEP BSDE METHOD

4.1. AN INTRODUCTION TO DEEP BSDE

In [1], the authors present a Deep learning algorithm which uses the Feynman-

Kac formula to solve semi-linear PDE. We follow their work but specialize to the one-

dimensional case. Their work deals with semi-linear parabolic PDE in their stochastic

representation given by

𝜕𝑢

𝜕𝑡
+ 1

2
Tr(𝝈𝝈𝑇Hess𝑥𝑢) + ∇𝑢 · 𝝁 + 𝑓 = 0,

where 𝑢 : R𝑛 × R → R, 𝑓 (𝑡, 𝑥, 𝑢,𝝈𝑇∇𝑢) is a nonlinear function known as the

generator of the backwards process, and 𝝁 : R𝑛 → R and 𝝈 : R𝑛×𝑛 → R satisfy the forward

process

𝑑X = 𝝁(X(𝑡), 𝑡)𝑑𝑡 + 𝝈(X(𝑡), 𝑡)𝑑W.

Aside from 𝑓 ,𝝈, and 𝝁, we are also given 𝑇 and 𝑢(𝑥, 𝑇) = 𝑔(𝑥) (known as the terminal

condition) where 𝑡 ∈ [0, 𝑇]. Note that because Brownian motion is nowhere differentiable,

the above stochastic differential can only be interpreted in the sense of integrals. That is,

satisfying the forward process means we have an adapted solution

X(𝑡) = 𝝃 +
ˆ 𝑡

0
𝝁(X(𝑠), 𝑠)𝑑𝑠 +

ˆ 𝑡

0
𝝈(X(𝑠), 𝑠)𝑑W(𝑠).

The vector X(0) = 𝝃 ∈ R𝑛 is independent of the filtration associated to the process,

and will be chosen. The idea is to approximate 𝑢(0, 𝑥), along with its gradient at intermediate

time steps, by neural networks, which will be trained to minimize the difference between

𝑢(𝑇, 𝑥) and the given terminal condition. More precisely, we will solve the equation along

42

well-chosen random paths that reduce the PDE to a first-order equation via the Ito chain

rule; the loss function will then involve the expected difference between 𝑢 and the given

terminal condition.

Suppose 𝑌 (𝑡) = 𝑢(X(𝑡), 𝑡) and Z(𝑡) = 𝝈𝑇 (X(𝑡), 𝑡)∇𝑢(X(𝑡), 𝑡) hold almost surely.

If all the above holds, then the associated backwards process satisfies

𝑌 (𝑡) = 𝑔(X(𝑇)) −
ˆ 𝑇

𝑡

(Z(𝑠))𝑇𝑑W(𝑠) +
ˆ 𝑇

𝑡

𝑓 (𝑠,X(𝑠),Y(𝑠),Z(𝑠))𝑑𝑠.

There are numerous subtleties associated with forward-backward stochastic differ-

ential equations (FBSDEs), but we shall refer the reader to the references mentioned therein

the paper we follow for more detail. However, we shall note that the solution to a FB-

SDE is only adapted to the forward filtration and that one interpretation of FBSDE is as a

two-point boundary value problem. The aforementioned description can be found in [19],

where they also provide examples of non-solvable FBSDE as well as some conditions for

well-posedness (in the stochastic sense). We forgo the details and again refer the reader to

the references of [1] when we claim that the backward process in their setting has a unique

solution (up to 𝑔(𝑋 (𝑇))) and unique in the sense of SDE. Substituting and reversing the

backward process, we have

𝑢(X(𝑡), 𝑡) = 𝑢(X(0), 0) +
ˆ 𝑡

0
[∇𝑢(X(𝑠), 𝑠)]𝑇𝝈(X(𝑠), 𝑠)𝑑W(𝑠)

−
ˆ 𝑡

0
𝑓 (X(𝑠), 𝑠, 𝑢(X(𝑠), 𝑠),𝝈𝑇 (X(𝑠), 𝑠)∇𝑢(X(𝑠), 𝑠))𝑑𝑠.

43

As in [1], we use the Euler-Maruyama method to discretize the stochastic integrals,

producing the approximations

X(𝑡𝑛+1) − X(𝑡𝑛) ≈ 𝝁(X(𝑡𝑛), 𝑡𝑛)Δ𝑡𝑛 + 𝝈(X(𝑡𝑛), 𝑡𝑛)ΔW𝑛

and

𝑢(X𝑡𝑛+1 , 𝑡𝑛+1) − 𝑢(X𝑡𝑛 , 𝑡𝑛) ≈ − 𝑓 (𝑢(X𝑡𝑛 , 𝑡𝑛), 𝑡𝑛, 𝑢(X𝑡𝑛 , 𝑡𝑛),𝝈𝑇 (X𝑡𝑛 , 𝑡𝑛)∇𝑢(X𝑡𝑛 , 𝑡𝑛))Δ𝑡𝑛

+ [∇𝑢(X𝑡𝑛 , 𝑡𝑛)]𝑇𝝈(X𝑡𝑛 , 𝑡𝑛)ΔW𝑛.

where

ΔW𝑛 = W(𝑡𝑛+1) −W(𝑡𝑛), Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛.

Note that this is essentially the stochastic equivalent of constructing a telescoping

sum.

With 𝝈, 𝝁, 𝑓 ,X(𝑡), 𝑡 and 𝑢(𝑥, 𝑇) known, if we can estimate ∇𝑢, then we can add

all of these pieces together to obtain an approximation to 𝑢(X, 0) as given by the integral

formula, for any chosen 𝝃 = X(0). Using a collection of different 𝝃 inputs, we can construct

a pointwise approximation to 𝑢(𝑥, 0).

The idea of [1] is to use a deep neural network consisting of a subnetwork for each

piece of the telescoping sum to approximate the gradient, given some 𝜉. The forward

iteration initially uses an estimate for the gradient, then uses the previous telescoping

sum to compare the estimate 𝑢̂(𝑥, 𝑇) against the true solution 𝑔(𝑥). The loss function

L(𝑔, 𝑢̂) := E[(𝑔(𝑋𝑇𝑁) − 𝑢̂({𝑋𝑡𝑛}𝑁𝑛=1, {𝑊𝑡𝑛}𝑁𝑛=1))
2]. Because this loss function uses all the

44

subnetwork approximations, we are simultaneously training all the subnetworks for each

iteration, so mini-batching is critical to speed up the computation. However, due to technical

limitations, we were unable to implement the mini-batch method into our network.

Since 𝑌 (𝑡) = 𝑢(X(𝑡), 𝑡), we can rewrite the loss function.

𝑔(X(𝑇)) − 𝑌 (0) =
ˆ 𝑇

0
(Z(𝑠))𝑇𝑑W(𝑠) −

ˆ 𝑇

0
𝑓 (𝑠,X(𝑠),Y(𝑠),Z(𝑠))𝑑𝑠

= 𝑢(X(0), 0) − 𝑢(𝝃, 0).

Thus

L(𝑔, 𝑢̂) := E[(𝑔(𝑋𝑇𝑁)−𝑢̂({𝑋𝑡𝑛}𝑁𝑛=1, {𝑊𝑡𝑛}𝑁𝑛=1))
2] = E[(𝑢̂({𝑋𝑡𝑛}𝑁𝑛=1, {𝑊𝑡𝑛}𝑁𝑛=1)−𝑢(𝝃, 0))

2] .

By using the full range of 𝑡 values in the BSDE, we are able to approximate the

adapted solution at the initial forward position which recovers the value of the solution to

the PDE at its initial position. Although we are using the loss function to adjust the gradient,

we are using the gradient in the forward iteration in the network to estimate 𝑢 then using the

loss function as a way to compare the estimate to the expected value at the forward iteration.

Despite the high-dimensionality of the problem, the curse of dimensionality is

overcome by solving the PDE along a one-dimensional curve estimated by averaging so-

called “random characteristics” given by the telescoping equation derived from the reversed

BSDE. These are “characteristics” in the sense that we reduce the problem to one-dimension.

45

4.2. EXPLICIT PDE SOLUTION

In order to implement the ideas of [1], we select specific choices of the functions 𝜎

and 𝜇, namely 𝝈(𝑥) = 𝝁(𝑥) = 𝑥 and 𝑓 ≡ 0 so that our equation has the form

𝑢𝑡 = −∇ · (
𝑥2

2
∇𝑢)

and

𝑑X = X𝑑𝑡 + X𝑑𝑊.

This is the process that governs stock prices with unit volatility and drift.

Note that 𝝈, 𝝁 are uniformly Lipschitz, so there exists a unique forward solution

this SDE as proven previously.

Consider the equation

𝑑X = 𝝁X𝑑𝑡 + 𝝈X𝑑𝑊.

Then we have

𝝁𝑑𝑡 + 𝝈𝑑𝑊 =
𝑑X
X
.

That is, the distribution is log-normally distributed, producing a geometric Brownian mo-

tion.

Consider the adapted filtration Y(X(𝑡)) := 𝑢(X(𝑡), 𝑡) ≡ log(X(𝑡)).

46

By the Itô chain rule, in one dimension, we have

𝑑𝑌 = 𝑑 log(𝑋)

= 𝑢𝑡𝑑𝑡 + 𝑢𝑥𝑑𝑋 +
𝑢𝑥𝑥

2
(𝜎𝑋)2𝑑𝑡

=
𝑑𝑋

𝑋
− 1

2𝑋2 (𝜎𝑋)
2𝑑𝑡

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊 − 1
2
(𝜎)2𝑑𝑡

= (𝜇 − 𝜎
2

2
)𝑑𝑡 + 𝜎𝑑𝑊.

Therefore

ˆ 𝑡

0
𝑑 log(𝑋 (𝑠))𝑑𝑠 = log(𝑋 (𝑡)) − log(𝑋 (0))

=

ˆ 𝑡

0
(𝜇 − 𝜎

2

2
)𝑑𝑠 +

ˆ 𝑡

0
𝜎𝑑𝑊 (𝑠)

= (𝜇 − 𝜎
2

2
)𝑡 + 𝜎𝑊 (𝑡).

So then

𝑒log(𝑋 (𝑡))−log(𝑋 (0)) =
𝑋 (𝑡)
𝜉

= 𝑒(𝜇−
𝜎2
2)𝑡+𝜎𝑊 (𝑡) .

Thus,

𝑋 (𝑡) = 𝜉𝑒(𝜇− 𝜎2
2)𝑡+𝜎𝑊 (𝑡) .

Revisiting the original equation, we know

E(𝑋 (𝑡)) = 𝜉 +
ˆ 𝑡

0
𝜇E(𝑋 (𝑠))𝑑𝑠,

47

so that

E(𝑋 (𝑡)) = 𝜉𝑒𝜇𝑡 .

Our particular solution is

𝑋 (𝑡) = 𝜉𝑒 𝑡
2+𝑊 (𝑡)

with

E(𝑋 (𝑡)) = 𝜉𝑒𝑡 .

Recall our PDE

𝑢𝑡 = −∇ · (
𝑥2

2
∇𝑢).

Then in the one-dimensional case, our equation becomes

𝑢𝑡 = −
𝑑

𝑑𝑥
(𝑥

2

2
𝑢𝑥) = −(

𝑥2

2
𝑢𝑥𝑥 + 𝑥𝑢𝑥),

with 𝑥 ∈ R. Separating variables, let 𝑢(𝑥, 𝑡) = 𝑗 (𝑥)ℎ(𝑡).

Then we arrive to two ordinary differential equations, with 𝜆 ∈ C,

ℎ(𝑡) = −𝜆ℎ′(𝑡)

and

𝑥2

2
𝑗 ′′(𝑥) + 𝑥 𝑗 (𝑥) − 𝜆 𝑗 (𝑥) = 0.

So we have a first order constant coefficient ODE, with ℎ(𝑡) = 𝑒−𝜆𝑡 , and an equidi-

mensional equation.

48

We use the ansatz 𝑗 (𝑥) = 𝑥𝑚 for some 𝑚 ∈ R. Then the above equation becomes

(𝑚(𝑚 − 1)
2

+ 𝑚 − 𝜆)𝑥𝑚 = 0.

Since 𝑥 . 0, we have 𝑚 = −1±
√

1+8𝜆
2 .

We would like to choose 𝜆 such that 𝑚 ∈ N. Consider 𝜆𝑛 = 𝑛2+𝑛
2 . Then the roots of

the quadratic are 𝑛,−𝑛 − 1. Because we would not like the solution to blow-up at 𝑥 = 0, we

only consider the positive root. Then by the principle of superposition,

𝑢(𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐶𝑛𝑥
𝑛𝑒−

𝑛2+𝑛
2 𝑡 =

∞∑︁
𝑛=1
(𝐶1/𝑛

𝑛 𝑥𝑒−
𝑛+1

2 𝑡)𝑛,

where 𝐶𝑛 ∈ R is dependent on 𝑛.

Then we have a geometric series which only converges when 𝑥𝑒− 𝑛+1
2 𝑡𝐶

1/𝑛
𝑛 < 1.

For our particular solution, we take 𝐶𝑛 = 0 for all 𝑛 ≠ 2 and 𝐶2 = 1. Therefore, we

have the solution

𝑒−3𝑡𝑥2 = 𝑢(𝑥, 𝑡) with 𝑒−3𝑇𝑥2 = 𝑢(𝑥, 𝑇) = 𝑔(𝑥).

4.3. A 1-D IMPLEMENTATION

We now list the steps necessary to perform Deep BSDE and provide examples in

the one-dimension. We emphasize that we do not claim to have efficient code, but merely

correct code. The only packages used for computations were PyTorch and NumPy.

4.3.1. Step 1: Simulate Brownian Motion. We draw from a Bernoulli distribution

to sample Brownian motion. Note that in Figure 4.1, the time-axis is partitioned into 90

intervals, but 0 ≤ 𝑡 ≤ 1, and there are 90 sample paths (also called simulations) of Brownian

motion. Also note how the approximation 𝑑𝑊 ≈
√
𝑑𝑡 (due to quadratic variation) is used

in the implementation below.

Approx imate Brownian mot ion

49

Figure 4.1. Brownian Motions

def BM approx (N,M, T) :

d t = T / (N−1)

dx = np . s q r t (d t)

BM = t o r c h . z e r o s ((N, M))

#random −1 or 1 f o r m a t r i x o f s i z e N x M−1

s t e p s = 1−2∗ t o r c h . b e r n o u l l i (\

t o r c h . empty (N, M) . u n i f o r m (0 , 1))

f o r m in range (0 ,M) :

f o r n in range (1 ,N) :

BM[n ,m] = BM[n−1,m] + dx ∗ (s t e p s [n −1][m])

re turn BM

4.3.2. Step 2: Simulate an X-Path. Given samples of Brownian motion, we can

construct corresponding sample paths, which we call “𝑋-paths”. Figure 4.2 only includes

the plot of the second output of the function of the code below, as the first output is for

computational purposes later.

50

Figure 4.2. Sample Paths

Note that because 𝜉 is independent of the filtration, we initialize each sample path

with the given 𝜉.

Takes i n a c h o i c e o f gamma / sigma / mu and

p r o d u c e s t h e X (t) p a t h s a t t i m e s

t n c o r r e s p o n d i n g t o a d i s c r e t e s e t o f omega ’ s

def X path (N,M, T , x i) :

d t = T / (N−1)

X = t o r c h . z e r o s ((N, M))

BM = BM approx (N,M, T)

dW = t o r c h . z e r o s ((N, M))

f o r m in range (M) :

X[0 ,m]= x i

f o r n in range (1 ,N) :

dW[n ,m] = BM[n ,m]−BM[n−1,m]

X[n ,m] = X[n−1,m] + mu(X[n−1,m]) ∗ d t \

+ sigma (X[n−1,m]) ∗dW[n ,m]

re turn dW, X

51

4.3.3. Step 3: Solve the PDE along the X-Paths and Recover 𝝃. For the following

code, we use the sample paths as the training data for the neural network. The forward

pass of each subnetwork is that which you would expect, but the forward pass of the whole

network uses the telescoping sum mentioned above.

def e s t i m a t e x i (N,M, T , xi , l a y e r s i z e , l e a r n i n g r a t e ,\

i t e r a t i o n n u m) :

T r a i n i n g Data

d t = T / (N−1)

X = X path (N,M, T , x i)

dW = X[0]

X p = X[1]

t r u e s o l u t i o n = s o l u t i o n u (xi , 0)

i n i t i a l g u e s s = t o r c h . t e n s o r ([0 . 5 ∗ t r u e s o l u t i o n] , \

d t y p e = t o r c h . f l o a t 3 2)

t r u e g r a d = g r a d u (xi , 0)

i n i t i a l g r a d g u e s s = t o r c h . t e n s o r ([0 . 5 ∗ t r u e g r a d] , \

d t y p e = t o r c h . f l o a t 3 2)

S t a c k o f Neura l Networks

c l a s s Subne t (t o r c h . nn . Module) :

def i n i t (s e l f , n u m n e u r o n s p e r l a y e r) :

super () . i n i t ()

s e l f . f c 1 = t o r c h . nn . L i n e a r (1 , \

n u m n e u r o n s p e r l a y e r)

s e l f . f c 2 = t o r c h . nn . L i n e a r (\

n u m n e u r o n s p e r l a y e r , \

n u m n e u r o n s p e r l a y e r)

52

s e l f . f c 3 = t o r c h . nn . L i n e a r (\

n u m n e u r o n s p e r l a y e r , 1)

def f o r w a r d (s e l f , x) :

x = s e l f . f c 1 (x)

x = t o r c h . nn . f u n c t i o n a l . r e l u (x)

x = t o r c h . nn . f u n c t i o n a l . s i gmoid (x)

x = s e l f . f c 2 (x)

x = t o r c h . nn . f u n c t i o n a l . r e l u (x)

x = t o r c h . nn . f u n c t i o n a l . s i gmoid (x)

x = s e l f . f c 3 (x)

re turn x

c l a s s Net (t o r c h . nn . Module) :

def i n i t (s e l f , n u m n e u r o n s p e r l a y e r) :

super () . i n i t ()

s e l f . s u b n e t s = t o r c h . nn . Modu leL i s t (\

[Subne t (n u m n e u r o n s p e r l a y e r) \

f o r i in range (N)])

s e l f . s o l n t 0 = t o r c h . nn . P a r a m e t e r (i n i t i a l g u e s s)

s e l f . g r a d u 0 x i = t o r c h . nn . P a r a m e t e r (\

i n i t i a l g r a d g u e s s)

def f o r w a r d (s e l f) :

d t = T / (N−1)

U = s e l f . s o l n t 0 . t i l e (M)

G U = s e l f . g r a d u 0 x i . t i l e (M)

dW, X = X path (N,M, T , x i)

53

U = U + (G U∗dW[0])

f o r n in range (1 ,N) :

G U = s e l f . s u b n e t s [n −1](\

t o r c h . r e s h a p e (X[n −1] , (M, 1)))

U = U + (G U∗dW[n])

re turn U

n e t = Net (l a y e r s i z e)

o p t i m i z e r = t o r c h . opt im .SGD(\

n e t . p a r a m e t e r s () , l r = l e a r n i n g r a t e)

l o s s f c n = t o r c h . nn . MSELoss ()

f o r n in range (i t e r a t i o n n u m) :

o p t i m i z e r . z e r o g r a d ()

y = n e t ()

l o s s = l o s s f c n (g (X p [−1] ,T) , y)

l o s s . backward ()

o p t i m i z e r . s t e p () # a p p l y g r a d i e n t s

re turn n e t . s o l n t 0 . i t em ()

54

4.3.4. Step 4: Repeat 1-4 Until 𝑢(𝑥, 0) is Recovered. For Figure 4.3, we ran 40

estimations of 𝜉 with 90 time steps, 300 simulations of 𝑋-paths, a learning rate 𝜂 = 0.001,

no momentum,𝑇 = 1 and 2000 iterations per subnetwork. It is worth noting that the training

data consisted of the same number of simulations and time-steps as the previous plots.

Figure 4.3. A Pointwise Reconstruction of 𝑢(𝑥, 0)

4.4. CONCLUSION

The increase in computational power of computers has led to the design of algorithms

that were once impractical. The accuracy of the Deep BSDE method relies on a small

number of parameters that, in some cases, require high values. But due to the computation

time only increasing linearly, this is still more efficient than using a nonlinear method. If

we had used 100 dimensions instead of one dimension or increase the number of neural

networks, the average error of the approximations of each of the 𝑢(𝜉, 0) values should be

closer to zero. Perhaps with the implementation of the mini-batch method, we could have

used more iterations and obatined a solution that was computed faster. But the accuracy of

the program would not have changed much as the neural networks would still have converged

to the same solutions generated by the same stochastic training data (given a random seed).

55

However, implementing mini-batch would have allowed us to train more neural networks

in the same amount of time, thereby indirectly increasing the accuracy if given the same

amount of training time.

56

APPENDIX

1. MEASURE THEORY

This section provides background information needed to understand the probability

theory. We followed the work of [20] and refer the reader to that text for more details.

1.1. EXISTENCE OF THE BOREL 𝜎-ALGEBRA. Definition: Given a set Ω, a

collectionU of Ω is called a 𝜎-algebra (of subsets of 𝑋) provided

1. ∅ ∈ U.

2. If Ω ⊃ 𝐴 ∈ U, then 𝐴𝑐 ∈ U. Note that 𝐴𝑐 = Ω − 𝐴 = {𝑥 |𝑥 ∈ Ω, 𝑥 ∉ 𝐴} is the set of

all elements in Ω that are not a member of 𝐴. Here, − denotes the operation of set

difference.

3. The union of a countable collection of sets inU also belongs toU.

De Morgan’s Identities: Let Ω ⊇ ∪𝑖∈N𝐵𝑖 for some subsets 𝐵𝑖 of Ω. Then

Ω − ∪𝑖∈N𝐵𝑖 = ∩𝑖∈N [Ω − 𝐵𝑖] and Ω − ∩𝑖∈N𝐵𝑖 = ∪𝑖∈N [Ω − 𝐵𝑖] .

From these identities, we can see that 𝜎-algebras are closed with respect to the

operations of intersection and union of open sets.

Proposition: Let S be a collection of subsets of Ω. Then the intersectionU of all

𝜎-algebras of subsets of Ω that contain U is a 𝜎-algebra that contains U. Moreover, it is

the smallest 𝜎-algebra of subsets of Ω that contains S in the sense that any 𝜎-algebra that

contains S also containsU.

57

Let {𝐴𝑛}∞𝑛=1 be a countable collection of sets that belong to U. By closure under

intersections and unions, we must have that

lim sup{𝐴𝑛}∞𝑛=1 =

∞⋂
𝑘=1
[
∞⋃
𝑛=𝑘

𝐴𝑛], lim inf{𝐴𝑛}∞𝑛=1 =

∞⋃
𝑘=1
[
∞⋂
𝑛=𝑘

𝐴𝑛] ∈ U.

Definition: The collectionB of Borel sets of real numbers is the smallest 𝜎-algebra

of sets of real numbers that contains all of the open sets of real numbers. Every open set

and every closed set is a Borel set. A countable intersection of open sets is called a 𝐺𝛿 set

while a countable union of closed sets is an 𝐹𝜎 set. The aforementioned lim inf and lim sup

sets are also Borel sets. B is the Borel 𝜎-algebra.

1.2. GENERAL MEASURE SPACES. A Measurable space is a couple (Ω,U), where

Ω is a set and U is a 𝜎-algebra on subsets of Ω. A subset 𝐴 of Ω is called measurable

provided 𝐴 ∈ U.

Definition: A measure P on a measurable space (Ω,U) is a set function P (function

which maps a collection of sets to the extended real numbers) such that P(∅) = 0 and P

is countably additive, i.e. if {𝐴𝑘 }𝑘∈N is a collection of disjoint sets, then P(∪𝑘∈N𝐴𝑘) =∑∞
𝑘=1 P(𝐴𝑘).

Note: The use of this notation for the measure space is typically reserved for

probability spaces, which we define later for stochastic differential equations.

Then a measure space is a triple (Ω,U, P), where P is a measure on a 𝜎-algebra

U ⊆ Ω. We have the following properties:

1. Finite Additivity: {𝐴𝑘 }𝑛𝑘=1 is a collection of disjoint sets, thenP(∪𝑛
𝑘=1𝐴𝑘) =

∑𝑛
𝑘=1 P(𝐴𝑘).

2. Monotonicity: If 𝐴 and 𝐵 are measurable 𝐴 ⊆ 𝐵, then P(𝐴) ≤ P(𝐵)

3. Excision: If 𝐴 ⊆ 𝐵 and P < ∞, then P(𝐵 − 𝐴) = P(𝐵) − P(𝐴).

58

4. Countable monotonicity: For any countable collection {𝐴𝑘 }∞𝑘=1 of measurable func-

tions that covers a measurable set 𝐴,

P(𝐴) ≤
∞∑︁
𝑘=1
P(𝐴𝑘).

Proof. From the property of countable additivity, we know that if {𝐴𝑘 }𝑘∈N is a collection

of disjoint sets, then P(∪𝑘∈N𝐴𝑘) =
∑∞
𝑘=1 P(𝐴𝑘). Then if given a finite subset {𝐴𝑘 }𝑘∈N, say

{𝐴𝑘 }𝑛𝑘=1, we can, without loss of generality, let {𝐴𝑘 }∞𝑘=𝑛+1 consist entirely of empty sets.

Then

P(∪𝑘∈N𝐴𝑘) =
∞∑︁
𝑘=1
P(𝐴𝑘) =

𝑛∑︁
𝑘=1
P(𝐴𝑘) +

∞∑︁
𝑘=𝑛+1

P(𝐴𝑘) =
𝑛∑︁
𝑘=1
P(𝐴𝑘) = P(∪𝑛𝑘=1𝐴𝑘).

Then from finite additivity, we have that if 𝐴 ⊆ 𝐵

P(𝐵) = P(𝐴) + P(𝐵 − 𝐴),

as the right-hand-side consists of distjoint sets. This implies the excision property. Since

P(𝐵 − 𝐴) ≥ 0, this also implies the monotonicity property.

For the countable monotonicity property, let 𝐶1 := 𝐴1 and for all 𝑛 > 1, define

𝐶𝑛 = 𝐴𝑛 − ∪𝑛−1
𝑘=1. Then 𝐶𝑛 is disjoint from 𝐶𝑖 for all 𝑖 < 𝑛. So {𝐶𝑘 }∞𝑘=1 is a collection

of disjoint sets. Also note that ∀𝑛, 𝐶𝑛 ⊆ 𝐴𝑛 but ∪∞
𝑘=1𝐶𝑛 = ∪∞

𝑘=1𝐴𝑛. Then we have by

monotonicity then countable additivity,

P(𝐴) ≤ P(∪∞𝑘=1𝐴𝑛) = P(∪
∞
𝑘=1𝐶𝑛) =

∞∑︁
𝑘=1
P(𝐶𝑘) ≤

∞∑︁
𝑘=1
P(𝐴𝑘).

Continuity of Measure: Let (Ω,U, P) be a measure space. Then

59

we say a sequence of sets {𝐴𝑘 } are ascending provided 𝐴𝑘 ⊂ 𝐴𝑘+1 and descending

if 𝐴𝑘+1 ⊂ 𝐴𝑘 .

1. If {𝐴𝑘 }∞𝑘=1 is ascending, then

P(∪∞𝑘=1𝐴𝑘) = lim
𝑘→∞
P(𝐴𝑘).

2. If {𝐴𝑘 }∞𝑘=1 is descending, then

P(∩∞𝑘=1𝐴𝑘) = lim
𝑘→∞
P(𝐴𝑘).

Proof. First we prove the first assertion for ascending sets. Suppose ∃ 𝑗 : P(𝐴 𝑗) = ∞. Then

by monotonicity, P(∪∞
𝑘=1𝐴𝑘) = ∞ = lim𝑘→∞ P(𝐴𝑘). Now suppose ∀𝑘, P(𝐴𝑘) < ∞. Then

define 𝐴0 = ∅, and let 𝐶𝑘 = 𝐴𝑘 − 𝐴𝑘−1. Since {𝐴𝑘 }∞𝑘=1 is ascending, 𝐶𝑘 = 𝐴𝑘 − ∪∞𝑘=1𝐴𝑘 .

By a previous argument, {𝐶𝑘 }∞𝑘=1 is disjoint and ∪∞
𝑘=1𝐴𝑘 = ∪∞

𝑘=1𝐶𝑘 . Thus by countable

additivity of P then the excision property, we have

P(∪∞𝑘=1𝐴𝑘) = P(∪
∞
𝑘=1𝐶𝑘) =

∞∑︁
𝑘=1
P(𝐴𝑘 − 𝐴𝑘−1) =

∞∑︁
𝑘=1
P(𝐴𝑘) − P(𝐴𝑘−1) =

lim
𝑛→∞

𝑛∑︁
𝑘=1
P(𝐴𝑘) − P(𝐴𝑘−1) = lim

𝑛→∞
(P(𝐴𝑛) − P(𝐴0)) = lim

𝑛→∞
P(𝐴𝑛).

Next, we prove the second assertion for descending sets. Let {𝐴𝑘 }∞𝑘=1 be descending.

Define for all 𝑘 , 𝐶𝑘 = 𝐴1 − 𝐴𝑘 . Since the sequence is descending,

𝐶𝑘 = 𝐴1 − ∩∞𝑛=𝑘𝐴𝑘 ⊂ 𝐴1 − ∩∞𝑛=𝑘+1𝐴𝑘 = 𝐶𝑘+1,

so 𝐶𝑘 is ascending.

60

It follows that

P(∪∞𝑘=1𝐶𝑘) = lim
𝑘→∞
P(𝐶𝑘).

By De Morgan’s identities,

∪∞𝑘=1𝐶𝑘 = ∪
∞
𝑘=1𝐴1 − 𝐴𝑘 = 𝐴1 − ∩∞𝑘=1𝐴𝑘 .

By the excision property,

P(𝐴1 − ∩∞𝑘=1𝐴𝑘) = lim
𝑛→∞
(P(𝐴1) − P(𝐴𝑛)).

Note that

lim
𝑛→∞
(P(𝐴1) − P(𝐴𝑛)) = lim

𝑘→∞
P(𝐶𝑘) = P(𝐴1 − ∩∞𝑘=1𝐴𝑘).

Then by excision, we have

lim
𝑛→∞
(P(𝐴𝑛)) = P(∩∞𝑘=1𝐴𝑘).

Borel-Cantelli Lemma:

Let (Ω,U, P) be a measure space and {𝐴𝑘 }∞𝑘=1 a countable collection of measurable

sets such that
∑∞
𝑘=1 P(𝐴𝑘) < ∞. Then almost all 𝜔 ∈ Ω belong to at most a finite number

of 𝐴𝑘 ’s. Note that we say that the collection

∩∞𝑘=1 ∪
∞
𝑚=𝑘 𝐴𝑚 = {𝜔 ∈ Ω|𝜔 belongs to infinitely many of the 𝐴𝑘 }

61

is called “𝐴𝑛 infinitely often” (𝐴𝑛 i.o.). We also say that a property of a subset 𝐴 ⊂ Ω holds

almost everywhere on 𝐴 provided it holds on 𝐴 − 𝐴0 : P(𝐴0) = 0. If P is a probability

measure, we say that this property holds almost surely.

Proof. By continuity of P then by countable monotonicity, we have

P(∩∞𝑘=1 ∪
∞
𝑚=𝑘 𝐴𝑚) = lim

𝑛→∞
P(∪∞𝑘=𝑛𝐴𝑘) ≤ lim

𝑛→∞

∞∑︁
𝑘=𝑛

P(𝐴𝑘) = 0.

Therefore the Borel-Cantelli lemma tells us that if 𝐴𝑛 i.o., then P(𝐴𝑛i.o.) = 0.

Definitions: Let (Ω,U, P) be a measure space.

1. If P(Ω) < ∞, the measure P is called finite.

2. If Ω = ∪∞
𝑘=1𝐴𝑘 : ∀𝑘, P(𝐴𝑘) < ∞, then we say P is 𝜎-finite.

3. The previous definitions may also be applied to measurable sets, provided the sets

satisfy the corresponding properties with respect to P.

4. The measure space is said to be complete provided U contains all subsets of sets of

measure 0.

Proposition: Every measure space can be completed. Let (Ω,U, P) be a measure

space. Define U0 to be the collection of subsets 𝐴 of the form 𝐴 = 𝐵 ∪ 𝐶 where 𝐶 ∈ U

and 𝐵 ⊂ 𝐷 for some 𝐷 ∈ U such that P(𝐷) = 0. Let P0 be a measure on U0 such that

P0(𝐴) = P(𝐶). Then U0 is a 𝜎-algebra that contains U, P0 is a measure that extends P,

and (Ω,U0, P0) is a complete measure space.

We omit the proof but refer the reader to [21] theorem 1.36.

62

1.3. MEASUREABLE FUNCTIONS. Proposition: Let (Ω,U) be a measurable space

and let 𝑋 be an extended real-valued function defined on Ω. Then the following equivalent

statements hold:

1. ∀𝑐 ∈ R, {𝜔 ∈ Ω|𝑋 (𝜔) < 𝑐} ∈ U(Ω).

2. ∀𝑐 ∈ R, {𝜔 ∈ Ω|𝑋 (𝜔) ≤ 𝑐} ∈ U(Ω).

3. ∀𝑐 ∈ R, {𝜔 ∈ Ω|𝑋 (𝜔) > 𝑐} ∈ U(Ω).

4. ∀𝑐 ∈ R, {𝜔 ∈ Ω|𝑋 (𝜔) ≥ 𝑐} ∈ U(Ω).

If any of the above conditions hold, then we have ∀𝑐 ∈ R, {𝜔 ∈ Ω|𝑋 (𝜔) = 𝑐} ∈ U(Ω).

Proof. Suppose Ω is measurable. Then Ω ∈ U =⇒ Ω𝑐 ∈ U. Therefore, statements (1)

and (4) are equivalent, and statements (2) and (3) are equivalent. So it suffices to show

that (1) ⇐⇒ (2) holds.

Suppose (1) is true. Then

{𝜔 ∈ Ω|𝑋 (𝜔) ≤ 𝑐} =
∞⋂
𝑘=1
{𝜔 ∈ Ω|𝑋 (𝜔) < 𝑐 + 1/𝑘}.

A countable intersection of measurable sets is measurable, so (1) =⇒ (2).

Suppose (2) is true. Then

{𝜔 ∈ Ω|𝑋 (𝜔) < 𝑐} =
∞⋃
𝑘=1
{𝜔 ∈ Ω|𝑋 (𝜔) ≤ 𝑐 − 1/𝑘}.

A countable union of measurable sets is measurable, so (2) =⇒ (1).

The intersection of two measurable sets is measurable, so we have

∀𝑐 ∈ R, {𝜔 ∈ Ω|𝑋 (𝜔) ≤ 𝑐} ∩ {𝜔 ∈ Ω|𝑋 (𝜔) ≥ 𝑐} = {𝜔 ∈ Ω|𝑋 (𝜔) = 𝑐} ∈ U(Ω).

63

If 𝑐 = ±∞, it can be shown that {𝜔 ∈ Ω|𝑋 (𝜔) = 𝑐} ∈ U.

Definition: If a function 𝑓 satisfies one of the above conditions and its domain is

measurable, then 𝑓 is measurable.

Proposition:

𝑓 is measurable if and only if for each 𝐵 ∈ B, where B denotes the Borel 𝜎-algebra,

we have 𝑓 −1(𝐵) ∈ U. Note that because B is the smallest 𝜎-algebra of open sets of R𝑛, we

must have that B ⊂ U ⊆ Ω.

Proof. Suppose 𝑓 is measurable and 𝐵 =
⋃∞
𝑖=1 𝐼𝑖 is a union of open, bounded intervals such

that

𝐼𝑖 = 𝑆𝑖 ∩ 𝑇𝑖 where 𝑆𝑖 = (𝑠𝑖,∞), 𝑇𝑖 = (−∞, 𝑠𝑖).

Since 𝑆𝑖, 𝑇𝑖 ⊂ 𝐼𝑖, which is bounded, and 𝑓 is measurable, 𝑓 −1(𝑆𝑖) ∩ 𝑓 −1(𝑇𝑖) is

measurable. Therefore

𝑓 −1(𝐵) = 𝑓 −1(
∞⋃
𝑖=1

𝑆𝑘 ∩ 𝑇𝑘) is measurable.

On the other hand, suppose for every open 𝐵, 𝑓 −1(𝐵) = {𝜔 ∈ Ω| 𝑓 (𝑥) ∈ B} is

measurable. Then we can express 𝐵 as a union of open intervals, so that we have a set

defined by a function over a union of measurable sets. So 𝑓 is measurable.

1.4. RIEMANN INTEGRATION. Let 𝑓 be a bounded real-valued function on the

closed, bounded interval [𝑎, 𝑏] that has a partition 𝑃, where 𝑃 is a totally-ordered set

𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} where 𝑎 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑛 = 𝑏.

64

Then we have upper and lower Riemann sums respectively defined by

𝑈 (𝑓 , 𝑃) =
𝑛∑︁
𝑖=1

𝑀𝑖 (𝑥𝑖 − 𝑥𝑖−1), where 𝑀𝑖 = sup
𝑥∈(𝑥𝑖−1,𝑥𝑖)

{ 𝑓 (𝑥)}

and

𝐿 (𝑓 , 𝑃) =
𝑛∑︁
𝑖=1

𝑚𝑖 (𝑥𝑖 − 𝑥𝑖−1), where 𝑚𝑖 = inf
𝑥∈(𝑥𝑖−1,𝑥𝑖)

{ 𝑓 (𝑥)}.

These notions naturally lead to the notion of upper and lower Riemann integrals,

defined respectively by

ˆ 𝑏

𝑎

𝑓 (𝑥) d𝑥 = sup
𝑃

{𝐿 (𝑓 , 𝑃)}

and

ˆ 𝑏

𝑎

𝑓 (𝑥) d𝑥 = inf
𝑃
{𝑈 (𝑓 , 𝑃)}.

Then we say 𝑓 is Riemann integrable provided

ˆ 𝑏

𝑎

𝑓 (𝑥) d𝑥 =
ˆ 𝑏

𝑎

𝑓 (𝑥) d𝑥

and we just write

ˆ 𝑏

𝑎

𝑓 𝑑𝑥.

65

REFERENCES

[1] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial dif-
ferential equations using deep learning. Proceedings of the National Academy of
Sciences, 115(34):8505–8510, aug 2018. doi: 10.1073/pnas.1718942115. URL
https://doi.org/10.1073%2Fpnas.1718942115.

[2] Jared Chessari, Reiichiro Kawai, Yuji Shinozaki, and Toshihiro Yamada. Numerical
methods for backward stochastic differential equations: A survey. Probability Surveys,
20(none), jan 2023. doi: 10.1214/23-ps18. URL https://doi.org/10.1214%
2F23-ps18.

[3] Lawrence C. Evans. An Introduction to Stochastic Differential Equations. American
Mathematical Society, 2013.

[4] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi:
10.1007/BF02551274. URL https://doi.org/10.1007/BF02551274.

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989. ISSN
0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. URL https://
www.sciencedirect.com/science/article/pii/0893608089900208.

[6] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251–257, 1991. ISSN 0893-6080. doi: https://doi.
org/10.1016/0893-6080(91)90009-T. URL https://www.sciencedirect.com/
science/article/pii/089360809190009T.

[7] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The modern
mathematics of deep learning. arXiv preprint arXiv:2105.04026, 2021.

[8] Patrick Kidger and Terry J. Lyons. Universal approximation with deep narrow net-
works. CoRR, abs/1905.08539, 2019. URL http://arxiv.org/abs/1905.08539.

[9] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Trans. Evol. Comput., 1:67–82, 1997.

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS 2017 Workshop on Autodiff, 2017. URL https:
//openreview.net/forum?id=BJJsrmfCZ.

[11] Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep Learning. MIT Press, 2017.

[12] Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

66

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[14] Boris Polyak. Some methods of speeding up the convergence of iteration methods.
Ussr Computational Mathematics and Mathematical Physics, 4:1–17, 12 1964. doi:
10.1016/0041-5553(64)90137-5.

[15] Yurii Nesterov. A method for solving the convex programming problem with conver-
gence rate 𝑜(1/𝑘2). Proceedings of the USSR Academy of Sciences, 269:543–547,
1983.

[16] Tanha Talaviya, Dhara Shah, Nivedita Patel, Hiteshri Yagnik, and Manan Shah. Im-
plementation of artificial intelligence in agriculture for optimisation of irrigation and
application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4:58–73,
2020. ISSN 2589-7217. doi: https://doi.org/10.1016/j.aiia.2020.04.002. URL https:
//www.sciencedirect.com/science/article/pii/S258972172030012X.

[17] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-
Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Ju-
lian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet
Kohli. Discovering faster matrix multiplication algorithms with reinforcement learn-
ing. Nature, 610(7930):47–53, 2022. doi: 10.1038/s41586-022-05172-4.

[18] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia,
Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin
Žı́dek, Tim Green, Kathryn Tunyasuvunakool, Stig Petersen, John Jumper, Ellen
Clancy, Richard Green, Ankur Vora, Mira Lutfi, Michael Figurnov, Andrew Cowie,
Nicole Hobbs, Pushmeet Kohli, Gerard Kleywegt, Ewan Birney, Demis Hassabis, and
Sameer Velankar. AlphaFold Protein Structure Database: massively expanding the
structural coverage of protein-sequence space with high-accuracy models. Nucleic
Acids Research, 50(D1):D439–D444, 11 2021. ISSN 0305-1048. doi: 10.1093/nar/
gkab1061. URL https://doi.org/10.1093/nar/gkab1061.

[19] Jiongmin Yong Jin Ma. Forward-Backward Stochastic Differential Equations and
their Applications. Springer, 2007.

[20] P.M. Fitzpatrick H.L. Royden. Real Analysis. Pearson Education, Inc., 2010.

[21] Walter Rudin. Real and Complex Analysis. McGraw-Hill Science/Engineering/Math,
May 1986. ISBN 0070542341.

67

VITA

Daniel G. Kovach II was born in St. Louis, MO on March 10, 1999. They attended

the University of Alabama from Fall 2017 to Spring 2021 with a Presidential Scholarship.

In Fall 2018, they were named to the Dean’s List, and in Spring 2020, they were named

to the President’s List. In May 2021, they graduated with honors, obtaining a B.S. in

mathematics with a concentration in statistics and minor in economics. In August 2021,

they attended the Missouri University of Science and Technology, where they worked as a

graduate teaching assistant from Spring 2022 to Spring 2023 while studying as a graduate

student of applied mathematics. In the Summer of 2023, they then worked as a graduate

research assistant. In December 2023, they received their M.S. in applied mathematics

from the Missouri University of Science and Technology.

	The Deep BSDE Method
	Recommended Citation

	tmp.1709133428.pdf.uqkJS

