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ABSTRACT 

Underground mine planning engineers face significant challenges when 

determining what geometry provides the most profitable and safe stope for extraction. 

Several techniques and optimization algorithms have been developed in recent years, but 

most fail to find optimal solutions because they are heuristic or LP-based without efficient 

geometric constraints. This thesis work proposes a two-dimensional binary linear 

programming (BILP) model for determining the optimal combination of blocks in a stope 

that maximizes the economic value of the layout of stopes for a sublevel deposit. The work 

draws from Queyranne and Wolsey’s (2017 & 2018) formulations of tight constraints for 

bounded up/down times in production planning problems to formulate novel and efficient 

geometric constraints along with geotechnical and grade constraints for the stope layout 

optimization problem. Results from the model indicate that it is possible to formulate 

efficient shape constraints in LP-based approaches. The model used for the numerical 

example contained 144 valuable blocks out of 774 blocks. The BILP model selected 60 

valuable blocks and 13 waste blocks that met all constraints translating into a maximum 

economic value of $34.4M in 1.83 hours within a gap tolerance of 0.00%. A series of 

experiments show that the model is sensitive to cutoff grade, stope frame size, pillar size, 

the number of stopes, and the optimization problem size. Depending on the input values 

for these key parameters selected, they impact the objective function value, the solution 

time and the final layout of stopes generated by the algorithm. The main limitation of the 

proposed model is that pillar constraints are implemented in the Z – X or Z – Y directions 

but not implemented diagonally. 
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1. INTRODUCTION 

1.1. BACKGROUND 

The underground mining industry exploits deposits that are deeply seated and 

economically infeasible to extract with open-pit mining techniques as illustrated below in 

Figure 1.1. Complexities in geology and geotechnical characteristics of the deposits require 

underground strategic mine planning engineers to select and create mine designs that are 

safe, cost-effective to operate, and yield the maximum value [1]–[3]. 

 

 

Figure 1.1 Typical Underground Mine [3] 
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Strategic underground mine planning involves a series of directly related activities 

such as orebody modeling, stope layout design, main access network design (e.g., main 

decline, ventilation raises, levels, primary drifts, and crosscuts), equipment selection, and 

stope scheduling and sequencing. The first stage in value creation is the determination of 

an intuitive optimal layout of extraction zones (optimal stope layout) in the deposit by 

strategic mine planning engineers. This is done by using computer-aided design software. 

Figure 1.2 shows the layout of stopes in an underground mine. 

 

  

Figure 1.2 Typical Stope Layout in an Underground Mine 

 

In stope-based methods (e.g., open stoping, sublevel stoping, and long hole stoping) 

that require stopes for the extraction of the minerals of interest, strategic planning engineers 

design several scenarios of mineable stopes based on 3D dtms/wireframe outputs from a 
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commercial mining software (e.g., Maptek, Datamine, and Deswik) shown in Figure 1.2. 

This mining software considers economic as well as technical input parameters to perform 

multiple iterations that maximize the value of the mine for the investor. These input 

parameters include geologic models (block models), cutoff grades, economic parameters 

(e.g., metal prices, mining, and processing cost), geotechnical parameters (e.g., extraction 

ratio, hydraulic ratios, and pillar widths), and geometric parameters (e.g., minimum mining 

width and mining height) [4], [5]. 

One of the challenges of this approach is which 3D dtm/wireframe shapes and sizes 

maximize value (often, at this stage, just the present value of all blocks).                              

Another challenge is the engines that drive this software are built off a heuristic 

programming technique. Shapes are simple to model using heuristic or non-linear methods, 

hence most of this commercial software includes heuristic algorithms in their optimization 

packages, although these algorithms do not guarantee an optimal solution [6], [7]. However 

mathematical optimization techniques such as LP-based algorithms (linear programming 

and mixed integer programming) have the benefit of generating an optimal result but 

modeling shapes in LP is relatively challenging due to LP's requirement that all 

formulations (objective function and constraints) must be linear.  

However, Queyranne [26] has shown that with the proper formulation, it is possible 

to define efficient shape constraints in the LP-based algorithms that ensure contiguity and 

respect rectangular shapes in the determination of the optimal stope layout. This presents 

an optimization decision-making problem. 
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Figure 1.3 Strategic Planning Process  

 

1.2. PROBLEM STATEMENT 

Mathematical programming models have been used to assist strategic planning 

engineers in mine planning since the early 1960s. Compared to surface mining where there 

are many models and solution algorithms [8]–[10], the underground mining environment 

has fewer optimization models and solution algorithms thus the underground mine plan 

optimization problem remains largely unsolved due to its complexity [10]–[12]. Studies 

conducted on underground mine plan optimization suggest there are three main problems 

to consider [13]–[17]: 

1. Stope layout optimization 

2. Access and development network optimization and 

3. Stope production schedules and sequence optimization. 
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However, the complexities surrounding the underground mine such as orebody 

orientations, mining method, geotechnical characteristics, the large number of variables 

and constraints to consider as well as the computational requirements, make the 

underground mine plan a challenge to solve wholistically with the existing algorithms [18], 

[19]. As a result, the developed algorithms only tackle one or two combinations of the 

underground mine planning problem using rigorous or heuristic methodologies [20] as 

shown in Figure 1.4. This thesis work will thus focus on the stope layout optimization 

problem. 

 

 

Figure 1.4 The Underground Mine Planning Problem 

 

The optimal stope layout that maximizes a deposit’s value while accounting for 

geotechnical requirements and grade quality constraints is the first step in the mine 
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planning process for stoping methods. In recent years, several heuristic and linear 

programming (LP) techniques and optimization algorithms have been developed in both 

three-dimensional and two-dimensional space [5], [21]–[23] but most LP-based ones fail 

to account for efficient shape constraints that satisfy stability and operability constraints 

which leads to suboptimal solutions (i.e., even if the solution is optimal for the problem 

posed, if mine engineers have to adjust that solution to implement, the implemented 

solution is likely to be suboptimal). However, Queyranne’s [25], [26] work has shown that 

it is possible to define efficient shape constraints that ensure continuity and respect 

rectangular shapes in LP with the proper formulation. 

Therefore, it is essential to develop linear programming formulations of the stope 

layout problem that account for or adequately approximate such shape constraints [7], [24]. 

This thesis work, therefore, applies efficient shape constraints in a binary integer linear 

programming formulation of the stope layout optimization problem in two-dimensional 

space.   

1.3. OBJECTIVES AND SCOPE OF RESEARCH 

The overall objective of this thesis is to formulate the stope layout optimization 

problem (SLOP) as a binary linear problem that maximizes the value of the generated 

stopes subject to novel grade, geotechnical (minimum pillar sizes), and allowable mining 

(minimum and maximum stope width and height) constraints in two-dimensional space.  

To achieve this goal, the author: 

1. Draws from Queyranne and Wolsey’s [25], [26] formulations of tight 

constraints for bounded up/down times in production planning problems to 
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formulate novel and efficient geometric constraints along with geotechnical and 

grade constraints for the BILP stope layout optimization problem. 

2. Illustrates the novel BILP model with a sample gold mining data set to verify 

the model. The original geological model of the orebody was regularized to 

generate equal-sized blocks ideal for conversion into an economic model which 

serves as the primary input for the 5-experimental 15-scenario runs to verify the 

BILP model as a model that applies efficient shape constraints in solving the 

SLOP in two-dimensional space. 

1.4. STRUCTURE OF THESIS 

A comprehensive literature review on mathematical programming algorithms for 

optimizing underground stope layout is covered in Section 2 of this research thesis, with 

an emphasis on gaps. Section 3 presents a detailed explanation of the objective function 

and constraints of the proposed BILP model for optimizing underground stope layout. 

Section 4 illustrates how the BILP model was implemented on the sample data set and 

discusses the findings and results deduced from the implementation. Section 5, which is 

the last section of this thesis work, gives the conclusions of the study and recommendations 

for future work. 
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2. LITERATURE REVIEW 

2.1. UNDERGROUND STRATEGIC MINE PLANNING 

Underground strategic mine planning (SMP) is a challenging iterative process 

involving a series of directly related activities including orebody modeling, stope layout 

design, main access network design (e.g., main decline, ventilation raises, levels, primary 

drifts, and crosscuts), equipment selection, and stope scheduling. The strategic mine 

planning process for underground mining focuses on addressing three important criteria; 

operational safety, profitability, and environmental stewardship. A detailed technical and 

economic assessment of the deposit is required for every stage.  Figure 2.1 illustrates the 

iterative and cyclical nature of the underground strategic mine planning process. 

 

 

Figure 2.1 Underground Strategic Mine Planning Process [27] 
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The traditional workflow for mine planning is unable to evaluate a wide range of 

options (mine plans) within a reasonable amount of time. Furthermore, with traditional 

workflows, where only a few options can be considered, optimal profit is, often, not 

possible. Thus, current underground strategic mine planning processes preferably rely on 

the use of mathematical algorithms to handle large datasets, multiple constraints, and 

numerous variables to find the optimal mine plan that maximizes value [18], [28]. 

Due to the complexities surrounding the underground as well as the computational 

requirements, the underground strategic mine plan remains a challenge to solve 

wholistically with the existing algorithms [19], [28], [29]. Consequently, the underground 

strategic mine plan is subdivided into three (3) sub-problems; (1) Stope layout 

optimization, (2) Access and development network optimization, and (3) Stope production 

(scheduling and sequencing) optimization. The existing algorithms can tackle one or two 

combinations of the underground strategic mine planning problem using rigorous or 

heuristic techniques [8] as shown in Figure 1.4. 

This section of the thesis focuses on reviewing the literature on heuristics, meta-

heuristic and LP-based algorithms developed in the underground mine planning space for 

the stope layout optimization problem with a particular emphasis on gaps in geometric 

constraints included in the formulation of these algorithms. The author reviews literature 

gathered using a variety of abstracting indices including Google Scholar and OneMine. 

2.2. MINE PLANNING FOR UNDERGROUND STOPING METHODS  

The primary objective of mine planning is to maximize the recovery of ore while 

minimizing waste rock production, ensuring the safety of workers, and minimizing the 
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environmental impact [30]. There are multiple underground mining methods an engineer 

can choose from to exploit any deposit [31]. To optimize value from the exploitation of 

mineral reserves, strategic and tactical decisions regarding the most appropriate mining 

method need to be made. Key considerations made in the selection of a mining method 

includes host and country rock geomechanical characteristics, mineralization style, 

orebody orientation, production scale, equipment, ground support systems and costs [3], 

[10], [32]. 

 Underground Mining Method Selection.  The choice of an underground 

mining method is an extremely important decision that affects the entire mining project. 

The selection of a suitable mining method relies on sound technical and economic 

evaluations of the deposit. These technical and economic analyses take into consideration 

geological characteristics (dip, size, quality, and shape of the orebody), geomechanical and 

geotechnical characteristics (strength of ore and host rock mass) as well as the economics 

(NPV, IRR, Payback Period) of the deposit [3], [11], [33]–[36]. Generally, the definition 

of a mining method permits: 

• Mining equipment selection  

• Stoping rate analysis  

• Stope design configuration 

• Mine layout configuration 

Mining engineers can apply various underground mining methods to extract 

mineral reserves that are located at significant depths (Figure 2.2). According to the SME 

Handbook [2], some of the factors that must be considered when choosing an underground 

mining method include: 
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• Geological characteristics (extent, shape, and depth of the deposit) 

• Mineralization (quality and distribution) 

• Geomechanical/ Geotechnical conditions of host and country rocks. 

 

 

Figure 2.2 Underground Mining Methods 

 

The interested reader can consult mining engineering resources [2], [31], [34], [37] 

to learn about the mining methods listed in Figure 2.2. In the next subsection of this work, 

the thesis describes naturally supported mining methods because the stope optimization 

algorithm developed in this work applies to these methods. Consequently, a background in 

stoping methods allows the reader to understand the context of the work. 

 Naturally Supported Underground Methods.  Naturally supported 

underground mining methods are mining techniques that rely on the inherent stability and 

strength of the surrounding rock mass to safely extract valuable minerals from beneath the 

surface. These methods minimize the need for extensive artificial support systems and 

instead leverage the natural characteristics of the geological formations [2], [36]. Sublevel 
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stoping (SLS) technique for ore extraction is a prominent self-supported, selective, and 

non-entry naturally supported underground mining method that is commonly used for 

extracting steeply dipping, ore bodies with a thickness greater than 10 meters [2]. The 

method involves splitting the orebody into horizontal tunnels known as production levels 

(primary levels) with stopes separated by pillars on these levels. These primary levels can 

be subdivided into sublevels for more control on production and ore selectivity. The stopes 

are then mined using a mechanized system of drill & blast and haulage. The method is 

particularly well-suited for mining large, low-grade deposits where high production rates 

are required [37]. Figure 2.3 shows a typical layout of a sublevel stoping method. 

2.2.2.1. Primary level placement.  In naturally supported methods such as 

sublevel stoping method, primary levels refer to the horizontal mining levels that are 

established within the orebody to extract the mineralized material. These levels serve as 

access points for mining activities, providing a platform for drilling, blasting, and mucking 

operations [2], [37]–[39]. Here are the key considerations for determining primary levels 

in the sublevel stoping method: 

• Orebody geometry: Analyze the orebody's shape, size, and dip to determine the 

number and spacing of primary levels. The primary levels should be positioned 

at regular intervals to efficiently cover the entire orebody and ensure maximum 

ore recovery. 

• Vertical interval: Determine the vertical spacing between primary levels based 

on the desired stope height and the mining equipment's capabilities. The vertical 

interval should provide enough room for the mining operations within each 

level while maintaining safe working conditions. 
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• Access and egress: Establish primary levels at suitable locations to facilitate 

efficient access to the orebody. Consider existing infrastructure, such as ramps, 

declines, or shafts, to minimize the distance and cost of accessing each level. 

Ensure that there are sufficient entrances and exits to accommodate personnel, 

equipment, and ore transportation. 

• Hanging wall and footwall stability: Consider the stability of the hanging wall 

and footwall when determining the primary levels. Assess the rock mass 

quality, presence of geological structures, and potential for ground instability. 

Position the levels in stable rock formations to ensure the safety of workers and 

equipment. 

• Ventilation: Account for ventilation requirements by establishing primary 

levels to allow for adequate airflow throughout the mine. Consider the direction 

of airflow and position the levels to facilitate efficient ventilation and the 

removal of gases, dust, and fumes generated during mining operations. 

• Safety and emergency response: Ensure that escape routes, emergency exits, 

and refuge chambers are appropriately positioned and easily accessible from 

each level choosing the primary levels. 

It's essential to note that the specific determination of primary levels may vary 

based on the specific characteristics of the orebody, mining regulations, and operational 

constraints. It is advisable to consult with mining professionals and engineers experienced 

in sublevel stoping to develop an optimized and safe primary level layout for a particular 

mining project [40], [41]. 
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Figure 2.3 Underground Sublevel Stoping Method 

 

2.2.2.2. Stope layout.  The design of the layout of a sublevel stoping method is 

generally influenced by the geotechnical conditions of host and country rocks, production 

scale, equipment size, and the grade of material to deliver to the processing plant [21]. 

These decisions determine the size, shape, and location of the stopes with respect to the 

orebody. The production levels in sublevel stoping are constructed after the development 

of all accesses to the stoping areas. Stopes are generated with heights ranging from 30 to 

120 meters in the orebody. Stope width is generally dependent on the equipment and 

orebody thickness. A raise or winze is operated into one corner of the stope from one 

sublevel to the next, followed by the provision of draw points. The method can be 
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customized to limit the number of sublevels while increasing the height of stopes between 

sublevels to reduce development cost and time. A slot is then constructed for drilling and 

blasting within the stope to extract the ore. Extracted ore is transported by load-haul-dump 

(LHD) loaders and transferred to the underground crusher through an ore pass or to the 

surface crushers using trucks, conveyor, bin, or skip. The levels above the stope crown are 

protected, while neighboring stopes are separated by pillars. [37], [42]. 

A complete layout design of these stopes is the basis for evaluating the economic 

potential of a deposit and thus the reason to ensure that an optimal layout that maximizes 

value is designed [17], [30]. 

2.2.2.3. Pillar support.  Pillar design is a crucial aspect of sublevel stoping mining 

as it plays a significant role in ensuring the stability and safety of underground mining 

operations. The primary purpose of pillars in sublevel stoping is to provide support to the 

overlying rock mass and prevent the collapse of the stope or caving of the hanging wall 

[42]. In a typical sublevel stoping operation, numerous pillars are utilized for ground 

control. Rib pillars are placed as support dividers between stopes that are horizontally 

contiguous. Some vertical slices are left behind as support pillars during production to help 

prevent subsidence within the stope. Another important support advancement in sublevel 

stopping is the use of sill and crown pillars. They are employed as a sill pillar between 

vertical stopes and as the crown pillar for the transition between surface and underground 

activities s [2], [33], [43], [44]. The design of pillars in sublevel stoping is influenced by a 

range of factors, including rock mass quality, seismicity, ore grade, stope geometry, and 

mining method [45]. The pillar size is determined based on the minimum required pillar 

dimensions to ensure the stability of the overlying rock mass and prevent excessive 
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deformation. The ratio of pillar size to stope width (hydraulic radius) is typically between 

0.2 and 0.4, depending on the rock mass quality, depth of the deposit, and mining method 

[45]. In general, larger pillar sizes with higher rock mass quality are necessary to maintain 

stability in deep-seated deposits. In sublevel stopping mining, the optimal pillar size and 

layout are commonly determined using numerical modeling and empirical techniques. 

2.2.2.4. Stope grade.  This Stope grade in sublevel stoping methods is a principal 

factor that determines the economic viability of the mining operation. It refers to the quality 

of the ore reserve material mined from a stope to meet the milling or processing 

requirement., the distribution of mineralization within the deposit, the quality of the 

geological and mineralization models, and The stope grade is influenced by various factors 

such as the geological characteristics of the orebody (thickness, dip, strike) the distribution 

of mineralization within the deposit, the quality of the geological and mineralization 

models as well as dilution. Generally, the aim is to maximize the value of the project by 

extracting as much ore from the deposit that exceeds the cut-off grade, while minimizing 

dilution. This is achieved by selecting the best location, size, and shape of the stopes within 

the orebody while ensuring geotechnical stability [2], [46], [47].  

2.3. UNDERGROUND STOPE LAYOUT OPTIMIZATION 

The stope layout problem involves determining the optimal arrangement of stopes 

in an underground mining operation, subject to various technical, economic, and safety 

constraints. In the stope layout problem, the objective is typically to maximize the net value 

(NV) of the mine, which is a function of the revenue generated by the ore mined and the 

costs incurred in mining and processing that ore. To do this, engineers must take into 
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account several constraints, such as geotechnical, economic, and operational limitations 

[24], [48], [49]. Traditional approaches involve manually drawing stope shapes around ore 

blocks that meet the cutoff grade. This is tedious and leads to suboptimal solutions and it 

is not reasonable to do all the required iterations to evaluate all possible solutions [24], 

[50]–[52]. The underground stope layout problem is still difficult to solve holistically with 

the current algorithms due to the complexity of underground mines, the numerous variables 

to consider, and the computational requirements [19], [28], [29].  

Mathematical programming models for mine planning have existed since the early 

1960s with considerable development made in the surface mining space as opposed to the 

underground space particularly on stope layout optimization [7], [19], [20], [53], [54]. 

These algorithms involve formulating an objective function that seeks to maximize value 

and constraints such as ore grade, stope shape, and pillars, to find the optimal solution. The 

following literature review provides an overview of the methods and techniques used for 

optimizing underground stope layouts. Table 2.1 shows the main algorithms for solving 

the underground stope layout problem. 
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Table 2.1 Limitations of Stope Layout Optimization Algorithms 

Classification Algorithm/Author(s) 
Dimensional 

Space 
Optimality 

Heuristics 

Octree Division (1989) [55] 3D No 

Floating Stope (FS) (1995)[50] 3D No 

Maximum Value Neighborhood 

(MVN) (2000)[30] 
3D No 

Ataee-Pour (2000)[56] 3D No 

Multiple Pass Floating Stope Process 

(MPFS) (2001)[57] 
3D No 

Topal and Sens (2010)[58] 3D No 

Sandanayake and Topal (2010)[59] 3D No 

Matamoros and Kumral (2017)[60] 3D No 

Nikbin et. al (2017)[61] 3D No 

Sari and Kumral (2021)[44] 3D No 

Clustering-Based Algorithm (2021)[63] 3D No 

Dual Interchange Algorithm (2022)[46] 3D No 

Rigorous 

Dynamic Programming (1977)[64] 2D No 

Downstream Geostatistics (1984)[13] 2D No 

Branch and Bound (MIP) 

(1995,1999)[55] 
1D Yes 

Probable Stope (2004)[65] 2D No 

Grieco and Dimitrakopoulos (MIP) 

(2007)[65], [66] 
Not Indicated Yes 

Network Flow (2013)[67] 3D No 

OLIPS (2007)[65] 2D Yes 

GOUMA (2015)[13], [65] 2D Yes 

Samanta and Suranjan (2021)[5] 3D No 
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 The Stope Layout Optimization Problem (SLOP).  From literature review, 

most early algorithms were purely heuristic. Heuristic algorithms, such as floating stope 

(FS), maximum value neighborhood (MVN), multiple pass floating stope (MPFS), and 

simulated annealing (SA), have been used to optimize stope layouts in several studies [50], 

[64], [65]. Most of the early developed algorithms utilized heuristic approaches because 

shapes are simple to model using heuristics or non-linear methods. Heuristic algorithms 

also have the advantage of finding a good near optimality solution quickly and are based 

on simple concepts or guidelines that are inspired by natural processes or engineers’ 

intuition. However, heuristic stope layout optimization algorithms have several 

disadvantages including they result in sub-optimal solutions, they are sensitive to 

parameters changes and algorithm are often complex [18], [65] [30]. 

Most recent algorithms are meta-heuristic to overcome the limitations of the earlier 

developed heuristic algorithms. Examples include pattern search method algorithm [21], 

clustering-based iterative approach [63], greedy heuristic approach [6], dual interchange 

algorithm [46], simulated annealing [68], [69], and genetic algorithms [28], [70]–[72]. 

However, these algorithms do not guarantee optimality. 

Mathematical optimization techniques, such as linear programming with its 

variations such as mixed-integer linear programming (MILP) and binary integer linear 

programming (BILP), provide a more efficient approach for stope layout optimization. 

[20], [23], [65]. One of the main advantages of LP-based approaches is that they can handle 

large-scale problems with many decision variables and constraints. They can also provide 

a globally optimal solution, if the problem satisfies certain conditions, such as convexity 

[73]. Several models have been developed such as mixed-integer programming (MIP) [7], 



 

   

20 

[8], [53], [58], [61], [63], Network flow models [74] [73] and integer programming (IP) 

[75]–[77].   

However, LP-based approaches have some limitations when it comes to stope 

layout optimization. One of the main limitations is that they are limited by shape constraints 

[78]. In stope layout optimization, the shape of the stopes is often constrained by 

geotechnical considerations, such as stability and fragmentation. These constraints can take 

various forms, such as minimum width, maximum length, minimum height, and minimum 

distance between adjacent stopes. Thus, it is imperative that more research is conducted to 

develop effective and efficient mathematical algorithms to solve the underground stope 

layout problem. 

 Formulation of the SLOP with Heuristic Algorithms.  As stated in section 

2.3.1, earlier algorithms developed to solve the SLO problem were purely heuristic with 

limitations. Thus, to overcome these limitations, meta-heuristic algorithms have been 

applied to most recent model developments to solve the SLO problem [79]. Metaheuristic 

algorithms (MAs) are optimization algorithms that are designed to solve complex 

optimization problems that are difficult to tackle with traditional optimization methods. 

These algorithms are inspired by natural mechanisms and abstract concepts that aim to 

efficiently explore large solution spaces to find near-optimal solutions [62], [79], [80]. 

MAs methods can be categorized according to various factors, including the search 

strategy employed, the number of candidate solutions considered, and the extent of 

hybridization or memetic techniques utilized There are several kinds of MAs, such as 

Evolutionary Algorithms (EAs) and Swarm Intelligence Algorithms (SIAs). 
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Formally, the general procedure for MAs adapted from [79] is given in the 

following form: 

Let  be a set of possible solutions

Find  such that maximize/minimize 

(i.e. ( ) ( ( ))  ( ) ( ( ))

where :

o

o x X o x X

X

x X f

f x max f x or f x min f x

f X R.

 



= =

→

 

EAs the most well-known population-based, global search Mas [70], [81]. EAs are 

meta-heuristic techniques that draw their inspiration from biological evolution-dependent 

phenomena including reproduction, mutation, and natural selection. In EA, the search 

space X is a set of chromosomes (i.e., DNA strings) regarded as candidate solutions for a 

given problem. Their fitness is evaluated by objective function (f). To discover the best 

solution, the fitness value of x X should be kept as high or low as possible (i.e., the fittest 

chromosome). Evolutionary algorithms (EAs) including genetic algorithms (GAs), genetic 

programming (GP), evolutionary programming (EP) are examples of popular techniques 

developed under the EAs.  

Swarm Intelligence Algorithms (SIAs) are optimization algorithms inspired by 

nature, specifically the collective behavior and interactions observed in animal colonies. 

The concept of "swarm intelligence" was coined by G. Beni and J. Wang in 1989 to 

describe these algorithms. Swarm Intelligence Algorithms aim to mimic the cooperative 

and adaptive behavior observed in natural swarms to solve complex optimization problems. 

[82].  

The reason behind the widespread recognition and effectiveness of these algorithms 

lies in their inherent ability to learn autonomously, their flexibility, and their capability to 

adapt to changes originating from both external and internal factors [82]. In the space of 
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stope layout optimization, several MAs have been developed to tackle the complex 

constraints, large solution spaces, and the need to find a good solution within a reasonable 

amount of time that characterizes the SLO problem. Examples include pattern search 

method algorithm [21], clustering-based iterative approach [63], greedy heuristic approach 

[6], dual interchange algorithm [46], simulated annealing [59], [60], and genetic algorithms 

[28], [70]–[72]. However, these algorithms do not guarantee optimality. 

 In the next subsections that follows, this work will provide a good overview of the 

application of these methods to the stope layout optimization problem, the general principle 

behind it, their application to the SLO problem and some limitations of using these 

approaches. 

2.3.2.1. Simulated annealing process.  Simulated annealing (SA) is a meta-

heuristic algorithm that can be used to find the global optimum solution of a non-convex 

and non-linear optimization problem. The algorithm is based on the idea of simulating the 

physical process of annealing in metals, where the metal is heated and then slowly cooled 

to remove any defects in its structure and obtain a high-quality crystal lattice [83]. 

During the annealing process, a solid material, such as metal, is subjected to high 

temperatures to transform it into a liquid or molten state. This elevated temperature allows 

the atoms within the molten metal to move more freely. However, as the temperature is 

gradually decreased, the motion of atoms becomes increasingly constrained [84]. 

Krikpatrik et al. [85] introduced the concept of the simulated annealing (SA) 

algorithm, which can be applied to search for the global optimum of a complex function 

(combinatorial problem).  
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The algorithm starts with an initial solution and iteratively improves it by 

perturbing the solution and accepting or rejecting the new solution based on a probabilistic 

criterion that allows for escaping local optima [15], [69]. During each iteration of the 

simulation, a fresh configuration of the system is generated by introducing a random 

displacement to a randomly chosen particle from the current state. If the energy of the new 

state is equal to or lower than that of the current state, the new state is immediately adopted 

as the current state. However, if the energy of the new state is higher, it is still considered 

for acceptance, but with a probability determined by Boltzmann's probability distribution, 

Figure 2.4 shows the general SA algorithm [86]. 

The temperature parameter decreases over time, allowing the algorithm to escape 

from local minima and converge to a near-optimal solution [69]. Although an objective 

function and constraints can be used to define a problem that is addressed by simulated 

annealing, in practice the constraints are incorporated into the objective function as 

penalties [68], [87]. The SA algorithm can be used to optimize the stope layout by treating 

the problem as a combinatorial optimization problem. In this approach, the stope layout is 

represented as a binary string of 0's and 1's, where a 1 indicates that a stope is present and 

a 0 indicates that it is absent. The objective function is typically the net present value (NPV) 

of the mine, which is a function of the revenue generated by the extracted ore and the costs 

incurred in extracting the ore and waste (that is necessary to ensure feasible stopes) as well 

as the cost of processing ore. 
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Figure 2.4 General Illustration of The Simulated Annealing Algorithm [86]  

 

The constraints in the stope layout problem can be incorporated into the algorithm 

by using penalty functions. For example, geotechnical constraints such as minimum width, 

maximum length, and minimum height can be enforced by applying penalties to solutions 

that violate these constraints. Similarly, the economic and operational constraints can be 

incorporated into the algorithm using penalty functions [88]–[90]. 
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Simulated annealing is known for its robustness and ability to find good solutions 

even when dealing with complex and non-convex optimization problems. This makes it 

particularly useful in situations where other optimization methods may struggle. Also 

simulated annealing is a global optimization method, meaning that it can find the global 

optimum of an objective function, rather than just a local optimum. This is important in 

many real-world optimization problems where finding the best possible solution is critical 

[68], [91]. However, simulated annealing can be slow to converge to a satisfactory solution, 

particularly for complex optimization problems such as the stope optimization problem, 

which deals with many variables. This can be a disadvantage in mine planning situations 

where time is a critical factor. Simulated annealing requires the user to set several 

parameters, including the initial temperature and cooling rate. These parameters can be 

difficult to set correctly and can have a significant impact on the performance of the 

algorithm. Although simulated annealing is a global optimization method, it can still get 

trapped in local minima, particularly for complex optimization problems. This can result 

in suboptimal solutions. Lastly, simulated annealing can be computationally intensive, 

particularly for large-scale optimization problems. This can make it impractical for certain 

applications. 

In summary, simulated annealing is a metaheuristic optimization method that has 

found many applications in many fields including stope optimization, energy and many 

more[87], [90]. However, because of its drawbacks such as the inability for SA to guarantee 

an optimal solution, inability to model efficient shape constraints on the stope geometry 

and its computational intensity, it has not fully addressed the problem of stope layout 

optimization. 
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2.3.2.2. Genetic algorithm approach.  Another popular meta-heuristic algorithm 

for stope layout optimization is the genetic algorithm (GA). Genetic algorithm (GA) is an 

evolutionary inspired meta heuristic algorithm, based on the mechanism of natural 

selection and biological processes of generating the fittest individual from a population 

[28], [71], [92]. Applied to search for an optimal solution, GAs have the capacity to 

improve solutions produced in the search space iteratively until a near optimal solution is 

generated. In the 1960s and 1970s at the University of Michigan, John Holland, his 

students, and colleagues pioneered and made popular the GAs [28], [81]. Since then, GAs 

have grown in popularity and the diversity of applications [81], [93]–[97] 

The principle behind GA mimics the process of natural selection that works on a 

population consisting of competing individuals (i.e., chromosomes) where only the 

strongest individuals survive. GA (Genetic Algorithms) selects a pool of parents from the 

population using certain criteria, without relying on strict mathematical formulations, to 

generate the next generation. As a result, GAs are considered nonlinear, discrete event, and 

stochastic algorithms rather than being solely guided by mathematical rules. Crossover and 

mutation operators introduce new candidates into the population. The crossover operator 

creates offspring by exchanging parts of genetic information between two parents, while 

the mutation operator may modify certain genes in the offspring. The elitism operator 

merges the new population with the previous population and selects superior solutions from 

the combined population, ensuring that performance does not deteriorate. GA assesses the 

fitness of each individual using a fitness function. In the final generation, the fittest 

individual is regarded as the optimal solution [81], [98]–[100].. Figure 2.5 shows the 

workflow for the general principle of the GA algorithm [79], [98], [101]–[103]. 
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The GAs have been widely applied to solve complex combinatorial optimization 

problems, including stope layout optimization in underground mining operations. In the 

GA approach, the stope layout is represented as a chromosome in a genetic population, and 

the objective function is the NPV of the mine. The geotechnical, economic, and operational 

constraints can be incorporated into the algorithm using penalty functions, as in the SA 

approach. Figure 2.6 shows the application of the GA to the stope layout problem [28]. 

 

 

Figure 2.5 Genetic Algorithm Workflow Chart [71] 
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Figure 2.6 A Workflow of GA Applied to Stope Layout Optimization Problem [28]



 

 

GA is a population-based metaheuristic algorithm that can effectively explore the 

search space, allowing for a global search for optimal or near-optimal solutions. It has the 

potential to overcome local optima and converge towards better solutions, making it 

suitable for complex and multimodal optimization problems like stope layout optimization. 

GA can naturally lend itself to parallel implementations, as multiple solutions can be 

evaluated and evolved simultaneously. This parallelism can leverage modern computing 

architectures, speeding up the optimization process and providing opportunities for 

efficient utilization of computational resources. 

GA can handle various constraints in stope layout optimization problems. Constraints 

related to stope geometry, operational requirements, geological considerations, and others 

can be incorporated into the fitness function or through customized genetic operators. GA's 

ability to maintain a diverse population enhances the chance of generating feasible 

solutions that adhere to the constraints. 

GA also has several limitations some of which includes, tunning parameters. GA 

applied to the SLOP involves several parameters that need to be carefully tuned to achieve 

good performance. These parameters include the population size, crossover and mutation 

rates, selection strategies, and termination criteria. Finding the optimal values for these 

parameters can be challenging and often requires multiple trial-and-error iterations. Like 

any metaheuristic optimization algorithm, GA is susceptible to premature convergence, 

where the algorithm settles on suboptimal solutions without exploring the entire search 

space. Lastly GA's optimization process may yield optimal or near-optimal solutions, but 

the resulting stope layouts can be challenging to interpret and understand. The evolved 

solutions may not offer clear insights into the underlying reasons for their effectiveness, 
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making it difficult to extract actionable knowledge or recommendations for the mining 

operation. 

In summary, using the GA for stope optimization offers advantages such as global 

search capability, solution diversity, constraint handling, flexibility, and customization. 

However, it has drawbacks including parameter tuning challenges, potential for premature 

convergence leading sub-optimal solution and difficulties in interpreting the results. In 

SLO achieving an optimal solution is paramount to making decisions on investment as 

such algorithms developed needs to ensure optimal solutions are guaranteed.  

2.3.2.3. Particle swarm optimization approach.  This Another meta-heuristic 

technique that researchers have applied to the stope layout optimization problem is the 

particle swarm optimization algorithm (PSO) [62], [80]. Particle swarm optimization 

(PSO) is a metaheuristic optimization algorithm developed from swarm intelligence and 

the social behavior of bird flocking or fish schooling. The first PSO was presented by 

Kennedy and Eberhart to solve non-linear continuous optimization problems [104]. 

Particle swarm optimization is a search strategy that operates based on a population of 

flying particles. These particles dynamically adjust their velocities according to their own 

historical performance and the collective historical performance of the entire group, aiming 

to efficiently converge towards optimal solutions in the search space[82], [105], [106]. 

In recent years, PSO has been widely used as an effective tool to deal with many 

practical, real-life application problems such as stope layout optimization due to its ability 

to handle increasingly complex problems. PSOs' popularity and success have been linked 

to their capacity for self-learning, flexibility, and adaptability to both internal and external 
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changes. as well as their ability to handle complex multi-objective problems and search for 

global optimal solutions [80], [107], [82], [108].   

In PSO, the technique initializes a swarm of n random particles in the search space 

at random positions and velocities. The limits, the inertia factor ( w ), the cognitive and 

social characteristics ( 1cs , 2cs ), and the maximum number of iterations that will be carried 

out are also set during the initialization process of the algorithm. At each iteration, the 

objective function value for each particle at their current position is evaluated to determine 

its fitness. The particle’s best position ( pbestx ) as well as the swarm’s global best particle 

position ( gbestx ) is found at this step. To move closer to the gbest and pbest particles, the 

particle's current velocity and location are updated[62], [80], [82]. If any particle in the 

swarm turns out to be in a position that is better than the present position of the swarm's 

gbest particle, the index of the swarm's gbest particle is modified before an iteration ends. 

When the stopping requirement is satisfied, that is, when the maximum number of 

iterations have been finished, a good enough fitness value has been reached, or the 

algorithm has been producing the same result for a period of consecutive iterations, the 

iterative process is halted. The optimized function value is taken to be the fitness value of 

the gbest particle at the conclusion of the process [104], [106], [108]. The formula for 

updating the velocity and position [82] is, respectively, given by Equations (2.1) and (2.2): 

 ( ) ( )( ) ( )( )1

1 1 2 2

n n n n

pbest gbestv w v cs r x x cs r x x+ =  +   − +   −  (2.1) 

 1 1n n nx v x+ += +
 

(2.2) 
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Where: 

1nv +
= velocity of the succeeding particle. 

1nx +
= position of the succeeding particle. 

nx = particle’s current position. 

= personal best position of the particle. 

= position of the global best particle of the swarm. 

= inertia factor, which controls the exploration capabilities of the algorithm 

1r and 2r are random numbers uniformly generated within the range [0,1]. 

1cs and 2cs are positive parameters called the cognitive and social parameters respectively. 

SI algorithms such as PSO have continuously developed over the years, leading to 

a surge in research demonstrating their rapid evolution and successful implementation in 

real-world optimization problems. Computational modeling of swarms using SI algorithms 

has expanded beyond operations research [109] to various domains like machine learning 

[110], business, and finance[110]. PSO has also been applied in engineering optimization 

problems such as stope layout problem [62], scheduling and routing problems [111]. SI 

algorithms are thought of as very promising optimization strategies due to the following 

traits: 

1. PSO is known for its the capacity to search the whole optimization problem space. 

Finding global optimum or nearly optimum solutions is made possible by the 

extensive range of potential solutions it investigates [112]. 

2. PSO’s implementation and understanding are both rather straightforward. In 

comparison to other optimization methods, it contains fewer tuning parameters, 

making it usable even by people with little optimization experience [111]. 

pbestx

gbestx

w



 

   

33 

3. PSO has shown effectiveness in solving optimization problems with a high number 

of dimensions. It can handle problems with a large number of variables or decision 

parameters efficiently [113]. 

4. Fast Convergence: PSO has the potential to converge to good solutions quickly, 

especially in problems where the fitness landscape is relatively smooth and devoid 

of sharp local optima [80]. 

However, like any other metaheuristic algorithm, the PSO has some limitations: 

1. PSO does not guarantee finding the global optimum in every optimization problem. 

Depending on the problem and parameter settings, PSO may converge to 

suboptimal or local optima instead of the global optimum. 

2. The performance of PSO is highly sensitive to its parameter settings, such as the 

swarm size, inertia weight, cognitive, and social parameters. Fine-tuning these 

parameters to achieve good performance can be challenging and time-consuming. 

3. PSO struggles with incorporating constraints in optimization problems. Ensuring 

that solutions adhere to problem-specific constraints can be challenging, requiring 

additional mechanisms such as penalty functions or repair strategies. 

Overall, the use of meta-heuristic algorithms in stope layout optimization can be 

advantageous due to their ability to handle complex and non-linear problems, their 

efficiency in searching large solution spaces, and their ability to escape local optima. 

However, they have limitations in comprehensively solving the stope layout optimization 

problems such as the need for tuning algorithm parameters, and the possibility that they 

get stuck in a local optimum and do not find the global optimum solution. 
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 Formulation of The SLOP as a Linear Programming Problem.  Linear 

programming optimizes a linear objective function subject to linear equality and linear 

inequality constraints. The feasible region is a convex polytope, which is the intersection 

of half spaces defined by linear inequalities. The objective function is a real-valued linear 

function on this polyhedron. An algorithm for linear programming identifies a point in the 

polytope where the function has the smallest or largest value, if such a point exists [114] 

[115], [116]. Equation (2.3) shows the general form of the LP problem with decision 

variable y, and “cost coefficients” c.  

 Maximize 

 
  

 

T

subject to





c y

Ay b

y 0

 (2.3) 

                                                                                                   

𝒄 ∈ ℝ𝒏, 𝒃 ∈ ℝ𝒎 are vectors and 𝑨 ∈ ℝ𝒎×𝒏 is a matrix. y ≥ 0 means that each component 

of y is non-negative. Several variations of this problem are possible; for example, instead 

of maximizing, we can minimize, or the constraints may be in the form of equalities, such 

as Ay = b.  

An instance of Equation (2.3) where all the variables and constraints are restricted 

to integers is called integer linear programming (ILP) problem. A variation to this case is 

when all the decision variables must be binary (i.e., 0 or 1) is called the binary integer linear 

programming (BILP) problem. Mixed-integer linear programming (MILP), another 

variation to the ILP is when some of the variables are restricted to integers and some 

allowed to be non-integer variables  [78], [117], [118].   

The stope layout problem involves determining the optimal arrangement of stopes 

in an underground mining operation, subject to various technical/operational (allowable 
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mining dimensions), economic (cutoff grade), and safety constraints (pillar requirements). 

The stope layout problem can, thus, be formulated as a linear programming (LP) problem, 

which involves maximizing or minimizing a linear objective function subject to a set of 

linear constraints [8], [14], [17], [24], [48], [55], [73]. 

 An example of stope boundary optimization is represented as an LP formulation 

as follows by Alochukwu et.al., [119]. In their model, the SLOP is formulated as a 2D 

mathematical model where a binary decision variable ijy  is defined as 1ijy =  if block (i,j) 

is mined and 0ijy =  if block (i,j) is not mined. The block economic value ijV  is 

preprocessed using a value equation similar to Equation (3.1). These two variables are then 

used to define a maximization of the objective function that seeks to maximize the 

economic value of the stope layout generated. The mining area is represented by an n m  

grid while the stope dimensions is a fixed   . Equations (2.4) – (2.9) summarizes their 

BILP model where p is minimum stope dimension in   direction and q is minimum stope 

dimension in   direction. 

 

1 1

maximise 
n p m q

ij ij

i j

V x
− −

= =

  
(2.4) 

 
Subject to:  
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x i n p j m q
+ +

   −   −  (2.5) 
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' '

' 1 ' 1

 = 1 {1,... }, {1,... }
i p j q

ij i j

i i j j

x x i n p j m q
+ +

= + = +

−   −   −   (2.8) 

 1  1,  {0,1}ijp and q x = − = −   (2.9) 

This approach by Alochukwu et.al., [119] has some limitations including the use of 

fixed stope dimensions, lack of flexibility to adapt to the peripheries of the deposit, and the 

fact that they are not well formulated. The authors define fixed stope dimensions (  ), 

which indicates the inability of this model to generate variable stope dimensions. Models 

that do not give flexibility to adopt to the deposit’s peripheries will most likely generate 

suboptimal shapes. The model does not integrate explicit formulations for level constraints 

or geotechnical constraints, which are essential factors in effectively implementing 

naturally supported stoping methods. The absence of these constraints limits the model's 

ability to effectively account for the specific requirements and considerations related to 

maintaining stable mining levels and addressing geotechnical challenges associated with 

underground mining operations. Finally, the main problem with Alochuku et al.’s model is 

that these constraints are not well formulated. Equation (2.6) – (2.8) are the constraints that 

control how the model generates the stopes in the n m  grid. Equation (2.10) ensures a 

block (i, j) is mined at most once in a stope. Equations (2.11) – (2.12) control the selection 

of blocks in a stope (the mining constraint). The problem with these formulations for these 

constraints are that they are forward looking only. Consequently if ijx is mined, the blocks 

ahead ((i+1) or (j+1) onwards) cannot be mined. But blocks behind it can be mined because 
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those are not constrained, which will lead to solutions that always include the "left-hand" 

side blocks only. But even then, since each block has this same constraint, only one block 

can be mined in each index. Another limitation of this model is that the constraints are 

formulated in the “natural” decision variables, which will lead to an exponential growth in 

constraint equations leading to more computational time and resources is needed to solve 

this optimization model. Time is essential in mine planning where large scale models are 

used as input. Thus, such a model can negatively impact the optimization process 

significantly. Finally, this model does not incorporate stope grades into the model. 

Determining the material to include in a stope relies heavily on the required stope grade. 

The objective is to meet the processing plant requirements by including material that 

ensures the stope’s average grade meets or exceeds a specific cutoff grade. However, this 

model does not incorporate stope grade constraints. As a result, some stopes formed by the 

model may contain significant amounts of low-grade material since there is no control over 

the threshold of grades to include in a stope.  

To enhance LP models, one can introduce efficient shape constraints, tighten the 

formulation of the constraints, and incorporate geotechnical and stope grade constraints. 

These additions will improve the practicality and effectiveness of the model in solving the 

stope layout optimization problem. This LP formulation of the stope layout problem can 

be solved using standard LP solvers, such as CPLEX or Gurobi. The solution provides the 

optimal selection of stopes subject to the given constraints. The LP formulation can also 

be extended to incorporate additional features, such as uncertainty, multiple objectives, and 

discrete variables, using appropriate modeling techniques [14], [49], [120]. 
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2.4. FORMULATION OF GEOMETRIC CONSTRAINTS IN LP OPTIMIZATION 

PROBLEM 

The Geometric constraints in linear programming (LP) optimization problems are 

constraints that restrict the feasible region of the problem to a certain shape by imposing 

limits on the decision variables. These constraints are usually applied to ensure that the 

solutions to the optimization problem are physically feasible and satisfy engineering 

requirements[121], [122]. The geometric constraints in LP problems can be formulated 

using linear equations or non-linear equations which can be linearized [115], [123], [124]. 

Non-linear equations cannot be directly solved within the framework of linear 

programming (LP) because LP models are based on linear relationships between decision 

variables and constraints. However, non-linear equations can sometimes be linearized or 

approximated to enable their inclusion in LP formulations using techniques such as the 

Piecewise Linear Approximation (PLA) [115], [123]. Inequalities can also be used 

depending on the specific problem and the nature of the constraints [114], [117]. Some 

general methods for formulating geometric constraints in LP optimization problems are 

described below. 

1. Linear Inequalities: One approach to formulating geometric constraints in 

LP optimization problems is to use linear inequalities[5], [24], [73]. This approach 

involves specifying upper and lower bounds on the decision variables that reflect 

the geometric constraints. For example, in a stope layout optimization problem, the 

decision variable might be the size of a stope, and the geometric constraint might 

be a minimum height and width requirement[13], [49]. This constraint could be 

formulated as a linear inequality of the form:  
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 min

i iy   (2.13) 

 Where: 

y i = binary decision indicating if a block is included ( y i =1) or not ( y i = 0) 

i = decision variable representing stope width 

min = minimum stope width requirement  

                                  

 

2. Nonlinear Inequalities: The geometric constraints in LP optimization 

problems may be nonlinear and cannot be expressed as simple linear inequalities 

[125]–[127]. However, the feasible region must still be a convex set. In such 

instances, nonlinear constraints can be transformed into linear constraints using 

techniques such as piecewise linearization approximation [25], [123], [128]. 

Linearization involves approximating a non-linear function by a linear function in 

a particular region of the function's domain so the resulting linear equations can 

then be used to formulate linear constraints in the LP problem [123], [124]. 

More complex geometric constraints, such as those involving non-rectangular stope 

shapes or irregular boundaries, may require more complex formulations, such as nonlinear 

equations or more complex inequalities. The specific formulation depends on the specific 

problem and the nature of the geometric constraint [26], [75], [129]. 

Nhleko et.al [20] show that stope layout optimization problems consider several 

constraints in their formulation (Figure 2.7). Their study shows none of the algorithms 

developed include shape or geometry constraints in their models. LP problems do not 

contain shape constraints because they are nonlinear as such the heuristics techniques tend 

to be the ones that include shape constraints. Hence, most of the algorithms use heuristics 

techniques [18], [65]. 



 

   

40 

 

Figure 2.7 Constraints Considered in the SLO Algorithms [57] 

 

However, Queyranne, in his work on production sequencing and mine production 

sequencing, has shown that with the proper formulation, it is possible to define efficient 

shape constraints in LP-based models that ensure contiguity and respect rectangular shapes 

[26]. Queyranne and Wolsey [25], [26] propose a unique approach to incorporating shape 

constraints into mine planning optimization models using extended formulations. The 

extended formulation approach proposed by Queyranne involves introducing additional 

decision variables to identify the first block in a sequence of mined blocks. The key idea is 

to reformulate the original problem in a higher-dimensional space (“natural” decision 

variables), where the shape constraints can be represented by linear constraints. The 

approach also provides a more compact and efficient representation of the problem. One 
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of the main advantages of the extended formulation approach is that the resulting 

optimization problem is solved using LP or MIP techniques using standard LP and MIP 

solvers. 

2.5. EFFICIENT LINEAR SHAPE CONSTRAINTS 

Shape constraints are essential for underground mine planning because they play 

an essential role in ensuring that the shapes of the stopes or mine layouts in the solutions, 

meet operational and technical requirements for practical and safe extraction of the 

orebody. For instance, the LHD equipment must be able to maneuver inside the stopes 

while mining. Thus, not accounting for these constraints can lead to a loss of valuable ore 

material, increase stope dilution, stability issues and present a suboptimal mining operation 

[26]. As stated in Section 2.4 above, Queyranne and Wolsey [25], [26] presented an 

approach to incorporate linear shape constraints into mine planning optimization models 

using extended formulations.  

The approach by Queyranne and Wolsey assumes a discrete (1D) series of blocks 

as in Figure 2.8. A stope starting with block t can have length at least t and at most t . 

Similarly, a pillar starting with block t can have length at least t and at most t . Their 

model defines the binary decision variables: 

• t = 1, if block t is a stope block; 0 otherwise.  

• tZ = 1, if block t is the leftmost of a stope. tZ = 1 if 1t − = 0 and t  = 1. 

• tw = 1, if block t is the leftmost of a pillar. tw = 1 if 1t − = 1 and t  = 0. 
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Figure 2.8 Series of Blocks for 1D Room and Pillar [26] 

 

Based on these decision variables, Queyranne and Wolsey proposed the constraints 

described by Equations (2.14 – 2.19) as tight MIP formulations of 1D constraints [25].  

 
𝑍𝑡 ≥ 𝑦𝑡 − 𝑦𝑡−1              𝑡 ∈ [1, 𝑛] (2.14) 

 
 

 

 
∑ 𝑍𝑢

𝑢∈[0,𝑡]:
𝑢+𝛼𝑢>𝑡

 ≤ 𝑦𝑡               𝑡 ∈ [1, 𝑛] 
(2.15) 

   

 

𝑍𝑡 ≤ ∑ (1 − 𝑦𝑢)

𝑡+𝛽𝑡

𝑢=𝑡+1

            𝑡: 𝑡 ≥ 0 and 𝑡 + 𝛽𝑡 (2.16) 

 
 

 

 

 𝑤𝑡 ≤ ∑ 𝑦𝑢

𝑡+𝛿𝑡

𝑢=𝑡+1

            𝑡: 𝑡 ≥ 0 𝑎𝑛𝑑𝑡 + 𝛿𝑡 ≤ 𝑛 (2.17) 

 
 

 

 
∑ 𝑤𝑢

𝑢∈[0,𝑡]:
𝑢+𝛾𝑢>𝑡

 ≤ 1 − 𝑦𝑡           𝑡 ∈ [1, 𝑛] 
(2.18) 
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 𝑦𝑡 − 𝑦𝑡−1 = 𝑧𝑡 − 𝑤𝑡          𝑡 ∈ [1, 𝑛] (2.19) 

Equations (2.14) and (2.15) establishes the formation of the leftmost block. The 

Equation (2.14) ensures that block t must be mined to be the leftmost point and Equation 

(2.15) ensures if block t is mine but block t−1 is not, then block t must be leftmost. Equation 

(2.16) ensures the contiguity control on block selection after the formation of the leftmost 

block tZ . Equations (2.17) and Equation (2.18) ensure the formation of pillars between the 

stopes formed. Equation (2.19) establishes the link between the variables. 

This 1D approach can be extended to 2D space. To do this, we can define two sets 

of 1D constraints to control blocks in each dimension. However, this approach will require 

twice the number of constraints and variables. Queyranne and Wolsey [25], [26] proposed 

a relaxation with two sets of 1D constraints, to reduce the complexity of the model. Each 

of these 1D problems is a special case of the bounded on/off interval (pillar placement) 

problem. However, this 1D relaxation leads to the formation of some blocks that are not 

covered by the shape template as illustrated in Figure 2.9. In Figure 2.9 Arrows indicate 

blocks where variables 1ivwZ =  while dark blue blocks are those that would not be in a 

solution with two sets of 1D constraints but are contained in the relaxation constraints. 

These relaxed constraints do not lead to stopes that are operational as stopes in those 

solutions are “connected” rather than separated by pillars. Hence, the relaxed constraints, 

while more computationally efficient, cannot be used to generate feasible stopes. 

Consequently, in this thesis, the author uses the approach of two sets of 1D constraints. 
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Figure 2.9 (a) 3×3 Rectangles and (b) 2×2 Rectangles. Arrows indicate blocks where 

variables 1ivwZ =  while dark blue blocks are those that would not be in a solution with 

two sets of 1D constraints but are contained in the relaxation constraints 

 

2.6. SUMMARY 

This section of the thesis focused on reviewing the literature on heuristics, meta-

heuristic, and LP-based algorithms for the stope layout optimization problem. The section 

also identified gaps in the literature regarding geometric constraints included in the 

formulation of these algorithms. 

Heuristic models include the floating stope (FS) algorithm and the maximum value 

neighborhood (MVN) algorithm. The FS algorithm is limited because it produces 

overlapping stopes, which does not guarantee optimality. The MVN algorithm was 

developed to address this limitation, but it generates different optimal solutions based on 

the chosen starting point, and hence it does not guarantee optimality.  

Recent algorithms in the literature are meta-heuristic algorithms such as the pattern 

search method algorithm, clustering-based iterative approach, greedy heuristic approach, 

(a) (b) 
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dual interchange algorithm, and genetic algorithms. However, these algorithms also do not 

guarantee optimality. 

LP-based approaches have also been developed, and one of their main advantages 

is that they can handle large-scale problems with many decision variables and constraints. 

They can also provide a globally optimal solution if the problem satisfies certain conditions 

such as convexity. However, LP-based approaches have some limitations, such as all the 

objective function and constraints equations must be linear. Shape constraints in stope 

layout optimization introduce complexity, such as minimum width, maximum length, 

minimum height, and minimum distance between adjacent stopes. MILP-based approaches 

have been proposed to deal with shape constraints, but they can be computationally 

expensive and may not scale well to large problems. However, Queyranne has shown that 

with the proper formulation, it is possible to define efficient shape constraints in LP-based 

models that ensure contiguity and respect rectangular shapes. 
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3. BINARY INTEGER LINEAR PROGRAMMING MODELING OF 

UNDERGROUND SUBLEVEL STOPE LAYOUT OPTIMIZATION 

3.1. OVERVIEW 

This section of the work will focus on the framework of the BILP stope layout 

optimization (SLO) model proposed in this thesis. The author will present the assumptions 

of the framework of the algorithm as well as a detailed description of the notations, 

variables, parameters, objective function, and constraints of the model. This section allows 

the reader to understand the context for the BILP mathematical model applied to SLO. 

3.2. BILP MODEL FRAMEWORK 

The goal of this thesis work is to formulate the stope layout optimization problem 

(SLOP) as a binary integer problem that maximizes the value of the mined stopes subject 

to novel grade, geotechnical (minimum and maximum pillar sizes), and allowable mining 

(minimum and maximum stope width and height) constraints in two-dimensional space. A 

key contribution of the work is to account for geotechnical and allowable mining 

constraints using efficient shape constraints. 

The framework of the BILP model, as illustrated in Figure 3.1, starts by converting 

a geological resource model (blockmodel) into a regularized blockmodel. This is a key 

primary input for the BILP model. This regularized model contains block attributes such 

as quality (ore grades), density, geotech (joints, faults), processing (recoveries) as well as 

block dimensions [130], [131]. The regularized model is then converted into an economic 

model using technical and economic parameters (metal price, refinery cost, mining, and 
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processing cost) supplied by the engineer. The economic model generated at this stage is 

the second key input for the BILP Model. 

 

 

Figure 3.1 Framework of the BILP Model 

  

The next stage in the framework is to model an objective function.  As stated in 

Section 2.3 of this thesis, the objective in an underground stope layout optimization process 

is typically to maximize the economic viability of the mine to investors [13]. Thus, the goal 

of the objective function is to maximize the economic value of the deposit from mining 

and processing the optimal blocks from the entire set of blocks while respecting all 

constraints. The next stage in the framework is the application and consideration of 

operational (allowable mining dimensions), geotechnical (pillar requirements), and 

economic (cutoff grade, stope grade) constraints. This set of equations is modelled to 

constrain the selected blocks to generate a feasible combination of blocks into stopes that 

form the optimal layout. The last stage in the framework is the visualization and analysis 

of the optimal layout of stopes. 

The following subsections in this section will provide details of each stage of the 

framework and provide a comprehensive description of key assumptions, primary inputs, 

       Optimal Solution 
• Objective function value 

• Binary stope layout 

• Gap tolerance 

• Time  
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decision variables, constraints as well as mathematical formulations developed for the 

BILP model. 

3.3. MODEL ASSUMPTIONS  

The thesis work and the modeling effort makes several assumptions.  Some of the 

most critical assumptions considered are: 

1. The model is limited to two-dimensional (2D) space for now to verify the 

possibility of modeling effective shape constraints in LP- based algorithms used 

to solve the SLO problem. However, the model is formulated in a way that 

makes it possible to later extend it into 3- dimensional (3D) space. 

2.  The model assumes a uniform material density to simplify the formulation 

although this does not cause any loss of generality (one can simply include a 

tonnage factor in the formulation to account for varying block densities). 

3. Binary variables were used for modeling since it establishes the decision to 

include a block in the stope or not. 

4. There is no cap on the number of stopes for the final design. However, the 

author assumed a reasonable number to allow for multiple stopes. 

5. The block model is the primary input to generate the economic block values 

and it was regularized to have equal block sizes (no loss of generality because 

irregular block models can always be reblocked into regular block sizes). 
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3.4. DECISION VARIABLES, INDICES & SETS, AND PARAMETERS 

This subsection provides details of the technical and economic parameters used for 

the conversion of block models into economic models. It also gives a comprehensive 

description of the decision variables, indices, and sets as well as the mathematical notations 

used to develop the BILP model. Tables 3.1 – 3.3 contain the definitions of the notations 

used for the decision variables the sets and the indices of each block in the model while 

Table 3.4 contains definitions for the parameters that was used in the economic block value 

calculation function. 

 

Table 3.1 BILP Model Sets 

Set Value Definition 

I {1, 2, 3, … , I} Number of blocks in the Z direction in block model 

J {1, 2, 3, … , J} Number of blocks in X direction in block model 

K {1, 2, 3, … , K} Number of stopes 

W {1, 2, 3, … , W} Number of pillars 
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Table 3.2 BILP Model Indices 

Index Value Definition 

i i = 1, 2, 3, … , I index for blocks in the Z direction in model 

j j = 1, 2, 3, … , J index for blocks in the X direction in model 

k k = 1, 2, 3, … , K index for stopes in the layout 

w w = 1, 2, 3, … , W index for the pillar blocks 

 

 

Table 3.3 BLIP Model Decision Variables 

Index Value Definition 

𝑥𝑖𝑗𝑘 𝑥𝑖𝑗𝑘 ∈ [0, 1] 
1 if block (i, j) is mined in stope k; 

 0 otherwise 

𝑧𝑖𝑗𝑘
1  𝑧𝑖𝑗𝑘

1 ∈ [0, 1] 
1 if block (i, j) is the topmost block in stope k; 

0 otherwise 

𝑧𝑖𝑗𝑘
2  𝑧𝑖𝑗𝑘

2 ∈ [0, 1] 
1 if block (i, j) is the leftmost block in stope k; 

0 otherwise 

𝑤𝑖𝑗
1  𝑤𝑖𝑗

1 ∈ [0, 1] 
1 if block (i, j) is a topmost block of pillar w;  

0 otherwise 

𝑤𝑖𝑗
2  𝑤𝑖𝑗

2 ∈ [0, 1] 
1 if block (i, j) is a leftmost block of pillar w;  

0 otherwise 
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Table 3.4 Technical and Economic Parameters 

Parameter Unit Definition 

𝑃 $/𝑜𝑧 Price of metal 

𝐶𝑠 $/𝑜𝑧 Cost of selling (refinery) the metal 

𝐶𝑚𝑖𝑛 $/𝑡 Cost of mining a tonne of rock 

𝐶𝑝𝑟𝑜 $/𝑡 Cost of processing a tonne of rock 

𝑅𝑒𝑐 % Processing recovery of metal 

𝑔𝑖𝑗 𝑔/𝑡 Grade of metal in a block (i, j) 

𝑇𝑖𝑗 𝑡 Tonnage of block (i, j) 

𝐸𝐵𝑉𝑖𝑗 $ Economic value of a block (i, j) 

𝐺𝑜𝑓𝑓 𝑔/𝑡 Stope cutoff grade 

𝛼1 𝑚 Minimum mining height in Z-direction 

𝛼2 𝑚 Minimum mining width in X-direction 

𝛽1 𝑚 Maximum mining height in Z-direction 

𝛽2 𝑚 Maximum mining width in X-direction 

𝛾1 𝑚 Minimum pillar length in Z-direction 

𝛾2 𝑚 Minimum pillar length in X-direction 
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3.5. RESOURCE AND ECONOMIC MODEL  

This section provides a detailed description of the geological resource model and 

the various mineralization domains as well as the block schema and the various attributes 

that will be useful in the optimization model.   

 Geological Resource Model.  Block modeling is an essential tool for mineral 

resource estimation and mine planning in the mining industry. Block models are used to 

create reliable and accurate estimates of the location, size, and quality of mineral resources 

in a deposit, which is essential for assessing the economic viability of a mining project 

[132]. A geological resource model (block model) is a simplified mathematical 

representation of a geological deposit (ore body) and its surroundings discretized into 

small, regular-shaped blocks (cells). Each block is assigned attributes such as grade, 

density, and other geological and/or engineering characteristics of the mineralization 

distribution within the deposit [2], [131], [133]. 

 The block model is created using a combination of geological, geophysical, and 

geochemical data collected from exploration activities, such as drilling, sampling, and 

mapping. The blocks are typically defined by their x, y, and z coordinates in an XYZ grid 

system, and the blocks may be of equal or of variable sizes depending on the resolution 

defined by the geologist [131].  

The attributes of each block, such as grade, density, and other geological 

characteristics, are estimated using geostatistical and mathematical techniques, such as 

kriging or inverse distance weighting, based on the available data. The block model is 

typically validated using statistical and graphical methods to assess the accuracy of the 
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model predictions and identify any areas of uncertainty [130]. Figure 3.2 illustrates a 

blockmodel section.  

 

 

Figure 3.2 Sample Block Model Section 

 

 Economic Blockmodel.  The economic block value (EBV) is one of the most 

important parameters considered in mine valuation. This parameter has considerable 

impact on important decisions like the ultimate open pit (OP) limit, final UG stope layout, 

the mining sequence and net present value (NPV) of a mining project. Therefore, it is 
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necessary to calculate the EBVij at the first stage of the mine planning process, correctly. 

Unrealistic economic block value estimation may cause the mining project’s managers to 

make the wrong decision and may consequently subject investors to unimaginable losses 

[134]. 

Each block within the geological block model has specific geological data, such as 

grade, volume, density, and lithology. The geological data together with technical and 

economic factors such as metal prices, mining cost, processing cost and mineral processing 

recovery rate are then used to calculate the economic value of each block (i, j) called the 

economic block value, EBVij thus converting it into an economic model. This economic 

model is a key input for the BILP model [133], [134]. Figure 3.3 illustrates the conversion 

of a geological blockmodel into an economic blockmodel. 

 

 

Figure 3.3 Economic Blockmodel Generation 
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Equation (3.1) is a generic mathematical formula used to estimate the EBV of each 

block (i, j) in the economic block model. EBV is the undiscounted revenue from mining 

and processing the block [76]. 

 
(𝐸𝐵𝑉𝑖𝑗) = [(𝑃 − 𝐶𝑠) × 𝑔𝑖𝑗 × 𝑅𝑒𝑐 − (𝐶𝑚𝑖𝑛 + 𝐶𝑝𝑟𝑜)] × 𝑇𝑖𝑗    (3.1)  

 

Where: 

 

 

 

 

 

 

3.6. BILP MODEL FORMULATION 

The BILP mathematical model applies efficient shape constraints in a binary integer 

linear programming model to find the optimal combination of mining blocks into stopes 

yielding the maximum value of a deposit. The work draws from Queyranne and Wolsey’s 

[25], [26] formulations of tight constraints for bounded up/down times in production 

planning problems to formulate novel and efficient geometric constraints along with 

geotechnical and grade constraints for the stope layout optimization problem (see Section 

2.5). The subsections that follow on in this section will describe the mathematical 

formulations of the BILP Model. The following subsections present the objective function, 

𝑃 = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑀𝑒𝑡𝑎𝑙  

𝐶𝑠 = 𝑅𝑒𝑓𝑖𝑛𝑒𝑟𝑦 𝑎𝑛𝑑 𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑀𝑒𝑡𝑎𝑙  

𝑔𝑖𝑗 = 𝐺𝑟𝑎𝑑𝑒 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘 

𝑅𝑒𝑐 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑀𝑒𝑡𝑎𝑙 

𝐶𝑚𝑖𝑛 = 𝑀𝑖𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 

𝐶𝑝𝑟𝑜 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 

𝑇𝑖𝑗 = 𝑇𝑜𝑛𝑛𝑎𝑔𝑒 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘 
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the operational/technical constraints, the geotechnical constraints as well as the grade 

constraints that are modelled using the decisions variables and notations. 

 Objective Function.  The objective function of the BILP model is to 

maximize the economic value (undiscounted profit) of the optimal stope layout of the 

deposit. Equation (3.2) shows the objective function of this model, which is the sum of the 

block values of all blocks that are selected to be included in the optimal stope layout based 

on the value of the decision variable ( 𝒙𝒊𝒋𝒌 ).  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝐸𝐵𝑉𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

         (3.2) 

Where: 

 𝐸𝐵𝑉𝑖𝑗 = 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑣𝑙𝑎𝑢𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 (𝑖, 𝑗) 

    
1

0

if block ( , ) is selected to stope 

otherwise                                       
ijk

i j k
x


= 


 

 Constraints.  This section presents the constraints related to mining 

requirements, geotechnical requirements, grade as well as links between the variables. 

Following the example of Queyranne and Wolsey [25], [26], the author introduces new 

decision variables 𝑧𝑖𝑗𝑘
1  and 𝑧𝑖𝑗𝑘

2  to represent the topmost and/or leftmost block (i, j) in a 

stope k. The direct formulations of such constraints generally require exponentially many 

constraints in the natural decision variables. Using this new variable enables the author to 

model a compact constraint on the geometry forcing a more efficient stope shape. 𝑧𝑖𝑗𝑘
1   is 

assigned to control the blocks along the Z-direction representing the stope height and 𝑧𝑖𝑗𝑘
2   

is assigned to control the blocks along the X- or Y-direction depending on which section 

of the deposit one uses for the optimization (for the remainder of the thesis, the work refers 
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to the X-direction for simplicity; the reader should note the constraints are applicable to 

the Y-direction in the same way if the section is in the Z-Y plane). The constraints modelled 

are repeated along each coordinate direction.  Other constraints are similar to previous 

work and intuitive. 

3.6.2.1. Shape constraints.   

• Leftmost and/or Topmost Block Constraint: To form a tighter and effective 

geometry the “selected" blocks must be contiguous. This work applies this 

concept to define constraints that ensure that each stope k, contains a set of 

contiguous blocks. To enforce this a block must be designated as the leftmost 

block (𝑧𝑖𝑗𝑘
2 = 1) along the X-direction and topmost block (𝑧𝑖𝑗𝑘

1 = 1) along the 

Z-direction in order to facilitate efficient formulation of the contiguity 

constraints along each direction in stope k. Figure 3.4 illustrates the corner 

blocks that enforce the contiguous selection of blocks (𝑥𝑖𝑗𝑘 = 1) into stope k. 

Equations (3.3) and (3.4) ensure that, if block (i, j) is the leftmost or topmost 

block of stope k, then the block is also mined in the stope. Equations (3.5) and 

(3.6) ensures that, if block (i, j) is deemed the leftmost or topmost block in stope 

k, then the preceding block (i-1, j) or (i, j-1) is not mined in that stope. 

 𝑍𝑖𝑗𝑘
1  ≤ 1 − 𝑥𝑖𝑗𝑘  ∀𝑖, 𝑗 , 𝑘           (3.3) 

 
  

 𝑍𝑖𝑗𝑘
2  ≤ 1 − 𝑥𝑖𝑗𝑘  ∀𝑖, 𝑗 , 𝑘           (3.4) 

 
  

 𝑍𝑖𝑗𝑘
1  ≥ 𝑥𝑖𝑗𝑘 − 𝑥(𝑖−1)𝑗𝑘  ∀𝑖, 𝑗 , 𝑘 

(3.5) 
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 𝑍𝑖𝑗𝑘
2  ≥ 𝑥𝑖𝑗𝑘 − 𝑥𝑖(j−1)𝑘  ∀𝑖, 𝑗 , 𝑘 (3.6) 

 

 

Figure 3.4 Corner Blocks Enforcing Block Contiguity 

 

• Block Contiguity Constraint (Operational Requirement): Each stope must meet 

a minimum and maximum mining requirement for practical extraction of the 

ore. This is mine specific and varies based on geomechanical properties of the 

host rock and ore as well as the scale of operation [45]. There are numerous 

combinations of stope dimensions that can be used to produce a stope layout as 

seen in Figure 3.4 above. This permits the mining to follow irregular mineral 

deposit peripheries to minimize dilution, among other key considerations [135]. 

The following set of equations enables this work to model a constraint on the 

stope size (height and length dimensions). 1 and 2 are the minimum 

dimensions of the stopes, in the Z and X directions respectively, in units of 

number of blocks. Similarly, 1  and 2 are the maximum dimensions of the 
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stope in the Z and X directions respectively. Equations (3.7) – (3.10) ensure all 

stopes meet the minimum and maximum dimensions in both directions.  

 

∑ 𝑍𝜑𝑗𝑘
1

𝑖

𝜑=max (𝑖−𝛼1+1,1)

≤  𝑥𝑖𝑗𝑘         ∀𝑖, 𝑗, 𝑘          (3.7) 

   

 

∑ 𝑍𝑖𝜎𝑘
2

𝑗

𝜎=max (𝑗−𝛼2+1,1)

≤  𝑥𝑖𝑗𝑘          ∀𝑖, 𝑗, 𝑘          (3.8) 

   

 

𝛽1  − ∑ 𝑥𝛿𝑗𝑘

min(𝐼,𝑖+𝛽1)

𝛿=min(𝐼,𝑖+1)

≥ 𝑍𝑖𝑗𝑘
1          ∀𝑖, 𝑗, 𝑘          (3.9) 

   

 

𝛽2  − ∑ 𝑥𝑖𝜗𝑘

min(𝐽,𝑗+𝛽2)

𝜗=min(𝐽,𝑗+1)

≥ 𝑍𝑖𝑗𝑘
2          ∀𝑖, 𝑗, 𝑘          

(3.10) 

 

3.6.2.2. Geological domain constraint.   

• Stope Limit Constraint: Each stope k generated from the combination of block 

(i, j) must be spatially unique representing a specific domain in the deposit. 

Thus, the model needs a constraint to ensure only one stope is generated per 

slice of blocks from the block model.  

To do this, it is important to ensure the blocks mined in each contiguous 

selection of blocks is isolated into its own stope so that the resulting stope 

does not have multiple combinations of blocks within and avoid solutions 



 

   

60 

where the cut-off grade constraints are applied across multiple “stopes”. 

This requires a new set of constraints that are not based directly on 

Queyranne and Wolsey’s [25], [26] work but uses the decision variables 

designating the leftmost or topmost blocks to ensure efficient constraints. 

This work proposes Equation (3.11), which limits the number of leftmost 

𝑧𝑖𝑗𝑘
2  and topmost 𝑧𝑖𝑗𝑘

1  blocks (generally, this thesis refers to these as “corner” 

blocks) to less than the sum of the maximum number of allowable blocks in 

each direction ( 1 2 + ). While this will, technically, allow multiple stopes 

that exceed the minimum number of blocks constraint but for which the sum 

of corner blocks is still below the sum of the maximum blocks (i.e. 1 2 +

), we find this to be rare. Additionally, Equation (3.11) results in much more 

efficient constraints than an attempt to write constraints for each individual 

block. 

 

 

∑ 𝑍𝑖𝑗𝑘
1

𝐾

𝑘=1

+ ∑ 𝑍𝑖𝑗𝑘
2

𝐾

𝑘=1

≤ ∑ 𝛽𝑛

2

𝑛=1

   ∀𝑖, 𝑗      (3.11) 

 

• Stope Overlap Constraint: As stated in Section 3.5.1, each block representing 

a portion of the mineralization in the deposit can only be mined in one stope. 

This restriction prevents overlapping of the stopes that will be formed from 

solutions that mine one or more blocks in multiple stopes (Figure 3.5 illustrates 

the types of solution the model should avoid). Equation (3.12) ensures this 

situation does not arise in the solution. 
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∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

≤ 1          ∀𝑖, 𝑗 (3.12) 

 

 

Figure 3.5 Stope Overlap Examples  

 

3.6.2.3. Stope grade constraint.  One aspect of stope layout optimization is the 

desire to ensure that each stope meets a certain cut-off grade (𝐺𝑜𝑓𝑓) such that material 

mined from that stope can be sent to the mill to be processed. However, this does not 

mean every single block in the stope must have a grade above the cut-off grade but only 

that the average grade of all blocks in a stope exceed the cut-off grade. Equation (3.13) 

ensures that the average grade of the blocks in each stope k meets the set cutoff grade, 

𝐺𝑜𝑓𝑓 . 

 

∑
(𝑔𝑖𝑗𝑘 × 𝑥𝑖𝑗𝑘)

𝑥𝑖𝑗𝑘
≥ 𝐺𝑜𝑓𝑓           ∀𝑖, 𝑗

𝐾

𝑘=1

     (3.13) 

 

3.6.2.4. Geotechnical pillar constraints.  As stated earlier in Section 2.2.2.3, the 

geotechnical characteristics of the rock mass surrounding stopes play a critical role in 

determining the stability and safety of underground mining operations. The operational 
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activities (blasting and mining) from adjacent stopes, as well as the presence of geological 

structures can affect the stability of the stopes generated in the layout. Therefore, it is 

important to incorporate geotechnical constraints into stope layout optimization in the form 

of minimum and maximum pillar dimensions to ensure a layout that maximizes ore 

recovery while minimizing the risk of geotechnical failure [45], [135]. A stope layout 

optimization algorithm should, therefore, include constraints to place rib pillars as support 

between stopes that are horizontally contiguous and sill pillar between vertical stopes 

[136].   

Equations (3.14 – 3.17) are constraints that ensure the geotechnical requirement of 

pillars is enforced around the stopes. Additional decision variables, 1

ijw  and 2

ijw , are 

introduced that controls the corner blocks of each pillar. That is, these variables become 1 

if block (i, j) is the corner block of a pillar. Equations (3.14) and (3.15) controls pillar size 

(minimum and minimum pillar dimensions in vertical and horizontal directions, 

respectively, 1  and 2 ). Equation (3.16) and (3.17) ensures 1 1ijw =  or 2 1ijw =  if block (i, 

j) is the leftmost or topmost block is a pillar. 

  

∑ 𝑤𝑣𝑗
1

𝑖

𝑣=max (𝑖−𝛾1+1,1)

≤ 1 − ∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

          ∀𝑖, 𝑗 (3.14) 

 
  

 

∑ 𝑤𝑖𝜇
2

𝑗

𝜇=max (𝑗−𝛾2+1,1)

≤ 1 − ∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

            ∀𝑖, 𝑗 (3.15) 

 
  

 

∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

− ∑ 𝑥(𝑖−1)𝑗𝑘

𝐾

𝑘=1

= ∑ 𝑧𝑖𝑗𝑘
1

𝐾

𝑘=1

− 𝑤𝑖𝑗
1  ∀𝑖, 𝑗 (3.16) 
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∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

− ∑ 𝑥𝑖(j−1)𝑘

𝐾

𝑘=1

= ∑ 𝑧𝑖𝑗𝑘
2

𝐾

𝑘=1

− 𝑤𝑖𝑗
2  ∀𝑖, 𝑗 

(3.17) 

 

Figure 3.6 illustrates the types of pillars generated around the stopes in the layout using 

these constraints. The pillars are respected around the stopes formed and cause the stope 

shapes to also respect those pillar blocks. Note that, because the pillar constraints are 

defined along the directions of the vertical and horizontal directions, pillar widths are not 

maintained in the diagonal direction. This is a limitation of the formulation, and it is further 

discussed in Section 4.4. 

 

 

Figure 3.6 Geotechnical Rib & Sill Pillars in Stope Layout 
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3.7. BILP MODEL IMPLEMENTATION 

The model presented in this section is implemented in MATLAB. The MATLAB 

code calls Gurobi to solve the optimization problem through Gurobi’s MATLAB API. A 

custom application (App) called SSLO.mlapp was developed in MATLAB using the 

MATLAB’s App Designer Toolkit [137].  

The SSLO.mlapp has two (2) upload buttons which enables user to upload the 

primary input data (BILP_Grade, BILP_EBV) into the algorithm. Users may upload pre-

processed Grade & EBV data in comma delimited (CSV) file format or a MATLAB file 

format or upload the grade data and enter the economic data and allow the algorithm to 

generate the EBVs of the blocks. The App interface has four (4) panels. Three (3) of the 

panels (i.e., Block Counter, EBV Generator and Stope Configuration panels) accept user 

input to configure the BILP algorithm, while the last panel (SSLO Results panel) is for 

displaying the results of the optimization. A bulb in the lower left corner of the app 

indicates the status of any ongoing activity. It turns blue when all the input data are 

correctly keyed by the user and after the optimization completes. A red lamp indicates an 

error during the input process as well as the optimization run. Figure 3.7 shows the 

SSLO.mlapp user interface used to configure and run the BILP model for solving the SLO 

problem.  
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Figure 3.7 The User Interface of the SSLO Application 

 

 BILP Model Solution Process.  As stated above the BILP Model is the 

brain behind the SSLO.mlapp. Figure 3.8 illustrates the process for solving a 2D stope 

layout optimization problem using the algorithm developed in this research. 

 BILP Model Verification.  The formulated BILP model is verified with an 

experimental gold deposit dataset. Maptek Vulcan software is used to reblock the original 

resource block model into a regularized 15m x 15m x 30m model to avoid variable block 

sizes in the resource model. Figure 3.2 and Figure 3.9 shows a section through the original 

resource model and the regularized resource model respectively. The orebody for this 
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deposit is irregularly shaped occurring between a depth of -560m to -1,100m below mean 

sea level with a total mineral resource of 2,138,400 t at an average gold grade of 2.62 g/t. 

Table 3.5 shows summary statistics of the resource models. This base case example used 

to verify the algorithm includes 43 blocks in the X-direction and 18 blocks in the                    

Z-direction. We specify 20 stopes in the problem (number of specified stopes should 

always be higher than what the engineer expects). Consequently, the problem results in 

140,400 binary decision variables and 1,479,800 constraints. 

The algorithm for the BILP model (the engine behind the SSLO.mlapp) was 

implemented in MATLAB 2022b [137] environment. When the user clicks run in the 

SSLO.mlapp, the app passes the user configuration to prepare the model in MATLAB (i.e., 

builds the model in MATLAB using MATLAB’s problem-based optimization workflow 

commands [138]). MATLAB then calls GUROBI OPTIMIZER (Gurobi Optimizer version 

10.0.0 build v10.0.0rc2) [120] through its MATLAB API to solve the optimization problem 

at a gap tolerance of 0.0%. The base case example is run on a Dell Precision T5610 

computer with an Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz (8 CPUs) with a 32 GB 

RAM. 

3.7.2.1. Block economic model.  Table 3.6 shows the mining, processing, and 

economic data used to convert the reblocked model into the economic block model—the 

main input for the SSLO.mlapp [52].  
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Figure 3.8 Schematic Flowchart of BILP Model Process 
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Figure 3.9 The Reblocked Resource Model 
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Table 3.5 Summary Statistics of Block Models 

Attribute Resource Model Reblocked Model 

Metal Au Au 

Number of blocks 2132 774 

Blocks Au > 0 1344 144 

Total mineralized material (Mt) 2,138,400.00 t 2,138,400.00 t 

Maximum Au value (g/t) 37.563g/t 14.91g/t 

Minimum Au value (g/t) 0.006g/t 0.145g/t 

Average Au value (g/t) 2.61 g/t 2.62 g/t 

Density 2.2kg/m3 2.2 kg/m3 

Variance 5.76 %2 4.35 %2 

Standard deviation (%) 2.40% 2.09% 

Block size Varied 15m ×15m ×30m 

Depth from surface 560m – 1,100m 560m – 1,100m 

 

 

Table 3.6 List of Economic and Technical Parameters 

Parameter Definition 

Price of metal $1,500/oz 

Cost of selling the metal $5/oz 

Cost of mining a tonne of rock $15/t 

Cost of processing a tonne of rock $10/t 

Processing recovery of metal 90% 

Tonnage of blockij 6,750t 

Cutoff grade 1.5g/t 
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3.7.2.2. Stope design input.  Table 3.7 shows the stope design input data used for 

this numerical example. These are also the main user inputs for the stope configuration 

panel on the SSLO.mlapp as seen in Figure 3.10, which has the completed configuration 

for the application to run. 

 

Table 3.7 Parameters for Basecase Scenario 

BILP Configuration Scenario 

Minimum Mining Height 𝛼1 2 

Minimum Mining Width 𝛼2 3 

Maximum Mining Height 𝛽1 3 

Maximum Mining Width 𝛽2 4 

Minimum Pillar Length 𝛾1 2 

Minimum Pillar Length 𝛾2 2 

Number Of Stopes k 20 

Cutoff Grade 𝐺𝑜𝑓𝑓 1.5g/t 
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Figure 3.10 SSLO.mlapp App Configuration 
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3.7.2.3. Results and discussions.  Figure 3.11 presents the optimal stope layout 

obtained by solving the BILP model for the underground deposit using Gurobi optimization 

engine. Results from the test scenario summarized in Table 3.8 indicates that the model 

found an optimal solution within an optimality gap tolerance of 0.0% in approximately 

1.835 hrs. The model combined 60 ore blocks out of the 144 ore blocks and 13 waste blocks 

into eight (8) stopes from the 20 stopes. This translated into an undiscounted value of $ 

34.37 million with 1,084,050 t of total mineralized material at an average grade of 3.40 g/t. 

The eight (8) stopes in the final layout of the test scenario, satisfies the operational, 

technical, and economic requirements. The stopes have variable heights and lengths, 

indicating the power of the BILP model to adapt the stope shapes to the geological and 

geotechnical characteristic of the deposit for maximum recovery. The BILP model also 

selected 13 waste blocks as part of the layout to ensure it conforms with the efficient shape 

constraints. All the stopes created, had overall stope grades above the cutoff (Goff = 1.5g/t). 

As seen in Figure 3.12, the model generated stopes to the right side of the deposit which 

has the best grades. Majority of the stopes are found in the central portion of the deposit 

which has medium grades. The left side contains the low grades in the deposit hence a few 

stopes were created in that zone. This indicates the power of the BILP model to pick out 

blocks that maximizes the overall profit of the deposit. The scenario also verified that the 

allowable geotechnical requirement (pillars) was enforced. Figure 3.13 shows the results 

on the SSLO.mlapp. 
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Table 3.8 Optimization Results for Basecase Scenario 

Parameter Scenario 

Number Of Stopes 8 

Number Of Mined Blocks 73 

Number Of Pillar Blocks 65 

Objective Function Value ($) 34,373,085.19 

Solution Time (Hrs.) 1.83 

Gap Tolerance (%) 0.0 

Minimum Stope Grade (g/t) 1.71 

Maximum Stope Grade (g/t) 5.23 

Average Layout Grade (g/t) 3.40 

Total Layout Tonnage (tonnes) 1,084,050 

 



 

 

 

Figure 3.11 Optimal Stope Layout for Basecase Scenario 
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Figure 3.12 Optimal Stope Layout for Basecase Scenario (Showing Stope Grades) 
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Figure 3.13 The SSLO.mlapp App Showing Basecase Results 
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3.8. SUMMARY 

The model presented here proposes a method for optimizing the economic value of 

a sublevel stope layout based on a binary integer linear programming formulation. A case 

study of an underground gold mine has been used to successfully verify the BILP model. 

A MATLAB Application, code name SSLO.mlapp, has successfully been created through 

this research. The App together with the BILP model have been utilized to facilitate solving 

the SLO problem. The App has been successfully validated for the basecase of the case 

study. Based on results of the basecase, the following conclusions can be made: 

• The results from the basecase study highlights the possibility to model shapes 

in LP-based techniques for the stope layout problem. Unlike most LP-based 

stope layout approaches, the proposed model accounts for efficient shape 

constraints in the geometric constraints. 

• The model finds the optimal stope layout that maximizes the undiscounted 

profit for the deposit within a gap tolerance of 0.00%. 

• The model allows the generation of variable stope length and height as well as 

incorporating geotechnical pillar requirements between the selected stopes. 

Thus, the model permits mining operation to follow irregular mineral deposit 

peripheries to minimize dilution. 

• The BILP model has some limitations as seen from the optimal layout in Figure 

3.11. Pillars are respected around the stopes however pillar widths are not 

maintained in the diagonal direction because the pillar constraints are defined 

along the vertical and horizontal directions. 
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• Lastly the use of binary variables makes the problem difficult to solve because 

it creates a combinatorial explosion of possible solutions as the number of 

variables increases, leading to long solution times. 
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4. EVALUATING THE MODELS SENSITIVITY TO INPUT PARAMETERS 

AND OPTIMIZATION PROBLEM SIZE 

4.1. OVERVIEW 

This section of the thesis describes computational experiments carried out to assess 

the performance and sensitivity of the proposed BILP model’s solution to key input 

parameters. The key parameters of the model such as the stope dimensions, stope cutoff 

grade, the number of predefined stopes, the pillar dimensions as well as the size of the 

optimization problem were varied to evaluate their impact on the solution time, the 

objective function value, the optimality gap, and the final stope layout.  

This study looks at the instance of changing the scale of the optimization problem 

since an increase in problem size leads to an explosion in variables and, from a practical 

standpoint, strategic mine engineers are unlikely to adopt an algorithm that takes more than 

a few minutes to converge to a solution. The work also examined the impact of different 

configurations of the stope and pillar dimensions because one of the strengths of this model 

is that it allows engineers to generate any rectangular mining dimension that mimics the 

deposit’s peripheries. 

 Stope cutoff grade is a key factor that determines the quality and quantity of 

material that can be sent from the UG to the processing plant. Therefore, evaluating and 

understanding the impact of this parameter will help engineers to select an optimal cutoff 

grade that meets the processing plant requirement and overall project profitability. The 

number of stopes is set by the engineer as an input to the algorithm. This parameter 

determines the stopes that are formed in the final layout as such the author studies the effect 
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of changing the number of stopes on solution time and overall profitability of the layout 

formed.  

The subsections below present the computational experiments for the different 

scenarios run to evaluate the performance and sensitivity of the model. For each 

experiment, the author generated economic block values and block grades in the same way 

as for the base case in Section 3.7.2. The author used the same MATLAB code used in the 

base case study in Section 3.7.1 to solve all the different experimental runs. The full input 

data used for these experiments are available online in this GitHub repository 

(https://github.com/TheoMensah/BILP_SSLO). 

4.2. EFFECT OF STOPE CUTOFF GRADE 

Due to the highly selective nature of underground mining, all material hauled from 

the stopes generated must be at or above the predetermined cutoff grade1. This is to ensure 

maximum recovery of the deposit. 

 Input Data for Stope Cutoff Grade Evaluation.  A low cutoff grade results 

in more ore tonnage, and overall higher metal output, but at the expense of additional 

capital cost while a high cutoff grade, denotes a short life of mine and lower overall metal 

output, which in most instance cannot be sufficient to justify the capital cost of establishing 

a mine [139]. Thus, the cutoff grade selected as an input for this model must but optimal. 

Techniques like MIP [140], [141] can be used to find the optimal cutoff grade for use in 

the BILP model.  

 

1 Cutoff grade is the grade value below which blocks in the deposit are uneconomical to mine. 
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Table 4.1 and Table 4.2 show the input data used to configure the BILP model for 

changing the cutoff grade. Three (3) scenarios were run for this experiment to investigate 

the effect of a lower and higher cutoff grade value, than the base case value. For this 

analysis, the stope configurations for each scenario for mining and geotechnical 

dimensions are selected to be the same as shown in Table 4.1 while Table 4.2 summarizes 

different cutoff grade values used for this experiment.  

 

Table 4.1 BILP Input Data – Experiment 1 

BILP Configuration Scenario 

Minimum Mining Height 𝛼1 3 

Minimum Mining Width 𝛼2 3 

Maximum Mining Height 𝛽1 4 

Maximum Mining Width 𝛽2 4 

Minimum Pillar Length 𝛾1 2 

Minimum Pillar Length 𝛾2 2 

Number Of Stopes k 20 

 

 

Table 4.2 Experiment 1 – Cutoff Grades 

BILP Configuration Scenario 1 Scenario 2 Scenario 3 

Cutoff Grade 𝐺𝑜𝑓𝑓 1.5g/t 2.5g/t 3.5g/t 
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 Results and Discussion.  Figure 4.1 – Figure 4.3 show the results of this 

experiment while Table 4.3 summarizes the results. The results show that the objective 

function value decreases as the cutoff grade increases from $33M to $28M. This results 

also show a higher cutoff grade causes the algorithm to converge faster to a solution. 

Scenario 3 recorded the fastest solution time of 0.11 hrs. All scenarios achieved an optimal 

solution2. 

From the results the lower the cutoff grade selected, the lower the average overall 

layout grade achieved however this leads to more blocks being selected and more stopes 

being formed in the optimal layout and consequently maximizing the economic value. The 

results also suggest that increasing cutoff grade does not improve the overall profitability 

of the designed layout although it leads to higher grade stopes.  

The solutions show that five (5) stopes were formed in the optimal layout for 

Scenario 1 while four (4) stopes were formed in the optimal layout for Scenarios 2 and 3, 

respectively (Figure 4.1 – Figure 4.3). Each stope generated in the optimal layout had an 

average grade above the cutoff grade. The various geological domains of the blockmodel 

used have been described earlier in Section 3.7.2. Based on this understanding, Figure 4.1 

– Figure 4.3 show the algorithm produced stopes aimed at the blocks in the central and 

upper right zones in each Scenario indicating the BILP models’ power to target, select and 

combine blocks that maximize the value of a deposit. 

 

 

 

2 Optimal solution means a solution with an optimality gap of 0.00% 
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Table 4.3 Experiment 1- Results of Changing Cutoff Grade 

Parameter Units 
Optimization Results 

Scenario 1 Scenario 2 Scenario 3 

Objective Function Value  ($) 33,727,574.0 30,959,129.3 28,468,130.7 

Solution Time  (hrs) 1.03 0.67 0.11 

Gap Tolerance (%) 0.00 0.00 0.00 

Number of Stopes  (#) 5 4 4 

Ore Blocks Mined  (#) 70 57 46 

Waste Blocks Mined  (#) 5 3 2 

Number of mined blocks  (#) 75 60 48 

Number of pillar blocks (#) 65 60 55 

Minimum Stope Grade  (g/t) 2.03 2.99 3.53 

Maximum Stope Grade  (g/t) 4.03 4.03 4.03 

Average Layout Grade  (g/t) 3.08 3.41 3.79 

Total Layout Tonnage  (tonnes) 1,113,750 891,000 712,800 
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Figure 4.1 Experiment 1 – Optimal Layout Scenario 1 

8
4
 



 

   

85 

 

Figure 4.2 Experiment 1 – Optimal Layout Scenario 2 
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Figure 4.3 Experiment 1 – Optimal Layout Scenario 3 
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From Figure 4.1, the optimal layout for Scenario 1 (which specified a stope cutoff 

grade of 1.5 g/t) had three (3) stopes generated within the low-grade domain of 

2g/t g 3g/tij  , one (1) stope within the medium-grade domain of 3g/t g 4g/tij  and 

one (1) stope in the high-grade domain 4g/t g 10g/tij  . 

All stopes formed had at least 14 blocks selected and a maximum of 16 blocks 

satisfying the mining requirements configured for this scenario. Since the cutoff grade is 

low, the algorithm takes a longer time to optimize the numerous possible block 

combinations thus leading to a longer solution time to find the optimal solution. 

The optimal layout for Scenario 2 (which specified a stope cutoff grade of 2.5 g/t), 

shown in Figure 4.2, had one (1) stope generated within the low-grade domain of 

2g/t g 3g/tij  , two (2) stopes within the medium-grade domain of 3g/t g 4g/tij  and 

one (1) stope in the high-grade domain 4g/t g 10g/tij  . This layout was generated 

because of the higher stope cutoff grade. All stopes formed had at least 15 blocks selected 

and a maximum of 16 blocks satisfying the mining requirements configured for this 

scenario. 

Figure 4.3 shows the optimal layout for the highest stope cutoff grade ( 3.5g/toffG =

) of the three scenarios. The optimal layout had three (3) stopes generated within the 

medium-grade domain of 3g/t g 4g/tij  and one (1) stope in the high-grade domain 

4g/t g 10g/tij  . No stopes were generated in the low-grade domain. By further elevating 

the cutoff grade in this scenario, the algorithm went in to select the few blocks with very 

high grades in the blockmodel that when combined will achieve the elevated cutoff grade 
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( 3.5g/toffG = ) as seen in Figure 4.3. Elevating the cutoff grade also resulted in the fastest 

solution time since few blocks could meet this requirement. Thus, two (2) stopes formed 

had 9 blocks selected and the other stopes had a maximum of 16 blocks satisfying the 

mining requirements configured for this scenario. 

4.3. EFFECT OF STOPE DIMENSIONS (ALLOWABLE MINING DIMENSIONS) 

Each designed stope must meet an allowable minimum and maximum mining 

dimension based on the geomechanical properties of the deposit and equipment sizes for 

practical extraction of material from the stopes. The experiment was designed to investigate 

the impact of frame sizes while keeping pillar sizes constant. 

 Input Data for Stope Dimension Evaluation.  To ensure that stopes formed 

follow the deposit peripheries and minimize dilution while ensuring stability and 

operability, mine engineers using stope optimization algorithms should be able to control 

the generated stope shapes. This is one strength of the BILP model proposed in this work 

as it introduces efficient shape constraints as described in Section 3.6.2.1 that allows for 

any rectangular dimension. The shape constraints in this model, allows the engineer to 

control the minimum and maximum blocks for the stope in the Z-X plane or Z-Y plane. 

This section investigates the sensitivity of the model to changes in stope 

dimensions. The author designed the experiment to investigate the impact of frame sizes 

while keeping pillar sizes constant. The reader should note that, practically, larger frame3 

sizes are likely to go with larger pillar sizes (more information in Section 2.2.2.3).  

 

3 Frame is the rectangular dimension of the stope generated in the layout. 
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By maintaining uniform pillar dimensions, the focus was solely on understanding how 

different frame configurations influence the outcomes. This approach allowed for a more 

precise evaluation of the frame size's individual contribution to the results, without the 

confounding effect of varying pillar sizes. 

The analysis run four (4) scenarios for this experiment. The first scenario runs a 

smaller stope frame ( 2 3 | 2 3  ) for i  and i , respectively. In Scenario 2 the author 

investigates a square stope frame ( 3 3 | 3 3  ) for i  and i , respectively. The third 

scenario runs an adjustment to the maximum allowable mining ( i ) dimension of the stope 

frame in Scenario 2 increasing it to large rectangular ( 3 3 | 4 4  ) frame to investigate the 

change in increasing the i  for the frame and the last Scenario 4, evaluates the effect of 

configuring an even larger stope frame ( 3 5 | 4 6  ). Table 4.4 shows the common input 

configuration for the BILP model while Table 4.5 shows different stope frame dimensions 

used for this evaluation. 

 Results and Discussion.  Table 4.6 summarizes the results of this experiment 

and Figure 4.4 – Figure 4.7 shows the optimal layouts for these scenarios. From the results, 

changing the allowable mining dimensions impacts the optimal solution significantly. The 

stope frame configuration the engineer selects affects the objective function value, the 

solution time, the number of stopes formed, and general stope layout. 

From the results, the objective function value improves with an increase in the stope 

dimensions although the overall layout grade of material in the stopes decreases with this 

increase in stope dimensions. The reason for the higher objective function values observed 

with increasing the frame size is the ability to select a greater number of oreblocks within 
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the optimal layout. This selection of additional oreblocks maximizes the economic value 

of the mining operation. 

 

Table 4.4 BILP Input Data – Experiment 2  

BILP Configuration Scenario 

Minimum Pillar Length 𝛾1 2 

Minimum Pillar Length 𝛾2 2 

Number Of Stopes k 20 

Cutoff Grade 𝐺𝑜𝑓𝑓 2g/t 

 

 

Table 4.5 Experiment 2 – Input Stope Dimensions  

BILP Configuration Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Minimum Mining Height 𝛼1 2 3 3 3 

Minimum Mining Width 𝛼2 3 3 3 5 

Maximum Mining Height 𝛽1 2 3 4 4 

Maximum Mining Width 𝛽2 3 3 4 6 
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Table 4.6 Experiment 2- Results of Changing Stope Dimensions 

Parameter Units 
Optimization Results 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Objective Function Value ($) 25,581,135.8 27,455,739.1 33,727,578.4 34,740,592.9 

Solution Time (hrs) 4.50 3.37 1.78 1.03 

Gap Tolerance (%) 0.00 0.00 0.00 0.00 

Number Of Stopes (#) 7 5 5 4 

Ore Blocks Mined (#) 38 43 69 69 

Waste Blocks Mined (#) 4 2 6 12 

Number Of Mined Blocks (#) 42 45 75 81 

Number Of Pillar Blocks (#) 55 45 35 25 

Min Stope Grade (g/t) 2.01 2.49 2.03 2.63 

Max Stope Grade (g/t) 7.21 5.52 4.03 3.31 

Average Layout Grade (g/t) 3.85 3.86 3.08 2.98 

Total Layout Tonnage (tonnes) 623,700 668,250 1,113,750 1,202,850 
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Figure 4.4 Experiment 2 Optimal Layout Scenario 1 
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Figure 4.5 Experiment 2 Optimal Layout Scenario 2 
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Figure 4.6 Experiment 2 Optimal Layout Scenario 3 
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Figure 4.7 Experiment 2 Optimal Layout Scenario 4 
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It is essential to acknowledge that, in practice, larger frame sizes are often 

accompanied by larger pillar sizes to ensure stability in the layout and during stoping 

operations. Consequently, the results of this experiment may not be “optimal” in a practical 

sense where pillar sizes vary with stope dimensions. However, it is worth noting that, in 

this experiment, pillar sizes were deliberately kept constant to isolate and assess the sole 

impact of frame sizes. This approach allowed for a detailed examination of how varying 

frame sizes alone influence the outcomes, independent of changes in pillar dimensions. 

Table 4.6 shows that if a smaller frame configuration is selected, the algorithm takes 

a longer time to converge to an optimal solution. This extended time is primarily attributed 

to the increased selectivity achieved with a smaller frame. Therefore, with smaller frame 

sizes, the options to evaluate increase and the number of constraints also increase, leading 

to longer computational times.  

In each scenario, at least four stopes were created, but the number fell as the stope 

size increased. All the stopes generated targeted blocks in the deposit's upper right and 

central zones. The optimal layouts shown in Figure 4.4 – Figure 4.7 produced variable 

stope heights and lengths that matched the input data in Table 4.5. To respect the shape 

constraints a few waste blocks are selected as part of the optimal layout. These blocks must 

be carefully selected as they introduce internal dilution to the generated stopes and reduce 

the overall value. Thus, one strength of the BILP model is the ability to optimally select 

waste blocks as part of the optimal stope generated but ensure that the stope cutoff grade 

and the shape constraints are respected by the solution. The number of waste blocks 

selected in the final layout also increases with an increase in the stope frame dimensions. 

The mining dimensions are site specific and varies from mine to mine thus a good 
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geological and geomechanical database of the deposit is recommended when determining 

the stope dimension to select for optimization. 

In Scenario 1, seven (7) stopes were generated in the optimal layout, each 

conforming to the frame ( 2 3 | 2 3  ) configured for the scenario. This solution included 

42 blocks; 38 ore blocks from a possible 144 oreblocks and 4 waste blocks4 to complete 

the layout. This translated into an economic value of $26 M with total mineralized material 

of 623 Kt at 3.85 g/t. The small size of this stope frame means more stopes will be formed; 

however, due to the variability of grades in the deposit and the requirement of pillars, not 

all blocks can be included in the optimal layout of stopes. Thus, to ensure the economic 

value is maximized, the algorithm targets blocks with medium to high grades (Figure 4.4).  

The pillar constraints are only respected in the X and Z-directions (not along the 

diagonal directions). Some of these stopes in our solution will be unsafe to mine because 

they are next to each other diagonally. Stopes 3 – 17 – 6 and stopes 9 – 6, in Figure 4.4, 

illustrate this issue. Section 3.8 discusses this limitation of the proposed BILP model. One 

possible solution to this problem is to post-process the solution with heuristics to avoid 

these situations. Another possible solution will be to model sill pillars into the layout. This 

will separate the stopes into levels and can potentially eliminate the direct diagonal 

interaction of some of the stopes generated in the layout. 

Figure 4.5 illustrates the optimal layout of stopes for Scenario 2 which has  

(3 3 | 3 3  ) stope frames. From the layout in Figure 4.5, given the stope cutoff grade  

 

4 Waste blocks are included as internal dilutions and to ensure stopes respect the shape constraints. 



 

   

98 

( 2g/toffG = ) and the square frame, five (5) stopes were formed each with 9 blocks 

(min/max of 3 blocks in the Z-direction and 3 blocks in the X-direction) conforming to the 

square frame configuration.  

Figure 4.6 illustrates the optimal layout for Scenario 3, which used a ( 3 3 | 4 4  ) 

stope frame. As can be seen in Figure 4.6, all the stopes conformed to the minimum mining 

requirement of 3 blocks in the X direction and 3 blocks in the Z direction. 

Two stopes formed with the maximum dimensions demonstrating the strength of the BILP 

model to generate variable and efficient stope shapes in the optimal layout. From Table 

4.6, Scenario 3 recorded an economic value of $34 M by targeting and selecting 75 blocks 

in total consisting of 69 ore blocks from a possible 144 and six (6) waste blocks to complete 

the layout. This translates into total mineralized material of 1.1 Mt with average grade of 

3.08 g/t in 1.78 hrs. As stated earlier in Section 4.2.2 the lower the grade the more metal 

and thus more value. Similarly, since there are more blocks to mine, the algorithm is smart 

enough to go after lower grades that meet the cutoff grade to maximize the value.  

Figure 4.7 shows the optimal solution for Scenario 4, which uses a larger  

(3 5 | 4 6  ) stope frame. Similar results were achieved for this scenario relative to 

Scenario 3. All the stopes in the optimal layout conformed to the minimum mining 

requirement of 3 blocks in the Z direction and 5 blocks in the X direction. Also, all the 

stopes formed had variable stope lengths and all respected the allowable mining 

dimensions. The stopes generated had 81 blocks in total consisting of 69 ore blocks from 

a possible 144 and 12 waste blocks to complete the layout. This translates into total 

mineralized material of 1.2 Mt with average grade of 2.98 g/t in 1.03 hrs.  
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The effect of adding more waste blocks is offset by the benefit of having more 

oreblocks in the stopes since the algorithm does not have to leave ore behind in pillars. 

This makes the stope grade positive. Also, the decision time to include a block or not is 

reduced since the frame allows consideration of more blocks to be included in a stope. 

4.4. EFFECT OF STOPE PILLAR DIMENSIONS (GEOTECHNICAL 

REQUIREMENT) 

 In naturally supported underground mining operations, ground control is essential 

to ensure excavation stability, worker, and equipment safety. To achieve this goal, 

geomechanical engineers design pillars based on rock mass quality, stress distribution, 

potential ground instability area as well as host and surrounding rock geological 

characteristics (more information in Section 2.2.2.3). 

 Input Data for Pillar Dimensions Evaluation.  These pillar dimensions (in 

number of block units for this algorithm) are then included in the algorithm to generate 

stopes in the final layout that are safe, operable, and profitable. The author investigates the 

effect of changing the pillar dimensions and evaluates the impact on the solution. The 

reader should note that advanced computational models and algorithms are currently 

employed to determine the most effective arrangement of pillars within the stope layout. 

Table 4.7 shows the different pillar lengths used in this experiment while Table 4.8 shows 

the BILP model configuration for the three (3) scenarios in this experiment.  
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Table 4.7 Experiment 3 – Pillar Dimensions 

BILP Configuration Scenario 1 Scenario 2 Scenario 3 

Minimum Pillar Length 𝛾1 2 3 2 

Minimum Pillar Length 𝛾2 2 3 4 

 

 

Table 4.8 BILP Input Data – Experiment 3 

BILP Configuration Scenario 

Minimum Mining Height 𝛼1 3 

Minimum Mining Width 𝛼2 3 

Maximum Mining Height 𝛽1 3 

Maximum Mining Width 𝛽2 3 

Number Of Stopes k 15 

Cutoff Grade 𝐺𝑜𝑓𝑓 2 g/t 

 

 Results and Discussion.  Table 4.9 summarizes the results while Figure 4.8 

– Figure 4.10 show the optimal stope layout for the scenarios. The results show that the 

objective function value drops from $27M to a low $23M as the pillar size increases in this 

experiment. The findings from the study reveal that in the optimal stope layout, larger pillar 

sizes result in a greater number of blocks being designated as pillars, contributing to 

enhanced structural stability.  
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Table 4.9 Experiment 3- Results of Changing Pillar Dimensions 

Parameter Units 
Optimization Results 

Scenario 1 Scenario 2 Scenario 3 

Objective Function Value ($) 27,455,739.1 24,472,902.5 23,467,732.5 

Solution Time (hrs) 2.26 1.70 2.36 

Gap Tolerance (%) 0.00 0.00 0.00 

Number Of Stopes (#) 5 5 5 

Ore Blocks Mined (#) 43 39 37 

Waste Blocks Mined (#) 2 6 8 

Number Of Mined Blocks (#) 45 45 45 

Number Of Pillar Blocks (#) 60 75 90 

Minimum Stope Grade (g/t) 2.49 2.15 2.36 

Maximum Stope Grade (g/t) 5.52 5.52 5.52 

Average Layout Grade (g/t) 3.86 3.53 3.42 

Total Layout Tonnage (tonnes) 668,250 668,250 668,250 
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Figure 4.8 Experiment 3 Scenario 1 Optimal Layout 
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Figure 4.9 Experiment 3 Scenario 2 Optimal Layout 
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Figure 4.10 Experiment 3 Scenario 3 Optimal Layout 
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Conversely, selecting smaller pillars leads to a more compact layout, effectively 

minimizing the number of blocks left behind as pillars and optimizing resource extraction. 

There is no consistent trend in the solution times. All scenarios achieved the same overall 

block count (45 blocks) due to the square stope frame configuration however the smaller 

the pillar size the more ore blocks are mined and the larger the pillar size the more waste 

blocks are selected in the stopes. This is further supported by the finding that when pillar 

sizes grow, the optimal stope layout's average grade similarly falls. All these lead to the 

lower objective function value as the pillar size increases in the problem. 

Each scenario had pillars in units of blocks forming around the stopes in the vertical 

and horizontal directions in the final layout. The pillars in the X-direction are more visible 

because of the orientation of the deposit. The spatial arrangement of the stopes in the 

layouts move from compact to sparse as pillar size increases. Figure 4.8 shows the result 

of Scenario 1 with all the five (5) stopes formed respected the pillar dimensions constraint 

with two units of blocks (pillars) separating each adjacent stope in the layout. The stopes 

generated also looked compact in terms of spatial distance to each other because of 

selecting a smaller dimension for the pillars between the stopes.  

Figure 4.9 shows the optimal layout for Scenario 2, which contains five (5) stopes 

in the optimal layout each spatially separated by 3 units of blocks in both Z and X 

directions. The stopes generated are more spread out spatially in the final layout due to an 

increase in the minimum pillar requirement. The algorithm selects blocks farthest from the 

deposit's key central zone thus generating two (2) low-grade stopes, two (2) medium-grade 

stopes and one (1) high-grade stope. Two stopes (stopes 1 and 3) lie diagonally adjacent in 

the middle zone, highlighting the previously discussed limitation of this BILP model. 
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Figure 4.10 shows the optimal layout of Scenario 3, which contains five (5) stopes 

that respect the pillar dimension constraint. A total of 90 blocks were left as pillar blocks, 

which resulted in the stopes formed in the final layout being widely spaced apart. This also 

explains the reason why it takes a long time to converge to a solution since the algorithm 

needs to find stopes that meet, the cutoff grade, the shape requirement as well as respect 

the required minimum pillar dimensions. 

4.5. EFFECT OF NUMBER OF STOPES SELECTED 

The number of stopes K is an important parameter that controls the number of 

variables and constraints created in the optimization problem. The number of stopes is 

chosen a priori as an input for this algorithm. 

 Input Data for Number of Stopes Selected Evaluation.  It is important that 

the engineer avoids selecting a value of K that is lower than the number of "optimal" stopes 

for the specific problem. Otherwise, the problem will converge to a suboptimal solution. 

On the other hand, because K is directly related to the number of decision variables and 

constraints, too large a value of K will unnecessarily increase the computational time. The 

author investigated the effect of changing the number of stopes chosen for the optimization. 

Table 4.10 shows the variable stope numbers selected for each scenario in this experiment 

while Table 4.11 shows the BILP configuration for the experiment.  
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Table 4.10 Experiment 4 – Number of Stopes 

BILP 

Configuration 

Scenario  

1 

Scenario 

 2 

Scenario  

3 

Scenario  

4 

Number Of Stopes k 4 10 20 30 

 

 

Table 4.11 BILP Input Data – Experiment 4 

BILP Configuration Scenario 

Minimum Mining Height 𝛼1 3 

Minimum Mining Width 𝛼2 3 

Maximum Mining Height 𝛽1 3 

Maximum Mining Width 𝛽2 3 

Minimum Pillar Length 𝛾1 2 

Minimum Pillar Length 𝛾2 2 

Cutoff Grade 𝐺𝑜𝑓𝑓 2 g/t 
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 Results and Discussion.  Table 4.12 shows a summary of the results while 

Figure 4.11 – Figure 4.13 show the optimal layouts of the scenarios. The result for Scenario 

2 in this experiment is the same as Scenario 2 of Experiment 2. The results in Table 4.12 

shows the solution time increases as the number of stopes increases, as one would expect. 

This is because of the explosion of variables and constraints from the higher number of 

stopes. When the number of stopes was lower than the optimal number of stopes (Scenario 

1), the objective function value was lower than the optimal objective function value. The 

objective function value for the other scenarios (where the specified number of stopes is 

higher than the optimal number of stopes) is the same for all scenarios. This is what one 

would expect for this problem. 

The limitation of the proposed BILP approach illustrated by this result is that the 

engineer seeking to optimize his/her stope layout needs to select the maximum number of 

stopes a priori that can result in an optimal solution. Otherwise, the model can yield 

suboptimal results as shown in this experiment. To address this the author recommends 

selecting a large enough number of stopes (e.g., by estimating the maximum number of 

stopes that will fit the domain if there was to be a stope in every region possible). The 

downside of this approach is that it will lead to the algorithm taking a long time to converge 

to an optimal solution.  
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Table 4.12 Experiment 4- Results of Changing Number of Stopes 

Parameter Units 
Optimization Results  

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Objective Function Value ($) 24,828,692 27,455,739 27,455,739 27,455,740 

Solution Time (hrs) 0.07 0.66 3.37 9.05 

Gap Tolerance (%) 0.00 0.00 0.00 0.00 

Number Of Stopes  (#) 4 5 5 5 

Ore Blocks Mined (#) 34 43 43 43 

Waste Blocks Mined (#) 2 2 2 2 

Number Of Mined Blocks (#) 36 45 45 45 

Number Of Pillar Blocks (#) 48 60 60 60 

Minimum Stope Grade (g/t) 3.63 2.49 2.49 2.49 

Maximum Stope Grade (g/t) 5.52 5.52 5.52 5.52 

Average Layout Grade (g/t) 4.25 3.86 3.86 3.86 

Total Layout Tonnage (tonnes) 534,600 668,250 668,250 668,250 
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Figure 4.11 Experiment 4 Scenario 1 Optimal Layout 
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Figure 4.12 Experiment 4 Scenario 2 Optimal Layout 
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Figure 4.13 Experiment 4 Scenario 3 Optimal Layout 
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Figure 4.14 Experiment 4 Scenario 4 Optimal Layout 
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4.6. EFFECT OF OPTIMIZATION PROBLEM SIZE 

As was previously mentioned in Section 3.8, binary integer programming models 

can evolve into a combinatorial explosion of variables and constraints. The author assesses 

the impact of applying the BILP model to solve different sized stope layout optimization 

problems. 

 Input Data for Optimization Problem Size Evaluation.  To conduct this 

experiment the author reblocked the sample data set used for the basecase study into a two 

blockmodels with smaller block dimensions consequently generating more blocks in those 

blockmodels (1,000 blocks and 1,300 blocks). The author then generated economic values 

for the blockmodels for this experiment using the same procedure that was employed for 

the basecase scenario in Section 3.7.2. 

To ensure consistency in the results, the scenarios in this experiment were solved 

using the same MATLAB code used in the prior analysis. The complete input data for this 

experiment can be accessed on GitHub (https://github.com/TheoMensah/BILP_SSLO.git). 

Table 4.13 shows the summary statistics of the block models. Table 4.14 shows the 

common input data for this experiment while Table 4.15 shows the number of blocks for 

each of the three models used in this experiment.  

 Results and Discussion.  Table 4.16 shows a summary of the results of this 

experiment and Figure 4.16 –Figure 4.18 show the layouts. The result from this study 

suggests that the size of the optimization problem does have an impact on the solution 

obtained and this is evident in the solutions times achieved in each scenario (Figure 4.15). 

All formulations converged to an optimal solution with gap tolerance of 0%. 

 

https://github.com/TheoMensah/BILP_SSLO.git
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Table 4.13 Summary Statistics of Block Models 

Blockmodel  

Attribute 

Reblocked 

Model 1 

Reblocked 

Model 2 

Reblocked 

Model 3 

Metal Au Au Au 

Number of blocks (#) 774 1,000 1,300 

Blocks Au > 0 144 191 246 

Total mineralized material (t) 2,138,400 2,138,400 2,138,400 

Maximum Au value (g/t) 14.91 9.72 9.97 

Minimum Au value (g/t) 0.15 0.11 0.29 

Average Au value (g/t) 2.63 2.55 2.59 

Standard deviation (%) 2.09 1.66 1.67 

Variance (%2) 4.35 2.74 2.80 

Block density (kg/m3) 2.2 2.2 2.2 

Block size (#) 15 ×15 ×30 13 ×15 ×27 10 ×15 ×27 

Block tonnage (t) 6,750 5,225 4,050 

Depth from surface (m) 560 – 1,100 560 – 1,100 560 – 1,100 
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Table 4.14 BILP Input Data – Experiment 5 

BILP Configuration Scenario 

Minimum Mining Height 𝛼1 4 

Minimum Mining Width 𝛼2 4 

Maximum Mining Height 𝛽1 4 

Maximum Mining Width 𝛽2 4 

Minimum Pillar Length 𝛾1 3 

Minimum Pillar Length 𝛾2 3 

Number Of Stopes k 20 

Cutoff Grade 𝐺𝑜𝑓𝑓 3g/t 

 

 

Table 4.15 Experiment 5 –Optimization Problem Size  

BILP Configuration Scenario 1 Scenario 2 Scenario 3 

Number of Blocks ( , )i j  774 1000 1300 
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Figure 4.15 Solution Time versus Optimization Problem Size (Number of Blocks) 
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Table 4.16 Experiment 5- Results of Changing Optimization Problem Size 

Parameter Units 
Optimization Results 

Scenario 1 Scenario 2 Scenario 3 

Objective Function Value ($) 24,627,142.8 24,990,276.6 25,358,764.9 

Solution Time (hrs) 1.28 3.83 7.37 

Gap Tolerance (%) 0.00 0.00 0.00 

Number of Stopes formed (#) 3 3 5 

Ore Blocks Mined (#) 46 46 78 

Waste Blocks Mined (#) 2 0 2 

Number of mined blocks (#) 48 48 80 

Number of pillar blocks (#) 72 95 130 

Minimum Stope Grade (g/t) 3.08 3.22 3.12 

Maximum Stope Grade (g/t) 3.92 3.55 3.70 

Average Layout Grade (g/t) 3.38 3.37 3.45 

Total Layout Tonnage (tonnes) 712,800 712,800 712,800 
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Figure 4.16 Experiment 5 Scenario 1 Optimal Layout 
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Figure 4.17 Experiment 5 Scenario 2 Optimal Layout 
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Figure 4.18 Experiment 5 Scenario 3 Optimal Layout 
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From the study, Figure 4.15 illustrates a scatter plot between optimization problem 

(number of blocks) and the solution time achieved. The plot demonstrates that there is a 

linear correlation between the optimization problem size and the time required to converge 

to an optimal solution. This relationship occurs because as the number of blocks increases, 

the decision variables and constraints also grow, resulting in a more complex problem 

necessitating greater computational time and resources for the algorithm to converge 

towards an optimal solution. The results in Table 4.16 indicates Scenario 1 (blocks ( , )i j = 

774) had the fastest solution time of 1.28 hrs. Scenario 2 (blocks ( , )i j = 1,000) achieved 

this in 3.83 hrs while Scenario 3 (blocks ( , )i j = 1,300) achieved the optimal solution in the 

longest time of 7.37 hrs. While this experiment shows a linear relationship, it is not yet 

clear whether this is the case for a broad range of problem sizes. If indeed, the 

computational time grows only linearly, this will be an advantage of this model. Further 

work is required to examine this observation. 

This findings from this experiment demonstrates yet another flaw in the BILP 

approach, namely the tendency for variable and constraint combinations to explode as 

optimization problem size increases requiring greater computational time and resources for 

the algorithm to converge to an optimal solution.  

From Figure 4.16 – Figure 4.18 the author reblocked the basecase model into 

varying block sizes. To maintain consistency in this experiment, the size of the pillars and 

stopes dimensions were kept the same. However due to the varying block sizes the final 

designs will change. This approach was adopted to avoid introducing additional 

confounding factors, such as changes in the number of pillar and stope constraints per block 
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that would occur with different stope sizes. The reblocking process redistributes the grade 

in the model as well as increase the block count for small sized blocks.  

From the results, smaller block sizes allow the algorithm more selectivity. Thus, as 

can be seen in the optimal layout of Scenario 3 (Figure 4.18), the algorithm had the 

flexibility to include more blocks hence forming 5 stopes – 2 more than Scenarios 1 and 2. 

This is because the smaller sized blocks have a lower tonnage and to achieve the maximum 

value more higher grade stopes needs to be formed in order to achieve the maximum 

economic value. Though the same final layout tonnage is achieved in all scenarios, 

objective function value is slightly higher for the smaller block sized problem (Scenario 

3). This is because grade variability is also increased in the smaller block sizes making the 

algorithm more selective in the blocks to include in a stope. 

4.7. SUMMARY 

This section presented a set of computational experiments to assess the proposed 

BILP model's sensitivity to the key input parameters of the stope layout optimization 

problem. The work in this chapter evaluated the effect of differences in cutoff grade, stope 

dimensions, pillar dimensions, (maximum) number of stopes selected by user, and size of 

the optimization problem (measured in terms of the number of blocks).  

The following are the major findings from the experiments: 

• The BILP model can find the optimal solution for many different types of 

problems. For all the scenarios evaluated, the solution was found within an 

optimality gap of 0.00%. 
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• The model is sensitive to changes in the cutoff grade. While a high cutoff grade 

will speed up the algorithm's solution time, this will generate optimal layouts 

with a lower objective function value. 

• The model can generate stopes of any rectangular shape (stope frame) specified 

by the engineer and will mimic the deposits peripheries. The stope frames the 

engineer selects affects the objective function value, solution time, number of 

stopes formed, and general stope layout. 

•  The model is also sensitive to the specified pillar sizes. Specifying larger pillar 

sizes results in more spatially spread stopes in the layout which leads to optimal 

layouts with a lower objective function (economic) value. Specifying smaller 

pillars lead to more compact stopes in the optimal layout with higher objective 

function (economic) values. 

• The model is highly sensitive to specified (maximum) number of stopes and the 

number of blocks (used as a proxy for optimization problem size) because both 

parameters affect the number of decision variables and constraints. The larger 

the specified (maximum) number of stopes and the higher the number of blocks 

the longer the solution time. 

• Because the engineer needs to select the maximum number of stopes a priori 

and it has such a significant effect on solution times and the solution, this work 

proposes that engineers using this model estimate the maximum number of 

stopes possible in the geometry and use that estimate for the maximum number 

of stopes. This ensures there are enough stopes to yield the optimum solution 

but not more than necessary.  
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5. CONCLUSIONS, RECOMMENDATIONS & FUTURE WORK  

5.1. OVERVIEW 

Stope layout optimization is a critical aspect of underground mining operations. It 

involves determining the most effective arrangement of stopes within a mine to maximize 

resource extraction and operational efficiency. The primary objective is to design a layout 

that optimizes the economic value while considering various factors such as geotechnical 

constraints, stope grade, equipment limitations, and safety requirements. 

Previous researchers have used meta-heuristic optimization methods, including 

swarm intelligence algorithms, genetic algorithms, and particle swarm optimization, to find 

optimal stope layouts. These approaches however do not guarantee optimality. One 

approach that researchers are utilizing now involves formulating the problem as a 

mathematical optimization model, typically using linear programming techniques to 

determine the optimal arrangement of stopes. This approach is well known to guarantee 

optimality and if well formulated, can be configured to solve complex problems. 

Thus, the goal of this thesis work was to formulate the stope layout optimization 

problem (SLOP) as a binary integer linear programming problem that maximizes the value 

of the stopes mined subject to novel grade, geotechnical (minimum and maximum pillar 

sizes), and allowable mining (minimum and maximum stope width and height) constraints 

in two-dimensional space. To achieve this goal, the author: 

1. Drew from Queyranne and Wolsey’s [25], [26] formulations of tight 

constraints for bounded up/down times in production planning problems to formulate novel 
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and efficient geometric constraints along with geotechnical and grade constraints for the 

BILP stope layout optimization problem. 

2. verified the novel BILP model with a sample gold mining data set to verify 

the model. The original geological model of the orebody was regularized to generate equal-

sized blocks ideal for conversion into an economic model which served as the primary 

input for the 5-experimental 15-scenario runs to verify the BILP model as a model that 

applies efficient shape constraints in solving the SLOP in two-dimensional space. 

5.2. CONCLUSIONS 

The study concludes the following from the outcome of the basecase and 

experimental computations: 

▪ With respect to the outcomes from the basecase:  

❖ The results from the basecase study show that it is possible to model 

shapes using LP-based techniques for the stope layout problem. Unlike 

most LP-based stope layout approaches, the proposed model accounts 

for efficient shape constraints in the geometric constraints. 

❖ The developed model can find the optimal stope layout that maximizes 

the undiscounted profit for the deposit within a gap tolerance of 0.00%. 

❖ The model allows the user to generate variable stope length and height 

as well as incorporate geotechnical pillar requirements between the 

generated stopes. Thus, the model permits mining operations to follow 

irregular mineral deposit peripheries to minimize dilution while 

ensuring a stable operating environment. 
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❖ The proposed BILP model has some limitations as illustrated by the 

results of the base case experiment. Pillars are respected around the 

stopes however pillar widths are not maintained in the diagonal 

direction because the pillar limitations are defined along the vertical and 

horizontal directions. This will require future post-processing to ensure 

the stope layouts are safe. 

▪ With respect to the computational experiments to evaluate the BILP model’s 

sensitivity to key input variables and parameters: 

❖ The proposed BILP model is sensitive to the selected stope cutoff grade. 

The lower the cutoff grade selected the higher the objective function 

achieved and vice versa. Also, there is a trade-off between the solution 

time and the objective function value achieved. A high stope cutoff 

grade means solution converges faster but it does not improve the 

objective function value. 

❖ The model is also very sensitive to the required minimum stope 

dimensions. As stated above, the model can generate variable stope 

frames based on the input. Larger stope frames achieve higher objective 

function values (assuming pillar sizes stay the same) and converges 

faster since more blocks can be selected and fewer blocks are left behind 

as pillars. Smaller frames generate more stopes in the layout but requires 

more pillars thus leaving some blocks behind and achieving a lower 

objective function value.  
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❖ The model is sensitive to the specified pillar dimensions. The smaller 

the pillar dimensions selected the fewer the blocks left behind as pillars 

thus maximizing the economic value of the layout and vice versa. The 

solution time is not affected by the choice of pillar. 

❖ The performance of the model is affected by the choice of maximum 

number of stopes. The maximum number of stopes is chosen a priori 

which means the engineer can select a larger number which will lead to 

a longer time for the algorithm to converge or a smaller number which 

will lead to suboptimal solutions. The author proposes that engineers 

using this model estimate the maximum number of stopes possible in 

the geometry and use that estimate for the maximum number of stopes. 

This ensures there are enough stopes to yield the optimum solution but 

not more than necessary.  

❖ The BILP model proposed is highly sensitive to the size of the 

optimization problem. There appears to be a linear correlation between 

the problem size and the solution time. The larger the problem size the 

more exponentially the variables and constraints grow making the 

problem more complex and necessitating greater computational 

resources and time to solve such problems. However, because the 

experiments in this work are very limited, it is not clear if the trend is 

the same for a wide variety of problem sizes. 

▪ The proposed model contributes to the research on underground stope layout 

optimization by demonstrating the possibility to formulate efficient shape 
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constraints in a binary integer programming model to solve the stope layout 

optimization problem. The work evaluated systematically, the sensitivity and 

performance of the proposed BILP model with respect to stope layout 

optimization’s key input parameters as well as optimization problem size. The 

work also demonstrated the adaptation of Queyranne and Wolsey’s [25], [26] 

tighter constraints for production planning to model novel tighter and more 

efficient constraints for the stope layout optimization problem.  

5.3. RECOMMENDATIONS FOR FUTURE WORK 

To further improve and advance the proposed binary-integer linear programming 

model for optimizing the stope layout optimization problem, the following 

recommendations are made for future work: 

❖ The model currently does not implement pillars diagonally which means stopes 

can be generated diagonally adjacent to each other. This can lead to stability 

issues during stoping. Future work should develop post-processing algorithms 

that can detect “diagonal” pillars that violate pillar constraints and use heuristics 

to adjust the layout to avoid these situations. 

❖ The utilization of binary variables in this model leads to longer solution times, 

necessitating the implementation of strategies to reduce the computational cost 

associated with the model. One such strategy is to preprocess the problem using 

heuristic techniques prior to passing the problem to a standard BILP solver. 

Future work should develop such preprocessing algorithms to improve the 

solution times. 
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❖ Future work should account for mine access networks in the solution. Mine 

development layouts are essential for stope layout design and should be 

incorporated into the stope layout optimization problem. 

❖ It will be essential to integrate the stope production scheduling problem with 

this model.  

❖ Due to the high uncertainty that characterizes mining operations, it is 

recommended that future work should model a stochastic optimization model 

of this BILP model to address uncertainty in model parameters. 

❖ Lastly, the proposed model is in two-dimensional space (2D). To make this 

model more practical with realistic outputs for application in real-life mining 

scenarios, the model should be extended to three-dimensional (3D) space. 

Future work should incorporate a third set of variables and constraints in the 

third dimension to extend the proposed model’s framework to 3D space. 
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