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ABSTRACT 

Dig limits optimization is the process for classifying different materials (e.g., ore, 

stockpile material, and waste) into appropriately sized contiguous zones for open pit 

mining. The efficient determination of dig-limits is crucial for profitable and sustainable 

resource extraction in mining. Previous research has focused on defining dig-limits 

manually or using optimization approaches, but these methods are limited to only 

handling two material destinations (ore and waste). Thus, there is a need for operations 

research methods that consider the selectivity of mining equipment and can optimize dig-

limits for metal mining operations with more than two material destinations. 

Consequently, the objective of this thesis was to find the optimal block boundaries that 

allow for multiple material categories and their designated destinations while maximizing 

the profit of a bench section. The problem is modeled using a binary-integer linear 

programming (BILP) formulation that accounts for the equipment size. The study 

evaluated the performance of the proposed BILP dig-limits optimization method and 

obtained an optimal solution for a 20×20 bench section with a 3×3 dig limit size, 

achieving an objective function value of $332,000 and a gap tolerance of 0.0% within 

approximately 64.02 seconds. Findings indicated that larger problem sizes led to longer 

solution times due to increased constraints and decision variables, while higher minimum 

mining dimensions decreased objective function values. Incorporating rectangular 

minimum mining width dimensions in the model provided flexibility and control. The 

analysis emphasized the substantial impact of mining width variations on profitability 

and efficiency.  
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1. INTRODUCTION 

1.1. BACKGROUND 

Mine planning is the process that engineers use to specify how an ore deposit will 

be exploited during the course of a mining operation. It inherently depends on all 

information that planning engineers believe will eventually have an impact on the 

feasibility of the proposed mine and uses all geology-related data on the deposit as its 

starting point [1][2]. Making the most of a mineral resource requires an effective mining 

strategy. Mine planning engineers must use a combination of appropriate technical 

standards, rules, and procedures in the process of designing and scheduling a mine to 

ensure that all mining-related activities are accurately and effectively considered 

[1][3][4].  

The mineral industry has long recognized mine planning as a value-creating 

activity. Mine planning is now a common practice, and mining firms have established 

planning divisions as a result of advancements in optimization [5], hardware, and 

software technologies [6]. Mine planning is often classified into long-term, medium-term, 

and short-term planning based on the time horizon of the planning activities [7]. Long-

term mine planning covers anywhere from five years to the remaining life of the mine 

and depending on the circumstances, it might cover periods exceeding 30 years. A typical 

medium-term mine plan covers timeframes between one and five years. Medium-term 

planning provides more precise information that enables a more precise plan of the ore 

extraction from a specific part of the mine or information that enables the replacement of 

essential equipment or the acquisition of necessary machinery and equipment. Lastly, the 
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short-term production planning time period might be anything between one month and 

one year. One day to one month is the length of the sub-periods that make up this time 

frame [8]. The objectives and planning environments differ for short-, medium-, and  

long-term mine planning [7]. Figure 1.1 summarizes the mine planning process. 

 

In short-term mine planning, the goal is to ensure the material is accurately 

defined (ore type), measured (grades), mined, fed to the processing plant, or moved to 

another destination [9]. Successful mining occurs when different types of material are 

utilized to maximize profit by optimizing the previous steps [10]. An important part of 

this process is defining the most feasible and economic dig-limits on each bench in an 

open pit mine. Grade control, ore control, dig-limits optimization, or quality control are 

all terms used to describe this process.  

Figure 1.1 Mine Planning Process 
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The first step in this process starts with building a block model that consists of 

multiple attributes stored in tiny building components known as selective mining units. 

The smallest material volumes on which choices about the categorization of ore-waste are 

based are known as SMUs. Figure 1.2 shows an example of a block model. These SMUs 

are too tiny to be mined on their own. As a result, we gather these SMUs inside a polygon 

(clusters) known as dig-limits allowing heavy equipment (loaders) to extract them. Figure 

1.3 and Figure 1.4 illustrate the concept of dig-limits.  

 

 

Figure 1.2 Block Model 

 

 

Figure 1.3 Ore-Waste Classification According to Ore-Type and Destination 
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Figure 1.4 Ore-Waste Classification Based on Dig-Limits Optimization 

1.2. PROBLEM STATEMENT  

Dig-limits problem is one of the key elements to efficient resource extraction, and 

it is a crucial factor that might determine profitability. Therefore, mining companies must 

aim to define those limits properly to maximize profit and maintain sustainable 

development. The general problem is defining the most economic and feasible dig-limits 

on each bench in an open pit mine. This has been tackled by multiple authors in previous 

research [8]. However, the specific problem is that ore material can have multiple 

destinations (not just ore and waste). Typically, the ore is sent to the processing plant (or 

mill), but this is not always the case. In most open pit metal mines, valuable minerals in 

low-grade ores are recovered by heap leaching. Sometimes, sulfide and oxide ore are 

separated into different leach piles for heap leaching. At other times, some ore is crushed, 

and some is not crushed prior to heap leaching. All these can create multiple destinations 

for ore.  
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Traditionally, dig-limits are determined manually by geologists using blast holes’ 

samples (in combination with the block model based on exploration drilling) to indicate 

the grades. The result of this traditional approach is a map of the grade information such 

as cut-off grade and the type of rock. However, this method of determining the 

boundaries between different material types (ore, stockpile material, waste etc.) using 

hand contouring has downsides [11]. Even then, in situations where the block model sizes 

are smaller than the selective mining unit of the loading equipment, engineers and 

geologists must manually assign small number of isolated blocks to other dig-limits to 

ensure operational feasibility. This is a decision-making problem that can be solved with 

operations research methods while accounting for the selectivity of the mining 

equipment. Previous research has attempted to solve this problem with several 

optimization approaches including heuristics, simulated annealing, and mixed-integer 

linear programming. Mathematical programming approaches that guarantee optimality 

have been limited to only classifying ore and waste [8]. These approaches are not useful 

for most metal mining operations that have more than two material destinations.  

1.3. OBJECTIVES AND SCOPE 

The overall objective of the research is to find the optimal block boundaries that 

allow for multiple material categories and their designated destinations while maximizing 

the profit of a bench section. The problem is modeled using binary-integer linear 

programming (BILP) formulation that accounts for the equipment size.  
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The overall objective is achieved by developing a mathematical (BILP) model, 

which can be used as a decision-making tool for selecting the optimal dig-limits in open 

pit mines.  

While the entire dig-limits process includes several crucial steps, including 

sampling, and mining, the research focuses only on the classification and selectivity 

components of dig-limits.  

1.4. STRUCTURE OF THESIS  

This thesis has five chapters including this introduction. Chapter 2 covers the 

literature review, which is followed by the methodology & model formulation with a case 

study (Chapter 3), and then an evaluation of the proposed model with discussion (Chapter 

4). Chapter 5 is the conclusion that summarizes the thesis’s findings and 

recommendations for future work.  
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2. LITERATURE REVIEW  

 

The objectives of this section are to (i) review the current knowledge on dig-limits 

optimization, in general, as well as the different models and algorithms used to solve dig-

limits optimization problems; and (ii) identify the knowledge gaps related to dig-limits 

optimization that require further research. The relevant literature was found using 

keywords relating to the topic of this research, such as “dig-limits optimization,” “grade 

control,” and “selectivity of mining.” Google Scholar was the primary resource for 

finding review literature. Although most of the publications were journal articles, certain 

books were included to give background knowledge, particularly on the techniques and 

algorithms used to address such issues. When the desired content is background 

information, the author has no time constraint. For example, the nature of each algorithm 

is well known and has been studied in the past five or more decades. Therefore, this 

author did not place any time limit on how far back the literature review went. Regarding 

how to solve the dig-limit optimization problems, the author focused on best practices 

and models that result in optimal or near-optimal solutions. The methods described in this 

section are the ones that have been studied in the previous literature and show the most 

potential to solve the dig-limit problem optimally.   

2.1. DIG LIMITS OPTIMIZATION 

The “dig limits optimization” problem in open pit mines involves determining the 

optimal boundaries for excavating material from a given deposit, while achieving the 

desired objective(s), and respecting various constraints such as mining selectivity and ore 
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types (Figure 1.4). The objective function typically includes maximizing the net present 

value (NPV) of the mine [8] or minimizing the dilution [12]. Most of the constraints are 

operational such as the capacity and availability of equipment, and the required grade and 

tonnage of the ore [13].  

Past research has used several methods to formulate and solve the dig limit 

optimization problem, including linear [8], nonlinear programming [14][12], heuristic 

[15], and metaheuristic algorithms [11][16][17][18]. Table 2.1 summarizes some of the 

major attempts of previous researchers on solving this problem and shows the methods 

these researchers used.  

 

Table 2.1 A Summary of Algorithms Used to Solve Dig Limits 

Approach  Optimal  

Simulated annealing [16][17][18] Near-optimal 

Genetic algorithm [11] Near-optimal 

Hierarchical clustering [14] No 

Heuristic approach [15] No 

Local search algorithm [12] No 

Mixed-integer linear programming [8] Yes 

 

One could broadly classify the approaches to formulate and solve the dig limits 

optimization problem into mathematical programming approaches (mainly, mixed integer 

linear programming) and heuristic/meta-heuristic methods. In the subsequent sub-

sections of this section, the thesis presents discussions of the heuristic/meta-heuristic 
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methods and mixed integer linear programming approaches. While the literature contains 

some simple heuristic algorithms such as floating circle and local search [12], these 

algorithms are very limited in the scale of problems they can solve and do not guarantee 

an optimal solution. Hence, the discussion of heuristic and meta-heuristic methods in this 

thesis does not include a discussion of these methods. 

2.2. HEURISTIC AND METAHEURISTIC METHODS 

Heuristics and metaheuristics are powerful techniques used for optimization 

problems. Heuristics are problem-solving strategies that provide a solution in a 

reasonable amount of time but without guaranteeing optimality [19]. Metaheuristics, on 

the other hand, are higher level problem-solving strategies that guide the search for 

optimal solutions by iteratively refining the candidate solutions. They are especially 

useful for problems where the search space is large, the evaluation of the solution is time-

consuming, and the optimal solution is not known in advance [20]. These include 

methods such as simulated annealing, genetic algorithms, evolutionary algorithms, 

particle swarm optimization, and ant colony optimization [21]. Metaheuristic 

optimization methods have been used in many mining problems including production 

sequencing [22], exploration planning [23], and maintenance analysis of mining 

equipment [24]. Of the metaheuristic methods, simulated annealing and genetic 

algorithms are the ones that previous research has used to solve the dig-limits 

optimization problem. 

2.2.1. Simulated Annealing. Kirkpatrick et al. and Cerny separately proposed the 

term annealing in combinatorial optimization in the early 1980s. Originally, a parallel 
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between the physical annealing of solids and the issue of addressing huge combinatorial 

optimization problems prompted this notion [25]. A randomized search strategy is an 

example of simulated annealing. A randomized search technique, also known as a 

probabilistic search method, is an algorithm that considers randomized samples of 

candidate solutions in the set when searching the feasible set of an optimization problem 

[26]. While a problem solved with simulated annealing can be formulated with an 

objective function and contraints, in reality the constraints are incorporated into the 

objective function as penalties. The simulated annealing technique has proven its 

efficiency to solve a variety of optimization problems. The traveling salesman problem 

(TSP), which is known to be NP-hard, is one of the optimization problems that simulated 

annealing can efficiently solve [27]. Simulated annealing has been used in solving 

multiple engineering optimization problems [28]–[30]. It has also been applied in 

different mining applications, including image processing [31], production sequencing 

[32], mine phase design [33], and variography [34]. This shows its versatility and broad 

application. 

Figure 2.1 shows the general simulated annealing algorithm. The algorithm starts 

with a candidate solution and performs a random walk in the solution space. At each step, 

the algorithm decides whether to accept or reject the new solution based on the energy of 

the solution and a temperature parameter. The temperature parameter decreases over 

time, allowing the algorithm to escape from local minima and converge to a near-optimal 

solution [25]. In the context of simulated annealing, the perturbation mechanism is 

commonly utilized to introduce random changes to the existing solution. The specific 
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nature and magnitude of these perturbations may differ based on the particular problem 

being addresed [16]. 

 

Figure 2.1 Simulated Annealing Algorithm (Adapted From [27]) 
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 Simulated annealing algorithms are beneficial when attempting to find best 

possible solution in optimization problems that have numerous local optima. These 

algorithms are particularly effective in situations where the objective function is noisy or 

where the data in the problem is uncertain. However, they may not be as successful in 

problems where the objective function is nonlinear or discontinuous [25][35]. Other 

drawbacks of simulated annealing, include the need for “adjustments” such managing 

temperature decreases; users must be knowledgeable about “good” adjustments. 

Additionally, the method can have high computational times. However, some researchers 

have implemented the method in parallel to overcome this limitation [36].  

Because the objective function for dig limits is difficult to define and the solution 

space for determining optimal dig limits is large, some previous researchers have 

employed SA [17]. There are six basic components of SA: (1) the system, (2) the initial 

guess, (3) the objective function, (4) the perturbation mechanism, (5) the decision-making 

program, and (6) the annealing schedule [25]. In optimum dig limit selection, a map of 

expected profit, that is, the projected profit at each site if that area were marked as ore, is 

employed (note that the previous work only formulated a dig-limits problem with two 

material destinations – ore and waste). This calculation demands, among other things, an 

awareness of mining costs, treatment costs, pricing, and recoveries. The second 

component of SA is the initial assumption, which might come from any source: hand-

drawn, computerized, or just by looking at the block borders. Next is a weighted sum of 

parameters that makes up the objective function (see Equation 2.1). In Equation 2.1, 𝑂𝑖 

represents a specific parameter or characteristic related to the dig limits problem. It is a 

variable that denotes a particular aspect or feature that contributes to the overall objective 



 

 

13 

function. For example, these parameters could be block grade, block volume, mining 

cost, and treatment cost [17]. 

 

 

𝑂𝑝𝑟𝑜𝑓𝑖𝑡 =  ∑ 𝑤𝑖 .  𝑂𝑖

𝑁

𝑖=1

 (2.1) 

 

The dig limits are randomly changed using the perturbation mechanism. In order 

to account for the mining equipment’s ability to dig the proposed limit (i.e., to impose the 

mining equipment constraint), a penalty function was implemented in Equation 2.2 [17]. 

The last component of the SA process is the decision making which represents the core of 

the SA.  

 

 𝑂𝑝𝑟𝑜𝑓𝑖𝑡 =  𝑝𝑟𝑜𝑓𝑖𝑡 +  𝑝𝑒𝑛𝑎𝑙𝑡𝑦
𝑑𝑖𝑔𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 (2.2) 

 

While simulated annealing, in general, can address multiple constraints, the 

algorithms implemented for the dig limits problem only addressed the equipment size 

constraint. The implemented model accounts for the equipment’s ability to dig a specific 

polygon. Even with the implementation of this constraint, the model’s penalty function 

(constraint) does appear to have the ability to enforce this constraint in real cases. The 

obtained results from the model are near-optimal for the specific case where it was tested 

[16] [17]. In summary, although, the use of simulated annealing algorithms to solve the 

dig-limits problem is perhaps computationally efficient when compared to say linear 
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programming approaches (this has not been demonstrated yet with comparisons), the 

approach does not incorporate all constraints, and does not guarantee optimality.  

2.2.2. Genetic Algorithms. Genetic algorithms, which are influenced by natural 

selection, are a form of metaheuristic optimization algorithm that is typically utilized to 

seek out optimal solutions to complicated problems, in cases where conventional 

optimization methods may be unsuccessful or impractical [37]. Genetic algorithms are 

used to find solutions to complex and multi-objective problems. They employ the concept 

of reproducing the fittest [38]. The general algorithm starts by creating an initial 

population of solutions, represented as chromosomes or sets of genes. These solutions are 

evaluated based on their fitness, which is determined by the objective function of the 

optimization problem. The fittest individuals are then selected to breed, and their genetic 

information is combined to produce new offspring. The offspring undergo genetic 

operations such as mutation and crossover, introducing new genetic information into the 

population of solutions. The new generation is then evaluated, and the process continues 

until a stopping criterion is met, typically a predefined number of generations or a 

satisfactory fitness level [39].  

Genetic algorithms have been applied to various fields [36][40][41][42], and they 

are known for their ability to search large solution spaces, handle non-linear and non-

convex problems, and deal with noisy or incomplete data [43]. It has been also utilized in 

various mining applications, including mine scheduling [44], production sequenceing 

[45], and geostatistical analysis [46]. However, genetic algorithms also have some 

limitations, such as the potential for premature convergence, sensitivity to parameter 

values, and the need for a well-defined objective function [43]. 
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When using this algorithm to solve the dig-limit problem, fitness is referred to as 

the profit obtained from subtracting the mineable deviation from the possible dig-limit in 

a bench. It will “breed” solutions by merging points from two different solutions at 

random. Solutions with higher values as a consequence of the parents’ genes being mixed 

have a better chance of reproducing [47].  

Genetic operators generate new viable dig-limits by perturbing existing ones. This 

“generation cycle” continues until the goal is met or a certain number of generations has 

passed [11]. The possibility that a heuristic search method might get stuck in a local 

maximum point applies to genetic algorithms [48], [49]. Adjusting the transformation 

ratio and generating a less prejudiced ‘predator’ are two ways to avoid local maxima. 

This method alleviates the stresses of population homogenization, providing accurate 

detailed searches of the solution domain [50], [39]. 

In the context of dig-limits optimization, every possible dig-limit, feasible or not, 

is considered as a solution. While every SMU is called a gene. Grades are assigned to 

each SMU as well as destinations. The first generation’s destinations are a combination 

of completely random solutions and ideal destinations based on “free choices” (i.e., those 

that are not constrained), allowing for flexibility and exploration of various possibilities. 

The algorithm's search radius is maintained big by creating a duplicate of primary-

creation input dig-limits (the initial set of dig limits) that defines a distinct optimization 

direction (the specific goal that the algorithm aims to achieve). The destinations will be 

born and tweaked until they reach an optimal solution (i.e., the termination criteria are 

met) [11]. Figure 2.2 shows the steps of the model of genetic algorithms for solving the 

dig-limits problem.   
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Figure 2.2 Genetic Algorithm Loop in Solving Dig Limits (Adapted From [11]) 

 

The steps are explained below: 

1. A random set of feasible solutions (dig-limits) are generated to form the first 

population of solutions. Randomly chosen ore SMUs are expanded in this 

iteration to conform to the pre-generated cluster size.  

2. Two different parents are combined together to find a new solution in a 

process called breeding. Each combined parent solution is used as a source of 

genes which has a 0.5 probability to be chosen. 

3. The new dig-limit is made up of the SMU destinations of the two-parent 

solutions that have been chosen. The inserted transformation will abide to the 

clustering size to bypass impractical alterations, as determined by the mining 

equipment’s clustering size. 
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4. The “preparer” function examines each SMU’s neighbors and applies a 

clustering deviation according to how much weight the clustering size is given.  

5. The quantifier evaluates the SMU’s economic value and the clustering 

deviation. This evaluation is done when both solutions are reduced to a single 

integer. 

6. A weighted roulette wheel selection mechanism is used by the predator. The 

collection of possible dig limits is arranged, with each minor timetable having 

a partially higher chance of being chosen than the one before it [11].  

Genetic algorithms have proven to be an efficient tool for tackling complex 

optimization problems like the dig-limits problem, due to their ability to handle multi-

objective problems, search large solution spaces, and solve non-linear and non-convex 

problems. Nonetheless, they have some limitations such as the potential for early 

convergence, sensitivity to parameter values, and the requirement for a well-defined 

objective function. Another concern is the possibility of getting stuck in a local maximum 

point, which can be mitigated by making adjustments to the algorithm. Genetic algorithms 

can be useful in finding near-optimal solutions, but further research is necessary to gain a 

deeper understanding of their strengths and weaknesses and to establish best practices for 

their use with regards to dig-limits optimization.  

2.3. MIXED-INTEGER LINEAR PROGRAMMING 

Linear programming (LP) and its extensions such as mixed integer, integer, and 

binary integer LP problems are well known optimization approaches that have been used 

to solve many diverse problems. Linear programming methods vary depending on the 
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nature of the objective function, and the type of variables [51]. The general LP problem is 

stated as Equation 2.3 with decision variable x.  

 

 

 

(2.3) 

 

There are different versions of this problem that can be considered, such as 

maximizing instead of minimizing or equality rather than inequality constraints. 

However, all of these variations can be transformed into the general format of the 

problem [26].  

Integer Linear Programming (ILP) is a variant of linear programming where the 

decision variables are required to take integer values. In ILP, the objective is to maximize 

or minimize a linear function subject to a set of linear constraints while ensuring that the 

decision variables take only integer values. ILP finds applications in various fields such 

as logistics [52], supply chain management [53], finance [54], telecommunications [55], 

and engineering, among others [56][57][58]–[60]. It is widely used to solve real-world 

problems that involve discrete decision-making such as selecting the best combination of 

products to manufacture, allocating resources to minimize costs, scheduling activities to 

minimize time, and optimizing transportation routes [61]–[64]. The effectiveness of ILP 

as an optimization tool is attributed to its ability to model and solve complex decision-

making problems with discrete variables. The optimization problem can be formulated as 

a system of linear inequalities with an objective function (Equation 2.3), and the solutions 

Minimize 

Subject to:

T





c x

Ax b

x 0
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to this system can be found by using specialized algorithms that take advantage of the 

integer constraints [65].   

Mixed Integer Linear Programming (MILP) is a linear programming problem in 

which some (not all) of the decision variables must be integers [66]. MILP problems can 

be solved with a variety of solution methods including branch and cut and branch and 

bound [26][67]. MILP has been employed to address numerous engineering optimization 

problems [68]–[74]. It has been used in the mining industry as well. For instance, it has 

been successfully applied in mining for production scheduling of different mining 

methods [75]–[78], sequence optimization [79], tailings management [80][81], truck 

dispatching [82], and stockpiles blending [83]. This method has shown its ability among 

other methods to solve the dig limits problem optimally.  

Sari and Kumral [8] were the first to use MILP to find the optimal dig-limits 

layout. The objective function of their model was to maximize the economic value of a 

bench. They assumed symmetrical block sizes; therefore, selective mining units (SMUs) 

were used in their approach.1 Using the concept of SMUs in the problem gives an 

advantage when the equipment size is considered to be a constraint in the model. 

Therefore, the equipment size would be defined by the number of SMUs covered in both 

directions [8]. Figure 2.3 shows that every single SMU inside a frame must be from the 

same type of material ore or waste. The radius of an excavator’s greatest reaching arm is 

 

1  The term “selective mining unit” (SMU) which represents the minimum block model support for 

ore/waste allocation decisions, is typically much smaller than the sampling grid dimensions in the 

exploration stage [95].   
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shown in red circles in the middle of the frame. If the size of the equipment were not a 

restriction, in this case, it would be fair to directly mark SMUs as either ore or waste 

according to the cut-off grade.  Because of the size of the mining equipment, many SMUs 

must be mined and sent to a destination at the same time. To put it another way, n × n 

nearby SMUs that match equipment size, must all be identified as ore or waste to fulfill 

this constraint [8]. One frame can share a selective mining unit with another frame, but in 

order for an SMU to be shared, it has to be placed in one acceptable frame. Although the 

search space is limited by equipment size, the goal is to increase bench sector revenue 

while staying within the equipment size restrictions [8].    

 

 

Figure 2.3 Frames with a Width of 4 × 4 SMUs (Adapted From [8]) 

 

The main decision variable in this model is (𝑥𝑖𝑗), and it is a binary variable that 

takes the value of 1 if SMU at that specific location (i, j) is ore, and a value of 0 if it is 

waste. The total number of SMU inside a frame is represented by the decision variable 
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(𝑡𝑖𝑗𝑓𝑥𝑓𝑦
) where the decision variable (𝑣𝑖𝑗𝑓𝑥𝑓𝑦

) has the value of 1 if the frame is valid (a 

frame is considered valid when all of its SMUs consist of either ore or waste), 0 if not [8]. 

The objective function in this model seeks to maximize profit (revenue minus costs). 

Table 2.2 shows indices and sets of this model. 

 

Table 2.2 Indices and Sets of Model by Sari and Kumral [8] 

Indices  Sets 

i SMU index along X-direction 

j SMU index along Y-direction 

𝑓𝑥 Frame index along X-direction 

𝑓𝑦 Frame index along Y-direction 

α Offset index along X-direction in a frame 

β Offset index along Y-direction in a frame 

 

The set of constraints that restricts the feasible solution space is divided into two 

major sets. Equations 2.4-2.8 show the set of constraints Sari and Kumral [8] used to 

ensure SMUs that are mined fit into a frame. 

I. Frame constraints:  

a. In each potential frame that the SMU located at position (ij) can 

belong to, the sum of (𝑥𝑖𝑗) values within that frame should be equal to 

the decision variable (𝑡𝑖𝑗𝑓𝑥𝑓𝑦
).  
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 𝑡𝑖𝑗𝑓𝑥𝑓𝑦
=  ∑ ∑ 𝑥𝑖−𝑓𝑥+𝛼,𝑗−𝑓𝑦+𝛽

𝛽𝛼

 (2.4) 

 

b. The decision variable (𝑡𝑖𝑗𝑓𝑥𝑓𝑦
) is transformed into (𝑣𝑖𝑗𝑓𝑥𝑓𝑦

) by 

assessing the validity of the frame. 

 

 
𝑣𝑖𝑗𝑓𝑥𝑓𝑦

=  {
1, 𝑡𝑖𝑗𝑓𝑥𝑓𝑦

= 0

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (2.5) 

 

c. It is necessary for every SMU to be assigned to at least one valid 

frame.  

 

 ∑ ∑ 𝑣𝑖𝑗𝑓𝑥𝑓𝑦

𝑓𝑦𝑓𝑥

≥ 1 (2.6) 

 

 

II. Corner case handling: since the corner SMUs are part of incomplete 

frames, these frames should be ignored and not considered in the 

computation of valid frames.  

 

 𝑡𝑖𝑗𝑓𝑥𝑓𝑦
= −1    ∀ 𝑖𝑗𝑓𝑦 (2.7) 

 

 𝑡𝑖𝑗𝑓𝑥𝑓𝑦
= −1    ∀ 𝑖𝑗𝑓𝑥 (2.8) 
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However, the frame constraints or shape constraints are not efficient because it 

uses two decision variables per block, at least one of which (𝑡𝑖𝑗𝑓𝑥𝑓𝑦
) is redundant because 

it is directly related to the main decision variable. The model limits the minimum mining 

dimensions to n × n frames and is unable to handle rectangular frames. This is indeed a 

drawback as real-world mining scenarios often involve irregularly shaped mining areas, 

and the model should be able to accommodate such cases. The decision variable, 𝑡𝑖𝑗𝑓𝑥𝑓𝑦
, 

has four indices, which lead to an exponential increase in the number of variables. This 

can result in scalability issues, especially for large scale mining problems, where the 

number of variables grows rapidly. It can significantly impact the computational time and 

memory requirements of the optimization process. The paper lacks sufficient explanation 

about the linearization of Equation (2.5) and its validity as a constraint. Linearization is 

an important step in formulating MILP models. It would be helpful to provide details on 

how this equation is linearized. Furthermore, the model does not incorporate different 

destinations of the ore such as oxide and heap leach ore, and using this approach is 

computationally expensive.    

2.4. SHAPE CONSTRAINT 

Shape constraints play a crucial role in mine planning because they ensure that 

physical shape of the mine or the bench meets operational requirements. Ignoring these 

constraints can lead to a loss of ore material, increase dilution, and suboptimal mining 

operations. For example, in an open pit mine, heavy equipment must be able to move 

around the bottom part of the mine, so ignoring this constraint could result in inadequate 

space for equipment operations, which can cause delays and safety hazards. Similarly, in 
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determining dig limits for different ore types, the solution should include dig limits that 

provide enough space for the equipment to dig that specific shape. This is called the 

minimum mining width, which is often included in dig-limits determination manually by 

geologists and can result in significant financial loss.  

It is challenging to formulate linear shape constraints as required for LP problems. 

Direct formulations using “natural” decision variables of such linear shape constraints 

require exponential order of constraints for the number of blocks [84]. Such constraints 

are inefficient resulting in long solution times. The shape constraints in dig limits 

optimization problems constitute the most constraints in the problem and have an 

outsized effect on solution times. Therefore, formulation of such constraints must be 

efficient to ensure reasonable solution times [85].  

Queyranne and Wolsey’s articles [84], [86] address the problem of scheduling 

tasks that have bounded up/down times (i.e., the tasks must start and end within a certain 

time frame). Additionally, the tasks have interval-dependent start-up times, which mean 

they can only begin at a certain time. They proposed two MIP models for solving this 

scheduling problem. Both models were tested on a set of instances with different 

parameters, and the results showed that the proposed models outperformed existing 

models in terms of solution quality and computation time. These models, which have 

been shown to valid and tighter formulations than the “natural formulation”, can be 

applied to various problems and dig limits is one of them. They are superior to the 

formulation by Sari and Kumral [8]. 

We can divide their work into two major components that were utilized to 

formulate shape constraints in the proposed model for this thesis. Those two components 
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are contiguity and mining width. To capture the contiguity and the mining width of a 

series of blocks on a bench scale: 

• Assume a discrete (1D) series of blocks as in Figure 2.4. 

• The width of the mined stope of that series of blocks must be at least αt 

and at most βt. 

• Likewise, a pillar that begins with block t has a minimum length of γt 

and at most δt. 

Define the binary decision variables: 

• 𝑦𝑡 = 1, if block t is mined (on); 0 otherwise (off).  

• 𝑧𝑡 = 1, if block t is the first (leftmost) of a stope. 

• 𝑧𝑡 = 1, if 𝑦𝑡−1 = 0, and 𝑦𝑡 = 1. 

• 𝑤𝑡 = 1, if block t is the first (leftmost) block of a pillar. 

• 𝑤𝑡 = 1, if 𝑦𝑡−1 = 1, and 𝑦𝑡 = 0. 

Based on these decision variables, Queyranne and Wolsey proposed Equations 

(2.9 - 2.15) as tight MIP formulations of 1D constraints [84]. 

 

 𝑧𝑡 ≥ 𝑦𝑡 − 𝑦𝑡−1                                   𝑡 ∈ [1, 𝑛] (2.9) 

 

 

𝑧𝑡 ≤ ∑ 1

𝑡+𝛽𝑡

𝑢=𝑡+1

− 𝑦𝑢            𝑡: 𝑡 ≥ 0 𝑎𝑛𝑑𝑡 + 𝛽𝑡 (2.10) 
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 𝑤𝑡 ≤ ∑ 𝑦𝑢

𝑡+𝛿𝑡

𝑢=𝑡+1

                   𝑡: 𝑡 ≥ 0 𝑎𝑛𝑑𝑡 + 𝛿𝑡 ≤ 𝑛 (2.11) 

 

 𝑦𝑡 − 𝑦𝑡−1 =  𝑧𝑡 − 𝑤𝑡                                𝑡 ∈ [1, 𝑛] (2.12) 

 

 ∑ 𝑧𝑢

𝑢∈[0,𝑡]:
𝑢+𝛼𝑢>𝑡

 ≤ 𝑦𝑡                                          𝑡 ∈ [1, 𝑛] 
(2.13) 

 

 ∑ 𝑤𝑢

𝑢∈[0,𝑡]:
𝑢+𝛾𝑢>𝑡

 ≤ 1 − 𝑦𝑡                                    𝑡 ∈ [1, 𝑛]  
(2.14) 

 

 𝑦, 𝑧, 𝑤 ∈ {0, 1}𝑛 (2.15) 

 

 

Figure 2.4 1D Series of Blocks 

 

Equation (2.9) enforces the condition that if a block (t) is the first block after a 

leftmost block (𝑧𝑡 = 1), then the block (t) must be mined (𝑦𝑡 = 1) and the block 

immediately to the left of (t) must be not mined (𝑦𝑡−1 = 0). Equation (2.10) limits the 

width of the mined stope to at least βt by ensuring that, if 𝑧𝑡 = 1, then all blocks from (t + 

1) to (𝑡 + 𝛽𝑡) must be mined. Equation (2.11) is similar to Equation (2.10) except that it 
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ensures the width of a pillar is at least 𝛿𝑡. Equation (2.12) relates the variables 𝑦𝑡 , 𝑧𝑡, and 

𝑤𝑡. This equation helps maintain consistency between the block variables and their 

corresponding leftmost block variables. Equation (2.13) works together with Equation 

(2.9) to ensure the proper relationship between 𝑧𝑡 and 𝑦𝑡. Equation (2.14) ensures that 

each pillar is at least 𝛾𝑢 wide.  

Overall, these equations form a mathematical representation of the 1D constraints 

related to contiguity and mining width, allowing for the formulation of a tight ILP model 

for solving the scheduling problem with bounded start and end times. Queyranne [84], 

[86] proposed that 2D rectangular constraints can be formulated by repeating these 

constraints in each dimension. Moving from 1D to 2D formulations requires additional 

decision variables to address constraints in each dimension. In a 2D grid of blocks, each 

block is represented by decision variables in each direction. For dig-limits optimization, 

because dig-limits are determined on each bench separately, this 2D extension is 

adequate to determine the optimal dig-limits. However, this introduces additional 

complexity and increases the number of decision variables and constraints. For example, 

when this approach is applied on 2D (grid of blocks), the backward constraints 

(Equations 2.13 and 2.14) cannot be applied for blocks at the boundary. To overcome this 

issue, we must add waste blocks at the boundary. For example, if we have a 20x20 grid 

size, we need to add waste blocks at the boundary in order to apply the backward 

constraints.  
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2.5. SUMMARY  

The objectives of this section were to (i) review the current knowledge on dig-

limits optimization, in general, as well as the different models and algorithms used to 

solve dig-limits optimization problems; and (ii) identify the knowledge gaps related to 

dig-limits optimization that require further research. The author discussed three major 

algorithms that other researchers have used to model the dig-limits optimization problem, 

which are simulated annealing, mixed-integer linear programming, and genetic 

algorithms. While all these approaches have been used to solve the dig-limits 

optimization problem, the review in this chapter shows that they all have certain 

limitations. 

First, the simulated annealing algorithm in the literature addresses the dig-limits 

problem with respect to the equipment size alone. Ignoring other factors such as the 

material type and blasted material movement. However, the scale of the model was 

intended to account for the equipment’s ability to dig a specific polygon as the only 

constraint. Another observation was the ability of the penalty function to be applied in a 

real case for proper testing. The obtained results from the model are near-optimal for the 

specific case where it was tested. The bottom line is that using the simulated annealing 

algorithm to solve the dig-limits problem is very complicated, and it does not account for 

all constraints.  

Secondly, genetic algorithms have also been used in the literature to provide near-

optimal solutions to the dig-limits problem. Solving the dig-limits using the genetic 

algorithm is relatively new and more research is needed to fully understand its usefulness 
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in this area. This model is promising because it can account more than two destinations 

for the different ore types (beyond just ore and waste destinations).     

Finally, this section reviewed the application of mixed-integer linear 

programming to solve the dig-limit optimization problem.  The model seeks to maximize 

the profit while incorporating the equipment size constraint. The model reviewed 

assumes symmetrical block sizes (SMUs) allowing the model to include the equipment 

size as a function of block sizes, and it makes it easy to program. For example, the 

equipment size will be defined as 3 SMUs in a two-dimensional space. However, the 

model does not incorporate more than two destinations, which is common in metal 

mining, and is computationally expensive. 

In the last part of this section, the work discussed the importance of shape 

constraints in mine planning to ensure operational requirements are met and to avoid 

financial losses. It highlighted the challenges of formulating linear shape constraints for 

LP problems and the need for efficient formulations to ensure reasonable solutions time. 

The work shows that Queyranne and Wolsey’s articles [84], [86] proposed MIP models 

for scheduling tasks with bounded up/down times and interval-dependent start-up times 

can be applied to various problems, including dig-limits. Their formulation included two 

major components (contiguity and minimum width) that can be used to formulate shape 

constraints in a 1D series of blocks. However, expanding the problem to be in 2D adds 

more complexity to the problem. No work in the literature has used this approach to solve 

the dig-limits optimization problem.  
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3. BINARY INTEGER LINEAR PROGRAMMING FORMULATION OF DIG 

LIMITS OPTIMIZATION  

 

The proposed binary integer linear programming formulation of dig-limit 

optimization in this thesis is going to be the main topic of this chapter. This chapter will 

introduce the model, as well as all important parameters, indices, sets, and decision 

variables. These will be utilized to define the objective function and constraints. At the 

end of this chapter, the work introduces a base case study to illustrate the proposed 

model. 

3.1. BINARY INTEGER-LINEAR PROGRAMMING 

BILP (Binary Integer Linear Programming) can be used to identify the optimal 

solution to an optimization problem [87]–[91]. The decision variables in a binary 

problem can only take a value of 0 or 1, which might be the selection or rejection of an 

option, the turning on or off switches, a yes/no response, or a variety of different 

circumstances [92]. Previous LP formulations of dig limits problem used a MILP 

formulation [8], which had its limitations as pointed out in the literature review. 

Therefore, the justification of this thesis project was to a BILP version of the dig-limits 

problem that guarantees optimality and incorporates efficient shape constraints to model 

the minimum mining width constraints.  

3.2. DECISION VARIABLES, INDICES & SETS, AND PARAMETERS 

Tables 3.1, 3.2, and 3.3 show the decision variables, indices and sets, and model-

building parameters. This work uses the decision variables defined in this model, along 
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with their related indices, to formulate the problem at hand. The indices provide a way to 

uniquely identify each decision variable, allowing for tracking throughout the 

optimization problem. Figure 3.1 shows a visual illustration of the decision variable y 

(i=2, j=4, and k=2) and its corresponding indices in the space of the problem.  

 

Table 3.1 Model Parameters 

Parameters Units Meaning  

𝑴 t tonnage of block 

𝑮𝒊𝒋 g/t Grade of metal in the block (ij) 

𝑷 $/g Price 

𝑹𝒌 

ratio Processing recovery for material going to 

destination k 

𝑪𝒌
𝒑
 

$/t Unit processing cost for material going to 

destination k 

𝑪𝒎 $/t Mining cost 

𝒗𝒊𝒋𝒌 
$ The economic value of block (ij) mined to 

destination k 

𝜶𝒊 No. of blocks Minimum mining width along i-direction 

𝜷𝒋  No. of blocks Minimum mining width along j-direction 

 

Table 3.2 Model Indices 

Indices Sets 

i Index for blocks along the Y-direction (1, 2, …., I). 

j Index for blocks along the X-direction (1, 2, …., J). 

k Index for destination (1, 2, …., K). 

 



 

 

32 

Table 3.3 Decision Variables 

Decision 

variables 

Meaning  

𝒚𝒊𝒋𝒌 [0,1] - 1 if block at (ij) is mined to destination k, 0 otherwise. 

𝒛𝒊𝒋𝒌
𝟏  [0,1] - 1 if block at (ij) is the left-most block, 0 otherwise. (Along i-direction). 

𝒛𝒊𝒋𝒌
𝟐  [0,1] - 1 if block at (ij) is the left-most block, 0 otherwise. (Along j-direction).  

 

 

 

Figure 3.1 A Visual Illustration of the Problem Space  

3.3. MODEL FORMULATION 

The model's objective, as previously stated, is to determine the optimal dig limit 

that maximizes profits by delivering the material to the optimal destination. The profit 

here is the sum of the revenue from mining material and processing it based on the 

destination it is sent to minus the associated mining and processing costs. The economic 
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block model and the minimum allowable mining widths are the two basic inputs to the 

dig-limits problem. The economic block model is a bench section (2D grid of regular 

blocks) of the 3D block model, where each block has variables (𝑣𝑖𝑗𝑘) that represent the 

economic values for each of the potential targets. The values of each block are calculated 

by Equation (3.1) and then submitted to the model. Figure 3.2 summarizes the steps to get 

to the optimal solution.  
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Figure 3.2 Framework of the Proposed Method 

 

3.3.1. Objective Function. The objective function of this model is to maximize 

the profit obtained from a bench. Equation (3.2) shows the objective function.  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑣𝑖𝑗𝑘 ∗ 𝑦𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

 (3.2) 
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With this objective function, the optimization solution is likely to exclude the 

mining of waste blocks since their block values are negative unless those waste blocks 

(combined with ore blocks) meet the minimum mining width constraints and allow for an 

overall higher profit. Because of the ability to just leave out waste blocks, waste blocks 

do not have to meet the minimum mining width constraints. The approach in this thesis is 

to assume that waste blocks can always be mined after selectively mining the ore blocks.   

3.3.2. Constraints. The constraints in this model are grouped into two main 

categories: destination and shape constraints.  

3.3.2.1. Destination constraint. As stated before, the dig-limits optimization 

problem must consider multiple processing methods and therefore multiple material 

destinations (waste dump, stockpiles, and different processing destinations). Therefore, 

the first constraint, Equation (3.3), in the model will restrict each block to be sent at most 

to one destination.  

 

 

∑ 𝑦𝑖𝑗𝑘

𝐾

𝑘=1

≤ 1          ∀𝑖, 𝑗 (3.3) 

3.3.2.2. Shape constraints. As stated before, the goal of this thesis is to adapt the 

efficient shape constraints proposed by Queyranne & Wolsey  [84], [86] to model the 

minimum mining dimensions constraint of the mining equipment. They demonstrated 

that direct formulations of such constraints generally require exponentially many 

constraints in the natural decision variables. With the help of auxiliary variables, we can 

overcome this and extended it to be solved in linear time. This extended formulation is 

ideal, and it controls the generated polygon “dig limits.”   
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To adapt Queyranne and Wolsey’s work to the dig-limits optimization problem, 

two main adaptions are necessary. First, because dig-limits optimization does not require 

pillars, only Equations (2.9) and (2.13) of Equations (2.9)-(2.15) are necessary to model 

the minimum mining width in the 1D problem. Second, to adapt the 1D problem to a 2D 

problem (dig-limit optimization is a 2D problem as each bench is optimized separately), 

two variables are necessary to control the “leftmost” block (which now become the 

“leftmost” and “topmost” blocks) in a contiguous set of blocks. 

The decision variable (𝒛𝒊𝒋𝒌
𝟏 ) will be assigned to control the generated polygons 

“dig limits” along the i-direction and decision variable (𝒛𝒊𝒋𝒌
𝟐 ) along the j-direction. 

Equations (3.4-3.7) represent two sets of constraints, one along each direction. These 

equations are used to initialize the values of (𝒛𝒊𝒋𝒌). 

A. If block at (ij) is mined but the previous block is not, then block at (ij) 

is the leftmost or topmost block. This is analogous to Equation (2.9) in 

Queyranne and Wolsey’s formulation.  

 

 𝑧𝑖𝑗𝑘
1 ≥ 𝑦𝑖𝑗𝑘 − 𝑦(𝑖−1)𝑗𝑘 ∀𝑖, 𝑗 , 𝑘 (3.4) 

 

  

 𝑧𝑖𝑗𝑘
2 ≥ 𝑦𝑖𝑗𝑘 − 𝑦𝑖(𝑗−1)𝑘 ∀𝑖, 𝑗 , 𝑘 (3.5) 

 

One of the main inputs in the model is the minimum mining width. The minimum 

mining width of the mined blocks must be realistic for the equipment size. 𝛼𝑖 and 𝛽𝑗 

control the width of the mined blocks. Equations (3.6-3.7) represent the contiguity of the 
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mined blocks and are analogous to Equation (2.13). In this model, the constraint is 

repeated; one for each direction.   

B. Contiguity constraint (minimum mining width)  

 

 

∑ 𝑧𝑢𝑗𝑘
1

𝑖

𝑢=max (1−𝛼+1,1)

≤ 𝑦𝑖𝑗𝑘 ∀𝑖, 𝑗 , 𝑘 (3.6) 

 

 

 

∑ 𝑧𝑖𝑢𝑘
2

𝑗

𝑢=max (1−𝛽+1,1)

≤ 𝑦𝑖𝑗𝑘 ∀𝑖, 𝑗 , 𝑘 (3.7) 

  

As a result of this ideal formulation, the extreme points of the corresponding 

polygons “dig limits” are 0-1 vectors representing all the contiguous solutions. Figure 3.3 

shows the values of  𝑧𝑖𝑗𝑘
1  and 𝑧𝑖𝑗𝑘

2  at the boundaries of the generated dig limits. Blue 

arrows indicate blocks where variable  𝑧𝑖𝑗𝑘
1 = 1. Red arrows indicate blocks where 

variable  𝑧𝑖𝑗𝑘
2 = 1.  

 

 

Figure 3.3 Values of 𝑧𝑖𝑗𝑘
1  and 𝑧𝑖𝑗𝑘

2  at the Boundaries of the Corresponding Dig Limits 
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In summary, Equation (3.8) presents the proposed optimization model. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑣𝑖𝑗𝑘 ∗ 𝑦𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

 

∑ 𝑦𝑖𝑗𝑘

𝐾

𝑘=1

≤ 1          ∀𝑖, 𝑗 

𝑧𝑖𝑗𝑘
1 ≥ 𝑦𝑖𝑗𝑘 − 𝑦(𝑖−1)𝑗𝑘 ∀𝑖, 𝑗 , 𝑘 

𝑧𝑖𝑗𝑘
2 ≥ 𝑦𝑖𝑗𝑘 − 𝑦𝑖(𝑗−1)𝑘 ∀𝑖, 𝑗 , 𝑘 

∑ 𝑧𝑢𝑗𝑘
1

𝑖

𝑢=max (1−𝛼+1,1)

≤ 𝑦𝑖𝑗𝑘 ∀𝑖, 𝑗 , 𝑘 

∑ 𝑧𝑖𝑢𝑘
2

𝑗

𝑢=max (1−𝛽+1,1)

≤ 𝑦𝑖𝑗𝑘 ∀𝑖, 𝑗 , 𝑘 

(3.8) 

 

3.4. MODEL VERIFICATION  

This work uses a base case study of benches extracted from a real geologic block 

model to verify the performance of BILP for dig-limits optimization. The structure of this 

section is derived from the framework shown in Figure 3.2. The model is implemented in 

MATLAB. This thesis uses Gurobi v9.5.2, which is one of the fastest solvers on the 

market, as the solver to solve the BILP model described in section 3.3 [93]. Gurobi v9.5.2 

uses branch and bound to solve BILP problems [94]. To solve the model, this work uses 

the Gurobi MATLAB API. The MATLAB code (which can be found on Github at 

https://github.com/Somatalhi/Diglimits-Optimization.git) begins by setting up the data 

for the optimization problem, including the block model and input parameters. The data 
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is provided by the user as an input file. The optimization problem is formulated using the 

MATLAB problem-based optimization workflow. The variables, objective function, and 

constraints are defined using the “optimvar” and “optimproblem” functions. The problem 

is then solved using Gurobi solver. The optimal solution, along with the objective value 

and exit flag, is returned to the MATLAB environment.   

This thesis uses the geologic block model of a porphyry copper deposit to verify 

the model and MATLAB code. In this verification test, the work uses a 20×20 bench 

section to test the model. All the tests run in this thesis were run on the same computer. 

Table 3.4 shows the computer’s specifications.  

 

Table 3.4 Computer Specifications 

System type 64-bit operating system, x64-based processor 

Processor Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz   2.19 GHz 

Installed RAM 64.0 GB (63.6 GB usable) 

 

 

 

3.4.1. Block Model. In the mining industry, block models are widely used to 

model ore deposits and guide the planning and operation of mines. The block model used 

to test the proposed BILP model is a copper-moly deposit with seven material 

destinations. Table 3.5 shows the multiple destinations of the ore deposit. All test cases in 

this thesis are extracts of bench sections (sections in the x-y plane) from this block model. 

Testing the mathematical model with a huge number of blocks in the block model will be 

computationally expensive. Therefore, the author decided to use a 20×20 extract from the 

bench at elevation 4025 feet above mean sea level for model verification. Figure 3.4 
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shows the copper grade for the blocks in this extract while Figure 3.5 shows the “best 

classification” of the blocks which shows the assigned destination based the geological 

and recovery parameters of each block. 

 

 

Table 3.5 Target Classes 

Target Class Meaning 

1 Mill Ore 

2 Sulfide crushed leach  

3 Oxide crushed leach  

4 Suflide ROM leach 

5 Oxide ROM leach 

6 Low grade 

7 Waste dump 

 

 

 

Figure 3.4 Copper Grade of Blocks of the 20×20 Bench Section Extract for Verification 
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Figure 3.5 Best Classification of the 20×20 Bench Section Extract for Verification 

 

3.4.2. Economic Block Model. The next step is to convert the geological block 

model into an economic block model using the economic parameters in Table 3.1 and the 

geological attributes within each block. This input is used in Equation 3.1 to find the 

economic block values (vijk) for each block in the geological block model. Although 

there are really seven destinations, the model input excludes the waste dump as a 

destination because the model then will be forced to create dig limits to waste blocks. In 

practice, we do not need to selectively mine waste blocks. Therefore, for this block 

model, each block will have six (6) economic values representing the six destinations (k) 

in the block model. All waste blocks get economic values less than 0 for all destinations 

to discourage their mining to other destinations. Because this author did not have access 
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to the confidential recoveries for the mine that provided the block model (but had access 

to the mine’s decisions on the best classification – Figure 3.5), the author assigned block 

values based on his understanding of the processes and materials that were consistent 

with the “best classifications” (i.e., the author assigned the highest economic value to 

destination “mill” if a block had “mill” as the best classification destination etc.). Table 

3.6 shows the economic block values (vijk) for a small selection (seven out of 400) of 

blocks in the 20×20 block extract. The full set of economic block values used in the 

verification are available on the Github repository for this project 

(https://github.com/Somatalhi/Diglimits-Optimization). These economic values are the 

input to the Matlab code to find the optimal dig limits.  

 

 

Table 3.6 Economic Block Values 

Block  

Index-i 

Block 

index- j 

V1 

($) 

V2 

($) 

V3 

($) 

V4 

($) 

V5 

($) 

V6 

($) 

1 1 500 1,000 800 900 700 600 

1 2 1,000 500 600 900 500 500 

2 1 900 700 800 500 600 1,000 

2 2 500 1,000 800 900 700 600 

1 3 500 700 900 1,000 800 600 

1 4 900 700 800 500 600 1,000 

2 3 500 1,000 800 900 700 600 
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After assigning block values to the 400 blocks, and before sending the file to the 

Matlab code, the user must add waste blocks at the boundary (at i=1 & j=1) to ensure the 

backward-looking constraints (Equations 3.4 & 3.5) can be formulated for the problem. 

The waste blocks at the boundary will be deleted before displaying the results. The model 

has three inputs to be chosen by the user which are the number of targets, minimum 

mining width along i-direction (α), and minimum mining width along j-direction (ß). 

However, the user must make sure that the number of targets in his/her case is consistent 

with the economic values in the input file. Table 3.7 summarizes the verification 

problem. 

 

Table 3.7 Summary of Verification Problem 

Parameter Value 

Number of blocks 400 

Number of Destinations  6 

α (Number of blocks) 3 

β (Number of blocks) 3 

Number of Decision Variables 7,200 

Number of Constraints  9,600 

 

 

3.4.3. Results and Discussion. Figure 3.6 shows the optimal solution from the 

proposed BILP dig-limits model. Table 3.8 shows that the model achieved an optimal 
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solution with a gap tolerance of 0.0% in about 64.02 seconds. As can be seen in Figure 

3.6, most of the blocks in this bench extract are re-classified as low grade in the optimal 

solution, which results in an optimal objective function value of $ 332,000. 

To illustrate that the results of this 20×20 bench section are optimal, we have 

divided bench section into six sectors as seen in Figure 3.7. We use each of these sectors 

to illustrate different decisions made by the algorithm.  

 

Table 3.8 Optimization Results for the Base Case Scenario 

Parameter Value 

Objective Function Value ($) 332,000 

Solution Time (seconds) 64.02 

Gap Tolerance  0.0% 

 

 

Figure 3.6 Optimal Dig Limits 
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Figure 3.7 Before and After with Sectors Numbers 

 

In sector 1, most of the blocks were initially classified as “low grade” and those 

blocks not classified as “low grade” would not meet the minimum mining width of 3×3 

blocks to be mined selectively as any other type of material. Thus, the best classification 

was not a feasible solution. Given the block economic values, the optimal solution was to 

classify all these blocks as “low grade” ore. By doing so, the overall value of the bench 

section is maximized. For the “low grade” blocks to be classified as “sulfide ROM 

leach”, it will take the lowest economic values among the other targets. Therefore, the 

“sulfide ROM leach” blocks in the center of sector 1 were reclassified as “low grade” to 

ensure that the objective function is maximized. Sector 2 is similar to sector 1 were most 

the blocks are classified as “low grade”, and the rest will not satisfy the minimum mining 

width of 3×3 blocks.  

In sector 3, the right-hand side has most the blocks classified as “sulfide crushed 

leach”, and it satisfies the minimum mining width at the same time. The second highest 
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value for the “low grade” blocks is the “mill”, therefore, to maximize the value of the 

bench, the left side of this sector was reclassified as “mill”. For blocks classified as 

“mill” and “sulfide crushed leach”, the second highest value is to be mined to “sulfide 

ROM leach”. Therefore, in Sector 4, the reader can see that most blocks were reclassified 

as “sulfide ROM leach”. In sector 5, most blocks were classified as “mill”, and it satisfies 

the minimum mining width. However, at the bottom of this sector, you can see some 

blocks at the boundary were kept as “low grade” because they can be selectively mined 

due to their location at the boundary. The same logic in sector 4 goes for sector 6 that 

blocks classified as “mill” and “sulfide crushed leach” have the second highest value to 

be “sulfide ROM leach”.  

Based on the above results, we can conclude that the reclassification was made to 

ensure the feasibility of the mining operations (minimum mining width) and optimize the 

overall value of the bench section. Thus, the proposed algorithm works as intended (i.e., 

is verified). 

3.5. SUMMARY 

The focus of this chapter was to propose a binary integer linear programming 

(BILP) formulation for dig-limits optimization. The model seeks to maximize the value 

of the blocks selected subject to destination (i.e., each block must be mined to only one 

destination) and minimum mining dimension constraints. The minimum mining 

dimensions (shape constraints) were inspired by previous work by Queyranne and 

Wolsey that modeled minimum mining width using auxiliary variables. The algorithm is 



 

 

46 

implemented in MATLAB using the problem-based optimization workflow and the 

resulting problem is solved using Gurobi 9.5.2.  

To verify the model, a 20×20 bench section was used with 3×3 dig limit size. The 

algorithm found an optimal solution with a gap tolerance of 0.0%, within approximately 

64.02 seconds. A careful examination of the results shows that the model makes optimal 

decisions, and the optimal solution is feasible. The optimal objective function value 

amounted to $332,000. 
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4. EVALUATING THE MODEL’S SENSITIVITY TO PROBLEM SIZE AND 

MINING WIDTH DIMENSIONS  

 

This section describes experiments carried out to assess the performance of the 

proposed BILP model for dig-limits optimization with changing size of the problem and 

minimum mining width dimensions. This work examined the size of the problem because 

it recognizes that computational time is an important aspect of dig-limits optimization 

from a practical standpoint and mine engineers are unlikely to use an algorithm that takes 

more than a few minutes to find a solution. The work also examined the dimensions of 

the minimum mining width because one of the strengths of this model is that it allows the 

user to generate any rectangular mining width. Therefore, the effect of this on solutions 

and solution times is of interest to any reader.  

4.1. EFFECT OF SIZE OF THE PROBLEM  

4.1.1. Problem Size Experiments. The experimental plan in this section adds two 

additional scenarios with different sizes to the base case scenario described in chapter 3 

to test the effect of size of the problem. These scenarios involved grid sizes of 25×25 and 

30×30 in addition to the 20×20 grid in the base case scenario. Similar to the base case, 

the author generated economic values for the block sections in these scenarios using the 

same methodology used in the base case and described in section 3.4. The complete input 

data for these scenarios can be accessed on GitHub. It is worth noting that these scenarios 

were solved using the same MATLAB code employed in the previous analysis (which 

can be found on Github at https://github.com/Somatalhi/Diglimits-Optimization.git), 

ensuring consistency and comparability in the results. Figure 4.1 and Figure 4.2 show the 
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copper grade and the best classification of the 25×25 bench section, respectively. Figure 

4.3 and Figure 4.4 show the copper grade and the best classification of the 30×30 bench 

section, respectively. Table 4.1 shows a summary of the two scenarios and the base case.  

 

 

 

Figure 4.2 Best Classification of the 25×25 Bench Section 

Figure 4.1 Copper Grade of Blocks of 25×25 Bench Section 
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Figure 4.4 Best Classification of the 30×30 Bench Section 

 

 

Figure 4.3 Copper Grade of Blocks of 30×30 Bench Section 
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Table 4.1 Summary of the Three Scenarios 

Parameter 20×20 25×25 30×30 

Number of blocks 400 625 900 

Number of Destinations  6 6 6 

α (Number of blocks) 3 3 3 

β (Number of blocks) 3 3 3 

Number of Decision Variables 7,200 11,250 16,200 

Number of Constraints  9,600 15,000 21,600 

 

4.1.2. Results and Discussion. Figures 4.5 and 4.6 show the optimal solution for 

the 25×25 and 30×30 scenarios, respectively. Figure 3.6 shows the optimal solution for 

the base case problem. Table 4.2 shows the optimization results for the two scenarios and 

the base case.  

 

 

Figure 4.5 Optimal Dig Limits (25×25) 
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Figure 4.6 Optimal Dig Limits (30×30) 

 

Table 4.2 Optimization Results for Effect of Problem Size Experiment 

Parameter 20×20 25×25 30×30 

Objective Function Value ($) 332,000 597,500 550,400 

Solution Time (seconds) 64.02 125.73 233.39 

Gap Tolerance  0.0% 0.0% 0.0% 

 

All the generated dig limits respect the minimum mining width constraints and 

maximize the value (with gap tolerance of 0.0%). Thus, these results validate the model’s 

performance for different sized problems.  
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The optimal solution obtained for the 25×25 grid size in Figure 4.5 closely 

resembles the best classification depicted in Figure 4.2. The model effectively directed 

the upper half of the section to be mined for the mill, ensuring compliance with the 

minimum mining width constraints while maximizing profit. However, the model 

reclassified certain blocks located near the midpoint between the left-hand edge and the 

center as oxide crushed leach, which corresponds to the third destination. To comprehend 

the reasoning behind this reclassification, it is necessary to examine the economic values 

for the third destination (V3) assigned to these blocks prior to the reclassification. 

Specifically, the economic values (V3) of the blocks originally designated for 

destinations one, four, and six were 800, 900, and 800, respectively. Consequently, 

reclassifying these blocks to be mined for destination three was the second and third best 

options, considering the economic values. This reclassification was contingent upon 

satisfying the minimum mining width constraints. 

The optimal solution for the 30×30 section shows interesting results. Figure 4.7 

presents a comparison of the best classification and the optimal dig limits for the 30×30 

bench section. The most interesting thing for the reader to note is the fact that the optimal 

solution reclassifies the areas classified as sectors 1 and 2 to be mined to the third 

destination when there were no blocks classified to that destination prior to the 

reclassification. Again, the economic values for mining these blocks to destination three 

(V3), and the dimensions of the minimum mining width forced the model to pick the 

third destination. The rest of the generated dig limits by the model in the 30×30 bench 

section is very similar to the best classification. 
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Figure 4.7 Before and After with Sector Numbers (30×30) 

 

The results (Table 4.2) show that the solution time can increase significantly as 

the grid sizes increase. Large problems result in a greater number of blocks, constraints, 

and variables. Consequently, as the number of blocks, constraints, and variables increase, 

the time required to find the optimal solution also grows. For instance, you need around 4 

minutes to get the optimal dig limits for a grid size of 30×30. The objective function, on 

the other hand, does not follow the same trend. It depends on the grade distribution of the 

bench. The 30×30 bench section has a lower objective function than the 25×25 bench 

section because of the number of waste blocks in it. While the 4 minutes solution time is 

acceptable, depending on the application, it is possible to have many more blocks on a 

bench than 900 (30×30). Such scenarios will require much more time than what is 

acceptable in short range mine planning tasks. 

In order to assess the factors driving the increase in solution time, the author 

generated scatter plots for the number of blocks, number of variables, and number of 



 

 

54 

constraints versus the solution time. All three scatter plots exhibited an identical pattern. 

It is challenging to determine which variable had the most impact on the solution time 

based on these results. Figure 4.8 – 4.10 show all three scatter plots. 

 

 

Figure 4.8 Relationship Between Solution Time and Number of Blocks 

 

 

Figure 4.9 Relationship Between Solution Time and Number of Variables   
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Figure 4.10 Relationship Between Solution Time and Number of Constraints 

 

This finding indicates a strong dependence between the number of blocks (grid 

size), these three variables, and the complexity of the problem. One can infer that the 

problem size (grid size) affects equally the number of blocks, number of decision 

variables, and number of constraints, all of which play a crucial role in determining the 

solution time. As the size of the problem expands, demanding more blocks, variables, and 

constraints, the computational time required to discover the optimal solution also 

escalates. It is important to note that the conclusions drawn from the analysis should be 

interpreted with caution, as the results are based on a limited number of experiments. 

Conducting additional experiments with a wider range of problem sizes could provide a 

more comprehensive understanding of the relationship between these variables and 

solution time. Future work should explore more comprehensively the relationship 

between the size of the problem and the computational time. 
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4.2. EFFECT OF MINIMUM MINING WIDTH DIMENSIONS  

4.2.1. Minimum Mining Width Dimensions Experiments. In the preceding 

sections, the minimum mining width dimensions for the “dig limits” were uniform square 

shapes and were of moderate size (𝜶𝒊 =  𝜷𝒋). However, to further investigate the impact 

of varying the dimensions of the minimum mining width, this section extends the analysis 

by including additional dimensions. Using the same input data as in section 4.1, this 

experiment varies the values of 𝜶𝒊  and 𝜷𝒋 to explore different mining width proportions. 

In addition to the previous 3×3 minimum mining width, this section considers 

three additional minimum mining width dimensions: 2×5, 5×2, and 5×5. These variations 

allow for a more comprehensive evaluation of the model’s performance with varying 

dimensions of the minimum mining width.   

4.2.2. Results and Discussions. Table 4.3 shows the optimization results for 

these different minimum mining widths. In addition to exploring the effect of varying 𝜶𝒊 

and 𝜷𝒋 on the solution, objective function value, and computational time, it is crucial to 

visually examine the resulting solutions for different minimum mining width dimensions. 

Figure 4.11-Figure 4.13 showcase the solutions for the 30×30 bench section scenario 

(Figure 4.6 shows the optimal dig limits with minimum mining width 3×3). Appendix A 

shows similar figures for the other two bench sections. These figures demonstrate the 

effectiveness of the proposed approach in accommodating different minimum mining 

width dimensions.  
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Table 4.3 Optimization Results for Different Minimum Mining Width Dimensions 

Bench 

Size 

Minimum 

Mining Width 

(𝛼𝑖𝑥 𝛽𝑗) 

Objective Function 

($) 

Solution Time (s) 

20×20 

3×3 332,000 64.02 

2×5 334,100 64.29 

5×2 332,100 65.46 

5×5 328,400 67.16 

25×25 

3×3 597,500 125.73 

2×5 600,000 126.68 

5×2 592,500 128.17 

5×5 591,800 127.30 

30×30 

3×3 550,400 233.39 

2×5 564,900 237.14 

5×2 543,300 252.19 

5×5 534,800 257.22 
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Figure 4.11 Optimal Dig Limits for Bench Section (30×30) with Minimum Mining Width 

(2×5) 

 

 

 
Figure 4.12 Optimal Dig Limits for Bench Section (30×30) with Minimum Mining Width 

(5×2) 
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Figure 4.13 Optimal Dig Limits for Bench Section (30×30) with Minimum Mining Width 

(5×5) 

 

First, Table 4.3 and Figure 4.11 – Figure 4.13 show that varying 𝛼𝑖 and 𝛽𝑗 has an 

effect on the solution, and objective function value. The figures show that the solution 

respected the different minimum mining width dimensions. However, the Table 4.3 

shows that the objective function value decreases for all three bench section sizes (20×20, 

25×25, and 30×30) when the minimum mining width changes from 3×3 to 5×5. 

Similarly, the objective function value increases in all situations when one dimension 

increases even if the other dimension stays constant. That is, the objective function 

decreases when the minimum mining width changes from 2×5 to 5×5 or from 5×2 to 5×5. 

This indicates that the size affects the objective function value. This is because, with 

higher minimum widths, the solution lacks selectivity and the solution differs even more 

from the “best” classification. 

Additionally, these results (Table 4.3) suggest that when rectangular minimum 

mining width are employed, it is more advantageous to utilize the longer side of the 
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minimum mining width in the 𝛽𝑗  direction. For all bench sections, the problem 2×5 

minimum mining dimensions has the highest objective function value. To understand this 

trend, the reader must recall the best classification as well as the copper grades 

distribution figures for bench section 30×30 (Figure 4.3 and Figure 4.4). The blocks of 

similar classification or grade tend to align along the j-direction. This is due to the 

geology of the bench sections of the block model used in this work. By setting the 

minimum mining width at 2×5 as in Figure 4.11, we are increasing the possibility 

“helping” the model to pick the same best destination and not looking at other options 

“destinations”. This result shows that, in cases where the minimum mining width can be a 

rectangle based on equipment dimensions and operating specifications, such dimensions 

can be advantageous for dig limits optimization. When using rectangular minimum 

mining dimensions, the benefits depend on the orientation of the longer dimension 

relative to the geology.  

Secondly, the relationship between solution times and the objective function value 

appears to be similar. That is, solutions with higher objective functions tend to also be the 

ones with lower computational time (Table 4.3). This indicates that the problems with 

larger minimum mining width dimensions are also more complicated problems. 

Finally, this experiment highlights a significant contribution of the proposed BILP 

model, setting it apart from existing models in the literature. The unique feature of this 

model lies in its capability to incorporate rectangular minimum mining width dimensions, 

which provides mine engineers with a level of flexibility and control that was previously 

unavailable. This represents a notable advancement in dig-limits optimization models. 

The significance of this capability becomes particularly evident when analyzing the 
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experimental results. The experiments with varying 𝛼𝑖 and 𝛽𝑗  dimensions clearly 

demonstrate the impact of different mining width proportions on the objective function 

value and solution time. The model's sensitivity to these variations indicates that the 

dimensions of the minimum mining width can significantly affect the profitability and 

efficiency of the mining operation. More importantly, the results show that when the 

geology of the model has clear trends and the equipment also allows for rectangular 

minimum mining width dimensions, aligning these two can increase the value of the 

objective function. Nonetheless, it is crucial to acknowledge that the model does not 

consider the potential rise in mining costs that may arise from utilizing rectangular dig 

limits, even if it enhances the value of the dig limits themselves. An elongated (narrow) 

minimum mining width might result in slower mining rate that increases the unit mining 

cost. This model does not account for that.  

4.3. SUMMARY 

This section conducted a series of experiments to evaluate the performance of the 

proposed BILP dig-limits optimization with varying problem size and minimum mining 

width dimensions. The objective was to evaluate the effect of problem size and minimum 

mining width dimensions on the solution (including objective function value) and 

computational time. Based on these experiments, the thesis makes the following 

conclusions: 

• The results of the investigation on the problem size demonstrated the solution time 

increases when the size of the problem (grid sizes) increases. This can be attributed to 

the larger number of constraints and decision variables associated with larger 
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problem. For example, the solution time for a 30×30 grid size was approximately 4 

minutes compared to that of a 20×20 grid size which was approximately 1 minute.  

• As the minimum mining width increases, the objective function of the optimal dig 

limits decreases because of the loss in selectivity. Consequently, mining engineers 

should ensure that the minimum mining widths they specify are the absolute 

minimum because these can lead to reduced value. 

• In mining situations where the minimum mining width can be a rectangle based on 

equipment dimensions and operating specifications, such dimensions can be 

advantageous for dig limits optimization. When using rectangular minimum mining 

dimensions, the benefits depend on the orientation of the longer dimension relative to 

the geology.  

• The experiment showcases a significant contribution of the proposed BILP model, 

distinguishing it from existing models. Its unique feature is the ability to integrate 

rectangular minimum mining width dimensions, granting engineers more flexibility 

and control. This advancement is particularly evident in the analysis of experimental 

results, which reveal the influence of varying mining width dimensions on objective 

function value and solution time. The model's sensitivity to these variations 

underscores the substantial impact of minimum mining width dimensions on mining 

operation profitability and efficiency. 

• However, it is essential to note that the model does not account for potential increased 

mining costs associated with using rectangular dig limits, even if it improves the 

value of the dig limits themselves.  
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5. CONCLUSION, RECOMMENDATIONS & FUTURE WORK 

5.1. OVERVIEW 

The thesis focuses on solving the dig-limits optimization problem in open pit 

mining to efficiently extract resources and maximize profits. The specific problem is 

determining the most economic and feasible dig-limits for each bench in an open pit 

mine, taking into account the multiple destinations for ore material. Traditionally, dig-

limits are determined manually by geologists using blast holes’ samples and block 

models. Engineers and geologists often manually assign isolated blocks to different dig-

limits to ensure operational feasibility. Previous research has attempted to solve this 

problem using various optimization approaches, but mathematical programming 

approaches have been limited to only classifying ore and waste. The objective of this 

research was to find the optimal block boundaries that allow for multiple material types 

and their designated destinations while maximizing the profit of a bench sector. This is 

achieved by developing a binary-integer linear programming (BILP) model that accounts 

for the size of the mining equipment. The model focuses on the classification and 

selectivity components of dig-limits and can be used as a decision-making tool for 

selecting the optimal dig-limits in open pit mines.   

5.2. CONCLUSIONS 

The author has successfully developed and demonstrated the application of a 

binary-integer linear programming (BILP) model for selecting optimal dig-limits that 

accounts for equipment size constraints. The proposed BILP model, implemented in 
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MATLAB and solved with Gurobi, demonstrated its effectiveness in finding optimal dig-

limits within reasonable time frames. The work has illustrated the model’s application by 

applying it to realistic mining benches of differing sizes and configurations. All solutions 

obtained were feasible solutions. 

The work verified the model using a 20×20 bench section with 3×3 dig limit size. 

The algorithm found an optimal solution with optimal objective function value of 

$332,000 and a gap tolerance of 0.0%, within approximately 64.02 seconds. A careful 

examination of the results shows that the model makes optimal decisions, and the optimal 

solution is feasible. 

Experiments to evaluate how problem size and minimum mining width 

dimensions affect the solution (including objective function value) and computational 

time yielded the following conclusions:  

• Increasing the problem size (grid sizes) resulted in longer solution times due to the 

larger number of constraints and decision variables associated with larger problems. 

For instance, a 30×30 grid size took approximately 4 minutes to solve compared to 

approximately 1 minute for a 20×20 grid size.  

• Higher minimum mining widths led to decreased objective function values of the 

optimal dig limits due to decreased selectivity. Therefore, mining engineers should 

ensure they specify the absolute minimum mining widths to avoid reducing value.  

• In mining scenarios where the minimum mining width can be a rectangle based on 

equipment dimensions and operating specifications, such dimensions can offer 

advantages for dig limits optimization, depending on the orientation of the longer 

dimension relative to the geology.  



 

 

65 

Lastly, the experiments varying minimum mining width dimensions highlighted 

the significant contribution of the proposed BILP model, which sets it apart from existing 

models. Its unique feature is the ability to incorporate rectangular minimum mining width 

dimensions, granting engineers greater flexibility and control. The advantage of this 

feature is particularly evident in those experiments that used rectangular minimum 

mining dimensions. The experimental results show the objective function is higher for 

rectangular minimum mining widths in which the longer side of the rectangle is aligned 

with the geology (i.e., the best classifications are longer in that same direction). This 

shows that models that only allow for equal dimensions in the minimum mining width 

(even when the equipment specifications will support rectangular minimum mining 

widths) are likely to yield suboptimal results. This result also shows that mining 

engineers can generate more value by exploring rectangular minimum mining width 

dimensions when doing dig limit optimization. 

5.3. CONTRIBUTIONS 

The thesis is a significant contribution to the literature and mining industry 

because it addresses key challenges of the dig-limits optimization problem in open pit 

mines that have previously not been addressed.  

• The proposed binary-integer linear programming (BILP) model efficiently determines 

the most economic and feasible dig-limits for each bench while allowing for multiple 

destinations for ore material. Unlike traditional manual methods, this model optimally 

classifies and select dig-limits, enabling the identification of optimal block 

boundaries for various material types and their designated destinations, thereby 



 

 

66 

maximizing profits. Unlike, previous metaheuristic models, this model guarantees 

optimality and is superior to the previous mixed integer linear programming model 

[8] because it allows for multiple destinations for ore. This is the first model that 

guarantees optimality and allows for multiple ore destinations.  

• This is the first model to model rectangular minimum mining width dimensions. The 

model’s unique feature of allowing rectangular minimum mining width dimensions 

grants mining engineers greater flexibility and control, resulting in higher objective 

function values aligned with geology. All previous work used a square or circular 

minimum mining width dimension although some mining equipment are capable of 

mining in narrow, elongated narrow areas. This powerful decision-making tool not 

only enhances resource extraction efficiency but also offers valuable insights for 

mining engineers to make informed and strategic dig-limit optimization decisions, 

ultimately driving value and efficiency in open pit mining operations. Mining 

engineers can now explore the benefits of rectangular (elongated) minimum mining 

width dimensions on dig limits optimization now that this thesis has shown its 

advantages. 

• This model is the first to demonstrate that dig limits optimization can lead to solutions 

with higher economic value by strategically aligning rectangular minimum mining 

widths to favor the geology. By accommodating elongated dig limits where mining 

equipment can operate efficiently, models such as the one proposed in this model (the 

first of its kind) will yield higher objective function values, if the elongated dig limits 

are aligned favorably with geological characteristics.  
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5.4. RECOMMENDATIONS FOR FUTURE WORK 

To further improve and advance the proposed Binary-Integer Linear 

Programming model for optimizing the dig-limits, there are several avenues for future 

research.  

• Future work should investigate approaches to reduce the computational time required 

to solve the BILP model, particularly for large and more complex block models.  

• Future research should aim to incorporate the movements of blasted material into the 

BILP model, which could further enhance the accuracy and efficiency of mine 

planning and production.  

• Additionally, future studies should explore the integration of uncertainty analysis and 

risk assessment into the dig-limits optimization process. By incorporating stochastic 

modeling and probabilistic techniques, the model can account for the inherent 

uncertainties in geological conditions, commodity prices, and operational constraints. 

This will enable mine planners to make more informed decisions and develop robust 

dig-limits strategies that are resilient to fluctuations and unforeseen circumstances. 

•  Furthermore, it is recommended to extend the applicability of the BILP model to 

consider other factors that impact mine planning and production, such as 

environmental constraints, and safety regulations. Incorporating these additional 

constraints and objectives into the optimization framework will provide a more 

comprehensive and sustainable approach to dig-limits optimization.  

Overall, by addressing these research directions, the proposed BILP model can be 

further enhanced and tailored to meet the evolving needs and challenges of the mining 

industry, enabling more efficient and profitable open pit operations. 
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APPENDIX  

Optimal Dig Limits (20×20) 

 

Figure A.1 Optimal Dig Limits (2×5) 

 

 

Figure A.2 Optimal Dig Limits (5×2) 
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Figure A.3 Optimal Dig Limits (5×5) 

 

Optimal Dig Limits (25×25) 

 

Figure A.4 Optimal Dig Limits (2×5) 
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Figure A.5 Optimal Dig Limits (5×2) 

 

 

Figure A.6 Optimal Dig Limits (5×5) 
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