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ABSTRACT

Recently, researchers have investigated the relationship between proper orthogonal

decomposition (POD), difference quotients (DQs), and pointwise in time error bounds for

POD reduced order models of partial differential equations. In [9], a new approach to POD

with DQs was developed that is more computationally efficient than the standard DQ POD

approach and it also retains the guaranteed pointwise in time error bounds of the standard

method. In this thesis, we extend the new DQ POD approach from [9] to the case of second

difference quotients (DDQs). Specifically, a new POD method utilizing DDQs and only

one snapshot and one DQ is developed and used to prove ROM error bounds for the damped

wave equation. This new approach eliminates data redundancy in the standard DDQ POD

approach that uses all of the snapshots, DQs, and DDQs. We show that this new DDQ

approach also has pointwise in time data error bounds similar to DQ POD and use it to

prove pointwise and energy ROM error bounds. We provide numerical results and plots for

the POD errors and ROM errors to demonstrate the theoretical results. We also explore an

application of POD to simulating ROMs past the training interval for collecting the snapshot

data for the standard POD approach and the DDQ POD method.
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1. INTRODUCTION

Simulation of high dimensional systems, often times based on partial differential

equations (PDEs), is of great importance to applied computational research as well as

industry related problems on fluids, heat, and control theory. Often times it is possible to

compute the solutions to these high dimensional problems but this requires long computation

times. Model order reduction allows for these high dimensional systems to be represented by

a low order approximation while still retaining the desired accuracy. Reduced order models

(ROMs) can be formed in various ways, but a common technique is proper orthogonal

decomposition (POD). POD ROMs are useful for forming accurate low order systems

efficiently. A set of applications of general reduced order models can be seen, e.g. [4, 5,

22, 23]. For POD ROMs, see e.g. [1, 3, 6, 7, 13, 14, 15, 21].

The wide appeal of POD in applied research has led numerous researchers to study

the numerical analysis aspects of POD ROMs; see, e.g., [1, 2, 9, 12, 16, 17, 19, 21, 24]. Due

to the widespread use of POD in application problems, understanding the sizes of errors

involved in using the ROM is extremely important. When simulating PDEs, two types of

errors are introduced: spatial discretization error and time discretization error. Research on

the two PDE discretization errors is numerous. The ROM introduces a new error: the ROM

discretization error. The introduction of the ROM changes how the time discretization error

behaves as well so it is common for POD based papers to consider only the time and ROM

discretization errors and leave the spatial discretization error to be studied using current

methods. This thesis includes a literature review of work presented in [9] on errors for POD

and the numerical analysis of POD ROMs with difference quotients (DQs) included. We

then present new results on the POD errors and the POD ROM error analysis when 2nd

difference quotients (DDQs) are included for the data as well. We choose the damped wave

equation as our PDE and form the POD ROM off of this system.
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When using POD, there are multiple avenues that can be taken for producing the

POD modes from the data. We discuss the standard approach to POD using just the

snapshots. This method does not have pointwise error bounds for the data. We also discuss

using DQs as the data and advantages that come with it. The inclusion of DQs in the data

allowed for pointwise error bounds to be found for the snapshots in [9, 19]. It also enabled

researchers to analyze the ROM errors for parabolic PDEs, see, e.g., [11, 12, 18, 19]. In

[2, 16], researchers derived sum of squares error bounds for the wave equation using all of

the snapshots, DQs, and DDQs using the Newmark scheme for the time iteration. Here, we

remove the redundancy in that data set by developing a method using only one snapshot,

one DQ, and all of the DDQs. We then develop pointwise data error bounds similar to the

bounds shown in [9]. We also prove pointwise in time energy and 𝐿2 error bounds for a

damped wave equation using a different time stepping scheme than other DDQ methods.

We then present numerical results involving the POD data errors and ROM energy

and pointwise errors. The numerical section also presents plots of the PDE finite element

solution compared to the POD ROM solution to give visual interpretation to the success

of each method. For the final section of this thesis we explore changing the interval we

take the data from. We compute the final time errors between the FE solution and the POD

ROM solution when using less of the test interval as the snapshots. This is of interest as a

primary purpose of a POD ROM is to simulate an equation into the future.



3

2. PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition is a method of reducing the amount of informa-

tion required to represent a data set. We aim to find a basis that we can approximate the data

in a way that minimizes a certain error. This is the goal of all methods of POD and forms

the core POD problem. How do we optimally find a basis to minimize the error between our

new POD approximate data and the actual data? The core difference between the different

POD approaches is how we choose the error we minimize. This choice is often guided by

the structure of the problem we aim to use POD on.

In this section, we review existing literature on POD and follow the exposition of

[9] closely. This section introduces two methods of POD. The first is the standard approach

to POD using only the data snapshots and the second method uses one snapshot and all

of the difference quotients for the data. The standard POD approach is well known, and

details can be found in many references, such as [19, 20]. The difference quotient method

we present was established in [9] and explored further in [11, 12, 18].

2.1. NOTATION

First, we establish some general notations and define a few key objects that are used

throughout this thesis. In this work, 𝑋 and 𝑌 are separable Hilbert Spaces; for the specific

PDE we consider, we often take these spaces to be either 𝐿2(Ω) or 𝐻1
0 (Ω) where Ω is a

spatial domain. The Hilbert space 𝑋 is called the POD space. Let 𝑀 be a positive integer.

Then the weighted inner product on the space 𝑆 := R𝑀
Γ

, is defined by

(𝑔, ℎ)𝑆 = ℎ∗Γ𝑔 =

𝑀∑︁
𝑗=1
𝛾 𝑗𝑔

𝑗ℎ 𝑗
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where 𝑔, ℎ ∈ 𝑆, Γ = diag(𝛾1, 𝛾2, . . . , 𝛾𝑀), and each 𝛾 𝑗 is positive for 𝑗 = 1, . . . , 𝑀 . The

constants {𝛾 𝑗 }𝑀𝑗=1 are often chosen to approximate a time integral or constant multiple of a

time integral.

For the POD based reduced order modeling, we consider data sets formed by a finite

element solution for time dependent PDEs. For the data we consider a training interval of

[0, 𝑇𝑡] and a testing interval of [0, 𝑇] where 𝑇 ≥ 𝑇𝑡 > 0. The training interval is the interval

of time we take snapshots from the FE solution and the testing interval is the time interval

on which we simulate the POD ROM. For the training data we have the FE solution data at

times 𝑡𝑛 = (𝑛 − 1)Δ𝑡 for 𝑛 = 1, . . . , 𝑁 , where 𝑁 > 0 and Δ𝑡 =
𝑇𝑡
𝑁−1 . Note that in this work

unless otherwise stated 𝑇𝑡 = 𝑇 and we work with the testing and training intervals being the

same.

An important part of POD is the use of projections. Let 𝑍 be a normed space and

let 𝑍𝑟 ⊂ 𝑍 be a subspace. The bounded linear operator Π : 𝑍 → 𝑍 is a projection onto 𝑍𝑟

if Π2 = Π and range(Π) = 𝑍𝑟 . We then have Π𝑧 = 𝑧 for 𝑧 ∈ 𝑍𝑟 . The projections in this

work are not required to be orthogonal unless stated otherwise.

For convenience in presenting POD results when using the DQs and DDQs, we

introduce the following notations. Let {𝑧 𝑗 }𝑀
𝑗=1 ⊂ 𝑍 . Then

𝜕𝑧 𝑗 = 𝜕+𝑧 𝑗 =
𝑧 𝑗+1 − 𝑧 𝑗

Δ𝑡
,

𝜕−𝑧 𝑗 =
𝑧 𝑗 − 𝑧 𝑗−1

Δ𝑡
,

and

𝜕𝜕𝑧 𝑗 = 𝜕+𝜕−𝑧 𝑗 = 𝜕−𝜕+𝑧 𝑗 =
𝑧 𝑗+1 − 2𝑧 𝑗 + 𝑧 𝑗−1

Δ𝑡2
.
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We use the 𝜕 notation for the forward difference as this is the DQ form we use and appears

most often in results. In results where the backwards difference appears we use 𝜕− for the

operator. Finally, the 𝜕𝜕 notation is used for convenience and visual clarity and should not

be interpreted as 𝜕+𝜕+.

2.2. STANDARD POD

We begin by introducing the standard POD problem and operator. Let 𝑊 =

{𝑤 𝑗 }𝑁
𝑗=1 ⊂ 𝑋 be the POD data, called the snapshots, for some integer 𝑁 > 0. Given 𝑟 > 0,

the standard POD problem is to find an orthonormal basis {𝜑𝑘 }𝑁𝑘=1 ⊂ 𝑋 , called the POD

basis, minimizing the data approximation error

𝐸𝑟 =

𝑁∑︁
𝑗=1
𝛾 𝑗 ∥𝑤 𝑗 − Π𝑋

𝑟 𝑤
𝑗 ∥2
𝑋 (2.1)

where Π𝑋
𝑟 : 𝑋 → 𝑋 is the orthogonal projection onto 𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1 defined by

Π𝑋
𝑟 𝑥 =

𝑟∑︁
𝑘=1

(𝑥, 𝜑𝑘 )𝑋𝜑𝑘 . (2.2)

The POD operator that provides the solution to this problem is 𝐾 : 𝑆 → 𝑋

𝐾 𝑓 =

𝑁∑︁
𝑗=1
𝛾 𝑗 𝑓

𝑗𝑤 𝑗 , 𝑓 = [ 𝑓 1, 𝑓 2, · · · , 𝑓 𝑁 ]𝑇 . (2.3)

The operator K is called the standard POD operator. It is compact and has a singular value

decomposition given by {𝜆1/2
𝑘
, 𝑓𝑘 , 𝜑𝑘 } ⊂ R × 𝑆 × 𝑋 where {𝜆1/2

𝑘
} are the singular values

and { 𝑓𝑘 } and {𝜑𝑘 } are the orthonormal singular vectors. Furthermore, we call {𝜑𝑘 } the

POD modes of the data and {𝜆1/2
𝑘

} are called the POD singular values.
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We know that the the POD modes give the best low rank approximation to the data,

and the standard data error formula is

𝐸𝑟 =

𝑁∑︁
𝑗=1
𝛾 𝑗 ∥𝑤 𝑗 − Π𝑋

𝑟 𝑤
𝑗 ∥2
𝑋 =

𝑠∑︁
𝑘=𝑟+1

𝜆𝑘 (2.4)

where 𝑠 is the number of positive POD singular values.

The 𝛾 𝑗 are weights associated with time integrals of the data and can be chosen to

fit certain integral approximations. It is useful to leave the weights in a general form here

so that they may be varied for later POD methods.

The following lemma states error formulas for norms and projections other than the

standard POD norm and projection.

Lemma 2.1 (Standard POD Extended Data Error Formulas, [9]). Let 𝑊 = {𝑤 𝑗 }𝑁
𝑗=1 be the

snapshots, 𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1, and Π𝑋
𝑟 : 𝑋 → 𝑋 be the orthonormal projection onto 𝑋𝑟 .

Let 𝑠 be the number of positive POD singular values for 𝐾 defined in Equation (2.3). If 𝑌

is a Hilbert space with𝑊 ⊂ 𝑌 then

𝑁∑︁
𝑗=1
𝛾 𝑗 ∥𝑤 𝑗 − Π𝑋

𝑟 𝑤
𝑗 ∥2
𝑌 =

𝑠∑︁
𝑘=𝑟+1

𝜆𝑘 ∥𝜑𝑘 ∥2
𝑌 . (2.5)

In addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

𝑁∑︁
𝑗=1
𝛾 𝑗 ∥𝑤 𝑗 − 𝜋𝑟𝑤 𝑗 ∥2

𝑌 =

𝑠∑︁
𝑘=𝑟+1

𝜆𝑘 ∥𝜑𝑘 − 𝜋𝑟𝜑𝑘 ∥2
𝑌 . (2.6)

This standard method for POD does not have general pointwise error bounds, shown

in [19].
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2.3. POD WITH 1ST DIFFERENCE QUOTIENTS

The following method for POD was first shown in [9] extending on the work done

in [19], and does have general pointwise error bounds which we also present. We do not

review the proofs; see [9] for complete details. In this approach, we consider the first data

snapshot and all of the difference quotients for the data, defined as the forward difference:

𝜕𝑢 𝑗 =
𝑢 𝑗+1 − 𝑢 𝑗

Δ𝑡
. (2.7)

Then for the data𝑈 = {𝑢 𝑗 }𝑁
𝑗=1, the error we aim to minimize is

𝐸
DQ1
𝑟 = ∥𝑢1 − Π𝑋

𝑟 𝑢
1∥2
𝑋 +

𝑁−1∑︁
𝑗=1

Δ𝑡∥𝜕𝑢 𝑗 − Π𝑋
𝑟 𝜕𝑢

𝑗 ∥2
𝑋 . (2.8)

This error can be found with the POD operator:

𝐾1 𝑓 = 𝑓 1𝑢1 +
𝑁−1∑︁
𝑗=1

Δ𝑡 𝑓 𝑗+1𝜕𝑢 𝑗 . (2.9)

Here 𝐾1 𝑓 = 𝐾 𝑓 where 𝑤1 = 𝑢1 and 𝑤 𝑗+1 = 𝜕𝑢 𝑗 for 𝑗 = 1, . . . , 𝑁 − 1 with 𝛾1 = 1 and

𝛾 𝑗 = Δ𝑡 for 𝑗 = 2, . . . , 𝑁 . With {𝜆DQ1
𝑗

}𝑁
𝑗=1 as the POD eigenvalues and {𝜑𝑘 }𝑟𝑘=1 as the POD

modes for the data, the following lemma provides error formulas for the data approximation.

Lemma 2.2 (DQ1 POD Extended Data Error Formulas, [9]). Let 𝑈 = {𝑢 𝑗 }𝑁
𝑗=1 be the

snapshots, 𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1, and Π𝑋
𝑟 : 𝑋 → 𝑋 be the orthonormal projection onto 𝑋𝑟 .

Let 𝑠 be the number of positive POD singular values for 𝐾1 defined in Equation 2.9. Then

∥𝑢1 − Π𝑋
𝑟 𝑢

1∥2
𝑋 +

𝑁−1∑︁
𝑗=1

Δ𝑡∥𝜕𝑢 𝑗 − Π𝑋
𝑟 𝜕𝑢

𝑗 ∥2
𝑋 =

𝑠∑︁
𝑘=𝑟+1

𝜆
DQ1
𝑘

. (2.10)
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If 𝑌 is a Hilbert space with𝑊 ⊂ 𝑌 then

∥𝑢1 − Π𝑋
𝑟 𝑢

1∥2
𝑌 +

𝑁−1∑︁
𝑗=1

Δ𝑡∥𝜕𝑢 𝑗 − Π𝑋
𝑟 𝜕𝑢

𝑗 ∥2
𝑌 =

𝑠∑︁
𝑘=𝑟+1

𝜆
DQ1
𝑘

∥𝜑𝑘 ∥2
𝑌 . (2.11)

In addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

∥𝑢1 − 𝜋𝑟𝑢1∥2
𝑌 +

𝑁−1∑︁
𝑗=1

Δ𝑡∥𝜕𝑢 𝑗 − 𝜋𝑟𝜕𝑢 𝑗 ∥2
𝑌 =

𝑠∑︁
𝑘=𝑟+1

𝜆
DQ1
𝑘

∥𝜑𝑘 − 𝜋𝑟𝜑𝑘 ∥2
𝑌 . (2.12)

The following lemma was used to prove pointwise error formulas and will be used

to prove new error bounds in Section 3.

Lemma 2.3 (General Pointwise Norm Bounds, [9]). Let 𝑇 > 0, 𝑍 be a normed space,

{𝑧 𝑗 }𝑁
𝑗=1 ⊂ 𝑍 , and Δ𝑡 = 𝑇/(𝑁 − 1). Then

max
1≤ 𝑗≤𝑁

∥𝑧 𝑗 ∥2
𝑍 ≤ 𝐶1

(
∥𝑧1∥2

𝑍 +
𝑁−1∑︁
ℓ=1

Δ𝑡∥𝜕𝑧ℓ∥2
𝑍

)
(2.13)

where 𝐶1 = 2 max{𝑇, 1}.

The difference quotient approach to POD then has the following error bounds.

Theorem 2.4 (Pointwise Data Error Bounds for 𝐾1, [9]). Let𝑈 = {𝑢 𝑗 }𝑁
𝑗=1 be the snapshots,

𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1 and Π𝑋
𝑟 : 𝑋 → 𝑋 be the orthogonal projection onto 𝑋𝑟 . Let 𝑠 be the

number of positive POD eigenvalues for 𝐾1. Then

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑋 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DQ1
𝑘

)
. (2.14)

If 𝑌 is a Hilbert space with𝑈 ⊂ 𝑌 then

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DQ1
𝑘

∥𝜑𝑘 ∥2
𝑌

)
, (2.15)
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and in addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − 𝜋𝑟𝑢 𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DQ1
𝑘

∥𝜑𝑘 − 𝜋𝑟𝜑𝑘 ∥2
𝑌

)
(2.16)

where 𝐶 = 2 max{𝑇, 1}.

The following corollary from [9] states results for weighted sums of the snapshot

data errors.

Corollary 2.5 (Weighted Sum Data Error Bounds, [9]). Let𝑈 = {𝑢 𝑗 }𝑁
𝑗=1 be the snapshots,

𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1, and Π𝑋
𝑟 : 𝑋 → 𝑋 be the orthogonal projection onto 𝑋𝑟 . Let 𝑠 be the

number of positive POD eigenvalues for 𝐾1. Then

𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑋 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DQ1
𝑘

)
. (2.17)

If 𝑌 is a Hilbert space with𝑈 ⊂ 𝑌 then

𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DQ1
𝑘

∥𝜑𝑘 ∥2
𝑌

)
. (2.18)

If in addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − 𝜋𝑟𝑢 𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DQ1
𝑘

∥𝜑𝑘 − 𝜋𝑟𝜑𝑘 ∥2
𝑌

)
(2.19)

where 𝐶 = 4 max{𝑇2, 𝑇}.

These results were applied to the heat equation and specifically Lemmas 2.2 and 2.3

were used to prove pointwise error bounds for the POD reduced order model of the heat

equation in [9].
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3. A NEW METHOD FOR POD

In this section, we demonstrate a new POD method using 2nd difference quotients

and prove corresponding results on the pointwise data errors. This method extends the

approach with 1st difference quotients in Section 2.3 and on work done in [2, 16] using

all of the snapshots, 1st difference quotients, and 2nd difference quotients. POD with 1st

difference quotients allows for ROM error bounds to be proven for heat equation and likely

many other 1st order in time PDE problems, see e.g. [11, 12, 18]. Here, we utilize the 2nd

difference quotients to analyze a 2nd order in time PDE problem.

3.1. DDQ POD APPROACH

For the DDQ POD method, we include one snapshot, one 1st difference quotient,

and all of the 2nd difference quotients. We use the second difference quotient

𝜕𝜕𝑢 𝑗 =
𝑢 𝑗+1 − 2𝑢 𝑗 + 𝑢 𝑗−1

Δ𝑡2
. (3.1)

This means that for the data𝑈 = {𝑢 𝑗 }𝑁
𝑗=1, we aim to minimize the following error

𝐸
DDQ
𝑟 = ∥𝑢1 − Π𝑋

𝑟 𝑢
1∥2
𝑋 + ∥𝜕𝑢1 − Π𝑋

𝑟 𝜕𝑢
1∥2
𝑋 +

𝑁−1∑︁
𝑗=2

Δ𝑡∥𝜕𝜕𝑢 𝑗 − Π𝑋
𝑟 𝜕𝜕𝑢

𝑗 ∥2
𝑋 . (3.2)

This error function has a similar structure to the method in Section 2.3 where now we select

only the 2nd difference quotients to have a weight of Δ𝑡 and the snapshot and difference

quotient are weighted by 1.

The POD operator corresponding to this error is

𝐾2 𝑓 = 𝑓 1𝑢1 + 𝑓 2𝜕𝑢1 +
𝑁−1∑︁
𝑗=2

Δ𝑡 𝑓 𝑗+1𝜕𝜕𝑢 𝑗 . (3.3)
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Here 𝐾2 𝑓 = 𝐾 𝑓 where 𝑤1 = 𝑢1, 𝑤2 = 𝜕𝑢1, and 𝑤 𝑗+1 = 𝜕𝜕𝑢 𝑗 for 𝑗 = 2, . . . , 𝑁 − 1 with

𝛾1 = 𝛾2 = 1 and 𝛾 𝑗 = Δ𝑡 for 𝑗 = 3, . . . , 𝑁 .

Lemma 3.1 (Linear Independence of 2nd Difference Quotient Data Set). If {𝑢𝑖}𝑁
𝑖=1 is linearly

independent, then {𝑤𝑖}𝑁
𝑖=1 given by 𝑤1 = 𝑢1, 𝑤2 = 𝜕𝑢1 and 𝑤𝑖+1 = 𝜕𝜕𝑢𝑖 for 𝑖 = 2, . . . , 𝑁 −1

is linearly independent.

Proof. Since {𝑢𝑖}𝑁
𝑖=1 is linearly independent,

𝑐1𝑢
1 + · · · + 𝑐𝑁𝑢𝑁 = 0

requires 𝑐𝑖 = 0 for all 𝑖 = 1, . . . , 𝑁 . Consider the linear combination

𝑑1𝑤
1 + 𝑑2𝑤

2 + · · · + 𝑑𝑁𝑤𝑁 = 0.

Then

𝑑1𝑢
1 + 𝑑2

(
𝑢2 − 𝑢1

Δ𝑡

)
+ 𝑑3

(
𝑢3 − 2𝑢2 + 𝑢1

Δ𝑡2

)
+ · · · + 𝑑𝑁

(
𝑢𝑁 − 2𝑢𝑁−1 + 𝑢𝑁−2

Δ𝑡2

)
= 0,

and so

(
𝑑1 −

𝑑2
Δ𝑡

+ 𝑑3

Δ𝑡2

)
𝑢1 +

(
𝑑2
Δ𝑡

− 2
𝑑3

Δ𝑡2
+ 𝑑4

Δ𝑡2

)
𝑢2 +

(
𝑑3

Δ𝑡2
− 2

𝑑4

Δ𝑡2
+ 𝑑5

Δ𝑡2

)
𝑢3

+ · · · +
(
𝑑𝑁−2

Δ𝑡2
− 2

𝑑𝑁−1

Δ𝑡2
+ 𝑑𝑁

Δ𝑡2

)
𝑢𝑁−2 +

(
𝑑𝑁−1

Δ𝑡2
− 2

𝑑𝑁

Δ𝑡2

)
𝑢𝑁−1 +

(
𝑑𝑁

Δ𝑡2

)
𝑢𝑁 = 0.

But we know each of these is 0 since each 𝑐𝑖 = 0. It can be seen that each 𝑑𝑖 = 0 by checking

the value of 𝑑𝑁 . Clearly 𝑑𝑁 = 0. Then we also have that 𝑑𝑁−1 = 0 and so on. Therefore

{𝑤𝑖}𝑁
𝑖=1 is linearly independent. □

With {𝜆DDQ
𝑗

}𝑁
𝑗=1 as the POD eigenvalues and {𝜑𝑘 }𝑟𝑘=1 as the POD modes for the

data, Lemma 3.2 provides error formulas for the data approximation.
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Lemma 3.2 (DDQ POD Extended Data Error Formulas). Let𝑈 = {𝑢 𝑗 }𝑁
𝑗=1 be the snapshots,

𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1, and Π𝑋
𝑟 : 𝑋 → 𝑋 be the orthonormal projection onto 𝑋𝑟 . Let 𝑠 be the

number of positive POD singular values for 𝐾2 defined in Equation (2.9). Then

∥𝑢1 − Π𝑋
𝑟 𝑢

1∥2
𝑋 + ∥𝜕𝑢1 − Π𝑋

𝑟 𝜕𝑢
1∥2
𝑋 +

𝑁−1∑︁
𝑗=2

Δ𝑡∥𝜕𝜕𝑢 𝑗 − Π𝑋
𝑟 𝜕𝜕𝑢

𝑗 ∥2
𝑋 =

𝑠∑︁
𝑘=𝑟+1

𝜆
DDQ
𝑘

. (3.4)

If 𝑌 is a Hilbert space with𝑈 ⊂ 𝑌 , then

∥𝑢1 −Π𝑋
𝑟 𝑢

1∥2
𝑌 + ∥𝜕𝑢1 −Π𝑋

𝑟 𝜕𝑢
1∥2
𝑌 +

𝑁−1∑︁
𝑗=2

Δ𝑡∥𝜕𝜕𝑢 𝑗 −Π𝑋
𝑟 𝜕𝜕𝑢

𝑗 ∥2
𝑌 =

𝑠∑︁
𝑘=𝑟+1

𝜆
DDQ
𝑘

∥𝜑𝑘 ∥2
𝑌 . (3.5)

In addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

∥𝑢1−𝜋𝑟𝑢1∥2
𝑌+∥𝜕𝑢1−𝜋𝑟𝜕𝑢1∥2

𝑌+
𝑁−1∑︁
𝑗=2

Δ𝑡∥𝜕𝜕𝑢 𝑗−𝜋𝑟𝜕𝜕𝑢 𝑗 ∥2
𝑌 =

𝑠∑︁
𝑘=𝑟+1

𝜆
DDQ
𝑘

∥𝜑𝑘−𝜋𝑟𝜑𝑘 ∥2
𝑌 . (3.6)

Proof. This follows from Equation (2.4) and Lemma 2.1 where {𝜆DDQ
𝑗

}𝑁
𝑗=1 are taken as the

POD eigenvalues for the POD operator in Equation (3.3). □

Lemma 3.2 will be verified using data from the wave equation in Section 5.1.

3.2. POINTWISE ERROR BOUNDS

In this section, we prove pointwise error bounds for the data when using DDQ POD.

We follow the method used in [9] for DQ POD and develop general error formulas which

will be used again in Section 4 to prove ROM errors.

Lemma 3.3 is important for proving Lemma 3.4 which will be the main result for

proving the pointwise error bounds for the data and for the ROM.
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Lemma 3.3 (Representing 𝑧𝑛 with 2nd Difference Quotients). Let Δ𝑡 > 0 and {𝑧𝑛}𝑁
𝑛=1 ⊂ 𝑍

where 𝑍 is a vector space. Then

𝜕𝑧𝑛 = 𝜕𝑧1 + Δ𝑡

𝑛∑︁
𝑖=2

𝜕𝜕𝑧𝑖, (3.7)

and

𝑧𝑛 = 𝑧1 + (𝑛 − 1)Δ𝑡𝜕𝑧1 + Δ𝑡2
𝑛−1∑︁
𝑖=2

(𝑛 − 𝑖)𝜕𝜕𝑧𝑖, for 𝑛 = 3, . . . , 𝑁. (3.8)

Proof. First, notice that

𝜕𝜕𝑧𝑖 =
𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1

Δ𝑡2
=
𝜕𝑧𝑖 − 𝜕𝑧𝑖−1

Δ𝑡
.

Then,

𝜕𝑧1 + Δ𝑡

𝑛∑︁
𝑖=2

𝜕𝜕𝑧𝑖 = 𝜕𝑧1 + Δ𝑡

𝑛∑︁
𝑖=2

𝜕𝑧𝑖 − 𝜕𝑧𝑖−1

Δ𝑡
= 𝜕𝑧1 +

𝑛∑︁
𝑖=2

𝜕𝑧𝑖 − 𝜕𝑧𝑖−1.

This sum clearly telescopes and yields

𝜕𝑧1 + Δ𝑡

𝑛∑︁
𝑖=2

𝜕𝜕𝑧𝑖 = 𝜕𝑧1 + 𝜕𝑧𝑛 − 𝜕𝑧1 = 𝜕𝑧𝑛,

so (3.7) is proven.

To prove (3.8), first consider

𝜕𝑧 𝑗 − 𝜕𝑧1 = Δ𝑡

𝑗∑︁
𝑖=1

𝜕𝜕𝑧𝑖 .

We then sum over 𝑗 = 2, . . . , 𝑛 − 1 and multiply by Δ𝑡 to get

Δ𝑡

𝑛−1∑︁
𝑗=2

(
𝜕𝑧 𝑗 − 𝜕𝑧1

)
= Δ𝑡2

𝑛−1∑︁
𝑗=2

𝑗∑︁
𝑖=2

𝜕𝜕𝑧𝑖 .



14

Add and subtract Δ𝑡𝜕𝑧1 on the left hand side so that the sum goes from 𝑗 = 1, . . . , 𝑛 − 1:

Δ𝑡

𝑛−1∑︁
𝑗=2

(
𝜕𝑧 𝑗 − 𝜕𝑧1

)
+ Δ𝑡𝜕𝑧1 − Δ𝑡𝜕𝑧1 = Δ𝑡2

𝑛−1∑︁
𝑗=2

𝑗∑︁
𝑖=2

𝜕𝜕𝑧𝑖

=⇒ Δ𝑡

𝑛−1∑︁
𝑗=1

(
𝜕𝑧 𝑗 − 𝜕𝑧1

)
= Δ𝑡2

𝑛−1∑︁
𝑗=2

𝑗∑︁
𝑖=2

𝜕𝜕𝑧𝑖 .

Evaluating the left hand side, we have

𝑧𝑛 − 𝑧1 − (𝑛 − 1)Δ𝑡𝜕𝑧1 = Δ𝑡2
𝑛−1∑︁
𝑗=2

𝑗∑︁
𝑖=2

𝜕𝜕𝑧𝑖 .

Then,

𝑧𝑛 = 𝑧1 + (𝑛 − 1)Δ𝑡𝜕𝑧1 + Δ𝑡2
𝑛−1∑︁
𝑗=2

𝑗∑︁
𝑖=2

𝜕𝜕𝑧𝑖 .

Next, we swap the order of the summations with 2 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑖 ≤ 𝑗 ≤ 𝑛 − 1, yielding

𝑧𝑛 = 𝑧1 + (𝑛 − 1)Δ𝑡𝜕𝑧1 + Δ𝑡2
𝑛−1∑︁
𝑖=2

𝑛−1∑︁
𝑗=𝑖

𝜕𝜕𝑧𝑖

= 𝑧1 + (𝑛 − 1)Δ𝑡𝜕𝑧1 + Δ𝑡2
𝑛−1∑︁
𝑖=2

(𝑛 − 𝑖)𝜕𝜕𝑧𝑖 .

□
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Lemma 3.4 (Pointwise Error Bounds for a General Function). Let 𝑇 > 0, 𝑁 > 0, 𝑍 be a

normed space, {𝑧 𝑗 }𝑁
𝑗=1 ⊂ 𝑍 , Δ𝑡 = 𝑇/(𝑁 − 1), and define the backwards average by

𝑧 𝑗 =
𝑧 𝑗 + 𝑧 𝑗−1

2
.

Then

max
1≤ 𝑗≤𝑁

∥𝑧 𝑗 ∥2
𝑍 ≤ 𝐶2

(
∥𝑧1∥2

𝑍 + ∥𝜕𝑧1∥2
𝑍 +

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
, (3.9)

max
2≤ 𝑗≤𝑁

∥𝑧 𝑗 ∥2
𝑍 ≤ 𝐶2

(
∥𝑧1∥2

𝑍 + ∥𝜕𝑧1∥2
𝑍 +

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
, (3.10)

max
1≤ 𝑗≤𝑁−1

∥𝜕𝑧 𝑗 ∥2
𝑍 ≤ 𝐶3

(
∥𝜕𝑧1∥2

𝑍 +
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
, (3.11)

max
2≤ 𝑗≤𝑁

∥𝜕−𝑧 𝑗 ∥2
𝑍 ≤ 𝐶3

(
∥𝜕𝑧1∥2

𝑍 +
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
, (3.12)

and

max
2≤ 𝑗≤𝑁−1

∥𝜕𝑧 𝑗 ∥2
𝑍 ≤ 𝐶3

(
∥𝜕𝑧1∥2

𝑍 +
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
(3.13)

where 𝐶2 = 3 max{𝑇3, 1} and 𝐶3 = 2 max{𝑇, 1}.

Proof. Using Lemma 3.3 part 2, taking norms, and using the triangle inequality we have

∥𝑧𝑛∥𝑍 ≤ ∥𝑧1∥𝑍 + (𝑛 − 1)Δ𝑡∥𝜕𝑧1∥𝑍 +
𝑛−1∑︁
𝑖=2

Δ𝑡2(𝑛 − 1)∥𝜕𝜕𝑧𝑖∥𝑍 .

Applying Cauchy-Schwarz on the last term yields

∥𝑧𝑛∥𝑍 ≤ ∥𝑧1∥𝑍 + (𝑛 − 1)Δ𝑡∥𝜕𝑧1∥𝑍 +
(
𝑛−1∑︁
𝑖=2

Δ𝑡2(𝑛 − 1)
)1/2 (

𝑛−1∑︁
𝑖=2

Δ𝑡2(𝑛 − 1)∥𝜕𝜕𝑧𝑖∥2
𝑍

)1/2

.
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Since (𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2),

∥𝑧𝑛∥2
𝑍 ≤ 3

(
∥𝑧1∥2

𝑍 + (𝑛 − 1)2Δ𝑡2∥𝜕𝑧1∥2
𝑍 + (𝑛 − 1)3Δ𝑡3

𝑛−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
.

We also have 𝑇 ≥ 𝑇𝑛 = (𝑛 − 1)Δ𝑡, so

∥𝑧𝑛∥2 ≤ 3

(
∥𝑧1∥2 + 𝑇2∥𝜕𝑧1∥2 + 𝑇3

𝑛−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2

)
.

With 𝐶2 = 3 max{𝑇3, 1},

∥𝑧𝑛∥2
𝑍 ≤ 𝐶2

(
∥𝑧1∥2

𝑍 + ∥𝜕𝑧1∥2
𝑍 +

𝑛−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)
.

Taking the maximum over all 𝑛 proves Equation (3.9). Since (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), we also

have

∥𝑧𝑛∥2
𝑍 ≤ 1

2

(
∥𝑧𝑛∥2

𝑍 + ∥𝑧𝑛−1∥2
𝑍

)
≤ max

1≤ 𝑗≤𝑁
∥𝑧 𝑗 ∥2

𝑍 ,

so

max
2≤ 𝑗≤𝑁

∥𝑧 𝑗 ∥2
𝑍 ≤ max

1≤ 𝑗≤𝑁
∥𝑧 𝑗 ∥2

𝑍 .

By Lemma 3.3 part 1,

𝜕𝑧𝑛 = 𝜕𝑧1 + Δ𝑡

𝑛∑︁
𝑖=2

𝜕𝜕𝑧𝑖 .

Taking norms and using the triangle inequality yields

∥𝜕𝑧𝑛∥𝑍 ≤ ∥𝜕𝑧1∥𝑍 +
𝑛∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥𝑍 .



17

Using Cauchy-Schwarz on the sum term, we have

∥𝜕𝑧𝑛∥𝑍 ≤ ∥𝜕𝑧1∥𝑍 +
(
𝑛∑︁
𝑖=2

Δ𝑡

)1/2 (
𝑛∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

)1/2

.

Again using (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2),

∥𝜕𝑧𝑛∥2
𝑍 ≤ 2

(
∥𝜕𝑧1∥2

𝑍 +
(
𝑛∑︁
𝑖=2

Δ𝑡

) (
𝑛∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2
𝑍

))
Once again, since 𝑇 ≥ 𝑇𝑛, we have

∥𝜕𝑧𝑛∥2 ≤ 2

(
∥𝜕𝑧1∥2 + 𝑇

𝑛∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝑧𝑖∥2

)
.

Finally letting 𝐶3 = 2 max{𝑇, 1} and taking the maximum over all 𝑛 yields Equation (3.11).

The last two results can be easily shown since

𝜕𝑧𝑛 = 𝜕−𝑧𝑛+1

and

∥𝜕𝑧𝑛∥2
𝑍 ≤ 1

2

(
∥𝜕𝑧𝑛∥2

𝑍 + ∥𝜕𝑧𝑛−1∥2
𝑍

)
≤ max

1≤ 𝑗≤𝑁−1
∥𝜕𝑧 𝑗 ∥2

𝑍 .

□

With Lemma 3.4 we can prove pointwise error bounds for the DDQ approach for

POD.
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Theorem 3.5. Let 𝑈 = {𝑢 𝑗 }𝑁
𝑗=1 be the snapshots, 𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1, and Π𝑋

𝑟 : 𝑋 → 𝑋 be

the orthogonal projection onto 𝑋𝑟 . Let 𝑠 be the number of positive POD eigenvalues for 𝐾2.

Then

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑋 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

)
. (3.14)

If 𝑌 is a Hilbert space with𝑈 ⊂ 𝑌 then

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

∥𝜑𝑘 ∥2
𝑌

)
, (3.15)

and in addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − 𝜋𝑟𝑢 𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

∥𝜑𝑘 − 𝜋𝑟𝜑𝑘 ∥2
𝑌

)
. (3.16)

where 𝐶 = 3 max{𝑇3, 1}

Proof. Using Lemma 3.4 with 𝑧 𝑗 = 𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 and 𝑍 = 𝑋 , we have

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑋 ≤ 𝐶2

(
∥𝑢1 − Π𝑋

𝑟 𝑢
1∥2
𝑋 + ∥𝜕𝑢1 − Π𝑋

𝑟 𝜕𝑢
1∥2
𝑋

+
𝑁−1∑︁
𝑗=2

Δ𝑡∥𝜕𝜕𝑢 𝑗 − Π𝑋
𝑟 𝜕𝜕𝑢

𝑗 ∥2
𝑋

)
.

Applying Lemma 3.2, we have

max
1≤ 𝑗≤𝑁

∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑋 ≤ 𝐶2

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

)
,

and renaming 𝐶 = 𝐶2 proves Equation 3.14. Follow the same process with 𝑧 𝑗 = 𝑢 𝑗 −

Π𝑋
𝑟 𝑢

𝑗 and 𝑍 = 𝑌 and with 𝑧 𝑗 = 𝑢 𝑗 − 𝜋𝑟𝑢 𝑗 and 𝑍 = 𝑌 to prove Equations 3.15 and 3.16

respectively. □

Corollary 3.6 corresponds to bounding a discrete time integral of the data error.
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Corollary 3.6. Let 𝑈 = {𝑢 𝑗 }𝑁
𝑗=1 be the snapshots, 𝑋𝑟 = span{𝜑𝑘 }𝑟𝑘=1, and Π𝑋

𝑟 : 𝑋 → 𝑋

be the orthogonal projection onto 𝑋𝑟 . Let 𝑠 be the number of positive POD eigenvalues for

𝐾2. Then
𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑋 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

)
. (3.17)

If 𝑌 is a Hilbert space with𝑈 ⊂ 𝑌 then

𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

∥𝜑𝑘 ∥2
𝑌

)
. (3.18)

If in addition if 𝜋𝑟 : 𝑌 → 𝑌 is a bounded linear projection onto 𝑋𝑟 then

𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − 𝜋𝑟𝑢 𝑗 ∥2
𝑌 ≤ 𝐶

(
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

∥𝜑𝑘 − 𝜋𝑟𝜑𝑘 ∥2
𝑌

)
. (3.19)

where 𝐶 = 6 max{𝑇4, 𝑇}.

Proof. The proof of this result is the same as the proof for Corollary 3.5 in [9] and is

omitted. □

Similar to the DQ approach, we have pointwise error formulas and no redundancy

in the data set.
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4. REDUCED ORDER MODEL ERROR ANALYSIS

In this section, we present the chosen PDE problem, the damped wave equation, and

the method used for approximating the solution. We also present the POD ROM for the

damped wave equation and derive energy and pointwise error bounds for the ROM.

4.1. FINITE ELEMENT METHOD FOR THE DAMPED WAVE EQUATION

The problem we choose to analyze with the new POD method is the 1-D damped

wave equation with zero Dirichlet boundary conditions,

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 + 𝐷𝑢𝑡 − 𝐺𝑢𝑡𝑥𝑥 = 0, in [0, 1] × [0, 𝑇]

𝑢(𝑥, 0) = 𝑢0 (4.1)

𝑢𝑡 (𝑥, 0) = 𝑢00,

where the constants 𝑐 > 0 and 𝐷,𝐺 ∈ [0,∞). The constant D is the coefficient of viscous

damping and G is the coefficient of Kelvin-Voigt damping. For applications of the Kelvin-

Voigt damping see, e.g. [5]. It is important to note that in our analysis and computations 𝐷

and 𝐺 are never both zero.

The structure of the separation of variables solution demonstrates key differences

between both types of damping. Denote 𝜆𝑘 = 𝜋𝑘 . The general series solution when 𝐷 > 0

and 𝐺 = 0 is

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑒−
𝐷
2 𝑡

(
𝑎𝑘𝑒

𝜉𝑘 𝑡 + 𝑏𝑘𝑒−𝜉𝑘 𝑡
)

sin(𝜆𝑘𝑥), 𝜉𝑘 :=
√︂
𝐷2

4
− 𝑐2𝜆2

𝑘
, (4.2)

and when 𝐷 = 0 and 𝐺 > 0 the solution is

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑒−
𝐺𝜆2

𝑘
2 𝑡

(
𝑐𝑘𝑒

𝜁𝑘 𝑡 + 𝑑𝑘𝑒−𝜁𝑘 𝑡
)

sin(𝜆𝑘𝑥), 𝜁𝑘 :=

√︄
𝐺2𝜆4

𝑘

4
− 𝑐2𝜆2

𝑘
, (4.3)
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for some constants 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘 ∈ C depending on the initial conditions.

From the first solution with only viscous damping, we can see that as long as

𝐷 < 2𝑐𝜋, all of the terms are oscillatory and each oscillatory mode decays at the same rate

of𝐷/2. The second solution shows that the Kelvin-Voigt damping terms are only oscillatory

when 𝑘 < 2𝑐
𝜋𝐺

. When 𝑘 is larger, the mode is overdamped and does not oscillate. We also

see that the rate of decay for each mode increases with 𝑘2 so only a few of the oscillatory

modes contribute meaningfully to the solution in the long term. These differences are

explored later in Section 5 when comparing POD for the two different types of damping.

The initial conditions used throughout this work are

𝑢0 =

(
𝑒𝑥 + 𝑥2 − cos(𝜋𝑥)

)
sin(𝜋𝑥) +

(
𝑒𝑥

2 + 𝑥2 − 𝑥
)

sin(5𝜋𝑥) (4.4)

and

𝑢00 = 0. (4.5)

This initial condition contains complexity that would lead to more high frequency oscillatory

modes in the series solution. This means the POD ROM will need more basis functions to

be able to represent those oscillations. This leads to more interesting analysis for the errors

and in the plots we present in later sections.

4.1.1. Finite Element Discretization Scheme. The weak form of this problem is

to find 𝑢 ∈ 𝐻1
0 (0, 1) satisfying

(𝑢𝑡𝑡 , 𝑣)𝐿2 + 𝑐2(𝑢𝑥 , 𝑣𝑥)𝐿2 + 𝐷 (𝑢𝑡 , 𝑣)𝐿2 + 𝐺 (𝑢𝑡𝑥 , 𝑣𝑥)𝐿2 = 0 (4.6)

for all 𝑣 ∈ 𝐻1
0 (0, 1). We use finite elements to approximate the solution 𝑢ℎ ∈ 𝑉 ℎ with the

following weak form

(𝑢ℎ𝑡𝑡 , 𝑣ℎ)𝐿2 + 𝑐2(𝑢ℎ𝑥 , 𝑣ℎ𝑥)𝐿2 + 𝐷 (𝑢ℎ𝑡 , 𝑣ℎ)𝐿2 + 𝐺 (𝑢ℎ𝑡𝑥 , 𝑣ℎ𝑥)𝐿2 = 0 (4.7)
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for 𝑣ℎ ∈ 𝑉 ℎ ⊂ 𝐻1
0 (0, 1), where 𝑉 ℎ is the finite element function space. We use linear FE

basis functions so 𝑉 ℎ = span{𝜙𝑖}𝑀𝑖=1 and the time discretization scheme we use is

(𝜕𝜕𝑢𝑛ℎ, 𝑣)𝐿2 + 𝑐2(𝑢̂𝑛ℎ𝑥 , 𝑣ℎ𝑥)𝐿2 + 𝐷 (𝜕𝑢𝑛ℎ, 𝑣ℎ)𝐿2 + 𝐺 (𝜕𝑢𝑛ℎ𝑥 , 𝑣ℎ𝑥)𝐿2 = 0 (4.8)

for 𝑛 = 2, . . . , 𝑁 − 1, where

𝑢𝑛 =
𝑢𝑛 + 𝑢𝑛−1

2
(4.9)

and

𝑢̂𝑛 =
𝑢𝑛+1 + 2𝑢𝑛 + 𝑢𝑛−1

4
(4.10)

are discrete time averages of the solution. In the undamped case, the centered time average

keeps 2nd order accuracy in the iteration seen in [8]. We use the second order centered

difference,

𝜕𝑢𝑛 =
𝑢𝑛+1 − 𝑢𝑛−1

2Δ𝑡
, (4.11)

for the damping terms. We do not prove that this discrete scheme is second order accurate

for the damped case; we leave this to be considered elsewhere.

4.1.2. Finite Element Approximations to the Initial Condition. In this section,

we detail our method of obtaining a 2nd order in time accurate set of initial conditions. For

our time discretization method, we need 𝑢1
ℎ

and 𝑢2
ℎ

to be given. Obtaining 𝑢1
ℎ

is simple:

we use the 𝐿2 projection of 𝑢0. Getting a 2nd order accurate 𝑢2
ℎ

is the difficult part. The

method we use is briefly described in [8] and uses the wave equation itself along with a

Taylor expansion of 𝑢. For completeness, we provide the details of obtaining the two ICs.

We use the 𝐿2 projection 𝑃ℎ onto the FE space 𝑉 ℎ for placing the initial conditions

into the FE basis. Specifically, for 𝑢 ∈ 𝐿2(0, 1), the projection 𝑃ℎ𝑢∈𝑉 ℎ is found by solving

Equation (4.12):

(𝑃ℎ𝑢, 𝜙𝑖)𝐿2 = (𝑢, 𝜙𝑖)𝐿2 ∀ 𝑖 = 1, . . . , 𝑀. (4.12)
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We use 𝑢0 to get 𝑢1
ℎ
= 𝑃ℎ𝑢0. We obtain 𝑢2

ℎ
by first finding a 2nd order accurate approximation

𝑢2
2 to 𝑢(𝑥,Δ𝑡) = 𝑢2. We then use the 𝐿2 projection onto the FE basis to get 𝑢2

ℎ
:= 𝑃ℎ𝑢2

2 as

follows. First, consider this rearranged weak form of the problem in Equation (4.6).

(𝑢𝑡𝑡 , 𝑣)𝐿2 = −𝑐2(𝑢𝑥 , 𝑣𝑥)𝐿2 − 𝐷 (𝑢𝑡 , 𝑣)𝐿2 − 𝐺 (𝑢𝑡𝑥 , 𝑣𝑥)𝐿2 . (4.13)

If we then perform a Taylor expansion in time of 𝑢(𝑥, 𝑡), we have

𝑢2 = 𝑢(𝑥,Δ𝑡) = 𝑢(𝑥, 0) + Δ𝑡 𝑢𝑡 (𝑥, 0) +
Δ𝑡2

2
𝑢𝑡𝑡 (𝑥, 0) +𝑂 (Δ𝑡3). (4.14)

We can drop the 𝑂 (Δ𝑡3) terms and retain 2nd order accuracy in time to get

𝑢2 ≈ 𝑢2
2 := 𝑢(𝑥, 0) + Δ𝑡𝑢𝑡 (𝑥, 0) +

Δ𝑡2

2
𝑢𝑡𝑡 (𝑥, 0). (4.15)

Since 𝑢2
ℎ

:= 𝑃ℎ𝑢2
2, use Equations (4.12) and (4.13) with 𝑢 = 𝑢2

2 to obtain

(𝑢2
ℎ, 𝜙𝑖)𝐿2 = (𝑢2

2, 𝜙𝑖)𝐿2

= (𝑢0, 𝜙𝑖)𝐿2 + Δ𝑡 (𝑢00, 𝜙𝑖)𝐿2 (4.16)

− Δ𝑡2

2

(
𝑐2(𝑢0𝑥 , 𝜙𝑖𝑥)𝐿2 + 𝐺 (𝑢00𝑥 , 𝜙𝑖𝑥)𝐿2 + 𝐷 (𝑢00, 𝜙𝑖)𝐿2

)
for all 𝑖 = 1, . . . , 𝑀 . Solving this system yields the second initial condition. We enforce the

zero Dirichlet boundary conditions for each case. With this method we obtain a 2nd order

accurate set of initial conditions.
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4.2. INTRODUCING THE ROM

For the error analysis, we analyze a more general PDE problem, namely the damped

wave equation in multiple spacial dimensions. Let Ω = R𝑑 , for 𝑑 ≥ 1, be an open bounded

domain with Lipschitz continuous boundary and define 𝑉 = 𝐻1
0 (Ω). The space V is a

Hilbert space with inner product (𝑔, ℎ)𝐻1
0
= (∇𝑔,∇ℎ)𝐿2 .

We analyze the following weak form of the wave equation with zero Dirichlet

boundary conditions:

(𝑢𝑡𝑡 , 𝑣)𝐿2 + 𝑐2(∇𝑢,∇𝑣)𝐿2 + 𝐷 (𝑢𝑡 , 𝑣)𝐿2 + 𝐺 (∇𝑢𝑡 ,∇𝑣)𝐿2 = 0, ∀𝑣 ∈ 𝑉,

𝑢(𝑥, 0) = 𝑢0, (4.17)

𝑢𝑡 (𝑥, 0) = 𝑢00.

We use the same time discretization scheme seen in Equation 4.8 and project onto a standard

FE space 𝑉 ℎ ⊂ 𝑉 :

(𝜕𝜕𝑢𝑛ℎ, 𝑣ℎ)𝐿2 + 𝑐2(∇𝑢̂𝑛ℎ,∇𝑣ℎ)𝐿2 + 𝐷 (𝜕𝑢𝑛ℎ, 𝑣ℎ)𝐿2 + 𝐺 (𝜕∇𝑢𝑛ℎ,∇𝑣ℎ)𝐿2 = 0, ∀𝑣ℎ ∈ 𝑉 ℎ,

(4.18)

where 𝑢1
ℎ
, 𝑢2

ℎ
∈ 𝑉 ℎ are given. Next we look at the ROM of Equation 4.18 using the data

set {𝑢𝑛}𝑁
𝑛=1 to form the POD basis, {𝜑 𝑗 }𝑟𝑗=1 ⊂ 𝑉 ℎ, with either the standard POD method or

the new DDQ approach. In this work we take the POD space to be 𝐿2(Ω) in all cases. Let

𝑉 ℎ𝑟 = span{𝜑 𝑗 }𝑟𝑗=1. Then the POD ROM is

(𝜕𝜕𝑢𝑛𝑟 , 𝑣𝑟)𝐿2 + 𝑐2(∇𝑢̂𝑛𝑟 ,∇𝑣𝑟)𝐿2 + 𝐷 (𝜕𝑢𝑛𝑟 , 𝑣𝑟)𝐿2 + 𝐺 (𝜕∇𝑢𝑛𝑟 ,∇𝑣𝑟)𝐿2 = 0 ∀𝑣𝑟 ∈ 𝑉 ℎ𝑟 ,

𝑢1
𝑟 = Π𝑋

𝑟 𝑢
1
ℎ, (4.19)

𝑢2
𝑟 = Π𝑋

𝑟 𝑢
2
ℎ.
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Lemma 4.1. Let Δ𝑡 > 0, 𝑍 be an inner product space, and {𝑧𝑛}𝑁
𝑛=1 ⊂ 𝑍 . Then for

𝑛 = 2, . . . , 𝑁 − 1, we have

(𝜕𝜕𝑧𝑛, 𝜕𝑧𝑛)𝑍 = 𝜕

(
1
2
∥𝜕−𝑧𝑛∥2

𝑍

)
(4.20)

and

( 𝑧̂𝑛, 𝜕𝑧𝑛)𝑍 = 𝜕

(
1
2
∥𝑧𝑛∥2

𝑍

)
(4.21)

Proof. We prove only Equation (4.20) as the proof of the Equation (4.21) is very similar.

Notice that

(𝜕𝜕𝑧𝑛, 𝜕𝑧𝑛)𝑍 =
1

2Δ𝑡

(
𝑧𝑛+1 − 2𝑧𝑛 + 𝑧𝑛−1

Δ𝑡
,
𝑧𝑛+1 − 𝑧𝑛−1

Δ𝑡

)
𝑍

=
1

2Δ𝑡

(
𝜕−𝑧𝑛+1 − 𝜕−𝑧𝑛, 𝜕−𝑧𝑛+1 + 𝜕−𝑧𝑛

)
𝑍

=
1

2Δ𝑡

(
∥𝜕−𝑧𝑛+1∥2

𝑍 − ∥𝜕−𝑧𝑛∥2
𝑍

)
= 𝜕

(
1
2
∥𝜕−𝑧𝑛∥2

𝑍

)
.

Taking the extreme left hand and right hand sides yields the result. □

It is useful to define an energy quantity for this system. We do so below, and we

present an equality governing the discrete time rate of change for the energy.
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Proposition 4.2. For the discrete FE equation (4.18) and POD ROM equation (4.19), if the

energy is defined by

𝐸 (𝑢𝑛ℎ) =
1
2
∥𝜕−𝑢𝑛ℎ∥

2
𝐿2 +

1
2
𝑐2∥∇𝑢𝑛ℎ∥

2
𝐿2 (4.22)

and

𝐸 (𝑢𝑛𝑟 ) =
1
2
∥𝜕−𝑢𝑛𝑟 ∥2

𝐿2 +
1
2
𝑐2∥∇𝑢𝑛𝑟 ∥2

𝐿2 , (4.23)

then they satisfy

𝜕𝐸 (𝑢𝑛ℎ) = −𝐷∥𝜕𝑢𝑛ℎ∥
2
𝐿2 − 𝐺∥𝜕∇𝑢𝑛ℎ∥

2
𝐿2 (4.24)

and

𝜕𝐸 (𝑢𝑛𝑟 ) = −𝐷∥𝜕𝑢𝑛𝑟 ∥2
𝐿2 − 𝐺∥𝜕∇𝑢𝑛𝑟 ∥2

𝐿2 , (4.25)

respectively.

The proof follows directly from Lemma 4.1 and letting 𝑣ℎ = 𝜕𝑢𝑛ℎ and 𝑣𝑟 = 𝜕𝑢𝑛𝑟 . One

can easily see that if both damping coefficients are zero then the energy is constant, which

we expect from an undamped wave equation.

4.3. PRELIMINARY ERROR ANALYSIS

To analyze the error, we split it in the normal way, as

𝑒𝑛 = 𝑢𝑛ℎ − 𝑢
𝑛
𝑟 = (𝑢𝑛ℎ − 𝑅𝑟𝑢

𝑛
ℎ) − (𝑢𝑛𝑟 − 𝑅𝑟𝑢𝑛ℎ) = 𝜂

𝑛 − 𝜙𝑛𝑟 (4.26)

where 𝜂𝑛 is the POD projection error, 𝜙𝑛𝑟 is the discretization error, and 𝑅𝑟 : 𝑉 ℎ → 𝑉 ℎ𝑟 is

the Ritz projection defined below

(∇(𝑤 − 𝑅𝑟𝑤),∇𝑣𝑟)𝐿2 = 0 (4.27)
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for all 𝑣𝑟 ∈ 𝑉 ℎ𝑟 and any 𝑤 ∈ 𝑉 ℎ. Subtracting Equation (4.19) from Equation (4.18) and

applying Equation (4.26) yields

(𝜕𝜕𝜙𝑛𝑟 , 𝑣𝑟)𝐿2 + 𝑐2(∇𝜙𝑛𝑟 ,∇𝑣𝑟)𝐿2 + 𝐷 (𝜕𝜙𝑛𝑟 , 𝑣𝑟)𝐿2 + 𝐺 (𝜕∇𝜙𝑛𝑟 ,∇𝑣𝑟)𝐿2

= (𝜕𝜕𝜂𝑛, 𝑣𝑟)𝐿2 + 𝑐2(∇𝜂𝑛,∇𝑣𝑟)𝐿2 + 𝐷 (𝜕𝜂𝑛, 𝑣𝑟)𝐿2 + 𝐺 (𝜕∇𝜂𝑛,∇𝑣𝑟)𝐿2 ∀𝑣𝑟 ∈ 𝑉 ℎ𝑟 .

(4.28)

Let 𝐶𝑝 > 0 be the constant so that Poincaré inequality 𝐶𝑝 ∥𝜙∥2
𝐿2 ≤ ∥𝜙∥2

𝐻1
0

holds for all

𝜙 ∈ 𝐻1
0 (Ω). Lemma 4.3 proves a bound for the discretization error in terms of the POD

data error. It is important for proving the pointwise and energy error bounds in Section 4.4

Lemma 4.3. Let 𝜙𝑛𝑟 be the discretization error and 𝜂𝑛 be the POD data error as defined in

Equation (4.26) and let Equation (4.28) define the relationship between 𝜙𝑛𝑟 and 𝜂𝑛. Then

max
2≤ 𝑗≤𝑁

𝐸 (𝜙 𝑗𝑟 ) ≤ 𝐸 (𝜙2
𝑟 ) +

1
𝐷 + 2𝐶𝑝𝐺

𝑁−1∑︁
𝑛=2

Δ𝑡∥𝜕𝜕𝜂𝑛∥2
𝐿2 + 𝐷

𝑁−1∑︁
𝑛=2

Δ𝑡∥𝜕𝜂𝑛∥2
𝐿2 (4.29)

Proof. To prove this, first notice that Equation (4.28) with 𝑣𝑟 = 𝜕𝜙
𝑛

𝑟 can be rewritten as

1
2
𝜕𝐸 (𝜙𝑛𝑟 ) + 𝐷∥𝜕𝜙𝑛𝑟 ∥2

𝐿2 + 𝐺∥𝜕∇𝜙𝑛𝑟 ∥2
𝐿2

= (𝜕𝜕𝜂𝑛, 𝜕𝜙𝑛𝑟 )𝐿2 + 𝑐2(∇𝜂𝑛, 𝜕∇𝜙𝑛𝑟 )𝐿2 + 𝐷 (𝜕𝜂𝑛, 𝜕𝜙𝑛𝑟 )𝐿2 + 𝐺 (𝜕∇𝜂𝑛, 𝜕∇𝜙𝑛𝑟 )𝐿2 .

Then the Ritz projection eliminates the 𝜂𝑛 gradient terms from the RHS yielding

𝜕𝐸 (𝜙𝑛𝑟 ) ≤ 2(𝜕𝜕𝜂𝑛, 𝜕𝜙𝑛𝑟 )𝐿2 + 2𝐷 (𝜕𝜂𝑛, 𝜕𝜙𝑛𝑟 )𝐿2 − 2𝐷∥𝜕𝜙𝑛𝑟 ∥2
𝐿2 − 2𝐺∥𝜕∇𝜙𝑛𝑟 ∥2

𝐿2 .
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We then use Cauchy-Schwartz and Young’s inequality twice with constants 𝛿1 and 𝛿2 to

obtain

𝜕𝐸 (𝜙𝑛𝑟 ) ≤
1
𝛿1

∥𝜕𝜕𝜂𝑛∥2
𝐿2 + 𝛿1∥𝜕𝜙

𝑛

𝑟 ∥2
𝐿2 +

𝐷

𝛿2
∥𝜕𝜂𝑛∥2

𝐿2 + 𝛿2𝐷∥𝜕𝜙𝑛𝑟 ∥2
𝐿2

− 2𝐷∥𝜕𝜙𝑛𝑟 ∥2
𝐿2 − 2𝐺∥𝜕∇𝜙𝑛𝑟 ∥2

𝐿2 .

Using the fact that 𝐶𝑝 ∥𝜙𝑛𝑟 ∥2
𝐿2 ≤ ∥∇𝜙𝑛𝑟 ∥2

𝐿2 , we have

𝜕𝐸 (𝜙𝑛𝑟 ) ≤
1
𝛿1

∥𝜕𝜕𝜂𝑛∥2
𝐿2 +

𝐷

𝛿2
∥𝜕𝜂𝑛∥2

𝐿2 + (𝛿1 + 𝛿2𝐷 − 2𝐷 − 2𝐶𝑝𝐺)∥𝜕𝜙
𝑛

𝑟 ∥2
𝐿2 .

Setting 𝛿1 = 𝐷 + 2𝐶𝑝𝐺 and 𝛿2 = 1 yields

𝜕𝐸 (𝜙𝑛𝑟 ) ≤
1

𝐷 + 2𝐶𝑝𝐺
∥𝜕𝜕𝜂𝑛∥2

𝐿2 + 𝐷∥𝜕𝜂𝑛∥2
𝐿2 .

Finally summing from 𝑛 = 2 to 𝑛 = 𝑗 − 1 yields

𝐸 (𝜙 𝑗𝑟 ) ≤ 𝐸 (𝜙2
𝑟 ) +

1
𝐷 + 2𝐶𝑝𝐺

𝑗−1∑︁
𝑛=2

Δ𝑡∥𝜕𝜕𝜂𝑛∥2
𝐿2 + 𝐷

𝑗−1∑︁
𝑛=2

Δ𝑡∥𝜕𝜂𝑛∥2
𝐿2 .

Take the maximum over all 𝑗 to prove the result. □

Remark 4.4. It is important to note that in Lemma 4.3 it is possible for one of 𝐷 and 𝐺 to

be zero but not both. The structure of Theorems 4.5 and 4.6 does not change if one is zero,

only the constant 𝐶 changes in both.

4.4. ROM POINTWISE AND ENERGY ERROR BOUNDS

In this section, we prove new pointwise and energy error bounds for the POD-ROM.

In the following theorems, the value of𝐶 does not depend on any discretization parameters.

It does, however, depend on the size of the damping parameters. We will explore the value

𝐶 computationally in later sections.
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Theorem 4.5. Using the 𝐿2(Ω) POD basis, the maximum energy of the error in the POD-

ROM is bounded by

max
2≤ 𝑗≤𝑁

𝐸 (𝑒 𝑗 ) ≤ 𝐶
(
𝐸 (𝜙2

𝑟 ) +
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

(
∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2

𝐿2 + ∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2
𝐻1

0

))
. (4.30)

Proof. Using the energy definition in Proposition 4.2,

𝐸 (𝑒𝑛) = 1
2

(
∥𝜕−𝑒𝑛∥2

𝐿2 + 𝑐2∥𝑒𝑛∥2
𝐻1

0

)
≤ ∥𝜕−𝜂𝑛∥2

𝐿2 + 𝑐2∥𝜂𝑛∥2
𝐻1

0
+ ∥𝜕−𝜙𝑛𝑟 ∥2

𝐿2 + 𝑐2∥𝜙𝑛𝑟 ∥2
𝐻1

0
.

By Lemma 4.3,

𝐸 (𝑒𝑛) ≤ 𝐸 (𝜙2
𝑟 ) + ∥𝜕−𝜂𝑛∥2

𝐿2 + 𝑐2∥𝜂𝑛∥2
𝐻1

0
+ 1
𝐷 + 2𝐶𝑝𝐺

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2 + 𝐷

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜂𝑖∥2
𝐿2

≤ 𝐸 (𝜙2
𝑟 ) + ∥𝜕−𝜂𝑛∥2

𝐿2 + 𝑐2∥𝜂𝑛∥2
𝐻1

0
+ 1
𝐷 + 2𝐶𝑝𝐺

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2 + 𝑇𝐷max

𝑖
∥𝜕𝜂𝑖∥2

𝐿2 .

Next, apply the results of Lemma 3.4 to yield

max
𝑛
𝐸 (𝑒𝑛) ≤ 𝐸 (𝜙2

𝑟 ) + 𝐶3

(
∥𝜕𝜂1∥2

𝐿2 +
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2

)
+ 𝑐2𝐶2

(
∥𝜂1∥2

𝐻1
0
+ ∥𝜕𝜂1∥2

𝐻1
0
+
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐻1

0

)
+ 1
𝐷 + 2𝐶𝑝𝐺

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2 + 𝑇𝐷𝐶3

(
∥𝜕𝜂1∥2

𝐿2 +
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2

)
.

Adding in positive terms and combining like terms yields

max
𝑛
𝐸 (𝑒𝑛) ≤

(
𝐶3 + 𝐷𝑇𝐶3 +

1
𝐷 + 2𝐶𝑝𝐺

) (
∥𝜂1∥2

𝐿2 + ∥𝜕𝜂1∥2
𝐿2 +

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2

)
+ 𝑐2𝐶2

(
∥𝜂1∥2

𝐻1
0
+ ∥𝜕𝜂1∥2

𝐻1
0
+
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐻1

0

)
+ 𝐸 (𝜙2

𝑟 ).
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Finally applying Lemma 3.2, we have that for some constant 𝐶

max
𝑛
𝐸 (𝑒𝑛) ≤ 𝐶

(
𝐸 (𝜙2

𝑟 ) +
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

(
∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2

𝐿2 + ∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2
𝐻1

0

))
.

Thus Equation (4.30) is proven. □

Theorem 4.6. Using the 𝐿2(Ω) POD basis, the maximum pointwise error for the POD-ROM

is bounded by

max
1≤ 𝑗≤𝑁

∥𝑒 𝑗 ∥2
𝐿2 ≤ 𝐶

(
∥𝜙1

𝑟 ∥2
𝐿2 + 𝐸 (𝜙2

𝑟 ) +
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2
𝐿2

)
(4.31)

Proof. By Lemma 2.3,

max
𝑛

∥𝜙𝑛∥2
𝐿2 ≤ 𝐶1

(
∥𝜙1∥2

𝐿2 +
𝑁∑︁
𝑘=2

Δ𝑡∥𝜕−𝜙𝑘𝑟 ∥2
𝐿2

)
≤ 𝐶1

(
∥𝜙1∥2

𝐿2 + 𝑇 max
𝑘

∥𝜕−𝜙𝑘𝑟 ∥2
𝐿2

)
.

And by Lemma 4.3,

max
𝑛

∥𝜙𝑛∥2
𝐿2 ≤ 𝐶1

(
∥𝜙1

𝑟 ∥2
𝐿2 + 𝑇

(
∥𝜕−𝜙2

𝑟 ∥2
𝐿2 + 𝑐2∥𝜙2

𝑟 ∥2
𝐻1

0

)
+ 𝑇

𝐷 + 2𝐶𝑝𝐺

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2 + 𝑇𝐷

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜂𝑖∥2
𝐿2

)
.

Using Lemma 3.4, we have

max
𝑛

∥𝜙𝑛∥2
𝐿2 ≤ 𝐶1

(
∥𝜙1

𝑟 ∥2
𝐿2 + 𝑇

(
∥𝜕−𝜙2

𝑟 ∥2
𝐿2 + 𝑐2∥𝜙2

𝑟 ∥2
𝐻1

0

)
+ 𝑇

𝐷 + 2𝐶𝑝𝐺

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2 + 𝑇2𝐷𝐶3

(
∥𝜕𝜂1∥2

𝐿2 +
𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2

))
.
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Since

∥𝑒𝑛∥2
𝐿2 ≤ 2∥𝜂𝑛∥2

𝐿2 + 2∥𝜙𝑛𝑟 ∥2
𝐿2 ,

we have that

max
𝑛

∥𝑒𝑛∥2
𝐿2 ≤ 2

(
𝐶2 + 𝑇2𝐷𝐶1𝐶3 +

𝑇𝐶1
𝐷 + 2𝐶𝑝𝐺

) (
∥𝜂1∥2

𝐿2 + ∥𝜕𝜂1∥2
𝐿2 +

𝑁−1∑︁
𝑖=2

Δ𝑡∥𝜕𝜕𝜂𝑖∥2
𝐿2

)
+ 2𝐶1∥𝜙1

𝑟 ∥2
𝐿2 + 2𝑇𝐶1𝐸 (𝜙2

𝑟 ).

Applying Lemma 3.2, we have that for some constant 𝐶

max
1≤ 𝑗≤𝑁

∥𝑒 𝑗 ∥2
𝐿2 ≤ 𝐶

(
∥𝜙1

𝑟 ∥2
𝐿2 + 𝐸 (𝜙2

𝑟 ) +
𝑠∑︁

𝑘=𝑟+1
𝜆

DDQ
𝑘

∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2
𝐿2

)
.

□
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5. COMPUTATIONAL RESULTS

In this section, we present numerous computational results. Section 5.1 covers

results exploring the singular values for the Standard POD method and the DDQ approach.

We also verify the data error formulas for both methods. In Section 5.2.1, we explore

the bounds from Theorems 4.5 and 4.6, and compare the performance of the ROM when

using Standard POD and DDQ POD in Section 5.2.2. Finally, in Section 5.2.3, we perform

exploratory computations for the accuracy of the ROM when including only part of the

interval to collect the data.

We also present the differing behaviors of the two types of damping we considered

in the error analysis. In all computations only one damping constant is nonzero at a time.

In Sections 5.1 and 5.2.3, we choose one value of each damping parameter to show results

comparing the two. For the viscous damping, we choose 𝐷 = 0.1 as the test value and

for the Kelvin-Voigt damping, we choose 𝐺 = 0.001. At these values each damping has a

visible effect on the time evolution of the wave. The way they interact with both methods

of POD leads to different singular value decays and how many POD basis functions are

required for accurate approximation. In Section 5.2.1, we present results for the scaling

factor in Theorems 4.5 and 4.6 and in Section 5.2.2we explore the magnitude of the energy

and pointwise errors for the two methods for a range of damping values.

5.1. POD DATA COMPUTATIONS

Here, we present computational results verifying the POD data error formulas for

Standard POD and the DDQ POD method. In all examples and computations provided, we

use 𝑋 = 𝐿2(0, 1). We let 𝑇 = 10, Δ𝑡 = 1
800 , and choose 400 finite element nodes. We found

that changing the total number of finite element nodes did not have a large effect on the

performance of POD.
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To get the data {𝑢 𝑗 }, we compute the FE solution with the chosen initial condition.

For the standard POD computations we choose 𝛾 𝑗 = Δ𝑡 for all 𝑗 = 1, . . . , 𝑁 . To compute

the SVD of the POD operator, we use the method described in Section 2.2 of [10]. We

make small modifications to the scaling of the data due to the POD weights.

In Figure 5.1, we can see that the singular value decay when 𝐷 = 0.1 and 𝐺 = 0 is

very slow for both methods, but slightly slower for the DDQ POD. The magnitude of the

singular values is also larger for that method.
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Figure 5.1. POD singular values for 𝐷 = 0.1 and 𝐺 = 0

Figure 5.2 shows the contrasting behavior of the singular values when 𝐺 = 0.001

and 𝐷 = 0. Note that in 5.2, we only plot the first 75 singular values. This is due to them

leveling off at numerical round off errors at around 10−10. The Kelvin-Voigt damping term

has a much stronger effect on the information content than the viscous damping term.
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For both types of damping, we see the Standard POD method has a slightly faster

decay for the singular values.
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Figure 5.2. POD singular values when 𝐺 = 0.001 and 𝐷 = 0

Tables 5.1 and 5.2 show the POD data error formulas from Sections 2.2 and 3.1

being applied when𝐺 = 0.001 and 𝐷 = 0. The data errors are computed with respect to the

given norm. The singular value errors are computed with the right hand side in Equation

(2.4) and Lemmas 2.1 and 3.2. For example, the last two columns of Table 5.1 are computed

as

𝐻1
0 Actual Error =

𝑁∑︁
𝑗=1

Δ𝑡∥𝑢 𝑗 − Π𝑋
𝑟 𝑢

𝑗 ∥2
𝐻1

0
(5.1)

and

𝐻1
0 Error Formula =

𝑠∑︁
𝑘=𝑟+1

𝜆𝑘 ∥𝜑𝑘 ∥2
𝐻1

0
(5.2)

with 𝑌 = 𝐻1
0 in Lemma 2.1
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𝑟 value Equation Error Norm Actual Error Error Formula

10 (2.4) 𝑋 = 𝐿2(Ω) 5.18E-05 5.18E-05

(2.5) 𝑌 = 𝐻1
0 (Ω) 7.46E-02 7.46E-02

20 (2.4) 𝑋 = 𝐿2(Ω) 6.82E-08 6.82E-08

(2.5) 𝑌 = 𝐻1
0 (Ω) 4.72E-04 4.72E-04

40 (2.4) 𝑋 = 𝐿2(Ω) 1.14E-12 1.14E-12

(2.5) 𝑌 = 𝐻1
0 (Ω) 8.57E-08 8.57E-08

60 (2.4) 𝑋 = 𝐿2(Ω) 8.15E-18 8.15E-18

(2.5) 𝑌 = 𝐻1
0 (Ω) 2.10E-12 2.10E-12

Table 5.1. Actual error versus error formulas from Equation (2.4) and Lemma 2.1 for
standard POD with 𝑋 = 𝐿2(Ω).

The results in Tables 5.1 and 5.2 are accurate up to many decimal places verifying

the data error formulas. The results for 𝐷 = 0.1 and 𝐺 = 0 were similar, albeit much

larger for both methods of POD, and are not presented. The difference in magnitude of the

singular values between the two POD approaches is likely due to the magnitude of the norm

for the 2nd difference quotients. This was also seen in [16].
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𝑟 value Equation Error Norm Actual Error Error Formula

10 (3.4) 𝑋 = 𝐿2(Ω) 1.20E+02 1.20E+02

(3.5) 𝑌 = 𝐻1
0 (Ω) 3.11E+05 3.11E+05

20 (3.4) 𝑋 = 𝐿2(Ω) 3.17 3.17

(3.5) 𝑌 = 𝐻1
0 (Ω) 5.21E+04 5.21E+04

40 (3.4) 𝑋 = 𝐿2(Ω) 1.26E-03 1.26E-03

(3.5) 𝑌 = 𝐻1
0 (Ω) 2.36E+02 2.36E+02

60 (3.4) 𝑋 = 𝐿2(Ω) 5.06E-08 5.06E-08

(3.5) 𝑌 = 𝐻1
0 (Ω) 1.22E-02 1.22E-02

Table 5.2. Actual error versus error formulas from Lemma 3.2 for DDQ POD with
𝑋 = 𝐿2(Ω).

5.2. ROM COMPUTATIONS

We split this section into three parts. The first covers the ROM error bounds from

Section 4.4 and the second compares standard POD to DDQ POD for the ROM construction

by considering the maximum energy errors and 𝐿2 pointwise errors.

In the third, we keep the same testing interval in time of [0, 10], but we reduce

the training interval where we take the snapshots from to [0, 𝑇𝑡] where 𝑇𝑡 ≤ 10. We then

simulate the POD ROM over the entire test interval and compare the final time errors for

each method of POD. This tests the long term accuracy of the ROMs for simulating into the

future.
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5.2.1. DDQ POD ROM Error Bounds. First, we explore the actual size of the

constants in Theorems 4.5 and 4.6 using the DDQ POD method. We do this at various

values for each of the damping parameters and at different values of 𝑟. In each of these

tests, only one damping parameter is nonzero.

For Theorem 4.5, we calculate the scaling factor with

𝐶 =
max𝑛 𝐸 (𝑒𝑛)(

𝐸 (𝜙2
𝑟 ) +

∑𝑠
𝑘=𝑟+1 𝜆

DDQ
𝑘

(
∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2

𝐿2 + ∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2
𝐻1

0

)) (5.3)

The results are shown in Table 5.3. The wide range of damping values allows us to see a few

patterns emerge for each type. As we vary the viscous damping parameter, 𝐷, the scaling

factor is remarkably stable whereas the Kelvin-Voigt damping, 𝐺, exhibits similar behavior

but seems to have two different scales. For 𝐺 ≤ 0.01, the scaling factor is stable for each

𝑟 value. However, when 𝐺 ≥ 0.01 we start to see large changes in the scaling factor. This

may be due to the number of oscillatory modes decreasing to less than 32 when 𝐺 = 0.01

decreasing the magnitude of the bound.

D 𝑟 = 20 𝑟 = 40 G 𝑟 = 10 𝑟 = 20

0.00001 1.43-E-09 5.48E-10 0.00001 7.21E-08 4.95E-09

0.0001 1.43-E-09 5.46E-10 0.0001 1.35E-07 3.02E-08

0.001 1.38-E-09 5.32E-10 0.001 4.44E-07 8.25E-07

0.01 1.04-E-09 4.42E-10 0.01 5.12E-06 1.21E-03

0.1 7.66-E-10 6.53E-10 0.1 1.12E-03 5.30E-05

Table 5.3. Scaling factor for Theorem 4.5 at various damping values.



38

For Theorem 4.6, we calculate the scaling factor with

𝐶 =
max𝑛 ∥𝑒𝑛∥2

𝐿2(
∥𝜙1

𝑟 ∥2
𝐿2 + 𝐸 (𝜙2

𝑟 ) +
∑𝑠
𝑘=𝑟+1 𝜆

DDQ
𝑘

∥𝜑𝑘 − 𝑅𝑟𝜑𝑘 ∥2
𝐿2

) . (5.4)

D 𝑟 = 20 𝑟 = 40 G 𝑟 = 10 𝑟 = 20

0.00001 4.94E-06 2.75E-06 0.00001 5.53E-06 2.09E-03

0.0001 4.92E-06 2.74E-06 0.0001 5.19E-07 3.20E-03

0.001 4.73E-06 2.65E-06 0.001 1.09E-06 1.09E-01

0.01 3.15E-06 1.90E-06 0.01 1.49E-05 3.82E-01

0.1 1.79E-07 3.36E-07 0.1 1.68E-05 2.96E-02

Table 5.4. Scaling factor for Theorem 4.6 at various damping values.

For the pointwise 𝐿2 error, the scaling factor is once again very stable for the viscous

damping. The Kelvin-Voigt damping shows better stability within two or three magnitudes

compared to the variability for the energy bounds.

5.2.2. Standard POD ROM versus DDQ POD ROM. Next, we compare the

errors of the Standard POD ROM to the DDQ POD ROM and show graphs of the solution

throughout the time interval. We once again set one damping parameter to be nonzero at a

time. For the viscous damping, we analyze the errors at 𝑟 = 20 in Tables 5.5 and 5.6. This

value gave good results for both POD methods.

The viscous damping showed similar behavior to the scaling factors. Both errors are

remarkably static as 𝐷 increases for standard POD. The DDQ POD had more interesting

behavior as it started off stable when 𝐷 was very small and got much more accurate as 𝐷

increased.
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D Standard POD DDQ POD

0.00001 2.87E-03 2.83E-01

0.0001 2.87E-03 2.82E-01

0.001 2.87E-03 2.72E-01

0.01 2.86E-03 1.89E-01

0.1 2.78E-03 7.36E-02

Table 5.5. Maximum energy errors for the standard POD ROM versus the DDQ POD ROM

D Standard POD DDQ POD

0.00001 7.19E-06 1.53E-02

0.0001 7.19E-06 1.52E-02

0.001 7.18E-06 1.44E-02

0.01 7.04E-06 8.68E-03

0.1 6.73E-06 2.23E-04

Table 5.6. Maximum 𝐿2 pointwise errors for the standard POD ROM versus the DDQ POD
ROM

For the Kelvin-Voigt damping parameter, we were able to use 𝑟 = 10 and get good

results in Tables 5.7 and 5.8. The behavior of both methods is much less consistent here.

standard POD gets much better for both errors as𝐺 gets larger. On the other hand, the DDQ

method increases in accuracy significantly slower than standard POD.

Interestingly the two POD methods seem to swap behavior between the damping

types. The standard method is very consistent as 𝐷 increases while it gets much more

accurate as 𝐺 increases. Comparatively, the DDQ approach improves when 𝐷 increases

and stays much more stable when 𝐺 increases.
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G Standard POD DDQ POD

0.00001 2.83E-01 1.29

0.0001 2.78E-01 4.62E-01

0.001 1.37E-01 1.37E-01

0.01 2.31E-03 2.10E-01

0.1 1.35E-05 6.16E-01

Table 5.7. Maximum energy errors for the standard POD ROM versus the DDQ POD ROM

G Standard POD DDQ POD

0.00001 3.43E-04 2.47E-02

0.0001 3.40E-04 7.02E-04

0.001 1.31E-04 1.33E-04

0.01 6.99E-07 1.17E-04

0.1 4.07E-11 2.27E-05

Table 5.8. Maximum 𝐿2 pointwise errors for the standard POD ROM versus the DDQ POD
ROM

It is clear however that for both dampings, the Standard POD ROM is equivalent

or better than the DDQ POD ROM in almost all cases. This pattern continued when more

basis functions or less basis functions were included.

The following graphs give a visual interpretation for some of these errors. The solid,

dashed, and dotted lines represent the FE solution at times 𝑡 = 0, 5, 10, respectively. For

the POD ROM solution we use ∗, +, and × for 𝑡 = 0, 5, 10, respectively. We use 𝑟 = 10

and 𝑟 = 20 when 𝐷 = 0.1 and 𝑟 = 5 and 𝑟 = 10 when 𝐺 = 0.001. Each set of of 𝑟 values

yields a good comparison between how effective the two methods of POD are. For each

type of damping, the smaller 𝑟 value yields a very inaccurate DDQ POD ROM whereas the
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Standard POD ROM is significantly better at that 𝑟 value. This can also be seen in the error

comparisons done in Tables 5.5 through 5.8. The standard POD ROM error is always better

than the DDQ POD ROM error for the viscous damping. The Kelvin-Voigt damping has

similar performance for the two methods when 𝑟 = 10. Visually, the two methods show no

difference when we go to the larger 𝑟 value for each damping type. This visual confirmation

of the performance of POD is interesting. We are able to represent the solution to the

problem where we use 400 FE nodes with only 20 POD modes for the viscous damping and

10 POD modes for the Kelvin-Voigt damping demonstrating the efficiency of POD.

The behavior of the solutions over time also provides information on why the Kelvin-

Voigt damping parameter yields better results at smaller 𝑟 values. The Kelvin-Voigt damping

causes high frequency oscillations to die out significantly faster making it easier to represent

the data over time. On the other hand, the viscous damping only causes the amplitude of

the oscillation to decrease over time.
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Figure 5.3. POD ROM Plots when 𝐷 = 0.1, 𝐺 = 0, and 𝑟 = 10
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Figure 5.4. POD ROM Plots when 𝐷 = 0.1, 𝐺 = 0, and 𝑟 = 20

In Figure 5.3, we can see that the Standard POD ROM has a few spots of inaccuracy:

specifically the peak on the right for 𝑡 = 0 and the trough on the left for 𝑡 = 5. This small

error in the ROM is eliminated visually in Figure 5.4 when 𝑟 is set to 20.
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Figure 5.5. POD ROM Plots when 𝐷 = 0, 𝐺 = 0.001, and 𝑟 = 5



43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-3

-2

-1

0

1

2

3

4

u

Standard POD-ROM

POD t=0

POD t=5

POD t=10

FE t=0

FE t=5

FE t=10

(a) Standard POD ROM versus FE solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-3

-2

-1

0

1

2

3

4

u

DDQ POD-ROM

POD t=0

POD t=5

POD t=10

FE t=0

FE t=5

FE t=10

(b) DDQ POD ROM versus FE solution

Figure 5.6. POD ROM Plots when 𝐷 = 0, 𝐺 = 0.001, and 𝑟 = 10

We see that for 𝑟 = 5, in Figure 5.5, the standard POD method is able to roughly

approximate the FE solution while the DDQ method would be unusable as an approximation.

Since the Kelvin-Voigt damping causes high frequency oscillations to decay much quicker

than low frequency ones, we see in Figure 5.5(a) that the final time solution is much more

accurate than the beginning time solution. This demonstrates the difficulty POD has with

many frequencies of oscillation. By 𝑡 = 10, many of the highest frequencies have died out

and POD is able to effectively represent the solution in time. Whereas, at 𝑡 = 0 when all

of the high frequency oscillation is still present, it struggles. It also appears that the DDQ

POD ROM benefits from increasing 𝑟 more at small values than the standard POD ROM

does. We see that for 𝐺, both errors are almost the same for both methods when 𝑟 = 10

in Figure 5.6. This is clearly not true when 𝑟 = 5. In other exploratory computations, this

same pattern was seen most often for the Kelvin-Voigt damping.

5.2.3. Reduced Training Interval Exploration. The final section of this thesis

focuses on reducing the amount of training data POD receives when simulating over the

same test interval. We do this by choosing the first 𝑚 snapshots up to time 𝑡 = 𝑇𝑡 where 𝑇𝑡

is the training time and 𝑚 varies depending on the length of the interval. This is of interest
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as one of the primary purposes of a ROM is to simulate into the future based on a short

period of high accuracy simulation. It is important to note that there are little theoretical

foundations and results for these explorations.

We chose four different size training intervals: [0, 10], [0, 5], [0, 1], and [0, .5].

This means we include 8001, 4001, 801, and 401 snapshots respectively for each simula-

tion. We keep the number of FE nodes at 400 and Δ𝑡 = 1
800 for these tests. The results for

each damping parameter are presented in Tables 5.9 and 5.10.

Training Interval Standard POD 𝐿2 Error DDQ POD 𝐿2 Error

[0, 10] 6.04E-07 8.59E-07

[0, 5] 6.03E-07 5.09E-06

[0, 1] 6.40E-07 1.07

[0, .5] 3.20E-01 2.47E-01

Table 5.9. Final Time 𝐿2 Error for Different Training Intervals when 𝐷 = 0.1 and 𝑟 = 20.

Training Interval Standard POD 𝐿2 Error DDQ POD 𝐿2 Error

[0, 10] 2.31E-12 1.04E-07

[0, 5] 5.15E-12 4.94E-07

[0, 1] 6.73E-11 1.25E-02

[0, .5] 5.99E-02 4.49

Table 5.10. Final Time 𝐿2 Error for Different Training Intervals when 𝐺 = 0.001 and
𝑟 = 20.
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Both sets of data seem to indicate that for Standard POD there is a point somewhere

between 1/10th and 1/20th of the main interval that the accuracy breaks down. The stability

of the final time error is interesting for both cases as we are not only taking a shorter time

interval we are also reducing the number of snapshots.

This is not the case for the DDQ POD. The breakdown seems to occur at some point

between 𝑇 = 1 and 𝑇 = 5. More computations would be needed to have a better idea of the

time which DDQ POD begins to struggle.
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6. CONCLUSIONS

In this thesis, we review the standard approach to POD and present an approach

using difference quotients for POD in [9]. The standard POD method takes a data set of

snapshots and forms the optimal POD basis from this data set. This approach, however,

does not have pointwise data approximation error bounds. The DQ method uses a single

snapshot and all of the difference quotients for the data and forms the POD basis off of this

new data set. The DQ approach does have pointwise data approximation error bounds and

is useful for analyzing 1st order PDE systems. We present these results as motivation for

the new method we develop.

The rest of this thesis presents a new method for POD and proves corresponding

data error bounds for it. The new method is inspired by the DQ method and builds off of

a 2nd difference quotient method seen in [2, 16]. We develop a non redundant data set

consisting of one snapshot and one difference quotient and then all of the 2nd difference

quotients. We then prove data approximation error bounds and error bounds for weighted

sums of the data.

We chose the damped wave equation with viscous damping and Kelvin-Voigt damp-

ing to analyze the ROM errors using DDQ POD. Error bounds for the energy of the error and

pointwise error bounds were developed when at least one damping parameter is nonzero.

For the computational section, we break it down between standard POD and DDQ

POD and the two types of damping. First we present results on the POD singular values and

data error formulas for both methods and both types of damping. It is important to note that

the viscous damping and Kelvin-Voigt damping act very differently from each other. We

then give data on the maximum energy and pointwise errors for each damping parameter

over a range of possible values. This demonstrates a clear difference between the standard

method and DDQ method for POD. The standard method performed better in almost every

test; however, we do not have the theoretical guarantees for this method. Preliminary



47

experimentation inspired by [16] where the difference quotient and 2nd difference quotients

were weighted by smaller values increased the accuracy of the DDQ method. More research

in this area is needed to confirm these preliminary findings.

Finally, we explore using POD to simulate into the future. We compare using smaller

test intervals to simulate across the entire interval of interest for each method of POD. The

standard method once again performed better in this direction but the DDQ method was not

far off seeming to require about two times the snapshots before beginning to fail. It appears

there is a cutoff interval where adding more data does not add any new information. It is

possible that incremental methods for POD, see [10], may be applied to systems like this to

test the required test interval size to simulate into the future.
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