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ABSTRACT 

Hydraulic shovels are increasingly being adopted in the mining industry, which is 

known for its significant energy consumption and carbon emissions. Technological 

improvements in hydraulic shovels aim at bolstering energy efficiency and productivity 

because of the drive to curb energy consumption and enhance energy efficiency. 

However, one aspect that is often overlooked is the vital role of operators. Although the 

influence of operators’ practices on excavators’ energy efficiency has been acknowledged 

in past studies, there is a paucity of quantitative research assessing this influence in the 

context of hydraulic shovels. 

The main objectives of this study are to: 1) develop algorithms for meaningful 

data extraction from shovel telemetry; and 2) test the hypothesis that operator practices 

significantly influence hydraulic shovel energy efficiency, focusing on identifying key 

differentiating parameters. This study collected telemetry data from a 40.5 yd3 bucket 

hydraulic shovel and developed several algorithms to extract meaningful data for 

comprehensive statistical analysis to fulfill the first objective. This study utilized 

statistical tests, including equality of means, to determine differences in operators’ energy 

efficiencies and further employed statistical data analysis techniques such as correlation 

and difference regression analysis to identify key parameters influencing these variations. 

The analysis concluded that payload is the most significant variable influencing 

the differences in energy efficiencies of operators, as it consistently appears in the 

comparison across all operators, while variables such as boom angle, swing-out time, and 

digging time were less consistent explaining differences in operators’ energy efficiency. 
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1. INTRODUCTION 

1.1. BACKGROUND 

The efficient operation of hydraulic shovels is crucial for the productivity and 

profitability of mining, construction, and earthmoving industries, as they play a vital role 

in extraction and loading processes. Hydraulic excavators (in either shovel or backhoe 

configurations) have significant importance in the mining industry due to their efficiency, 

versatility, power, design for heavy-duty excavation, and material handling in 

challenging environments (Caterpillar, 2023; Hitachi, 2023; Komatsu, 2023). Over the 

years, hydraulic shovels have evolved with technological advancements, leading to 

improved efficiency, increased payload capacity, and reduced energy consumption. 

However, one often-overlooked aspect that affects the performance of these machines is 

the influence of operators’ practices on energy consumption and productivity 

(Komljenovic et al., 2010). 

Operators play a crucial role in controlling and maneuvering these machines. 

Consequently, their skills and practices directly affect energy consumption and 

productivity (Dindarloo et al., 2016). In addition, different operators may exhibit varying 

levels of experience, knowledge, and ability to adapt to different working conditions, 

which can significantly impact the efficiency of shovels (Awuah-Offei & Frimpong, 

2007). Therefore, understanding and evaluating these factors is critical for optimizing the 

use of these machines, reducing operating costs, and minimizing environmental impacts. 

The mining industry is a significant energy consumer globally. In the United 

States, to be precise, the mining industry consumes approximately 1.4% of the total 
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energy produced (U.S. Energy Information Administration, 2021). With the increasing 

need for more sustainable energy practices, the mining industry constantly seeks to 

reduce energy consumption and improve energy efficiency. Optimizing the energy 

consumption of hydraulic shovels can contribute to significant energy savings, thereby 

reducing the overall environmental footprint of mining operations. 

Recent advancements in telemetry technology have made it possible to collect 

real-time data on hydraulic shovel performance. These advances include advances in 

edge computing,1 the Internet of Things (IoT), wireless communications technology, 

sensor technology, and machine learning (or artificial intelligence) (Aguirre-Jofré et al., 

2021; Jacobs et al., 2018; Komatsu, 2023; Mining Technology, 2022). Modern telemetry 

systems can measure various parameters, such as fuel consumption, engine load, and 

cycle times, to provide insights into the machine’s energy efficiency and productivity. 

Examples of the monitoring systems in the industry using telemetry include Caterpillar’s 

vital information management systems (VIMS), Komatsu’s LINCS II and monitoring 

system, Hitachi’s MIC, and Motion metrics ShovelMetricsTM. In addition, the data 

collected from telemetry systems could be analyzed to evaluate the influence of the 

practices of operators on the machine’s performance. 

In summary, analyzing the influence of the operators’ practices on hydraulic 

shovel energy consumption and productivity constitutes an essential field of study with 

significant implications for the competitiveness and sustainability of industries relying on 

 

1 Edge computing involves local data processing on the telemetry device, resulting in improved response 

time and reduced data transmission to a central server. 
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these machines. The use of telemetry, combined with advanced statistics, data analytics, 

and machine learning techniques, presents a promising approach to understanding and 

optimizing the part of operators’ practices in the energy efficiency (performance) of 

hydraulic shovels. 

1.2. PROBLEM STATEMENT 

Mining demands a considerable amount of energy and accounts for a significant 

fraction of the world’s energy consumption (Igogo et al., 2021). In the United States, 

mining is the second-largest portion of annual industrial energy consumption within the 

industrial sector, contributing to approximately 9% of the total energy expenditure (U.S. 

Energy Information Administration, 2022). As a result, the mining industry is responsible 

for a considerable portion of global carbon emissions, contributing to climate change and 

environmental degradation (Norgate & Haque, 2010). However, investing in “state-of-

the-art equipment and conducting further research” could significantly diminish energy 

usage to roughly 47% of current levels (U.S. Department of Energy, 2007). The analysis 

suggests that implementing best practices could result in a total energy savings potential 

of 667 Trillion Btu/yr. Specifically, adopting best practices could save 258 Trillion Btu/yr 

(U.S. Department of Energy, 2007). In contrast, research and development efforts to 

improve mining technologies could save an additional 409 Trillion Btu/yr (U.S. 

Department of Energy, 2007). Furthermore, these practical energy savings could reduce 

approximately 40.6 million tonnes of CO2 emissions (U.S. Department of Energy, 2007). 

The two categories of mining machinery that present the most significant prospect 

for energy conservation in mining are grinding and material handling machinery (U.S. 
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Department of Energy, 2007). Adopting best practices and integrating novel 

developments via research and development could lead to an energy saving of 111 trillion 

Btu per year in materials handling operations and 356 trillion Btu per year in grinding. In 

addition, By minimizing the energy usage of these two procedures to their practical 

lowest, the mining sector could conserve approximately 37% of its present energy 

expenditure (U.S. Department of Energy, 2007). Figure 1.1 shows the energy 

conservation prospects for the mining sector’s top 10 energy-consuming processes in the 

U.S. 

 

 

Figure 1.1 Opportunity for energy conservation in the U.S. mining sector, adapted from 

(U.S. Department of Energy, 2007) 

 

Table 1.1 shows that the hydraulic shovel is the second most significant energy-

consuming equipment in surface mines, as estimated by the SHERPA Mine Cost 

Estimating Model. Given the pressing demand to lower CO2 emissions, the substantial 
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capital investment required, the escalating energy costs, and the significant impact on 

mining profitability, any enhancements in productivity and energy efficiency will bring 

enormous advantages to mining operations (Abdi-Oskouei, 2013). 

 

Table 1.1 Material handling equipment assumed (U.S. Department of Energy, 2007) 

Equipment Units 

Btu per hr 

(single unit) 

Daily 

hour per 

unit 

Front-end Loaders 5 3,640,682 14 

Water Tankers 1 1,502,182 2.94 

Rear Dump Trucks 11 1,656,897 14 

Hydraulic Shovel 1 4,102,318 9.38 

Graders 1 618,841 0.56 

Bulldozer 2 5,115,421 14 

Service Trucks 2 339,364 14 

Pick-up Trucks 8 207,112 14 

 

 

The energy efficiency of loading equipment in mining greatly relies on the 

practices of the operators. (Abdi-Oskouei, 2013; Awuah-Offei, 2016; Komljenovic et al., 

2010; Lumley & Lumley, 2005; Patnayak et al., 2008). The productivity of mining 

shovels can vary significantly depending on the operator, even under the same operating 

conditions (Awuah-Offei, 2016; Patnayak & Tannant, 2005; Vukotic, 2013; Yaghini et 

al., 2020). It is possible to improve energy efficiency and reduce cost by clearly 

understanding the interaction between energy efficiency and the practices of operators 

(Abdi-Oskouei, 2013). However, there is still a scarcity of research dedicated to 

numerically examining the influence of operators’ practices on the energy efficiency of 

hydraulic shovels and the causes behind disparities. Past studies have highlighted the 
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substantial impact of operator skills and practices on electric rope shovel and dragline 

productivity (Abdi-Oskouei & Awuah-Offei, 2016; Awuah-Offei & Frimpong, 2007). 

However, the kinematics and dynamics of electric rope shovels and draglines differ from 

hydraulic excavators and will likely mean different actuators controlled by the operator 

will determine any effects on energy efficiency and productivity. Therefore, this study 

uses statistical tools to investigate the connection between the energy efficiency of 

hydraulic shovels and operator practices. The ultimate goal is to devise a technique 

capable of assessing the influence of operators’ practices on the energy efficiency of 

hydraulic shovels. 

1.3. OBJECTIVES AND SCOPE OF THIS RESEARCH 

The primary goal of this work is to evaluate the influence of operators’ practices 

on hydraulic shovel energy consumption and productivity. The precise objectives of the 

research are to: 

1. Develop algorithms to extract meaningful data (i.e., Data per cycle useful 

for understanding operator effects on energy efficiency and productivity) 

out of the shovel data for statistical data analysis; and 

2. Examine the hypothesis that the abilities and practices of hydraulic shovel 

operators influence the shovel’s energy efficiency. Hence, identify critical 

factors responsible for the disparities in operators’ energy efficiencies. 

In this study, the researcher delves deeper into investigating the influence of 

operators’ practices on hydraulic shovel energy consumption and productivity using data 

collected by telemetry. The author explores the methods and techniques employed to 
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collect and analyze data, discusses the connection between the practices of operators and 

machine performance, and identifies key parameters that differentiate energy efficiency. 

Ultimately, this analysis aims to contribute to the ongoing efforts to improve energy 

efficiency and sustainability in the mining and industries. 

Abdi-Oskouei (2013) did a similar study on dragline energy efficiency. However, 

to this author’s knowledge, no similar study has been done on hydraulic shovels to 

pinpoint the key parameters causing the difference in the energy efficiency of operator. 

This work improves upon the approach that Abdi-Oskouei (2013) proposed, using 

theoretically sound approaches to linear-circular regression that Abdi-Oskouei (2013) 

ignored. 

In essence, to accomplish the first objective of this research, this researcher 

developed algorithms as MATLAB functions to extract relevant data necessary for the 

analysis and improved upon the difference linear regression approach proposed by Abdi-

Oskouei (2013) by using theoretically sound approaches to linear-circular regression to 

achieve the second objective. The tests and studies are all carried out on the field dataset 

obtained from the same hydraulic shovel. 

1.4. STRUCTURE OF THE THESIS 

This thesis consists of six sections. Section 1 presents the introduction, which 

includes the background, problem statement, objectives and scope of this study, and 

structure of the thesis. Section 2, which is the literature review, presents a review of past 

relevant studies such as hydraulic shovel operation, the general application of telemetry 

in mining, telemetry focused on excavators, the significance of energy efficiency, factors 
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affecting shovel energy efficiency, and operator practice effects on mining equipment 

performance. Information about sensor data structure, cycle identification, sampling, 

validation, and extraction of meaningful data is presented in Section 3. Section 4 provides 

an initial analysis of the sensor data employed in the case studies. This analysis 

encompasses the examination of summary statistics and the identification and subsequent 

replacement of outliers within the dataset. Section 5 presents the influence of operators’ 

practices on hydraulic shovels’ energy efficiency. This section further presents a 

procedure, which includes a study case for assessing key parameters that account for the 

observed differences in energy efficiencies of the shovel operators. Finally, Section 6 

concludes this research and provides recommendations for future study. 
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2. LITERATURE REVIEW 

 

This section of the thesis reviews the relevant literature to serve as the basis for 

the research. The review covers telemetry and its applications in shovel operations, the 

basics of hydraulic shovel operations, energy efficiency, in general and specific to 

hydraulic shovels, and the influence of the practices of operators on shovel (energy) 

efficiency. The review underscores the existing gaps in the literature, thereby placing this 

research in the context of the literature. 

2.1. GENERAL TELEMETRY IN MINING 

The term “telemetry” commonly refers to the transfer of data through wireless 

means like radio, ultrasonic, or infrared systems from remote or inaccessible locations to 

a central system for analysis and monitoring (Chetty, 1982; Srivastava, 1975). 

Nonetheless, it includes data transmitted via other channels such as telephonic or 

computer networks, wired communication systems like power line carriers, or optical 

connections. Furthermore, telemetry involves the utilization of a physical instrument 

known as a “telemeter” that incorporates a sensor, a transmission route, and a device for 

display, recording, or control.(Bakshi & Bakshi, 2020). In addition, telemetry often 

employs electronic devices, which may be wireless, hardwired, analog, or digital (Figure 

2.1). Other mechanical, hydraulic, and optical technologies are also used in telemetry 

(Bakshi & Bakshi, 2020). 

Initially, telemetry in mines was designed for a dual purpose, including 

monitoring physical parameters and preventing potential hazards (Chetty, 1982). 
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However, in the mining industry, telemetry systems have become increasingly crucial, 

offering a range of benefits, from improved safety to enhanced productivity and reduced 

operational costs (Kiziroglou et al., 2017). As a result, it has evolved significantly over 

the past few decades. In recent years, the mining industry has seen a significant increase 

in the application of telemetry systems, which is driven by advances in communication 

technologies and the need for improved safety, productivity, and environmental 

monitoring (Duarte et al., 2022; F. Sánchez & Hartlieb, 2020a). Major applications of 

telemetry in mining include: 

• Safety.  Telemetry enables real-time monitoring of equipment and personnel, 

reducing the risk of accidents and injuries by detecting unsafe conditions and 

providing early warnings (Akkaş, 2018; Sadeghi et al., 2022; Zhu & You, 2019).  

• Productivity.  Telemetry systems can optimize mining processes and equipment 

utilization, increasing productivity and reducing operational costs (Kiziroglou et al., 

2017; McKinnon, 2022; McKinsey, 2018; Peterson, 1986). 

• Environmental Monitoring.  Telemetry systems can monitor environmental 

parameters and help mitigate potential environmental impacts, such as air and water 

pollution, through early detection and response (Jha & Tukkaraja, 2020; Jo & Khan, 

2018; Minhas et al., 2018). 

Several studies have examined the use of electronics and sensing technology in 

mining operations (Chetty, 1982; Dong et al., 2017; Fantini et al., 2017; Kalinowski et 

al., 2022; Lanciano & Salvini, 2020; Moridi et al., 2015; Peterson, 1986; Ranjan et al., 

2020; Srivastava, 1975; Yuval et al., 2019). For example, Ruff & Hession (2001) outlines 

experiments conducted on commercially available Radio Frequency Identification 
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(RFID) systems, followed by developing a tailored RFID system suitable for surface and 

underground mining equipment applications. Similarly, Nguyen et al. (2020) employed 

vibration sensors to gauge ground vibrations induced by blasts. 

 

 

Figure 2.1 Telemetry system overview (Sierra Wireless, 2015) 

 

Advancements in sensing technologies, communication, and analytics have 

significantly improved telemetry applications in the mining industry. Furthermore, 

integrating Internet of Things (IoT) devices, advanced machine learning algorithms, and 

cloud-based data storage has significantly improved the functionality of telemetry 

systems. As a result, these systems make it possible for real-time analysis and decision-

making. Hence, they facilitate the development of predictive models for equipment 

maintenance, process optimization, and hazard identification (Liu et al., 2018). 
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While the vast opportunities offered by this field of research are undeniable, it is 

crucial to acknowledge the immense volume of data generated by these technologies. 

Therefore, addressing issues related to data storage and, more importantly, data 

management is paramount. Solutions may lie in the capabilities of artificial intelligence 

and machine learning (Duarte et al., 2022; Mansouri et al., 2020; Pishgar et al., 2021). 

Although telemetry in mining has made considerable progress, there remain areas 

for further research and development. These opportunities include creating standardized 

protocols and frameworks to facilitate interoperability among various telemetry systems 

and mining equipment, ensuring seamless integration; examining and addressing 

cybersecurity risks linked to the growing connectivity and dependence on telemetry 

systems in mining operations; and investigating energy-efficient telemetry solutions, 

particularly for remote and off-grid mining sites. Also, research that extracts actionable 

decisions from telemetry data beyond what the systems were designed to address can 

extend telemetry systems’ usefulness and benefits relative to costs. Pursuing these 

research avenues could significantly augment the advantages of telemetry in the mining 

industry. 

2.2. TELEMETRY FOCUSED ON EXCAVATORS 

The application of telemetry and sensing technologies in the mining industry has 

seen substantial growth in recent years, and this is particularly evident in their use on 

excavators. Recent developments in mining include new sensing and monitoring systems 

that enhance equipment performance (F. Sánchez & Hartlieb, 2020b). Early telemetry 
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systems involved simple data-logging devices that collected information on machine 

performance, which had to be manually retrieved and analyzed.  

With advancements in sensing technologies and data communication, modern 

telemetry systems have become more sophisticated, enabling real-time monitoring and 

control of mining equipment. Examples of such technologies include Caterpillar’s vital 

information management systems (VIMS), Komatsu’s LINCS II and monitoring system, 

Hitachi’s MIC, Drives & Controls Service AccuWeighTM, and Motion metrics 

ShovelMetricsTM. These sensing and monitoring technologies allow mine operators to 

track the location of equipment, ensure its proper functioning, and make informed 

decisions regarding equipment utilization and hiring. In addition, by optimizing 

equipment utilization and preventing redundant hires, telemetry helps reduce equipment 

hire costs and improve overall operational efficiency. 

Excavators are commonly used for material handling in unstructured 

environments like mining and construction. However, operating them in these practical 

settings can pose challenges due to severe conditions like rock fall, soil subsidence, and 

excessive particulate matter, resulting in potential fatalities and injuries (Zhang et al., 

2021). Therefore, telemetry has been integrated into mining operations to ensure safe, 

efficient, and sustainable operations. Advancements in sensing and monitoring 

technologies drive this integration. For example, Kiziroglou et al. (2017) noted that real-

time monitoring of mining operations, mines can improve productivity and reduce 

operational costs. Similarly, Pan (2005) suggests that condition monitoring through 

telemetry can enhance the maintenance of heavy machinery, including excavators, and 

can help in predicting potential failures, thus reducing downtimes. As a result, Original 
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Equipment Manufacturers (OEMs) increasingly embed telemetry sensors into their 

products and retrofit existing equipment with telemetry devices. However, the challenge 

lies in accessing telematics data from multiple sources to facilitate effective decisions, as 

each OEM often has its own proprietary technology. 

Telemetry and sensing technologies on excavators are a subset of this broader 

integration. Excavators in mining are subject to harsh conditions, leading to potential 

equipment failure. Thus, telemetry is invaluable for predictive maintenance. For example, 

workers at the mine were usually required to go inside the primary crusher to retrieve a 

lost tooth2. However, with the current integration of monitoring sensors, workers can be 

kept out of harm’s way while ensuring uninterrupted operations (Motion Metrics, 2023). 

In addition, real-time monitoring and analysis of operational parameters of excavators, 

such as engine temperature, hydraulic pressure, vibrations, and energy consumption, can 

help identify irregular patterns that may indicate possible equipment failure (Chen et al., 

2010; Lazarević et al., 2016; Pan, 2005; X. Zhou & Lei, 2021).  

Telemetry systems in excavators are unique only in the type of sensors used for 

data acquisition3. The commonly used telemetry systems by draglines and cable shovels 

in the mining industry are the AccuWeighTM and ShovelMetricsTM monitoring systems. 

These monitoring systems comprise multi-sensors that provide comprehensive real-time 

performance data to the operator, enabling informed decision-making in mining 

 

2 Tooth missing or broken from the bucket of the excavator during digging or loading process. In mining, 

the tooth is commonly referred to as a component of ground engagement tool (GET). 

3 The communication and data storage systems are similar to other mine telemetry systems. 
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operations. The AccuweighTM monitoring system is a microprocessor-based remote 

observation tool that provides continuous performance data in real time. Its algorithms 

enable monitoring of the primary machine4 signals, which include motor current and 

voltage, and convert these signals into meaningful information. This information includes 

the exact location of the bucket, payload, and swing angle displayed to the operator on a 

digital screen. It also monitors machine overloading and alerts the operator in real time. 

Similarly, the ShovelMetricsTM, equipped with a high-resolution 3D bucket 

camera, pressure sensors, and accelerometers, provides precise data about the bucket’s 

position in real-time. This feature, coupled with its AI-enhanced fragmentation analysis, 

informs personnel about the size of the material in the bucket and allows them to make 

adjustments on the spot to improve efficiency. Additionally, with the system’s ability to 

detect worn and broken ground engagement tool (GET) components, operators are aware 

of the need for maintenance before the bucket’s performance diminishes. In essence, both 

systems provide real-time feedback and critical data points on key performance 

indicators, which include payload, swing angles, energy components, cycle time 

components, and potential operational issues. Thus, allowing for proactive decision-

making, increased efficiency, and enhanced safety in mining operations. 

In summary, telemetry systems on excavators offer numerous benefits, such as 

improved safety, enhanced efficiency, and cost savings. These systems enable real-time 

monitoring of equipment and environmental conditions, allowing for proactive measures 

to prevent accidents and optimize operations. In addition, by leveraging telemetry data 

 

4 The machine referred to here can either be a cable shovel or a dragline. 
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and analytics, mine sites can make better equipment hiring decisions, reduce costs, and 

improve overall performance.  

2.3. BASICS OF HYDRAULIC SHOVEL OPERATION 

Hydraulic shovels, initially utilized in the construction industries and now more 

commonly found in surface mining operations across the globe, have become an integral 

part of both sectors, offering high-capacity and efficient excavation capabilities 

(Patnayak, 2006). In addition, the versatility and maneuverability of hydraulic shovels 

have led to significant advancements in these sectors, making them essential pieces of 

equipment. Hydraulic shovels are earthmoving machines that consist of a boom, stick, 

bucket, hydraulic cylinders, and an undercarriage for mobility. Figure 2.2 illustrates the 

nomenclature and assemblies of hydraulic shovels. 

 

 

Figure 2.2 Nomenclature of a hydraulic shovel (Soofastaei et al., 2018) 
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These large excavators operate on hydraulics principles, using pressurized fluid to 

transmit power and control motion. In hydraulic shovels, the entire digging process is 

controlled by hydraulic systems driven by diesel engines. They come in backhoe and 

front shovel configurations. In contrast to their predecessor, the cable shovel, hydraulic 

shovels offer improved precision, flexibility, control, and efficiency (Andreev et al., 

2017; Patnayak, 2006). The design of hydraulic shovels focuses on maximizing 

efficiency, durability, and ease of maintenance (Caterpillar, 2023; Hitachi, 2023). 

Material selection and structural analysis are crucial for ensuring the reliability and 

longevity of the components (Caterpillar, 2023). Efficient hydraulic shovel operation 

relies on proper operating techniques, such as bucket positioning and digging strategies. 

Besides the forces used to move the machine during operation, forces acting on 

the shovel bucket are the most important forces dictating energy consumption. The 

literature shows that six unique forces act on the bucket during digging, as Hemami et al. 

(1994) indicated. Figure 2.3 illustrates these forces. The first force, f1, involves the 

exertion required to counteract the weight of the material loaded into the bucket. This 

force significantly contributes to the total digging resistance. Another force, f2, arises due 

to the material’s resistance to compression by the base of the shovel bucket. However, 

Hemami et al. (1994) and Takahashi et al. (1998) propose this force to be negligible, as 

the bucket base does not significantly compress the material (soil or muck pile) in most 

operational trajectories. The third force, f3, is attributed to the friction between the 

material and the bucket as the material slides down the bucket’s inner surface. This force 

is often considered a component of the overall cutting resistance. The fourth force, f4, 

results from the resistance encountered at the bucket tip during soil cutting or muck pile 
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penetration. Research identifies this force, with f1, as essential in determining digging 

resistance (Hemami et al., 1994; Takahashi et al., 1998). The fifth force, f5, corresponds 

to the inertial force of the loaded material within the bucket. This force is often 

considered inconsequential if no significant acceleration occurs during excavation. The 

final force, f6, relates to the energy necessary to mobilize the empty bucket. This force 

can be accurately determined once the bucket’s weight is established. 

 

 

Figure 2.3 Forces acting on the bucket of the shovel during excavation (Awuah-Offei et 

al., 2009) 

 

The standard operation of a shovel, excluding the traversing, consists of a cyclic 

process (Figure 2.4). The complete cycle operation of a hydraulic shovel involves 

swinging in and positioning the bucket, filling the empty bucket with materials by 

digging the face, swinging out, and dumping the materials to commence the next cycle. 

Hydraulic shovels typically have a capacity ranging from 7 yd3 (5 m3) to 70 yd3 (54 m3) 
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for standard rock applications (Caterpillar, 2020). Due to its large size and high 

production rate, this machine is a significant energy consumer in mining operations. For 

example, a 14.4 yd3 bucket capacity shovel can consume 26-40 gal/hr of fuel (Awuah-

Offei et al., 2011). 

Factors affecting hydraulic shovel performance include bucket capacity (payload), 

cycle time, energy efficiency, and machine availability (Dindarloo et al., 2016; Soofastaei 

et al., 2018). The techniques for improving performance include payload monitoring, 

machine condition monitoring, and operator training (Aguirre-Jofré et al., 2021; Chen et 

al., 2010). In addition, simulation and modeling tools, such as discrete event simulation 

and finite element analysis, can aid performance analysis and optimization (Awuah-Offei 

et al., 2011; Raj et al., 2009). Case studies on performance improvement demonstrate the 

potential benefits of implementing these techniques. 

 

 

Figure 2.4 Hydraulic shovel sequence of operation 
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2.4. ENERGY EFFICIENCY IN MINING 

The mining industry is essential for extracting minerals and materials to sustain 

the global economy. However, the industry significantly contributes to global energy 

consumption, accounting for 15% of worldwide electricity consumption, 38% of 

worldwide industrial energy utilization, and 11% of worldwide energy expenditure 

(Igogo et al., 2021). The high energy consumption contributes to greenhouse gas 

emissions, operational costs, and environmental impacts. Energy costs form a substantial 

part of the mining industry’s budget, accounting for an average of 15% to 40% of the 

total operating expenses (Igogo et al., 2021; Maennling & Toledano, 2018). This 

considerable investment in energy production, primarily relying on fossil fuels, leaves the 

mining sector extremely vulnerable to fluctuations in the fossil fuel market (Igogo et al., 

2021). Projections anticipate a potential growth of up to 36% in the energy demand for 

mining activities by 2035 (Igogo et al., 2021; Maennling & Toledano, 2018).  

Therefore, improving energy efficiency in mining has become a priority for 

stakeholders, including governments, mining companies, and environmental groups. With 

growing concerns about climate change, resource depletion, and rising energy costs, it is 

becoming increasingly critical for the mining industry to enhance its energy efficiency. 

Enhancing energy efficiency in mining can help reduce operational costs, mitigate 

environmental impacts, and contribute to global sustainability goals.  

Mining energy consumption can be categorized into four main areas: extraction, 

materials handling, comminution, and mine support services (Awuah-Offei, 2018b), with 

comminution and material handling being the two major energy-intensive processes in 

mining operations. Comminution, which includes crushing, grinding, and separation, is 
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among the highest energy-consuming mining processes, accounting for up to 50% of total 

energy consumption (Soofastaei & Fouladgar, 2022a). On the other hand, materials 

handling, which includes loading and haulage of ore and waste materials, accounts for 

about 10-20% of the total energy (Kecojevic et al., 2014; Soofastaei & Fouladgar, 

2022a). The mining sector traditionally relies on diesel, natural gas, and grid electricity 

for its energy needs (Igogo et al., 2021; Soofastaei & Fouladgar, 2022a). 

However, there has been a notable shift towards natural gas and grid electricity 

(Soofastaei & Fouladgar, 2022a). In addition, the industry is witnessing rising adoption 

of renewable energy sources to fuel its operations (Igogo et al., 2021; Kirk & Cannon, 

2020). This significant transition is influenced by various factors, such as the substantial 

energy costs associated with mining, the industry’s commitment to achieving 

environmental objectives, and the societal considerations related to mining operations 

(Igogo et al., 2021). Furthermore, this evolution in energy use underlines the mining 

industry’s efforts to balance operational demands with sustainability and social 

responsibilities (Igogo et al., 2021). 

As far as the mining industry is concerned, energy efficiency is typically gauged 

by the ratio of valuable work accomplished to the input of energy (Awuah-Offei, 2016). 

In the mining industry, the volume of output, such as rock tonnage or metal grammage, 

often serves as a surrogate for valuable work done (Abdi-Oskouei & Awuah-Offei, 2014; 

Awuah-Offei, 2016; Odhams et al., 2010). In addition, the amount of diesel consumed by 

haulage trucks is frequently used as an energy input indicator (Awuah-Offei, 2016; 

Awuah-Offei et al., 2011; Motlogelwa & Minnitt, 2013). Various factors such as ore 

grade, depth, mine layout, extraction technologies, and equipment efficiency influence 
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energy consumption in mining (Koppelaar & Koppelaar, 2016; Soofastaei & Fouladgar, 

2022a). For example, extracting lower ore grades would require more energy (Igogo et 

al., 2021; Lezak et al., 2019; Norgate & Haque, 2010). At the same time, deeper mines 

necessitate more energy for ventilation and materials handling (Awuah-Offei, 2018b; 

Demirel, 2018; Koppelaar & Koppelaar, 2016; Levesque et al., 2014). Mine layout can 

also impact energy efficiency, as longer haul distances and more complex road networks 

increase energy requirements. 

Efforts to boost energy efficiency in the mining sector address every facet, 

ranging from waste heat recovery and electricity demand management to the production 

of energy from residues (waste products), mine drainage reduction, and ventilation 

improvement (Awuah-Offei, 2016; Levesque et al., 2014; Soofastaei & Fouladgar, 

2022a). Despite that, material handling and comminution represent the most energy-

intensive aspects, thereby offering significant potential for energy efficiency 

improvements (Awuah-Offei et al., 2011; U.S. Department of Energy, 2007). Hence, 

these operations have the greatest potential for boosting energy efficiency and reducing 

operational costs (Soofastaei & Fouladgar, 2022a). 

Several strategies have been identified to improve energy efficiency in mining. 

These include optimizing mine planning and design, enhancing the efficiency of drilling 

and blasting (Karpuz, 2018; Lusk & Silva, 2018; Sanchidrián et al., 2018), material 

handling (Awuah-Offei, 2018a; Awuah-Offei & Frimpong, 2007; Sahoo et al., 2018; 

Soofastaei et al., 2018), utilizing renewable energy sources (Igogo et al., 2021; J. 

Sánchez, 2018), and improving processing efficiency (Awuah-Offei, 2018b; Bouchard et 

al., 2018; Klein et al., 2018; Moats, 2018). Mine planning, for instance, substantially 



 

 

23 

impacts the total energy consumption, as it dictates the volume of overburden removal, 

the distance materials are transported, and methods used for extraction and beneficiation 

(Norgate & Haque, 2010). 

Advanced Information Technologies (IT), particularly data analytics, are 

increasingly being adopted to improve mining processes and reduce energy consumption 

and operational costs (Soofastaei et al., 2017; Soofastaei & Fouladgar, 2022b, 2022a; 

Trivedi & Fathi, 2021). With mining operations generating significant amounts of data, 

data analytics and artificial neural networks (ANNs) are beneficial for more effective 

energy management. Furthermore, ANNs can be employed for predicting and 

investigating energy efficiency in the mining sector, especially concerning haul truck 

energy efficiency in surface mining (Soofastaei, 2016). Moreso, researchers have begun 

deploying Artificial Intelligence (AI) to optimize decision-making and enhance energy 

efficiency in mining engineering (Soofastaei & Fouladgar, 2022b). Artificial Intelligent 

models have shown promising results when fed with unstructured and noisy datasets, 

predicting energy consumption and enhancing energy efficiency. 

While technology plays a critical role, the regulatory environment established by 

the government significantly influences the industry’s energy efficiency. Some studies 

have reported the contradictory effects of these policies on the mining sector (Awuah-

Offei, 2016; Henriksson et al., 2014; Hu & Kavan, 2014). Furthermore, carbon taxes and 

similar regulatory costs can impact the profitability and sustainability of energy-intensive 

processes (Awuah-Offei, 2016). 

In light of the impacts of climate change, the position of renewable energy 

resources in mining has drawn substantial research interest. For instance, mining 
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locations can be repurposed as renewable energy reservoirs, like low-temperature 

geothermal resources and on-site renewable energy production can be integrated into the 

varieties of energy sources (Awuah-Offei, 2016; Carvalho et al., 2014; Hall et al., 2011; 

Paraszczak & Fytas, 2012; Paredes-Sánchez et al., 2015; Soofastaei & Fouladgar, 2022a; 

Verhoeven et al., 2014; Watzlaf & Ackman, 2006). 

This research is crucial in filling a notable gap in the current mining energy 

efficiency literature. While there has been considerable investigation into cable shovels 

and draglines, empirical studies focusing specifically on hydraulic shovels are scarce. 

Therefore, this research represents a pioneering endeavor to explore the interaction 

between energy efficiency in hydraulic mining shovels and operator practices, uniquely 

contributing to the body of knowledge. 

This study can potentially reduce energy consumption and lower operational costs 

in using hydraulic shovels in mining operations by identifying inefficient practices and 

informing strategies for improved energy use. Moreso, with the robust statistical data 

analysis approach, this study lays the groundwork for future data-driven decisions that 

enhance the sustainability and efficiency of mining operations. The outcome of this 

research could also have important implications for governmental policies and industry 

training programs, encouraging further investments in data analytics and enabling the 

development of operator training programs that promote energy-efficient practices.  

Furthermore, this study underscores the potential of technology in the mining 

sector, showcasing the value of statistical data analytics and encouraging further 

innovation in developing advanced AI systems for sustainable and efficient mining 

operations. Also, it creates avenues for research that extract actionable decisions from 
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telemetry data beyond what the systems are designed initially to address for hydraulic 

shovels. In conclusion, this work not only addresses a significant gap in existing literature 

but also creates opportunities in the mining industry for improved efficiency, policy 

development, and technological advancement. 

2.5. ENERGY EFFICIENCY OF HYDRAULIC SHOVELS 

The power and energy of hydraulic excavators are derived from their hydraulic 

system, thereby transforming the raw mechanical energy produced by the engine into a 

usable form of hydraulic energy. In most cases, a diesel engine serves as the power 

generator for the hydraulic mining shovel, which sets the system’s mechanisms in 

motion. Among these mechanisms are hydraulic pumps, which harness the mechanical 

power generated by the engine and transmute it into hydraulic energy. By generating a 

full flow, these pumps move hydraulic fluid throughout the system, effectively 

transferring energy from themselves to the actuators. Once set in motion, the hydraulic 

fluid can swiftly respond to alterations in flow and pressure, enabling control over the 

shovel’s various parts. The actuators, which include cylinders and motors, are at the 

receiving end of this hydraulic energy. Through extending and retracting, the cylinders 

control the movement of the boom, stick, and bucket. At the same time, the motors use 

the received energy to rotate the superstructure. 

As defined earlier in Section 2.4, energy efficiency refers to the proportion of the 

output of energy to the input of energy. However, in some cases, energy input is defined 

using proxies (Awuah-Offei, 2018a; Babaei & Hall, 2016). For example, quantifying 

effective work amid shovel loading operations, encompassing digging and transportation 
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of materials into hoppers or haulage trucks, often proves challenging in a field setting 

(Abdi-Oskouei & Awuah-Offei, 2014; Awuah-Offei, 2018a). Therefore, the weight of the 

loaded material or payload is frequently utilized to represent the valuable work done 

(Equation 2.1). A widely adopted energy efficiency metric for shovel operations among 

scholars is the energy per unit payload, also known as specific energy. This measure 

represents the inverse of energy efficiency (Awuah-Offei & Frimpong, 2007; Patnayak & 

Tannant, 2005). This methodology is rooted in the preliminary research of shovel 

performance, driven by the aspiration to classify geologic materials or analyze 

fragmentation outcomes (Acaroglu et al., 2008; Hadjigeorgiou & Poulin, 1998; Iai & 

Gertsch, 2013; Muro et al., 2002; Scoble & Muftuoglu, 1984). 

  

  (2.1) 

 

Specific energy was initially conceived to determine the excavation difficulty of 

material or muck piles, not to assess the efficiency of the shovel’s performance (Awuah-

Offei, 2018a). However, it has become commonplace for academics and professionals to 

employ payload per unit energy consumed5 or specific energy as a yardstick for loaders’ 

(shovels) energy efficiency. This routine, however, presumes that the shovel’s loading 

speed does not factor into defining efficient loading.  

 

5 A definition closer to the theoretical concept of energy efficiency. 
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Contrarily, mining leaders and professionals attach significant importance to 

shovels’ rate of loading. as it dictates the overall rate of production of the material 

handling system. Therefore, it can be inferred that assessing the shovel operations’ 

energy efficiency is more appropriately done by employing the energy expended for each 

unit rate of loading (Awuah-Offei, 2018a; Awuah-Offei & Frimpong, 2007). Babaei 

Khorzoughi and Hall (2016) demonstrated that a shovel could use drastically different 

energy amounts while digging at comparable loading rates. Some other authors have 

suggested that loading’s energy efficiency should be perceived as the proportion of the 

loading rate to the input of energy (Awuah-Offei, 2018a). Therefore, this thesis uses this 

definition of energy efficiency of loading (Equation 2.2). 

 

 
 (2.2) 

 

2.6. FACTORS AFFECTING ENERGY EFFICIENCY OF HYDRAULIC 

SHOVEL 

The efficiency of a hydraulic shovel is intrinsically linked to two core parameters: 

payload or productivity and energy consumption, as Equation (2.1) implies. Therefore, 

we must explore and comprehend the various elements influencing these key parameters 

to effectively manage and potentially enhance its energy efficiency. A review of prior 

research on dragline and cable shovels reveals that four primary factors govern these 

parameters (Figure 2.5): operator practices, mine design and planning, conditions of 

operation, and attributes of equipment (Abdi-Oskouei, 2013; Awuah-Offei, 2016, 2018a; 
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Awuah-Offei et al., 2011; Hettinger & Lumley, 1999; Kecojevic et al., 2011). Past 

research and studies (even though mostly on cable shovels) have been instrumental in 

shedding light on these influencing factors, thus forming the basis of our understanding 

and providing guidance for further investigation.  

Mining shovel activities play a central role in energy efficiency within mining 

practices, with a particular focus directed towards the excavation phase (Awuah-Offei, 

2018a). This process is highly energy-intensive; thus, models of its kinematics and 

dynamics have been the primary research focus (Awuah-Offei, 2018a; Guzman et al., 

2015). The energy consumed during excavation primarily relies on the crowd and hoist 

forces, the speeds associated with them, and the duration of the digging process (Awuah-

Offei, 2016; Awuah-Offei & Frimpong, 2007, 2011). In addition, these forces must be 

strategically deployed to navigate through the prescribed digging trajectory and overcome 

resistance presented by the material to be excavated (Awuah-Offei & Frimpong, 2007). 

The concept of shovel energy efficiency revolves around two primary parameters: 

the energy consumed during loading and the rate of loading (Awuah-Offei, 2018a; 

Awuah-Offei & Frimpong, 2007). Consequently, any factor influencing these parameters 

will directly impact energy efficiency (Awuah-Offei, 2018a). Previous studies have 

pinpointed conditions of operation, shovel attributes, mine design, operator skills, and 

practice (Figure 2.5) as crucial elements impacting energy efficiency (Abdi-Oskouei, 

2013; Awuah-Offei, 2016; Awuah-Offei et al., 2011). 

Energy efficiency is the proportion of per unit time productivity in relation to the 

input of energy (Equation 2.1), which varies based on whether the loading equipment is 

electrically or diesel-powered. For instance, for non-electric (diesel) excavators like 
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hydraulic shovels, the fuel volume serves as a proxy for energy input. As such, the 

excavation specifications, mine planning and design, and conditions of operation will 

dictate the production rate. At the same time, the energy input will be influenced by 

factors such as the load of the material, the bucket trajectory6, and digging resistance. 

 

 

Figure 2.5 Factors affecting shovel energy efficiency 

 

Whether naturally occurring or design-induced, operating conditions can 

significantly impact the energy efficiency of mining shovels. Factors such as resistance to 

 

6 Bucket's trajectory refers to the path or route that the bucket of an excavator, shovel, or dragline follows 

during the operation of loading or digging. It includes the movement of the bucket from when it starts 

digging into the material, lifts the material, swings towards the dump or hauler, releases the material, and 

finally swings back to the starting point for the next cycle. 
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digging, bench profiles, and truck matching all play crucial roles in this context (Abdi-

Oskouei, 2013; Awuah-Offei et al., 2011; Awuah-Offei & Frimpong, 2007; Karpuz et al., 

1992). Sub-optimal ground fragmentation can lead to challenging digging conditions and, 

as a result, causes an increase in crowd and hoist forces, leading to higher energy 

consumption and reduced energy efficiency (Awuah-Offei, 2018a; Singh & Narendrula, 

2006). Similarly, inefficient truck matching can result in wasted energy as the shovel 

waits for the truck’s arrival, consequently diminishing energy efficiency (Awuah-Offei, 

2018a). 

Due to the limited research on hydraulic shovels, most of the literature reviewed 

in this thesis is focused on cable shovels. Considering the operational similarities 

between these shovels, this author hypothesizes that the findings from cable shovels can 

be extrapolated and applied to hydraulic shovels. However, it is important to note that no 

empirical study is available to back this up. As we explore these factors, it is also crucial 

to consider the potential transference of knowledge between these two types of heavy-

duty machinery. Thus, previous research on cable shovels may be more relevant to our 

understanding of hydraulic shovel energy efficiency than initially perceived.  

2.7. INFLUENCE OF THE PRACTICES OF OPERATORS ON SHOVEL’S 

ENERGY EFFICIENCY 

The influence of the practices of operators on mining shovels’ energy efficiency is 

critical and cannot be overstated (Awuah-Offei, 2016, 2018a; Awuah-Offei et al., 2011). 

The role of an operator extends beyond the operation of the machines. Energy efficiency 

is significantly influenced by the skills and practices of operators, even when operating 

conditions are optimal (Abdi-Oskouei & Awuah-Offei, 2016; Awuah-Offei & Frimpong, 
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2007; Lumley & Lumley, 2005; Sahoo et al., 2018). Various elements of operation, such 

as cycle duration and fill factor of the bucket, are controlled by the operator, thereby 

directly influencing the energy consumption and rate of production (Awuah-Offei, 2016). 

It is important to note that the trajectory significantly affects the fill factor and energy 

consumption (Awuah-Offei, 2016). 

Operators’ role, particularly their skill level, and practices, is crucial to energy 

efficiency (Awuah-Offei, 2016). The operator influences the payload and cycle duration, 

which are directly tied to energy efficiency (Awuah-Offei & Frimpong, 2007, 2011). The 

travel rate and operator-selected trajectory influence the duration of the cycle. At the 

same time, the payload depends on the operator’s effectiveness in filling the bucket. 

Higher travel rates could potentially reduce the cycle time, increase the loading rate, and 

decrease overall energy consumption per cycle (Awuah-Offei, 2016). 

The operator’s role in cable shovel operations has also been highlighted in the 

relationship between hoist speed and faster digging (Awuah-Offei, 2016; Patnayak et al., 

2008). Increasing the crowd speed can result in deeper cuts and, consequently, higher 

energy consumption. However, the loading rate can be optimized to decrease overall 

energy consumption (Awuah-Offei & Frimpong, 2007). This balance, achieved through 

effective operator skills and practices, can substantially boost the energy efficiency of 

mining shovel operations. 

Research has indicated significant inefficiencies in energy usage due to the 

practices of operators (Abdi-Oskouei & Awuah-Offei, 2014, 2016; Kecojevic et al., 

2014; Patnayak et al., 2008). Some operators, when compared to the most efficient 

operators, could expend up to 40% more energy for each tonne of materials produced 
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(Awuah-Offei, 2016). Furthermore, it has been shown that the execution speed and 

trajectory used by the operator during the excavation phase were the most impactful 

elements influencing energy consumption (Awuah-Offei & Frimpong, 2007; Wei & Gao, 

2012). 

Interestingly, greater depths of cut could increase the fill factor, which potentially 

improves productivity and energy efficiency. However, deeper cutting depths are 

generally associated with increased energy consumption (Awuah-Offei & Frimpong, 

2007; Karpuz et al., 1992; Patnayak et al., 2008). Consequently, striking a balance 

between the depth of cut and the fill factor can significantly influence energy efficiency 

(Awuah-Offei, 2016). In addition, the pace at which an operator carries out a trajectory is 

in direct ratio to the power demand, resulting in decreased cycle duration and increased 

productivity (Awuah-Offei, 2016). Research has shown this to be the case for cable 

shovels, and this author believes this will also be generally true for hydraulic shovels 

because of the similarities in the mode of operation of both mining shovels. While the 

author believes this is true for hydraulic shovels, the relationship between speed, power 

draw, and productivity is not always linear. An optimum speed may result in the highest 

productivity without causing excessive wear on the machine or inefficient use of power. 

It is essential to note that this relationship will also be influenced by various other factors, 

such as the properties of the material being moved, the efficiency of the hydraulic system, 

the operator’s skill and experience, and the machine’s overall condition.  

However, simulation experiments suggest that an attempt to increase the digging 

speed requires careful optimization to maintain overall energy efficiency (Awuah-Offei 

& Frimpong, 2007). In addition, the interaction between the operator and other 
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equipment units may introduce inefficiencies, resulting in delays and periods of 

inactivity. Although this aspect has not been extensively investigated, it is clear that a 

less-than-optimal interplay between the operator and equipment can cause a drop in 

energy efficiency. (Awuah-Offei et al., 2011). 

In conclusion, the practices of operators substantially influence shovels’ energy 

efficiency in mining. While the cable shovel research provides some basis for us to 

hypothesize that operators will have a similar impact on hydraulic shovel energy 

efficiency, there is no empirical evidence to support this. This area of research should be 

explored to improve hydraulic shovel energy efficiency. More nuanced research 

exploring the optimization of these practices, including operator interactions and 

execution speeds, could yield substantial energy savings and productivity gains. This 

underscores the need for systematic and rigorous training of operators to ensure that their 

practices align with energy-efficient and sustainable mining operations. 

2.8. SUMMARY 

Integrating telemetry and sensing technologies in the mining industry, particularly 

excavators, has significantly improved operational efficiency, safety, and cost-

effectiveness. These advanced systems enable real-time equipment monitoring, 

enhancing its utilization and maintenance while promoting worker safety. Predictive 

maintenance can foresee potential equipment failures, minimizing downtime and 

expenses. Thus, telemetry supports more informed decision-making, fostering overall 

performance in mining operations. 
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We can gauge a shovel’s energy efficiency through factors like payload and 

overall energy expenditure, indicative of the accomplished work and input energy. 

Boosting energy efficiency provides a viable method for catering to growing energy 

needs while lessening the environmental footprint of energy use. The hydraulic shovel’s 

productivity, flexibility, and high performance have made it a prevalent piece of 

equipment in surface mines. Monitoring systems installed on these shovels can furnish 

critical insights, enable data-driven decision-making, and create strategies for improving 

equipment performance in mining operations. Despite these benefits and strategies, past 

work focused on dragline and cable shovel energy efficiency. There has not been any 

empirical study that has explored the influence of the practices of operators on hydraulic 

shovel energy efficiency.  

Identifying the factors influencing the productivity and energy usage of a 

hydraulic shovel is vital for effectively managing its energy efficiency. Performance 

indicators integral to shovels’ energy consumption and productivity include the factor of 

fill, duration of the cycle, the energy of digging, and the positions where the shovel 

engages and disengages. The practices of operators, operating scenarios, mining design 

and planning, and the attributes of the equipment govern these indicators. Modifying 

operator performance is the most cost-effective way to boost energy efficiency among 

these factors.  

While altering the operating conditions may not always be feasible in a mine, 

optimizing the shovel drive mechanism can be expensive, and assigning inefficient tasks 

to shovels can sometimes be inevitable. Investing in operator training to boost their 

performance is a comparatively affordable enhancement and an excellent approach to 
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improving energy efficiency. Therefore, comprehending the influence of operators’ 

practices on hydraulic shovel energy efficiency and quantifying this connection is crucial. 

Thus, recognizing variables that differ between operators can enhance training systems. 



 

 

36 

3. HYDRAULIC SHOVEL PERFORMANCE DATA COLLECTION AND 

DEVELOPMENT OF CYCLE SAMPLING ALGORITHM 

 

This section of the thesis describes the data acquisition, data structure, pre-

processing, development of cycle and sub-cycle sampling algorithms, and algorithms to 

extract cycle-based information. All the data used in this research came from a 

monitoring system installed on a 40.5 yd3 bucket hydraulic shovel. The work uses this 

data to develop algorithms to sample cycles (and identify sub-cycles) and extract cycle-

based information for the key performance indicators needed for this study. 

3.1. DATA ACQUISITION AND PRE-PROCESSING 

Typically, monitoring systems on excavation machinery gather and archive a 

wide range of real-time operational parameters, including vital performance indicators 

such as payload, cycle time components, voltage, angles, pressure, and temperatures. To 

effectively measure energy efficiency, it is necessary to track the elements of energy 

usage throughout the hydraulic shovel cycle. Such elements include cylinder pressures, 

torque, and angular displacements that can be used to estimate energy input. 

The data used in this work is acquired from a 40.5 yd3 bucket Hitachi EX-5600 

hydraulic shovel operated by 16 different operators in a one-month operation period 

using a telemetry-based commercial monitoring system. The on-site experiment consisted 

of a month-long observation of the same shovel operated by different operators under 

similar conditions and data downloaded via telemetry for the purpose of this research. 

The commercial machine monitoring systems with sensors installed on the hydraulic 

shovel collected real-time information, including roll, pitch, yaw angles, accelerations, 
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and velocities in x, y, and z directions, for the cab, bucket, stick, and boom. The system 

also collects boom head and rod pressures. This researcher worked with the commercial 

monitoring systems owner to download the data in comma-separated values (csv) format. 

This raw data, contained in the sensor download files, require further processing into 

meaningful information that can be used for this study. The systems owner provided a 

MATLAB script that this researcher modified to read the information and process the 

data into the initial data set for this research (Figure 3.1). 

 

 

Figure 3.1 Sample plot of angular displacements from the initial data from a single sensor 

file 

 

After the sensor data is pre-processed (Figure 3.1), the output data includes 

twenty-six variables sampled at 30 Hz frequency. For the purpose of this study, ten of 

these variables are used to elucidate the relationship between operators’ practices and the 

energy efficiency of hydraulic shovels. The selected variables include timestamps, 

payload (which is estimated from the sensor data using the monitoring system’s 
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proprietary algorithm), boom, swing, bucket, and stick angular displacements, bucket 

height (estimated from the sensor data using the shovel kinematics), state enum (a 

variable representing the state of the shovel during the cycle generated using the 

commercial partner’s proprietary algorithm), operator id, and torque. This research uses 

the monitoring data of these 10 variables sampled at 30 Hz to estimate the key indicators 

for each cycle used for the analysis in this work. 

3.2. CYCLE SAMPLING ALGORITHM AND VALIDATION 

An essential step in processing performance data involves isolating ‘loading 

cycles’ or ‘duty cycle’ segments related to loading so that this research can examine 

payload per cycle and energy consumed per cycle to evaluate energy efficiency. Thus, 

establishing the loading cycle is crucial for advanced analysis. However, reliably 

identifying these loading cycles is not trivial. In its most simplified form, a basic 

hydraulic shovel duty cycle consists of swinging into position, digging to fill the bucket 

with material, swinging out, and finally dumping the materials to begin the next cycle 

(Figure 2.4).  

However, the duty cycle tasks are more intricate in reality as two or more of the 

previously mentioned activities often coincide. For instance, the dipper might start 

swinging toward the truck while it is still in the digging phase. Moreover, additional 

shovel activities such as cleaning the face or loosening material complicate the movement 

of the dipper. Lastly, there are two directions the shovel operator can swing. However, 

most of the cycles are cycles where the shovel operator swings in the direction where his 

vision of the truck is unobstructed by the boom. Thus, the challenge lies in processing 
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and interpreting the shovel performance data to identify those shovel cycles that are 

useful for comparing operator energy efficiency (i.e., it is not desirable to compare a 

cycle that includes bench cleanup with another that does not). Thus, the goal of this 

research was to sample the “ideal” cycles (i.e., cycles with clear demarcation of stages, 

no bench clean up, and where the swing is to the direction where the operator’s vision is 

not unobstructed by the boom) for each operator so that our comparison is a direct 

comparison.  

 

 

Figure 3.2 Sample plots of state enum, swing angle, and bucket angle 
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The pre-processed data from using the MATLAB script from the commercial 

partner (modified by this researcher) contains the state enum variable, which is a variable 

that denotes the state of the hydraulic shovel (e.g., state enum = 1 means swinging and 

state enum = 2 means digging, state enum = 5 means dumping). However, the 

commercial partner recognizes deficiencies in the performance of their algorithm. For 

example, as shown in Figure 3.2, state enum values of 5 (dumping) do not coincide with 

the end of the cycle (when swing angle is at the peak) as it should.  

Consequently, this research needed to develop its own algorithm to identify cycles 

for the sampled cycles. However, the availability of the state enum variable was crucial to 

the developed algorithm. The state enum data allowed this researcher to sample loading 

cycles effectively, facilitating a clearer understanding of the shovel’s operation and 

performance. 

One of the objectives of this study is to develop algorithms to sample portions of 

the hydraulic shovel monitoring data corresponding to individual loading cycles that 

facilitate comparison of operator performance. Once the loading cycles have been 

accurately sampled, it becomes possible to estimate the useful information per cycle that 

can be used to estimate energy per unit loading rates and variables hypothesized to 

explain operator performance differences. 

The algorithm developed is a comprehensive tool for sampling loading cycles and 

their corresponding sub-cycles in a given data set from the particular monitoring system 

used in this research. This researcher believes, however, that the algorithms can be 

extended to similar telemetry data for hydraulic shovels that monitor the swing and 

bucket angular displacements. The algorithm (implemented in MATLAB as a function) 
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requires three arguments as input: the state enum variable and swing and bucket angular 

displacements. Figure 3.3 shows the logic of the algorithm. 

 

 

Figure 3.3 A simplified flowchart illustrating the cycle sampling algorithm 
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The function initializes variables and partitions the data into cycles by creating 

“dummy” cycles (dcycles). This partitioning is achieved by identifying where the state 

enum equals 5 (corresponding to the instant when the bucket dumps according to the 

proprietary algorithm), using these points to delineate sections corresponding to each 

dummy cycle. However, as shown in Figure 3.4, these cycles do not align with the actual 

end of the cycle. For example, a careful examination of the plots in Figure 3.4 shows the 

reader that the machine is still swinging significantly at the beginning and end of these 

dummy cycles.  

However, using the partitioned data in the dummy cycles, this work developed an 

algorithm to detect a more realistic start and end of the cycle. The function detects the 

actual start of the cycle as the peak of the swing angle signal in a section of the signals 

where the state enum equals 2 for dummy cycle i and dummy cycle ( )1i + . The peak of 

the swing angle represents the stationary point in the signal where the operator reverses 

swinging at the end of the cycle. 

In essence, the signal between the state enum 2 of the first dummy cycle and the 

following dummy cycle’s state enum 2 is extracted, the peak point within this interval is 

identified, and this point is stored as the start of the cycle. It is important to note that the 

first cycle’s start is always identified by locating the forward peak from the state enum = 

2 of the first dummy cycle to the state enum 2 of the next dummy cycle. This is based on 

the assumption that the first peak of the Swing Angle (Figure 3.4) represents only part of 

a cycle, with the actual complete cycle beginning from the subsequent peak. 
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Figure 3.4 Sample plots of generated dummy cycles 

 

Furthermore, to identify the end of the cycle, the function moves forward to find 

the peak point of the Swing Angle signal between the state enum = 5 of dummy cycle i 

and the state enum = 2 of dummy cycle ( )1i +  (Figure 3.4). This is under the premise 

that the next peak would occur after state enum = 5 of the dummy cycle ( )1i + . These 
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peaks define the start and end of each cycle. In summary, the function generates dummy 

cycles based on the state enum variable provided by the commercial partner. Using the 

data derived from these dummy cycles, it segments the signals into distinct portions to 

facilitate the identification of the start and end of each cycle, which are determined by the 

first and second peaks, respectively. 

Upon pinpointing the start and end of the cycles, the function next determines 

subcycles. This work determines three subcycles: swing-in, digging, and swing-out 

cycles. So, the first thing the function does in this phase is to determine the conclusion of 

the swing-in phase, as the swing-in cycle starts at the beginning of the cycle. It does so by 

finding the point of minimum value of the bucket angle signal within the interval between 

the start and end of the cycle. The researcher has concluded from observing multiple 

signals and evaluating the kinematics of the hydraulic shovel that the bucket angle 

reaches a minimum at the initiation of digging (Figure 3.4), signifying the end of the 

swing-in phase and the commencement of the digging phase. In essence, the point of 

minimum bucket angle marks the transition between the swing-in and digging cycles. 

To identify the end of the digging cycle, the researcher employs a heuristic 

approach to assess the flatness of the digging cycle (Figure 3.4). Ideally, the swing angle 

remains constant during digging (Figure 3.4) and begins to increase when digging ends. 

The challenge, however, lies in pinpointing the moment when the swing angle starts to 

rise (Figure 3.4), which denotes the end of the digging cycle. To this end, the function 

employs heuristics to find points within the interval spanning from the start of the digging 

cycle to 75% of the duration from the start of the digging cycle to the end of the cycle, 

where the difference in swing angle for a time step (1/30 seconds) is less than 10-4 rads. 
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The choice of 75% of the duration is made to optimize computational efficiency 

and is based on the assumption that this is more than enough to capture the beginning of 

the swing-out phase. Once a point is found, the function finds all the points that have a 

swing angle that is less than 10-4 of the previous point and identifies the points in the 

range where the swing angle jumps higher than 10-4 after a series of points where the 

swing angle is nearly flat. The function then tests to see if the absolute value of the swing 

angle difference between that point and the start of the digging cycle is more than 0.15 

rads. The end of the digging cycle is that point with a higher difference in swing angle of 

greater than 0.15 rads that follows a series of points with incremental swing angles of less 

than 10-4. The author determined these threshold values through a series of experiments 

and conducted a sensitivity analysis to ensure these are the “optimal” threshold values. 

Inherently, the conclusion of the digging cycle initiates the swing-out cycle, 

whose end is congruent with the end of the cycle. Lastly, the function carries out a series 

of validations, eliminating skipped cycles, cycles with exceptionally short subcycles (i.e., 

those below 1.67 secs), and cycles where the operator swings in the negative direction. 

Figure 3.5 shows the sample results of the algorithm. 

Additionally, this author used visual inspections of the swing, boom, and stick 

angular displacements plots and the state enum variable (Figure 3.5) to validate the cycle 

sampling algorithm. The objective was to visually inspect these plots to confirm if they 

conformed to the ideal loading cycle pattern. The validation exercise used a set of sensor 

data, including 15 sensor files, for verification. Figure 3.5 shows a visual illustration of 

the validation for the first of the 15 files, and all the results of the validation exercise are 

further presented in Table 3.1. 
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Figure 3.5 Plot of the output of the cycle sampling algorithm for validation (blue = swing 

in; red = digging; and black = swing out subcycles) 

 

Table 3.1 shows that the cycle sampling algorithm is 98% accurate in identifying 

the type of cycles the algorithm was designed to sample. This work deems this level of 

accuracy acceptable. Notably, the primary aim of developing this algorithm was not to 
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identify every possible loading cycle. Instead, the focus was pinpointing those cycles 

corresponding to “ideal” loading. 

 

Table 3.1 Cycle sampling output validation results 

Sensor File # 

No of Cycles 

Sampled 

No of valid 

cycles Accuracy  

1 68 66 97% 
 

2 33 31 94%  

3 17 17 100%  

4 0 0 100%  

5 4 4 100%  

6 0 0 100%  

7 17 15 88%  

8 81 80 99%  

9 22 22 100%  

10 35 33 94%  

11 72 71 99%  

12 75 75 100%  

13 62 62 100%  

14 0 0 100%  

15 48 47 98% 
 

Total 534 523 98% 
 

 

 

In conclusion, the cycle sampling algorithm is a robust tool that accurately 

samples loading cycles and identifies their sub-cycles from the sensor data. It is useful for 

further work to extract cycle-based information that can be used to estimate energy per 

unit loading rate and variables that could help explain operator differences. 
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3.3. ALGORITHMS TO EXTRACT CYCLE-BASED INFORMATION 

The principal objective of this research is to develop robust algorithms capable of 

extracting valuable insights from raw shovel performance data and transforming it into 

data per cycle. These insights are crucial for understanding the impact of operator 

behaviors on energy efficiency and productivity. After successfully devising the cycle 

sampling algorithm, the next pivotal step is to use it as a basis for further algorithm 

development. This stage of the research involves the creation of numerous algorithms, 

each designed to tap into a specific key performance indicator (KPI). Based on the nature 

of the monitoring data and a review of the literature focused on finding factors that are 

likely to explain differences in operator energy per unit loading rate, this researcher 

selected eight KPIs for each cycle: cycle time and cycle time components, payload, 

energy use, dump height, and boom, swing, and stick angles. 

Additionally, this work developed an algorithm to extract operator identities to 

facilitate separating data by operator. All these algorithms are implemented in MATLAB 

as MATLAB functions. Finally, the work developed a high-level algorithm in a 

MATLAB function that reads the input files and calls all the necessary functions to 

generate the output. The following sections provide a detailed account of these 

subsequent algorithms, illustrating how they extract relevant information from the raw 

sensor files and ultimately contribute to this study. All the algorithms use the output of 

cycle sampling and pre-processing algorithms.  

3.3.1. Cycle Time Components Algorithm.  The cycle time components 

algorithm computes the time duration for each cycle and its subcycles: swing-in, digging, 

and swing-out. The inputs of the function are c, which is an n × 2 matrix (where n is the 
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number of cycles in the data file) containing the row numbers in the sensor data that mark 

the start and end of a cycle (Figure 3.6), s is an n × 4 matrix containing the row numbers 

in the sensor data that mark the start and end of the swing-in, digging, and swing-out sub-

cycles (Figure 3.6), and t is a vector containing the timestamps from the sensor data. The 

outputs are vectors containing, in seconds, containing the duration of the cycles and 

subcycles. 

 

 

Figure 3.6 Sample input data for cycle time components algorithm 

 

Initially, the function identifies the start and end timestamps of each cycle by 

indexing the time array t with the start and end indices contained in columns 1 and 2 of c. 

The difference between these timestamps gives the total cycle time in seconds. The 

function follows a similar process for each subcycle: swing-in, digging, and swing-out. 

The start and end timestamps of each subcycle are identified by indexing the time array t 

with the relevant indices from s. The duration of the swing-in, digging, and swing-out 

cycles are calculated as the difference between the end and start timestamps, again in 

seconds. By breaking down the total cycle time into these subcycle durations, the 

function provides more detailed insight into the operational efficiency and potential areas 

for optimization in the loading process. 
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3.3.2. Payload Algorithm.  The payload algorithm (developed as a MATLAB 

function) computes the final payload for each cycle. It takes as input two arguments: P 

and c. P represents the payload data sourced from the data file, and c is an n × 2 matrix 

where n corresponds to the number of cycles in the data file (Figure 3.6). This matrix c 

contains the row numbers from the sensor data that mark the start (column 1) and end 

(column 2) of each cycle (Figure 3.6). The output FP is a vector containing the final 

payload for each cycle. The function calculates FP within each cycle by finding the 

maximum payload value between the start and end indices as defined by the 

corresponding row in c. This maximum value is then assigned to the corresponding index 

in FP. 

The function also checks if the computed payload value exceeds the maximum 

allowed value of 120 tonnes. Equation 3.1 succinctly shows what the algorithm does, 

where Pdata is the vector of payloads for that cycle. This capping is necessary because the 

bucket/shovel used in this context cannot physically load more than 120 tonnes of 

material. However, due to anomalies in the proprietary algorithm of this researcher’s 

commercial partner, some payload estimates might incorrectly exceed this limit. In such 

cases, the payload value for that cycle is set to the limit of 120 tonnes. 

The final payload, FP, is thus a vector representing the maximum payload for 

each cycle, with all values capped at 120 tonnes. This computation provides an 

understanding of the payload handling capacity per cycle, allowing for a more accurate 

assessment and enhancement of the operational efficiency of the loading process. 

 

  (3.1)  
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3.3.3. Energy Algorithm.  The energy algorithm calculates the work done by the 

boom (also termed the boom’s energy) for each cycle. It takes three inputs: Γ, 

BoomAngle, and c. Γ represents the torque data retrieved from the data file. BoomAngle 

refers to the angle data of the boom for each data point. c is an n × 2 matrix, where n 

denotes the number of cycles in the data file. The output E is a vector containing the 

boom’s work, measured in kilojoules (kJ), for each cycle. 

The basic premise of this function is that energy (workdone) is the product of 

torque and angular displacement. The function calculates E such that within each cycle, it 

first computes the absolute difference in the BoomAngle from the start to the end of the 

cycle as defined by the corresponding row in c. This value, denoted as θ, represents a 

vector containing the change in the boom angle during the cycle (i.e., the boom’s angular 

displacement). Next, the function computes the scalar product (dot product) of θ and the 

corresponding Γ values (torque data) between the start and end indices of the cycle 

(Equation 3.2). This product represents the work done by the boom during the cycle, 

which is then assigned to the corresponding index in E. 

 

 
 (3.2) 

 

Finally, the function divides all elements in E by 1,000 to convert the energy 

measurements from Joules to Kilojoules (kJ). By computing the energy spent in each 

cycle, this function provides a crucial measure of the boom’s operational efficiency and 

energy consumption during the loading process. 
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3.3.4. Boom Angle Algorithm.  The boom angle function calculates the range of 

boom angles associated with each cycle in the data file. It requires two inputs: c and 

BoomAngle. c is an n × 2 matrix, where n corresponds to the number of cycles in the 

data file. BoomAngle is the vector containing the boom angle data from the data file. The 

output, BA, is an n × 1 vector that contains the range of boom angles for each cycle. 

In each cycle, defined by a row in c, the function identifies the segment of the 

BoomAngle data corresponding to that cycle. It then calculates the minimum and 

maximum values of the BoomAngle within this segment (Figure 3.7). The difference 

between the maximum and minimum angles gives the range of boom angles for that 

cycle, which is stored in the corresponding index in BA. 

 

 

Figure 3.7 Structure of “typical” boom angles during a cycle (blue = swing in; red = 

digging; and black = swing out subcycles) 

 

By generating the range of boom angles for each cycle, this function offers 

valuable insights into the scope of boom movement during the loading process. This 

information can be crucial for assessing mechanical dynamics and identifying any 

potential differences in operator practices. 
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3.3.5. Bucket Angle Algorithm.  The bucket angle algorithm function calculates 

the angular displacement of the bucket during the digging subcycle in the data file. It 

takes two inputs: s the n × 4 matrix containing the row numbers in the sensor data that 

mark the start and end of the swing-in, digging, and swing-out sub-cycles (Figure 3.6). 

BucketAngle is the vector containing the bucket angle data from the data file. The 

output, BuA, is a vector that contains the angular displacement of the bucket during the 

digging subcycle for each cycle. 

 

 

Figure 3.8 Structure of “typical” bucket angles during a cycle (blue = swing in; red = 

digging; and black = swing out subcycles) 

 

For each digging subcycle (denoted by red color in Figure 3.8) defined by the row 

in s, the function identifies the BucketAngle at the start (second column of s) and the end 

(third column of s) of the subcycle (Figure 3.6). The function then calculates the angular 

displacement of the bucket for each digging subcycle, BuA, by subtracting the ‘identified 

start’ from the ‘identified end.’ By computing the angular displacement of the bucket for 

each digging subcycle, this function provides a key measure of the movement and 

operation of the bucket during the digging phase, offering insights into the performance 
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and efficiency of the digging process. The author hypothesizes that it would also be 

helpful in explaining differences in operator practices. 

3.3.6. Stick Angle Algorithm. The stick angle algorithm calculates the angular 

range of the stick during the digging subcycle in the sensor data file. It takes two inputs: s 

and StickAngle, where s is the n × 4 matrix that contains the row numbers in the sensor 

data that mark the start and end of the swing-in, digging, and swing-out subcycles (Figure 

3.6). StickAngle is a vector containing the stick angle data from the sensor data file. The 

output of the function is StA, a vector. It contains the range of stick angles for each 

digging subcycle. 

 

 

Figure 3.9 Structure of “typical” stick angles during a cycle (blue = swing in; red = 

digging; and black = swing out subcycles) 

 

In each digging subcycle, defined by the row in s (Figure 3.6), the function 

identifies the segment of the StickAngle data corresponding to the digging phase (second 

and third columns of s). It then calculates the minimum and maximum values of 

StickAngle within this segment (Figure 3.9). The difference between the maximum and 

minimum angles gives the range of stick angles for that digging subcycle, which is stored 

in the corresponding index in StA. 
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By computing the range of stick angles for each digging subcycle, this function 

provides crucial information on the scope of stick movement during the digging process. 

This data can be essential for evaluating mechanical dynamics and possibly pinpointing 

differences in operator efficiency. 

3.3.7. Swing Angle Algorithm.  This function calculates each cycle’s swing-in 

and swing-out angles from the sensor data file. This function takes two inputs: s and 

SwingAngle, where s is the n × 4 matrix, and each of its rows contains the start and end 

indices of the swing-in, digging, and swing-out subcycles within the sensor data. 

SwingAngle is a vector that contains the swing angle data for each data point from the 

sensor data file. The function output consists of two vectors n × 1, SiA and SoA, 

representing each cycle’s swing-in and swing-out angles, respectively. 

 

 

Figure 3.10 Structure of “typical” swing angles during a cycle (blue = swing in; red = 

digging; and black = swing out subcycles) 

 

For the swing-in phase, the function identifies the initial and final SwingAngle 

values corresponding to the start (first column of s) and end (second column of s) indices 

of the swing-in subcycle (Figure 3.6). It then calculates the change in SwingAngle by 
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subtracting the end angle from the start angle and stores this in SiA. The process is 

repeated for the swing-out phase, where the initial and final SwingAngle values 

correspond to the start (third column of s) and end (fourth column of s) indices of the 

swing-out subcycle (Figure 3.6). However, in this case, the change in SwingAngle is 

calculated by subtracting the start angle from the end angle, and this result is ultimately 

stored in SoA. 

Figure 3.10 shows typical swing angle signals during a cycle. By determining the 

swing-in and swing-out angles for each cycle, this function provides valuable insight into 

the range of movement during the swing phases of operation, which can be critical for 

assessing operator efficiency and potential areas for improvement. 

3.3.8. Dump Height Algorithm.  The pre-processing algorithm provided by the 

commercial partner estimates the height of the bucket at any time step using the 

kinematics of the shovel. This data serves as the basis for estimating the dump height, 

another crucial performance indicator. This function calculates the vertical displacement 

of the bucket during the swing-out phase of each cycle based on the data from the sensor 

data file. The function takes in two inputs: s and BucketHt, where s is the n × 4 matrix, 

with each row containing the start and end indices of the swing-in, digging, and swing-

out subcycles within the sensor data (Figure 3.6). BucketHt is a vector that contains the 

bucket height data for each data point from the sensor data file (Figure 3.11). The output 

of the function is vector, DH, containing the vertical displacement of the bucket from the 

end of the digging phase to the end of the swing-out phase for each cycle. 

The algorithm works by first identifying the bucket height at the end of the 

digging phase (indexed by the third column of s) and at the end of the swing-out phase 
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(indexed by the fourth column of s). It then calculates the difference in bucket height 

between these two points, storing this vertical displacement in DH. By doing so, the 

dump height function provides a measure of the vertical distance the bucket travels 

during the swing-out phase, which can be useful in evaluating the effectiveness and 

efficiency of the dumping operation. 

 

 

Figure 3.11 Structure of “typical” bucket heights during a cycle (blue = swing in; red = 

digging; and black = swing out subcycles) 

 

3.3.9. Operator Identification Algorithm.  The operator identification algorithm 

returns the identifier of the operator associated with each cycle of the sensor data. It 

accepts two inputs: c and Operator, where c is the n × 2 matrix, with each row 

containing the start and end indices of a cycle in the sensor data (Figure 3.6). Operator is 

a vector containing the operator identifiers associated with the respective data points. The 

output of this function, OP_id, is a vector where each entry represents the operator 

identifier for the corresponding cycle. 

The algorithm identifies the operator identifier at the start of each cycle (indexed 

by the first column of c) and assigns this value to OP_id. This means that the operator 

who initiated the cycle is considered the operator for the whole cycle. The operator 
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identification function provides a simple way to track which operator was responsible for 

each cycle, facilitating analysis of operator-specific performance and efficiency. 

3.3.10. Automation Algorithm.  After developing the unique algorithms for 

extracting key performance indicators such as cycle time components, payload, energy, 

boom angle, bucket angle, dump height, operator ID, stick angle, and swing angles, an 

overarching function or algorithm was developed that brought all these individual pieces 

together, facilitating the automation of the entire process. This high-level algorithm acts 

as a comprehensive processing system for raw sensor files, running them all 

simultaneously through the established procedures. In doing so, it systematically extracts 

and collates the relevant information pertaining to the key performance indicators. 

The automation function retrieves and processes sensor data from multiple CSV 

files, potentially across multiple folders, combining the data into a single data structure 

for further analysis. It allows the user to manually select folders, which are then 

processed one at a time. The function returns 15 different outputs: OP_id is an n × 1 cell 

array that stores the operator identifiers associated with each cycle. CT, SiCT, DiCT, 

SoCT, DH, FP, E, EPL, BA, BuA, StA, SiA, and SoA are n × 1 matrices representing 

different variables extracted from the data. These variables refer to cycle time, swing-in 

cycle time, digging cycle time, swing-out cycle time, dump height, final payload, boom’s 

work (energy), energy per unit loading rate, boom angles, bucket angles, stick angles, 

swing-in angles, and swing-out angles. VData is an n × 13 matrix that stores all the 

above variables except OP_id in one single data structure, where n is the total number of 

cycles across all processed files. 
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This function starts by initializing empty structures to hold the concatenated data 

and operator identifiers. It then prompts the user to select a directory. It iterates over all 

CSV files within the chosen directory, processing each file with the pre-processing 

algorithm provided by the commercial partner and extracting the operator identifiers and 

cycle variables. The extracted data is then appended to the previously initialized 

structures. 

After all files in a directory are processed, the function prompts the user to choose 

whether to process another directory. If the user opts not to, the function ends the process, 

displays the concatenated data, and calls a separate function to extract individual 

variables from the concatenated data (i.e., to separate the variables into multiple vectors 

such that each variable stands alone as an individual vector) before finally returning all 

the outputs. This function is beneficial in cases where sensor data is split across multiple 

files or directories, allowing for efficient and streamlined processing of all available data. 

3.4. SUMMARY 

This research has successfully developed an algorithm that can sample “ideal” 

cycles (i.e., cycles with clear demarcation of stages, no bench clean up, and where the 

swing is in the direction where the operator’s vision is not unobstructed by the boom) 

from the monitoring file from the commercial hydraulic shovel monitoring system used 

in this research. Manual validation using visual inspections of plots of swing, boom, and 

stick angular displacements and the state enum variable to validate the cycle sampling 

algorithm show that the developed algorithm is 98% accurate. 
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In order to accomplish the second objective of this research, there is a need to 

develop algorithms to extract specific key performance indicators (KPIs) that help 

explain differences in operator energy per unit loading rate. Based on the nature of the 

monitoring data and a review of the literature focused on finding factors that are likely to 

explain differences in operator energy per unit loading rate, this work selected eight KPIs 

for each cycle: cycle time and cycle time components, payload, energy use, dump height, 

and boom, swing, and stick angles. Additionally, this work developed an algorithm to 

extract operator identities to facilitate separating data by operator. This work has 

successfully developed algorithms, implemented in MATLAB as MATLAB functions, to 

extract these KPIs from the shovel monitoring data. 
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4. PRELIMINARY DATA ANALYSIS OF PERFORMANCE DATA 

 

The current section conducts preliminary statistical data analysis to understand the 

composition and characteristics of the performance data before any further investigation 

takes place. Another objective of the preliminary data analysis is to determine which 

operators from the complete list have enough data to be included in the analysis in 

subsequent sections. This section provides a preliminary investigation of data obtained 

from a hydraulic shovel with a bucket capacity of 40.5 yd3, monitored via a commercial 

monitoring system. The data are visually and numerically examined using statistical and 

machine learning tools provided by MATLAB. 

4.1. STRUCTURE AND STATISTICAL SUMMARY OF PERFORMANCE DATA 

Following the successful development of the algorithms, they were deployed to 

extract the essential performance indicators (Sections 3.2 and 3.3) necessary for this 

study. The dataset under examination was retrieved from the monitoring database of a 

single hydraulic shovel in operation at the mine site. In a month, 1,809 cycles were 

sampled from the database, aided by the newly developed algorithms that helped 

transform the raw data into analyzable components. The algorithms extracted 12 

distinctive parameters from these cycles, which depict the shovel’s operational positions, 

time distribution across various cycles and sub-cycles, energy consumed by the boom, 

dump heights, and swing angles. 

These parameters, extracted from the monitoring data in each cycle, form the 

heart of the analysis carried out in this research. They provide a detailed view of the 
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various facets of the hydraulic shovel’s operation, thereby enabling a comprehensive 

understanding of its energy consumption and productivity and how the operators’ actions 

and behaviors influence them. Moreover, it is vital to recognize that the extracted KPIs or 

parameters fall into two distinct categories: linear and circular (directional). This 

separation is essential due to the distinct statistical analyses required for each data type 

(Berens, 2009; Zar, 1941). Linear parameters include cycle and sub-cycle times, payload, 

dump height, and energy. These parameters involve direct measurements with distinct 

start and end points, and their analysis usually employs traditional statistical techniques. 

On the other hand, circular (directional) parameters, which include boom, bucket, 

stick, and swing angles, differ. These parameters are cyclical in nature, lacking clear start 

or end points as they circle back onto themselves. Hence, their statistical analysis 

necessitates specific tools, like those provided by circular statistics (Berens, 2009, 2023; 

Fisher, 1993; Zar, 1941), for proper interpretation and evaluation of the data. 

A detailed statistical summary of these parameters, segregated into circular and 

linear, is presented in Table 4.1 and Table 4.2, respectively. These tables provide an 

overview of the vast amount of data extracted by the developed algorithms. 

 

Table 4.1 Summary of relevant circular (directional) parameters (n = 1,809) 

Parameters 

Boom 

Angle 

(rad) 

Bucket 

Angle 

(rad) 

Stick Angle 

(rad) 

Swing in 

Angle 

(rad) 

Swing out 

Angle 

(rad)  

Mean 0.6113 1.3073 0.9680 1.0454 1.2042 
 

Median 0.6071 1.3305 0.9847 1.0339 1.2314  

Deviation 0.0963 0.2899 0.1611 0.2584 0.4684  

Variance 0.0046 0.0420 0.0130 0.0334 0.1097  

Skewness -0.0001 0.0195 0.0038 0.0008 0.0989  

Kurtosis 0.9816 0.8488 0.9497 0.8806 0.7464 
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Table 4.2 Summary of relevant linear parameters (n = 1,809) 

Parameters 

Cycle 

time 

(secs) 

Swing 

in time 

(secs) 

Digging 

time 

(secs) 

Swing 

out 

time 

(secs) 

Dump 

height 

(m) 

Payload 

(tonnes) 

Boom 

Energy (kJ)  

Minimum 12.8 1.7 2.7 2.7 -6.4 16.0 2685.2 
 

Maximum 374.3 55.5 160.1 252.5 7.6 120.0 56125.1  

Mean 31.9 5.5 16.1 10.2 3.6 54.8 15083.6  

Median 29.9 5.3 14.9 9.4 3.7 46.8 14727.0  

Deviation 13.1 2.0 7.5 7.0 1.5 23.0 3360.5  

Variance 170.6 4.0 55.6 49.0 2.2 530.9 11292712.4  

Skewness 16.0 11.5 9.5 25.3 -1.9 0.8 2.3 
 

 

4.2. DETECTING AND REPLACING OUTLIERS 

Outliers represent observations within a dataset that deviate significantly from 

other observations. They lie outside the overall pattern of distribution. These data points 

can potentially distort the interpretation and decrease the reliability of findings. 

Addressing outliers is crucial in data analysis for several reasons. Primarily, outliers can 

significantly influence the mean and standard deviation of the data, leading to inaccurate 

estimates. They can also distort the true underlying statistical relationships, cause 

overfitting in machine learning models and diminish the predictive performance of many 

machine learning algorithms. 

However, the approach to handling outliers depends heavily on the characteristics 

and specific circumstances of the data. Complete removal of outliers could potentially 

lead to the loss of valuable information. This is especially valid in situations where the 

dataset is small, as removing outliers can further reduce the sample size and compromise 
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the statistical power of the analysis. In the context of this research, due to the limited data 

points available, the author decided to replace the outliers rather than remove them.  

Replacing outliers can be a preferred method to maintain sample size for 

statistical robustness. This process usually involves substituting the outlier with a 

measure such as the mean or median of the rest of the data or a predicted value from a 

suitable regression model. By doing so, the size of the dataset is preserved and, thus, 

prevents the loss of information that could have resulted from outright deletion while 

mitigating the negative impacts of outliers on the analysis. 

Addressing outliers in this study involved distinct procedures for linear and 

circular data. The researcher used the Interquartile Range (IQR) method to identify 

outliers in linear data. This method is particularly effective for non-normally distributed 

linear data (NIST/SEMATECH, 2013). This method determines outliers as values that 

fall outside the range of median ± threshold, where the threshold is the interquartile range 

multiplied by a constant. This work set the threshold as 1.5 times the interquartile range. 

After identifying the outliers, they were substituted with the median value of the dataset. 

This approach ensures that the outliers in the linear data are effectively replaced, hence 

preserving the size of the data. Figure 4.2 and Figure 4.4 illustrate the data before and 

after replacing outliers. 

In contrast, the work defined outliers for the circular data using a Z-score 

threshold. Here, the Z-scores represented the distance between each data point and the 

circular mean, normalized by the standard deviation. Any points with an absolute Z-score 

greater than the set threshold were classified as outliers. This Z-score threshold for this 

work is set at 3. The analysis replaced outliers with the circular median, a representative 
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value for circular data. This method ensures an accurate identification and replacement of 

outliers within the circular data, thereby enhancing the overall quality and dependability 

of the data for further analysis. Figure 4.1 and Figure 4.3 shows the plot of the 

distribution of circular parameters before and after replacing outliers, respectively. 

 

 

Figure 4.1 Polarized distribution plots of circular parameters prior to replacing outliers 
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Figure 4.2 Boxplots of linear parameters prior to replacing outliers 
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Figure 4.3 Polarized distribution plots of circular parameters post-replacing outliers 
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Figure 4.4 Boxplots of linear parameters post-replacing outliers 
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4.3. HYDRAULIC SHOVEL OPERATORS 

In the quest to improve productivity and reduce energy consumption in mining, it 

becomes crucial to evaluate the performance of operators handling hydraulic shovels with 

a measure that considers productivity and energy consumption (Abdi-Oskouei, 2013). As 

discussed earlier in this work (Section 2), energy efficiency is a measure that combines 

energy consumption and useful work (production in the context of mining) into a single 

metric. A widely used metric for evaluating shovel energy efficiency is the energy per 

unit loading rate (Awuah-Offei & Frimpong, 2007; Patnayak, 2006), essentially the 

inverse of energy efficiency. 

This researcher uses the energy per unit loading rate for this work (Equation 2.2) 

as a metric to evaluate the performance of operators. This metric is a good measure of 

digging performance (Awuah-Offei & Frimpong, 2007). Higher energy and cycle times 

will result in higher energy per unit loading rate, which is undesirable. So, reducing the 

energy per unit loading rate is optimal as the single parameter combines energy 

consumption and production rate in one measure. 

 

 
 (4.1) 

 

In estimating the energy per unit loading rate, this researcher used the energy 

expended by the shovel’s boom in place of the overall energy consumption because the 

available monitoring data did not include information to estimate other forms of energy 

(swing energy in particular). Thus, Equation 4.1 represents the energy per unit loading 
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rate in this work. The work done by the boom (boom’s energy) is utilized instead of the 

total energy.  

From the data collected over one month, 1,809 cycles are sampled using the 

algorithms developed in Section 3. The data included 15 unique operators; 1,584 out of 

the cycles belonged to the 15 operators, while no operators were identified for the 

remaining cycles due to gaps in the monitoring data, so they were discarded. Table 4.3 

summarizes each operator’s energy efficiency (energy per unit loading rate) derived from 

the gathered data. 

 

Table 4.3 Summary of energy per unit loading rate of all operators 

Operator 

No of 

Cycle 

Minimum 

(kJsec/tonnes) 

Maximum 

(kJsec/tonnes) 

Mean energy 

per unit 

loading rate 

(kJsec/tonnes) 

Standard 

deviation of 

energy 

efficiency 

A 319 1,371 16,290 8,679 2,902 

B 256 3,086 18,809 10,309 3,346 

C 168 3,163 21,653 10,108 4,274 

D 153 1,938 17,364 8,161 3,811 

E 146 2,101 22,690 10,610 4,617 

F 129 2,007 15,597 8,090 3,229 

G 119 3,756 15,339 7,855 2,542 

H 73 3,399 11,847 7,930 2,215 

I 63 2,854 13,146 7,708 2,701 

J 37 2,474 16,310 8,708 2,872 

K 35 2,975 11,529 6,435 2,068 

L 34 3,882 15,783 8,554 2,964 

M 24 3,038 16,267 8,583 3,529 

N 16 3,609 13,714 7,996 3,301 

O 12 5,263 13,584 8,822 2,685 
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4.4. HYDRAULIC SHOVEL OPERATOR SELECTION 

It is crucial in the analytical process to ensure that every operator involved 

contributes substantially, allowing for credible deductions. It is not uncommon that some 

operators may not log enough hours to warrant inclusion in the analysis (Abdi-Oskouei, 

2013). Mines often have varying operator schedules, particularly for their most 

significant and energy-demanding units. For example, a trainee operator might be 

allowed to operate a few hours per week under supervision, whereas the “main” 

production operators operate most of the time. These varying operator schedules can 

result in vast differences in the number of cycles each operator generates in the same 

period. 

Further issues surface from standard workforce challenges, such as absenteeism 

and variation in operator skills in a shift-oriented work setting. These factors influence 

the total duration an operator spends handling a particular machine within a set time 

period (Abdi-Oskouei, 2013; Abdi-Oskouei & Awuah-Offei, 2016). Incorporating 

operators with insufficient work hours into the evaluation could potentially bias the 

outcomes, paving the way for incorrect inferences. An effective measure of the level of 

contribution each operator brings to the analysis can be represented by the mean standard 

error statistic of their energy per unit loading rate (Abdi-Oskouei, 2013; Abdi-Oskouei & 

Awuah-Offei, 2014; Biau, 2011). 

 

  (4.2) 
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Standard error (SE) is a statistical term that represents the standard deviation of 

the sampling distribution of a sample statistic, most commonly the sample mean. In 

simpler terms, standard error is a measure of how spread out the means of different 

samples from the same population are likely to be, and it indicates the degree of precision 

of a sample statistic. It is important to note that the standard error is influenced by factors 

such as sample size and variability within the population. Generally, larger sample sizes 

lead to smaller standard errors, and more variable populations result in larger standard 

errors. 

 

Table 4.4 Mean standard error of energy per unit loading rate of operators 

Operator Id No of cycles 

Mean Standard 

error 

A 319 9.10 

B 256 13.07 

C 168 25.44 

D 153 24.91 

E 146 31.62 

F 129 25.03 

G 119 21.36 

H 73 30.35 

I 63 42.87 

J 37 77.62 

K 35 59.09 

L 34 87.18 

M 24 147.06 

N 16 206.30 

O 12 223.75 

 

 

Using Equation 4.2, the researcher estimated the mean standard error of energy 

per unit loading rate for each operator (Table 4.4). There is a noticeable increase in the 
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slope of the mean standard error following Operator E, and both lines intercept on 

Operator I, as depicted in Figure 4.5. Any operators presenting a mean standard error 

exceeding that of Operator I (the intercept) are first eliminated from the datasets. The 

sharp rise in the slope of the mean standard error beyond Operator E indicates a shift in 

the standard error. Due to this abrupt change, the standard error of Operator E further 

serves as a reasonable cut-off value. So, this study uses Operators A to E (Figure 4.5) 

based on this analysis and informed engineering judgment to enhance operator count (i.e., 

the number of operators in the study) while preserving a reasonable confidence level in 

the mean energy efficiency estimates. Consequently, a mean standard error of 32 is the 

cut-off value used in determining the minimum required cycle number. Table 4.5 

summarizes the overall performance of the operators selected for this study. 

 

 

Figure 4.5 The mean standard errors plot against the cycles number of operators 

0

50

100

150

200

250

300

350

0

50

100

150

200

250

A B G D F C H E I K J L M N O

N
O

 O
F

 C
Y

C
L

E
S

S
T

A
N

D
A

R
D

 E
R

R
O

R

OPERATORS

Standard error No of Cycles



 

 

74 

Table 4.5 Summary of the overall performance of selected operators 

Operator 

Id 

No of 

cycles 

Time 

(sec) 

Energy 

consumption 

(kJ) 

Production 

rate 

(tonnes/sec) 

Mean Energy 

per unit 

loading rate 

(kJsec/tonne) 

A 319 9,614.19 4,915,858 1.78 8,679 

B 256 7,415.61 3,615,586 1.37 10,309 

C 168 5,575.55 3,151,026 1.86 10,108 

D 153 4,102.30 2,466,334 1.98 8,161 

E 146 4,409.66 2,419,896 1.56 10,610 

F 129 3,857.21 2,036,797 1.95 8,090 

G 119 3,289.81 1,797,107 1.92 7,855 

H 73 1,983.60 879,960 1.52 7,930 

 

4.5. SUMMARY 

This section conducted a preliminary data analysis of the performance data for the 

linear and circular data collected from a hydraulic shovel. This analysis included using 

the Interquartile Range (IQR) method for identifying outliers in the linear data and a Z-

score-based approach for outliers in the circular data. These techniques effectively 

replaced outliers with median values without reducing the data sample size.  

Furthermore, the section proposed an approach to selecting which operators 

should be included in the study. This study used the mean standard error statistic as the 

criterion with a cut-off value of 32 to decide which operators to include in the study. The 

researcher selected eight (8) operators to include in the study based on the mean standard 

error analysis. 
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5. EVALUATING THE INFLUENCE OF OPERATORS’ PRACTICES ON 

HYDRAULIC SHOVEL ENERGY EFFICIENCY 

 

This section explores the second objective of this research, which is to test the 

hypothesis that hydraulic shovel operator practices and skills affect shovel energy 

efficiency and identify critical parameters that explain the differences in operator energy 

efficiency. In an effort to present a detailed comparison, the researcher employs statistical 

evidence to illustrate the disparities in energy outputs among selected operators. The 

methodology for this examination is adopted from the work of Abdi-Oskouei (2013), 

providing a robust framework for this investigation. This approach is instrumental in 

facilitating analyses to accomplish the primary goal of this study. A significant segment 

of this section explores meticulous data analysis to identify the key parameters that are 

responsible for the differences in operators’ energy efficiencies. This includes a 

correlation analysis between the practices of operators and their energy efficiencies and a 

difference regression analysis model. 

5.1. ASSESSING DIFFERENCES IN OPERATOR ENERGY EFFICIENCY 

In assessing the impact of operators’ practices on the energy efficiency of 

hydraulic shovels, it is critical to employ a methodology robust enough to accommodate 

the significant variability observed in the performance metric (energy per unit loading 

rate) data (Ott & Longnecker, 2015; Ronald, 2016). This is evident from the initial 

analysis of the data from our case study, as shown in Table 4.1 and Table 4.2. Given the 

task at hand, it is important to substantiate any differences in the energy outputs among 

operators statistically. A mere comparison of the mean values of energy per unit loading 
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rate would be insufficient and unreliable. This is because such an approach does not 

account for the possibility that observed differences could be attributed to chance, 

stemming from the specific samples taken. Therefore, it is essential to determine the 

significance of these differences statistically to ensure that they are not merely random 

fluctuations but represent real, meaningful variations in operator performance (i.e., 

differences in population mean). In statistics, t-tests and Analysis of Variance (ANOVA) 

are statistical tests commonly employed to compare means across distinct groups (Mishra 

et al., 2019). Each of these tests, however, is predicated upon specific assumptions. The 

ANOVA, for instance, assumes that: 

✓ the observations from each group are normally distributed, 

✓ the variances of all groups are equal (homogeneity of variance), and 

✓ the observations are independent. 

On the other hand, the t-test, used primarily for comparing two groups, assumes 

independent and identically distributed variables. In the context of this study, given that 

the researcher is comparing more than two groups (8 operators in this case), the 

researcher has chosen to apply the ANOVA test. It is imperative, though, to choose a 

statistical test appropriately, bearing in mind the nature of the datasets at hand. Each test 

has specific requirements or assumptions, and any violations could lead to misleading 

results or incorrect conclusions (Abdi-Oskouei, 2013; Herberich et al., 2010). 

In addition, these violations may lead to either Type I or Type II errors. Type I 

error happens when a valid null hypothesis is incorrectly dismissed, resulting in a false 

positive. On the other hand, Type II error arises in scenarios where scientists erroneously 

accept an invalid null hypothesis, resulting in a false negative. Therefore, an incorrect 
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choice or application of a statistical test could increase the chances of committing these 

errors, potentially leading to incorrect conclusions and decisions based on those 

conclusions. It is essential to acknowledge that alternative ANOVA methods are 

available for comparing means if datasets fail to meet any of the prerequisites or 

assumptions of traditional ANOVA. These alternatives can provide valid results under 

different conditions. 

Initial data analysis is beneficial for enhancing data comprehension. Moreso, it 

aids in assessing whether the underlying assumptions of the tests are being met. In order 

to grasp the data, this researcher estimated the summary statistics for the eight operators 

under consideration. Table 5.1 shows these findings. 

 

Table 5.1 Summary statistics of energy per unit loading rate of selected operators 

Id N 

Minimum 

(kJsec/tonne) 

Maximum 

(kJsec/tonne) 

Mean 

(kJsec/tonne) 

Standard 

deviation Skewness 

A 319 1,371 1,6290 8,679 2,902 0.4 

B 256 3,086 1,8809 10,309 3,346 0.2 

C 168 3,163 2,1653 10,108 4,274 0.5 

D 153 1,938 1,7364 8,161 3,811 0.4 

E 146 2,101 2,2690 10,610 4,617 0.6 

F 129 2,007 1,5597 8,090 3,229 0.3 

G 119 3,756 1,5339 7,855 2,542 0.4 

H 73 3,399 1,1847 7,930 2,215 -0.5 

 

 

The following sections delve into the analytical approach this study adopted for 

comparing means across the groups under consideration. Section 5.1.1 details the most 

suitable statistical tool in light of the outcomes of the verification process, while Section 
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5.1.2 details the steps to confirm whether the datasets satisfy the assumptions of 

ANOVA. Section 5.1.3 presents the results of applying this approach to the hydraulic 

shovel energy efficiency data in this work. Figure 5.1 shows a flowchart that illustrates 

selecting an appropriate method for comparing means.  

 

 

Figure 5.1 Flowchart illustrating the approach to comparing means (Abdi-Oskouei, 2013) 
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5.1.1. Equality of Means.  The two prevalent techniques used in comparing 

means across different sample groups are the t-test and variance analysis (ANOVA). 

ANOVA examines the hypothesis of equal means across multiple groups (greater than 

two), with the null hypothesis that the means of all groups are equal. The t-test, on the 

other hand, compares the mean values when only two groups are involved in the analysis. 

Though straightforward, a t-test may lead to a Type 1 error (X. H. Zhou et al., 1997). 

This risk increases with multiple pairwise comparisons, as would be necessary when 

considering more than two operators in a dataset. Therefore, to mitigate the risk of Type 

1 error, ANOVA is typically preferred when comparing more than two operators (Abdi-

Oskouei, 2013). 

However, datasets, such as the energy efficiency data in this study, may not 

always meet the normality’s assumptions and homogeneity of variances crucial for 

ANOVA (Abdi-Oskouei, 2013). One approach to this problem is to change the form of 

the observations, often using a natural log transformation, but this approach can lead to 

its own set of issues. For example, the null hypothesis derived from log-transformed 

observation is not equivalent to the original hypothesis, particularly when the variances 

are unequal (X. H. Zhou et al., 1997). Consequently, there is a possibility of falsely 

rejecting the equality of the means in the initial observations, even after the null 

hypothesis of the transformed observations is not rejected. Therefore, any transformation 

should be used cautiously when the assumption of normality cannot be satisfied (Curran-

Everett, 2017). 

Welch’s t-test and Welch’s ANOVA (Welch, 1947), which relax the assumption 

of equal variances, can be effective solutions for situations where the assumption of equal 
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variances is violated. These tests are practical, straightforward, and accurate with respect 

to Student’s distribution, having the degrees of freedom determined by the magnitude of 

variance and the number of observations (Welch, 1947). Even when the variances are 

equal, Welch’s t-test is frequently proposed as a preferable alternative to the traditional t-

test (Krishnamoorthy et al., 2007; Rodgers & Nicewander, 1988). 

In addition, non-parametric tests protect against the misapplication of statistical 

evaluations. Tests such as the Kruskal-Wallis (a non-parametric counterpart to ANOVA), 

along with the Wilcoxon-Mann-Whitney (an alternative to a t-test), carry fewer 

presumptions in comparison to parametric tests (Gibbons, 1985; Hollander & Wolfe, 

2013). While this makes them somewhat less potent, it also reduces the likelihood of 

mistakes (Schlotzhauer, 2009). However, these tests may yield inaccurate results when 

applied to heavily skewed observations that have undergone log transformation 

(McElduff et al., 2010). 

In summary, it is critical to validate underlying assumptions before using any of 

these statistical tests for testing equality of means. If the data is non-normal or does not 

meet the equality of variance assumption, the researcher should apply appropriate 

alternates to the ANOVA and t-tests. 

5.1.2. Analysis of Variance.  Analysis of Variance (ANOVA) is a statistical 

technique (parametric analysis) for comparing the mean values of multiple groups. It is 

based on the following three assumptions: 

5.1.2.1. Independence of observations.  This first assumption is more of a study 

design issue than something that can be tested with the data. It requires that the 

observations are collected independently of each other. The assumption of independence 



 

 

81 

inherent in the ANOVA test appears plausible in the context of this study based on the 

belief that the energy efficiency demonstrated by one operator does not influence that of 

the other operators. Furthermore, it is essential to note that the data collection process 

was designed in such a way that an individual operator’s ID was utilized to obtain their 

respective energy output, reinforcing this sense of independence. 

5.1.2.2. Normality.  The responses for each group being compared are assumed 

to follow a normal distribution. This assumption does not necessarily mean that the 

combined distribution of all groups is normally distributed but that each individual group 

is. This assumption can be checked using normality tests (like the Shapiro-Wilk test) or 

by inspecting a histogram or a Q-Q plot. A combination of numerical and graphical 

methods can be employed to check if the observations (data) are normally distributed. 

In this investigation, the researcher adopts both techniques to validate the 

normality of each operator’s energy efficiency data. Several tests can be applied to verify 

that the data (observations) are normally distributed, including the Kolmogorov-Smirnov 

(KS), Shapiro-Wilk (W), Cramer-von Mises (CVM), and the Anderson-Darling (AD) 

tests. The Shapiro-Wilk test, denoted as (W), is acknowledged as one of the most 

effective methods for checking normality in a data set. However, it is constrained by the 

size of the observation. Specifically, the sample size should range between 7 and 2,000 

for this test to be valid (Shapiro et al., 1968; Stephens, 1974). 

Tests like the Cramer-von Mises, Anderson-Darling, and Kolmogorov-Smirnov 

are suitable for massive observations. These tests operate on the principle of empirical 

cumulative distribution (Park, 2008; Schlotzhauer, 2009). If the null hypothesis of the 

Anderson-Darling test is rejected, it implies that the observations are not normally 
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distributed when using the mean and variance of the observations. However, it could still 

be normal for other mean and variance values. The Cramer-von Mises and Kolmogorov-

Smirnov tests also exhibit this shortcoming (Drezner et al., 2010; Stephens, 1974). 

Considering these limitations, it becomes evident that a balanced approach employing 

graphical and numerical techniques is most beneficial when examining data for 

normality. 

For the specific case of this work, the researcher chose the Shapiro-Wilk (W) test 

as the preferred method to test for normality, as the datasets fall within the limit of 2,000 

samples required for this test. Adopting the Shapiro-Wilk test ensured a robust and 

accurate examination of the normality assumption, allowing for more reliable 

interpretations and conclusions. Additionally, this comprehensive approach to normality 

testing, which integrates both numerical and graphical methods, enhances the overall 

reliability and validity of the data analysis process. 

5.1.2.3. Homogeneity of variance.  The ANOVA test assumes that all data 

groups should have equal variances, also known as homoscedasticity. F-test, Levene’s, 

and Bartlett’s tests are commonly used to verify this assumption between two or more 

groups of observations.  

Bartlett’s and F-tests are known to be highly sensitive to the normality of 

observations (Schultz, 1985). In contrast, Levene’s test, first proposed by Levene (1960) 

and subsequently enhanced by Van Valen (1978, 2005), is a robust alternative to the F-

test. It maintains its reliability even in instances where the observations do not follow a 

normal distribution (Levene, 1960; Van Valen, 1978, 2005). As such, for the purpose of 
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this research, this researcher adopts Levene’s test to check if the variances of the groups 

are equal. 

5.1.3. Hydraulic Shovel Operator Energy Efficiency.  Table 5.1 presents the 

summary statistics of energy per unit loading rate of selected operators. In an effort to 

determine whether there are statistically significant differences in the operator energy 

efficiencies, the researcher tested the equality of means across different groups (i.e., the 

energy efficiency of operators A to H) using the ANOVA test. This is crucial for proving 

that there is indeed a significant difference in the energy outputs of the operators. 

However, before implementing ANOVA, it was essential to confirm that the data 

conformed to its underlying presumptions - independence of observations, normality of 

the distribution, and homogeneity of variances. 

This researcher first confirmed the independence of groups, a vital prerequisite for 

conducting an ANOVA. This ensured that the results in one group did not influence those 

of another. Following the verification of group independence, the next step was to test the 

normality of the data. The Shapiro-Wilk and Shapiro-Francia’s normality test is 

employed to run the analysis. This test is implemented through the MATLAB function 

provided by BenSaida (2009), a robust statistical method designed to test the composite 

normality of a dataset ranging between 3 and 5000. This test examines the null 

hypothesis (H0) that the population from which a random sample X is drawn is normally 

distributed with an unspecified mean and variance. This test is omnibus and is considered 

to be highly powerful against various alternatives. It distinguishes between types of non-

normality, performing the Shapiro-Francia’s test for leptokurtic (heavy-tailed or 
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profusion of outliers) samples and the Shapiro-Wilk’s test for platykurtic (light-tailed or 

lack of outliers) samples. Table 5.2 shows the results of the test. 

 

Table 5.2 Normality tests result for the energy per unit loading rate of operators 

Energy per 

unit loading 

rate Opr A Opr B Opr C Opr D 

Shapiro-

Wilk Test 

W p W p W p W p 

0.976 0.000 0.988 0.028 0.961 0.000 0.963 0.000 

  Opr E Opr F Opr G Opr H 

Shapiro-

Wilk Test 

W p W p W p W p 

0.948 0.000 0.976 0.024 0.967 0.005 0.929 0.001 

Log (energy 

per unit 

loading rate) Opr A Opr B Opr C Opr D 

Shapiro-

Wilk Test 

W p W p W p W p 

0.969 0.000 0.965 0.000 0.975 0.004 0.961 0.000 

  Opr E Opr F Opr G Opr H 

Shapiro-

Wilk Test 

W p W p W p W p 

0.971 0.004 0.968 0.003 0.975 0.028 0.869 0.000 

 

 

The results from the Shapiro-Wilk test (Table 5.2) indicate that the energy per 

unit loading rate of all the operators significantly deviates from normality (p ≤ 0.028). 

This suggests that the null hypothesis of normality was rejected for all the operators at the 

95% confidence, indicating that the data do not conform to a normal distribution. This 

result is the same after log-transforming the data (p ≤ 0.004). 

In this case, the log transformation did not successfully normalize the data. This 

result is not uncommon, as not all data can be effectively normalized using a log 



 

 

85 

transformation. The researcher adopted additional tactics to examine the data in light of 

the statistical results, which consistently indicated a significant deviation from normality 

despite log transformation. Recognizing that statistical tests, despite their utility, can have 

limitations and might not always provide the complete picture, the researcher utilized 

graphical analysis as a supplementary tool. The researcher generated histograms and Q-Q 

pots to inspect the distribution of the observations visually. Visual analysis can often 

reveal patterns or characteristics that might not be immediately apparent through 

numerical summaries alone. Such plots can provide insightful visual cues about the 

skewness, kurtosis, and overall symmetry of the data (or observations) distribution. 

After the log transformation, the graphical plots indeed showed a shift towards 

normality. Although the data still did not perfectly fit the assumption of normality 

according to Shapiro-Wilk’s test, the graphical visualization of the data demonstrated 

improvements. The data visualization supports the idea that the log transformation had 

some effect in pushing the data toward a more normal distribution. This indicates that the 

researcher’s decision to conduct a log transformation was not without merit, as it induced 

a degree of normality in the data even though it did not entirely satisfy the normality 

assumption. All the figures for the graphical method are in APPENDIX A. 

The last assumption required to satisfy the conditions for Analysis of Variance 

(ANOVA) is the homogeneity of variance. In order to check this, the researcher 

employed Levene’s test for homogeneity of variances, using a MATLAB script provided 

by Trujillo-Ortiz and Hernandez-Walls (2003). Levene’s test assesses the null hypothesis 

that the variance is the same across all groups. In this test, the data are transformed such 

that Yij = abs[Xij - mean(Xj)], and then a one-way ANOVA is performed using Y as the 
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dependent variable. Essentially, this test checks whether the absolute deviations from the 

group means are equally spread across the groups. Figure 5.2 shows the results from the 

MATLAB script used in this work. 

 

 

Figure 5.2 Results from Levene’s test for equality of variance 

 

The output for Levene’s test on the log-transformed data (observations) for the 

operators shows that the assumption of homogeneity of variances was not met (Figure 

5.2). This is evident from the associated p-value of the F-statistic, which is effectively 0. 

The F-statistic for Levene’s test was 11.4376, with degrees of freedom 1 = 7 and degrees 

of freedom 2 = 1355 (Figure 5.2). The p-value associated with this F statistic is very 
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small (approximately 0.0000), indicating strong evidence against the null hypothesis of 

equal variances across groups. 

This suggests that the variance of the log-transformed data differs significantly 

among the operators. Therefore, this data does not satisfy the assumption of homogeneity 

of variance, which is critical for the validity of ANOVA. The researcher then considered 

alternate statistical methods which did not require this assumption or an investigation of 

the reasons behind the unequal variances and addressed these before proceeding with the 

ANOVA. Neither the original data nor its logarithmic transformation could meet these 

requirements for the ANOVA test. Although the log-transformed data came close to 

satisfying the normality assumption, it was still insufficient. 

Given this scenario, the researcher utilized Welch’s ANOVA (a variant that does 

not strictly require equal variances) on the log-transformed data. To avoid drawing 

potentially biased conclusions from inappropriate usage of statistical tests, the researcher 

also performed a non-parametric counterpart to ANOVA, the Kruskal-Wallis ANOVA 

test, on the original data, allowing a comparison of results. 

Welch’s ANOVA method works by comparing the test statistic to the F-

distribution. It takes into account the size, mean, and variance of each group in the 

sample. This test is beneficial when the population variances are unknown or unequal. On 

the other hand, the Kruskal-Wallis test is a rank-based non-parametric test that can be 

used to determine if there are statistically significant differences between two or more 

groups of an independent variable on a continuous or ordinal dependent variable. It is 

essentially a nonparametric version of ANOVA. Table 5.3 shows the results of Welch’s 

ANOVA, while Table 5.4 shows the results of the Kruskal-Wallis ANOVA test. 



 

 

88 

Table 5.3 Results of Welch’s ANOVA test 

Source Degree of freedom F-statistic P-value 

Treatment 7 15.7210 0.0000 

Error 459.0369     

 

 

Welch’s ANOVA test was carried out using a MATLAB script provided by 

Trujillo-Ortiz (2012). The results (Table 5.3) revealed a significant effect, as indicated by 

an F-statistic of 15.721 and a p-value of 0.0000. This means that the null hypothesis of 

equal sample means was rejected because the extreme test statistic suggests that at least 

one of the means differs from the others. The Kruskal-Wallis test resulted in a p-value 

that is effectively zero (Table 5.4). As a result, the null hypothesis of equality among the 

population medians is rejected because of the extreme test statistic. This also indicates 

significant differences between the groups in the non-parametric context. 

 

Table 5.4 Result of the Kruskal-Wallis ANOVA test 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 1.54E+07 7 2.20E+06 99.34 1.48E-18 

Error 1.96E+08 1355 1.44E+05   

Total 2.11E+08 1362       

 

 

In summary, Welch’s ANOVA and Kruskal-Wallis tests suggest significant 

differences exist among the energy efficiencies of the eight operators. This researcher 
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believes this is a reliable result because careful analysis supports the use of these two 

particular tests. In addition, the fact that the conclusions of the two tests mirror each other 

confirms the results. This is an important step in this research because it demonstrates a 

statistically significant difference between the performance (as measured by energy per 

unit loading rate) of the eight operators in the study. Without this conclusion, further 

work to explore why the differences in energy efficiency will be irrelevant. 

5.2. IDENTIFYING THE KEY PARAMETERS THAT DIFFERENTIATE 

OPERATORS 

Based on the statistically proven differences in operators’ energy efficiencies, this 

study concludes that variations exist in the energy outputs among operators. Therefore, 

the next imperative task is to identify the parameters accountable for these differences in 

order to accomplish the second objective of this thesis (to test the hypothesis that 

hydraulic shovel operator practices and skills affect shovel energy efficiency and identify 

critical parameters that explain the differences in operator energy efficiency). However, 

this study first examines potential correlations with energy efficiency among the 

parameters extracted in Section 3 to identify these key parameters. Correlation analysis 

provides insights into the relationships between energy efficiency and these parameters. 

While this researcher recognizes that correlation does not imply causation, the general 

premise here is to use correlation analysis to find variables that are likely to influence 

energy efficiency (i.e., operator practices and skills that affect energy efficiency) and use 

these variables in “difference regression analysis” to determine which variables explain 

differences between operator energy efficiency. 
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This research employs a difference regression analysis to evaluate variables 

explaining operator energy efficiency differences. The analysis aims to pinpoint the 

parameters responsible for the observed differences in energy efficiency among the 

operators. Regression analysis will quantify how the dependent variable (energy per unit 

loading rate) changes in relation to one or more independent variables (parameters 

identified from the correlation analysis). This process will enable the quantification of the 

effect each parameter has on energy efficiency, aiding in the identification of the 

parameters significantly impacting energy efficiency. 

5.2.1. Correlation Analysis.  The parameters extracted in Section 3 comprise 

both linear and circular data types, necessitating different approaches for correlation 

testing with energy efficiency. Furthermore, the data sets for these observations do not 

follow a normal distribution. This is verified for the linear data using the Shapiro-Wilk 

test (Table 5.5). The Von Mises distribution and Q-Q plots established non-normality for 

the circular using data as shown in Figure 5.3 and Figure 5.4 (Berens, 2009; Fisher, 1993; 

Jammalamadaka & Sengupta, 2001; Stephens, 1969). 

Given this, non-parametric methods were employed for correlation testing of the 

linear parameters. This study specifically utilized Spearman’s correlation (Best & 

Roberts, 1975; Gibbons, 1985; Hollander & Wolfe, 2013). This non-parametric test 

measures the strength and direction of monotonic relationships between variables, 

providing an alternative to Pearson’s correlation (a parametric test commonly used for 

correlation analysis). It takes values between -1 and 1. On the other hand, correlation 

testing for the circular parameters was more complex. A combination of Spearman’s 

correlation and a “wrapToPi” function is utilized. 
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Table 5.5 Shapiro Wilk’s normality test results for linear parameters 

Parameters H SW Statistic p-value 

Cycle time 1 0.9848 <0.001 

Swing in time 1 0.9882 <0.001 

Digging time 1 0.9877 <0.001 

Swing out time 1 0.9855 <0.001 

Dump height 1 0.9922 <0.001 

Payload 1 0.9117 <0.001 

 

 

In circular statistics, data is typically assumed to be in the range [0, 2π) or [-π, π) 

because angles are periodic with a period of 2π. This means that an angle of 0 is 

equivalent to an angle of 2π, an angle of π is equivalent to an angle of -π, and so on. 

Therefore, when working with angular or circular data, it is a common practice first to 

normalize or “wrap” the data into a consistent range. The ‘wrapTo2Pi’ function in 

MATLAB is used to wrap angles in radians to the interval [0, 2π). Similarly, wrapToPi 

wraps angles to the interval [-π, π). 

This approach is analogous to Spearman’s rank correlation and aligns with the 

methods suggested for testing non-parametric linear-angular relationships (Fisher, 1993; 

Fisher & Lee, 1981; Mardia, 1976; Mardia & Jupp, 1999; Zar, 1941). The correlation 

results are presented in Table 5.6. The correlation results suggest that all parameters, 

except for the ‘Bucket angle’ and ‘Swing out angle,’ significantly correlate to energy 

efficiency (p < 0.05). ‘Payload’ shows the strongest negative correlation with energy 

efficiency, indicating that as payload increases, energy efficiency decreases. This is an 

important finding, as it suggests that adjusting the payload could have a significant 

impact on energy efficiency. 
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Figure 5.3 von Mises distribution plots of the circular parameters 
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Figure 5.4 Q-Q plots of the circular parameters 
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Table 5.6 Results of correlation analysis 

S/N Parameters Coefficient p-value 

1 Cycle time 0.2749 0.0000 

2 Swing in time 0.0547 0.0199 

3 Digging time 0.2282 0.0000 

4 Swing out time 0.0961 0.0000 

5 Dump height 0.0682 0.0037 

6 Payload -0.6472 0.0000 

7 Boom angle 0.2588 0.0000 

8 Bucket angle 0.0373 0.1132 

9 Stick angle 0.1302 0.0000 

10 Swing in angle 0.0477 0.0426 

11 Swing out angle -0.0015 0.9482 

 

 

Interestingly, ‘Cycle time,’ ‘Digging time,’ and ‘Boom angle’ also show 

relatively strong positive correlations with energy efficiency. This implies that as these 

parameters increase, so does energy efficiency. Furthermore, the result suggests that 

modifications to these operational aspects can enhance energy efficiency. 

5.2.2. Regression Analysis.  Drawing from the work of Abdi-Oskouei (2013; 

2016), this study leverages a difference linear regression model to identify the key 

parameters among the correlated ones that drive the disparities in energy efficiencies 

across different operators. Abdi-Oskouei’s model allows for a pair-wise comparison 

amongst a set of operators. For example, if there are an ‘n’ operators, the number of pairs 

of operators required for comparison can be evaluated using the combination formula 

provided in Equation 5.1. 

 

  (5.1) 
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Abdi-Oskouei (2013) did not discuss or specifically address circular variables in 

her difference regression, even though her variables included one circular variable 

(swing-out angle). This study, however, carefully evaluates the theory and basis for using 

circular variables in regression (Mohammad et al., 2021). Most of the literature on 

circular regression addresses circular-linear regression (Mohammad et al., 2021), where 

the response variable is circular, and the predictor variables are linear. There are a few 

examples of circular-circular regression models too (Kato et al., 2008). However, there 

are few examples of linear-circular regression models, and the existing models are 

complicated (Bhattacharya & SenGupta, 2009; Kim & SenGupta, 2015). In this work, the 

response variable (differences in energy per unit loading rate) is linear, whereas some of 

the predictor variables (differences in boom, swing-in, and stick angles) are circular. 

Therefore, the well-developed circular-linear regression models will not apply here. 

Esmaieeli-Sikaroudi (2017) shows that linear-circular parameters could be 

modeled linearly under the condition that the data (observations) distribution for the 

circular parameters does not cross the 0 and ±π boundaries. The distributions of the 

correlated circular parameters conform to this requirement, with no observations crossing 

these boundaries (as shown in Figure 4.3). Consequently, this study was able to model 

the difference regression linearly. Also, when dealing with circular variables, one obtains 

better results if there are attempts to “linearize” the variables (Kim & SenGupta, 2018; 

Pewsey et al., 2013). Examples include using the sine or cosine of the angle or a function 

that converts angles to a range of -π to +π. 

The approach adopted in this study is essentially a combination of relying on 

Esmaieeli-Sikaroudi’s finding of the performance of linear regression models under 
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certain conditions and converting all angular data to a range of -π to +π before regression. 

This work successfully uses this difference linear regression approach to achieve the 

second objective of this study. This researcher believes this approach is an improvement 

upon Abdi Oskouei (2013) as it accounts for the circular variables in a way that she did 

not do. The developed difference regression model for hydraulic shovels (based on the 

monitoring system data this work uses) is presented as Equation 5.2 in this study. This 

thesis notes that the model for a hydraulic shovel based on a different monitoring system 

will likely result in a different set of variables. However, the approach in this work will 

be useful for identifying explanatory variables (given the available data) for the 

differences in operator energy efficiency to be helpful regardless of the set of variables.  

 

 ∆𝜂𝑙 =  𝑘0 + 𝑘1Δ𝐶𝑡 + 𝑘2Δ𝑆𝑖𝑡 + 𝑘3Δ𝐷𝑖𝑡 + 𝑘4Δ𝑆𝑜𝑡 + 𝑘5Δ𝐷ℎ + 𝑘6Δ𝑃

+ 𝑘7Δ𝐵𝑎 + 𝑘8Δ𝑆𝑡𝑎 + 𝑘9𝑆𝑖𝑎 

(5.2) 

 

Linear regression is a statistical method used to model the relationship between a 

dependent variable (also known as an outcome variable) and one or more independent 

variables (also known as predictors). In the context of this research, the dependent 

variable under investigation is the difference in energy per unit loading rate of the two 

operators under consideration. The independent variables, also known as predictors, are 

the differences between variables (or parameters) that were found to be significantly 

correlated with energy per unit loading rate in the prior analysis between the two 

operators under consideration. It is important to note that these predictors include both 

linear and circular data types, which are treated appropriately for the analysis. 
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The algorithm in this work relies on a difference matrix (by concatenating the 

dependent and predictor variables into a matrix) for pair of operators. The construction of 

the difference matrix necessitates having an equal number of cycles for each operator. 

However, achieving this in practice is rather challenging due to the inherent variability in 

cycle times. Even under circumstances where operators are allocated equal working 

hours, discrepancies in the number of cycles can arise. Thus, a random sampling 

approach is implemented to mitigate this issue and ensure robust analysis. This method 

allows for a fair comparison by matching pairs of operators who do not have an equal 

number of cycles. 

Two algorithms implemented within MATLAB as functions are developed for 

this analysis. The first (base function) is designed to facilitate comparing two datasets by 

applying linear regression to the difference between operators’ parameters. A series of 

linear regressions are carried out as part of this function’s operations to determine the 

regression coefficients and test whether they are significantly different from zero at 95% 

confidence (by evaluating whether the 95% confidence intervals for the regression 

coefficients include zero). 

A flowchart of the developed base function algorithm, provided in Figure 5.5, 

offers a clear, step-by-step depiction of how the process works. The base function 

compares two operators (OprA and OprB) using multiple linear regression analyses. The 

comparison involves iteratively running a linear regression on randomly sampled subsets 

of the datasets and checking if the confidence intervals of the regression coefficients span 

zero. This process repeats for ‘i’ iterations to avoid bias in the sampling. 
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Figure 5.5 The base function algorithm developed to compare operators 
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The function requires three inputs: OprA, Opr B, and i. OprA is a matrix of n1 

samples (i.e., number of rows indicating cycles) and k features (i.e., columns indicating 

correlated and dependent parameters). OprB is a matrix of n2 samples (i.e., number of 

rows indicating cycles) and k features (i.e., columns indicating correlated and dependent 

parameters). These two matrices are expected to have identical numbers of columns, 

signifying they have the same set of k features (correlated and dependent parameters). 

However, the number of samples (cycles) in each dataset will most likely differ 

(Table 4.5). The third input, i, is a scalar indicating the number of iterations for the 

random sampling procedure. The function outputs a matrix p of size (k-1 × i). Each 

element of p is a binary number, with ‘1’ indicating that the confidence interval of the 

regression coefficient does not contain zero and ‘0’ indicating otherwise. In each 

iteration, the function checks which dataset has fewer rows (cycles) and sets it as the 

“short data.” It then randomly samples a subset of rows from the “long data” that matches 

the size of “short data” using the ‘datasample’ function of the Statistics and Machine 

Learning Toolbox in MATLAB and calculates the differences between the two datasets’ 

corresponding rows. 

For example, when comparing operator j and operator k (Table 5.7), operator j has 

more cycles (40 cycles) than operator k (25 cycles). Random selection is made to have an 

equal number of cycles for both operators j and k. From operator j, 25 cycles are selected 

randomly to match the 25 cycles of operator k, and the difference between their 

corresponding parameters is estimated (Table 5.8). It is important to note that operators j 

and k have the same number of variables or parameters but different numbers of cycles. 
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Table 5.7 Operator j and operator k data pattern 

 Operator j Operator k 

Cycle 1 Xj1 Xk1 

Cycle 2 Xj2 Xk2 

Cycle 3 Xj3 Xk3 

 . . 

 . . 

Cycle 25 Xj25 Xk25 

 .  

 .  

 .  
Cycle 40 Xj40  

 

 

Next, it performs a linear regression using the difference in the dependent variable 

as the response and the differences in the independent variables as the predictors. The 

function then checks if the 95% confidence intervals of the regression coefficients for the 

independent variables span zero. Finally, the base function repeats the process i times and 

stores the results in the p matrix. This process helps to test whether differences in the 

dependent variable are consistently associated with differences in the independent 

variables across multiple random subsets of the data.  

 

Table 5.8 Difference between operators j and k parameters in matrix form 

 
 Δη Δvar  

Cycle 1   ηj1-ηk1 varj11-vark11 varj12-vark12 . . varj1f-vark1f   

Cycle 2   ηj2-ηk2 varj21-vark21 varj22-vark22 . . vark2f-vark2f   

Cycle 3   ηj3-ηk3 varj31-vark31 varj32-vark32 . . varj3f-vark3f   
   . . . . . .   
   . . . . . .   

Cycle 25   ηj25-ηk25 varj251-vark251 varj252-vark252 . . varj25f-vark25f   
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The second (main) function takes multiple datasets and compares every pair of 

them using the base function. For example, ten pairs of operators would be required for 

comparison using the base function when five operators are under consideration 

(Equation 5.1). This function applies multiple linear regression analyses for each dataset 

pair and counts the number of times each independent variable is significant. This 

function takes a variable number of inputs, of which the first is i, the number of iterations 

for random sampling in the base function. The remaining input contains datasets for the 

operators under consideration represented as a matrix (at least two operators). Figure 5.6 

presents the simplified flowchart of the main algorithm. 

The function produces two outputs: resultsMatrix and resultsMatrixNamed. 

‘resultsMatrix’ is a matrix where each row contains the count of significant independent 

variables for a specific comparison (for example, operator j and operator k). The size of 

this matrix is (numComparisons × numFeatures), where numComparisons is the total 

number of comparisons made (which is calculated by the formula in Equation 5.1), and 

numFeatures is the number of independent variables (9 in this case). 

‘resultsMatrixNamed’ is a cell array containing dataset pair names in the first 

column and corresponding resultsMatrix entries in the remaining columns. Then it starts 

to perform comparisons for each pair of datasets. For each pair, it calls the base function, 

which returns a binary matrix indicating which independent variables are significant 

(represented by 1). It then sums up each row of this matrix to get the number of times 

each independent variable is significant. These counts are stored in the resultsMatrix 

and resultsMatrixNamed. The process repeats until all pairs of datasets have been 

compared. 
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Figure 5.6 A simplified flowchart showing the main algorithm for the difference 

regression analysis 

 

Notably, this researcher implements multiple iterations in the regression analysis 

to mitigate the impact of randomness associated with sampling. Conducting the 

regression process ‘i’ times enables the method to capture a broader range of possible 

sample combinations from the given datasets. This repetitive process ensures effective 
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unbiased sampling that provides a more robust and reliable representation of the genuine 

underlying relationships in the data. This researcher bolsters the results’ reliability and 

strengthens confidence in the derived conclusions by incorporating this iterative process. 

In this study, nine of the extracted parameters demonstrate a correlation with 

energy efficiency. These include cycle time, swing-in time, digging time, swing-out time, 

dump height, payload, boom angle, stick angle, and swing-in angle. Furthermore, eight 

operators, labeled Operators A to H, were selected for the difference regression analysis. 

To ensure a robust and meaningful analysis, this researcher set the number of iterations to 

30. The researcher conducted the difference regression analysis using the available data 

and adopting the difference regression analysis approach. The results of this thorough and 

rigorous analysis are presented in Table 5.9. 

The study considers eight operators - Operator A through Operator H for the 

difference regression analysis. Given that the difference regression analysis is based on 

the pairwise comparison, the number of pairwise comparisons for the eight operators 

under study is 28 per Equation 5.1. An essential aspect of the analysis in this study 

involves assigning a binary number to the variables in the regression analysis based on a 

95% confidence estimate of the importance of a variable in explaining the differences in 

energy per unit loading rate of the 30 iterations. 

The criterion for this binary assignment involves the proportion of the total 

number of times a variable is significant (i.e., the regression coefficient is nonzero at 95% 

confidence level) within the 30 iterations. If a variable appears as significant in an 

amount greater than or equal to 0.95 times the total number of iterations (95% confidence 

of 30), the variable is assigned a binary value of 1. Otherwise, it receives a binary value 
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of 0. This procedure, therefore, results in a binary representation of the significance of 

each variable across the iterations, providing an effective means to understand the impact 

of each variable on the model (Table 5.10). 

 

Table 5.9 Regression analysis results for 28 operator comparisons (30 iterations each) 

Pairs  

Cycle 

time 

Swing 

in 

time 

Digging 

time 

Swing 

out 

time 

Dump 

height Payload 

Boom 

angle 

Stick 

angle 

Swing 

in 

angle 

A,B 11 0 3 0 1 30 30 3 2 

A,C 2 1 25 27 1 30 30 7 0 

A,D 5 0 7 5 12 30 29 5 2 

A,E 2 0 1 4 3 30 19 7 4 

A,F 1 1 15 7 2 30 28 4 0 

A,G 6 2 10 4 1 30 25 1 4 

A,H 11 1 3 2 0 30 14 7 1 

B,C 1 1 26 29 8 30 29 1 1 

B,D 1 11 10 1 1 30 30 0 1 

B,E 1 0 0 2 0 30 25 6 8 

B,F 2 5 6 6 1 30 30 2 1 

B,G 1 0 13 6 0 30 27 1 7 

B,H 5 0 4 1 0 30 23 4 2 

C,D 1 3 29 27 1 30 30 3 0 

C,E 1 0 13 28 4 30 21 7 6 

C,F 1 2 27 30 0 30 30 4 1 

C,G 1 0 29 29 2 30 28 2 2 

C,H 1 2 5 14 2 30 23 4 3 

D,E 0 2 2 3 0 30 28 1 0 

D,F 1 9 21 20 3 30 30 0 1 

D,G 0 1 27 13 1 30 30 1 0 

D,H 1 1 1 0 1 30 27 1 0 

E,F 0 0 4 3 0 30 21 7 8 

E,G 0 3 0 6 0 30 14 8 11 

E,H 2 0 1 2 3 30 9 6 4 

F,G 1 0 27 19 3 30 27 2 3 

F,H 2 3 0 7 1 30 23 1 2 

G,H 3 2 5 0 0 30 24 2 8 
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To illustrate this procedure, consider the variable cycle time as an example. If, in 

a comparison, ‘cycle time’ registers as significant in 10 out of the 30 iterations, ‘cycle 

time’ will be assigned a binary value of 0. This is because 10 is less than the 28.5 

thresholds (95% confidence of 30 iterations) and the value of 1 if otherwise. 

This researcher then proceeds to perform this binary assignment for each variable 

across all comparisons. The subsequent analysis then allows for a precise evaluation of 

which variables consistently impact the model with a 95% confidence interval. These 

identified variables subsequently offer the most promising avenues for further study and 

potential optimization. 

Furthermore, the same methodology calculates each variable’s significance 

percentage. This involves summing up all the instances of ‘1’ after assigning the binary 

0/1 across all comparisons (representing the times when a variable was significant meets 

the thresholds criterion). The researcher estimates the percentage of this sum with respect 

to the total number of comparisons (28 in this study). The percentage of the significance 

of a variable signifies the chance (probability) of the variable being responsible for the 

differences in operators’ energy efficiencies (Table 5.10). This approach allows for 

quantifying the influence of each variable in the model. It provides an adequate measure 

of the relative importance of each variable in the context of this analysis. 

The results of the binary assignment and subsequent analysis reveal valuable 

insights into the influence of various operational parameters on energy efficiency. 

Payload is the most influential factor, with a 100% chance of explaining differences in 

energy per unit loading rates, or energy efficiencies, across all operator comparisons. 

This suggests that payload significantly impacts the energy efficiency of the operation. 



 

 

106 

Assuming all other conditions remain constant, operators with higher payloads will likely 

have higher energy efficiencies (i.e., lower energy per unit loading rates). 

 

Table 5.10 Probability result after assigning binary numbers 0/1 

  

Cycle 

time 

Swing 

in 

time 

Digging 

time 

Swing 

out 

time 

Dump 

height Payload 

Boom 

angle 

Stick 

angle 

Swing 

in 

angle 

A,B 0 0 0 0 0 1 1 0 0 

A,C 0 0 0 0 0 1 1 0 0 

A,D 0 0 0 0 0 1 1 0 0 

A,E 0 0 0 0 0 1 0 0 0 

A,F 0 0 0 0 0 1 0 0 0 

A,G 0 0 0 0 0 1 0 0 0 

A,H 0 0 0 0 0 1 0 0 0 

B,C 0 0 0 1 0 1 1 0 0 

B,D 0 0 0 0 0 1 1 0 0 

B,E 0 0 0 0 0 1 0 0 0 

B,F 0 0 0 0 0 1 1 0 0 

B,G 0 0 0 0 0 1 0 0 0 

B,H 0 0 0 0 0 1 0 0 0 

C,D 0 0 1 0 0 1 1 0 0 

C,E 0 0 0 0 0 1 0 0 0 

C,F 0 0 0 1 0 1 1 0 0 

C,G 0 0 1 1 0 1 0 0 0 

C,H 0 0 0 0 0 1 0 0 0 

D,E 0 0 0 0 0 1 0 0 0 

D,F 0 0 0 0 0 1 1 0 0 

D,G 0 0 0 0 0 1 1 0 0 

D,H 0 0 0 0 0 1 0 0 0 

E,F 0 0 0 0 0 1 0 0 0 

E,G 0 0 0 0 0 1 0 0 0 

E,H 0 0 0 0 0 1 0 0 0 

F,G 0 0 0 0 0 1 0 0 0 

F,H 0 0 0 0 0 1 0 0 0 

G,H 0 0 0 0 0 1 0 0 0 

Total 0 0 2 3 0 28 10 0 0 

% 0 0 7 11 0 100 36 0 0 



 

 

107 

Next, the boom angle appears to explain differences in energy efficiencies 36% of 

the time. This is considerably lower than the payload’s influence but still notable. It 

indicates that the overall displacement of the boom during a cycle differs among the 

operators and is a significant contributor (at least explains differences between 36% of 

operator pairs) to differences in operator energy efficiency. However, as it is less 

consistent across comparisons, the boom angle might be subject to other influencing 

factors, such as the operator’s technique or the specific task requirements. 

Digging time and swing-out time show some potential for causing differences in 

energy efficiencies, with influences of 7% and 11%, respectively. However, their impacts 

are considerably lower than those of the payload and the boom angle, suggesting that 

while these time factors can contribute to differences in energy efficiencies, their effects 

are less consistent across different operator comparisons. 

The remaining parameters, including cycle time, swing-in time, dump height, 

stick angle, and swing-in angle, show no explanatory power in explaining differences in 

energy efficiencies across the considered comparisons. This indicates that while these 

factors might be crucial for other aspects of the operation, they do not appear to 

contribute significantly to differences in energy efficiencies across operators. It is 

important to note that the lack of significance for certain variables does not necessarily 

mean they have no impact on energy efficiencies. The absence of consistent significance 

across pairwise comparisons just means these variables are not the source of differences 

between operator energy efficiencies (as defined with the data in this research). 

The findings from this research underscore the critical notion that the specific 

variables identified as significant depend on the chosen measure of operator performance. 
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In this instance, the measure utilized is energy per unit loading rate, calculated as (total 

energy × cycle time)/payload (Equation 2.2). The total energy component in this formula 

comprises the energies expended by various parts of the hydraulic shovel, including the 

boom, stick, swing, and bucket. However, due to the limited nature of the available 

dataset, only the energy expended by the boom could be included in the total energy 

calculation (Equation 4.1). This limitation has potential implications for the identification 

of significant variables. Certain variables that may otherwise have been significant if the 

energies of the stick, swing, and bucket were included might not have been detected as 

such due to the current measure’s specific focus on the boom energy. In other words, the 

dataset limitation might inadvertently mask the significance of some variables, causing 

them to be overlooked in this analysis. 

Despite these data limitations, it is important to recognize the value of the 

approach adopted in this research. The developed algorithms, which can conduct 

complex statistical analyses, have proven effective and robust in working with the 

available data. Further, the researcher believes these algorithms possess the flexibility 

and adaptability to handle more comprehensive data, capturing all of the energies of a 

hydraulic shovel, if such data were to be made available. Therefore, while the current 

dataset’s limitation is an acknowledged constraint of this research, it does not detract 

from the effectiveness of the overall approach. The inherent adaptability of the 

algorithms developed in this study ensures their readiness to provide even more nuanced 

insights when better and more comprehensive data becomes available. As such, this study 

provides valuable insights into the current dataset and paves the way for future 

investigations with improved data. 
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Figure 5.7 Plots showing the boxplots of payloads of operators7 

 

An important finding from the analysis is that even with the limitations posed by 

the dataset, ‘payload’ variable consistently emerges as a distinguishing factor among 

operators in all the comparisons. This consistency points to ‘payload’ as a distinguishable 

factor in the performance of different operators. From a skeptical perspective, one might 

argue that since the payload is directly included in the computation of energy per unit 

loading rate, its impact is somewhat expected. As a counter illustration, consider cycle 

time. Despite being a parameter in the formula for calculating energy per unit loading 

 

7 The payloads for operators B and H are unusually skewed and the researcher’s data review did not 

determine an explanation for this high skewness. 
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rate, the algorithm did not consistently identify cycle time as a significant variable that 

explains differences in energy per unit loading rate across all operators. This 

demonstrates that the significance of a variable is not merely determined by its presence 

in the performance measure but its variability among operators. Therefore, the payload’s 

identification as a key factor indicates true differences among operators, not just a result 

of its role in calculating energy per unit loading rate. This underscores the strength and 

nuance of the algorithm developed by the researcher. Figure 5.7 shows the distribution of 

payloads for the different operators. The figure shows that there is clearly a wide 

variation in the distribution of payloads for each operator. 

The benefit of the approach suggested in this thesis is that it provides “actionable” 

data that mine managers and engineers can use to make changes to improve energy 

efficiency. For example, the result showing that payload is important can be used to guide 

operators to improve overall energy efficiency and cost improvements. Here, let us use 

two operators from this study (Table 4.5), the operator with the best performance (lowest 

energy per unit loading rate), Operator G, and the one with the poorest performance 

(highest energy per unit loading rate), Operator E, to estimate and illustrate the possible 

energy efficiency and cost savings if management can get low performing operators to 

improve their payloads per cycle. APPENDIX B-1 estimates the potential energy 

efficiency and cost savings. Using Operator G as the standard to improve Operator E, the 

initial production rate of Operator E is about 81% of that of Operator G. By increasing 

the payload of Operator E from 47.18 tonnes to the level of Operator G (53.15 tonnes), 

the loading rate of Operator E increases to approximately 92% of that of Operator G, 

marking an increase of around 11%. Simultaneously, Operator E’s energy per unit 
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loading rate decreases from 10,610 kJsecs/tonne to 9418.73 kJsecs/tonne after the 

payload improvement, implying an energy efficiency enhancement of about 11%. 

Additionally, the cost of energy per unit loading rate for Operator E decreases from $0.28 

to $0.24 after the payload improvement, which is a decline of about 14% in the cost of 

energy per unit loading rate. This illustrates how mine managers can use the data from 

the approach suggested in this thesis to optimize operator practices. In this case, payload 

optimization can improve energy and cost savings. 

In the conducted analysis, digging time and swing out time did show up in the 

comparison of operators, but not as consistently as payload. This intermittent presence 

suggests that these factors may have some degree of influence on the energy per unit 

loading rate. However, they did not reach a level of statistical significance to draw 

conclusive decisions about their influence on energy efficiency. This partial visibility of 

these variables could result from the limited available dataset. With a more 

comprehensive dataset, it might be possible to better understand the role these variables 

play in differentiating operator performance. The inconsistencies found in the current 

analysis may well be artifacts of data limitations rather than reflections of the actual 

operational dynamics. In light of this, a more exhaustive dataset could provide a more 

nuanced picture, potentially revealing other key performance-differentiating variables 

and thereby substantiating or amending the preliminary observations made about the 

impact of digging time and swing-out time. 

The researcher has made a significant contribution by successfully developing 

algorithms to apply an approach introduced by Abdi-Oskouei (2013) to the context of 

hydraulic shovels and this specific sensor dataset. Abdi-Oskouei’s original methodology, 
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applied to draglines, provided a foundation the researcher has adapted and expanded 

upon. Creating these algorithms required a nuanced understanding of the original 

approach, the specifics of hydraulic shovels’ operation, and the nature of the sensor data 

collected from a different monitoring system than what Abdi-Oskouei used in her 

research. This researcher has taken the existing knowledge from the academic domain 

and applied it effectively to new, complex, and practical situations, effectively bridging 

the gap between theory and practice. 

Moreover, the successful development and implementation of these algorithms 

reveal that they can robustly handle this type of sensor data, offering a new toolset to 

analyze and understand the effect of operator practices (precisely cycle time and 

payloads) on energy efficiency of hydraulic shovels. By harnessing the statistical power 

of regression analysis, these algorithms enable nuanced and detailed insights to be drawn 

about factors influencing energy efficiency of hydraulic shovels, opening avenues for 

operator performance improvement. 

It is worth noting that while the results are grounded in rigorous statistical 

analysis, the methodology’s true strength comes from its adaptability. This ability to 

apply a refined version of Abdi-Oskouei’s approach to different contexts underscores its 

versatility and the potential for further applications in related fields. The researcher’s 

successful adaptation of this approach promises to add value to the study of hydraulic 

shovels and broader discussions on energy efficiency in mining and machine operation 

optimization. 
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5.3. SUMMARY 

The primary objective of this section was to identify the key parameters 

responsible for the variations in energy efficiencies of operators. The analysis began by 

comparing the energy efficiencies of operators using the measure of energy per unit 

loading rate. The study reveals significant variations in energy efficiencies among the 

operators through rigorous analysis and hypothesis testing. The findings confirm that the 

energy efficiencies of operators are not uniform and highlight the need for further 

investigation into the underlying factors contributing to these variations. 

Additionally, this researcher conducts a correlation analysis to examine the 

relationships between energy efficiencies and various operational parameters. The results 

reveal significant associations between energy efficiencies and cycle time, digging time, 

swing-out time, dump height, boom angle, and stick angle positively correlate with 

energy efficiencies. These findings suggest that these parameters may play a role in 

differentiating operator performance regarding energy efficiency. Payload shows a strong 

negative correlation with energy efficiencies (rho = -0.6472, p-value = 0.0000), 

indicating that payload significantly affects energy efficiencies. Other parameters, such as 

swing-in time, bucket angle, swing-in angle, and swing-out angle, exhibit weaker 

correlations that are not statistically significant. These correlation results provide 

valuable insights into the potential influence of specific operational parameters on energy 

efficiencies and can serve as a basis for further investigation. 

In order to identify the key parameters responsible for the differences in energy 

efficiency among operators, this researcher employed a difference regression analysis to 

determine the significance of the correlated parameters in explaining differences in 
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energy efficiencies of operators. The developed algorithms reveal that payload 

consistently emerged as a significant variable (100% of the time) in distinguishing 

operator energy efficiencies. The researcher acknowledges that although the energy per 

unit loading rate is a function of payload, the variations in payload among operators 

further validate its importance.  

Moreover, the limited dataset used in this study may have constrained the 

identification of other influential parameters. The approach and algorithms developed in 

this research are highly adaptable. With better data capturing all the energies of hydraulic 

shovels, these algorithms would provide a more comprehensive understanding of the 

factors explaining differences in energy efficiencies among operators. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. OVERVIEW 

Hydraulic shovels are essential and dominant equipment in mining because of 

their efficiency and productivity. However, a crucial aspect often overlooked is the 

impact of operators’ practices on energy consumption and productivity. With the mining 

sector accounting for substantial energy usage and resultant carbon emissions, enhancing 

energy efficiency in these domains is urgent. Despite the recognition that operator 

practices influence the efficiency of loading machines in previous studies, research has 

sparingly quantified this impact, especially for hydraulic shovels. This work’s novelty 

lies in addressing this gap by employing telemetry technology and advanced data analysis 

to investigate how varying operator practices contribute to the differences in energy 

consumption and productivity of hydraulic shovels. 

The research primarily aims to achieve two objectives: (1) develop algorithms 

that can extract significant data from shovel telemetry for comprehensive statistical 

analysis, and (2) test the hypothesis that operator practices and skills have a notable effect 

on hydraulic shovel energy efficiency. The researcher developed several algorithms in 

this study to achieve the first objective. The initial algorithm sampled cycles and 

identified sub-cycles from telemetry data collected from a 40.5 yd3 bucket hydraulic 

shovel. The researcher then developed subsequent algorithms to extract cycle-based data 

for significant parameters used in the analysis. 

Regarding the second objective, the researcher first tested the hypothesis to 

statistically ascertain whether the difference in average energy efficiencies of operators is 
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significant. Subsequently, this study conducted a correlation analysis to identify which 

parameters correlate with energy efficiency. The final stage of the analysis involved 

developing a difference linear regression model that regressed the difference in correlated 

parameters between operators against the difference in their energy efficiencies. 

6.2. CONCLUSIONS 

The following conclusions have been drawn from this work: 

• This research has successfully developed an algorithm that can sample “ideal” 

cycles (i.e., cycles with clear demarcation of stages, no bench clean up, and 

where the swing is in the direction where the operator’s vision is not 

unobstructed by the boom) from the monitoring file from the commercial 

hydraulic shovel monitoring system used in this research. Manual validation 

using visual inspections of plots of swing, boom, and stick angular 

displacements and the commercial partner’s state enum variable to validate 

the cycle sampling algorithm show that the developed algorithm is 98% 

accurate. 

• Based on the nature of the monitoring data and a review of the literature 

focused on finding factors that are likely to explain differences in operator 

energy per unit loading rate, this work selected 12 KPIs for each cycle: cycle 

time and cycle time components (swing-in, digging, and swing-out), payload, 

energy use, dump height and boom, bucket, swing-in, swing-out, and stick 

angles. Additionally, this work developed an algorithm to extract operator 

identities to facilitate separating data by operator. This work has successfully 
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developed algorithms, implemented in MATLAB as MATLAB functions, to 

extract these KPIs from the hydraulic shovel monitoring data. 

• The study proposed an approach to selecting which operators should be 

included in the study. This study used the mean standard error statistic of the 

energy efficiencies of operators as the criterion with a cut-off value of 32 to 

decide which operators to include in the analysis. Based on this analysis, the 

researcher selected eight (8) operators to include in the study. 

• The study revealed significant variations in energy efficiencies among the 

operators’ p-values for the two tests (Welch’s ANOVA and Kruskal-Wallis 

tests) effectively zero. The findings confirm that the energy efficiencies of 

operators are not the same and highlight the need for further investigation into 

the underlying factors contributing to these variations. 

• The results of correlation analysis to examine the relationships between 

energy efficiencies and various operational parameters revealed significant 

associations between energy efficiency and cycle time, digging time, swing-

out time, dump height, boom angle, stick angle, and payload. Cycle time, 

digging time, swing-out time, dump height, boom angle, and stick angle 

positively correlate with energy efficiency. Conversely, payload showed a 

strong negative correlation with energy efficiency (rho = -0.6472, p-value = 

0.0000), indicating that payload significantly affects energy efficiency. These 

findings suggested that these parameters may play a role in differentiating 

operator performance regarding energy efficiency. Other parameters, such as 
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swing-in time, bucket angle, swing-in angle, and swing-out angle, exhibit 

weaker correlations that are not statistically significant. 

• This study employed a difference linear regression analysis model to develop 

an algorithm that determines the significance and quantifies the correlated 

parameters’ impact on differences in energy efficiency. Payload consistently 

emerged as a significant variable (100% of the time) in distinguishing 

operator energy efficiencies, while variables such as boom angle, swing-out 

time, and digging time were less consistent in explaining differences in 

operator energy efficiencies. 

• The limited dataset used in this study may have constrained the identification 

of other influential parameters. The developed algorithms are adaptable and 

can be applied with better data to capture the total energy of hydraulic 

shovels, which would provide a more comprehensive understanding of the 

factors influencing energy efficiencies among operators. 

6.3. CONTRIBUTIONS OF THE WORK 

The work has made the following contributions to the body of knowledge, 

science, and mining engineering practice: 

• This study is a pioneering effort to discern the impact of operator practices on 

the energy efficiency of hydraulic shovels. It marks the very first initiative 

toward quantifying this influence with field data. Before this investigation, 

empirical study on the role of operator practices in driving energy efficiency 

in this field remained largely unexplored and undefined. This research is a 
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pioneering contribution to the current body of knowledge, throwing light on 

the nuances of how operator behavior can significantly alter the energy 

efficiency of hydraulic shovels. This opens up a new dimension in the 

ongoing quest for sustainable and efficient energy usage in this sector. 

• Another significant contribution of this study is developing a novel algorithm 

to extract valuable insights from telemetry data. This algorithm transcends 

conventional uses of this technology by offering a reliable, data-driven 

approach to understanding the intricate relationship between operator 

practices and the energy efficiency of hydraulic shovels. This algorithm 

hinges on the algorithm to sample cycles from the raw sensor files, which 

allows the other algorithms to extract cycle-based information for further 

analyses. 

• This study provides crucial data that can serve as a valuable resource for 

operator improvement. It enables an operator in the field to be educated and 

trained about their current production efficacy, instigating conscious 

improvements. The insights derived from this study provide an intelligent 

guide for operators, facilitating a tangible performance comparison. While 

mines typically employ monitoring systems to track payload, this study 

introduces a novel approach to leverage this data to initiate a constructive 

dialogue with operators. It allows for meaningful comparison of operator 

performances, helping them understand any deficiencies in their current 

production rates and their impact on energy efficiency. As illustrated before 

and shown in Appendix B-1, it is possible to decrease energy costs by 14% 
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while achieving a similar loading rate using the data generated by this 

approach to guide operators. 

• An additional benefit of this study’s approach is that it enhances energy 

efficiency without incurring any additional expenditure. The focus here is on 

improving operator practices, particularly regarding payload optimization, 

using the existing telemetry data. This cost-effective method of boosting 

energy efficiency ensures improved production rates and energy savings, 

underlining the concept that significant improvements can be made without 

the need for substantial monetary investment. It is a strategy of ‘doing more 

with less,’ focusing on improving practices with the resources at hand. 

6.4. RECOMMENDATIONS 

❖ The author recommends this for mining engineering practice: 

• Recognizing the vital role that the shovel payload plays in differentiating 

various operators, it is crucial to highlight the need for adequate operator 

training in maximizing bucket fill factor to improve payloads. A well-

trained operator will be adept at optimizing the bucket fill, which, in turn, 

will increase the payload capacity and directly enhance the production 

rate. This increase in production rate boosts output and improves energy 

efficiency. A larger payload implies that more material can be loaded or 

produced for the same amount of energy, lowering the energy per unit 

loading rate. This is a significant advantage considering the escalating 

global concerns around energy consumption and the necessity for 
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sustainable usage. Moreover, there is a direct economic benefit attached to 

this. A decrease in energy per unit loading rate translates to a reduction in 

energy cost per unit of production, substantially lowering the overall 

operational costs. Thus, it is of utmost importance for organizations to 

invest in effective operator training guided by field data (so there is no 

ambiguity in what is necessary). It results in increased payloads and 

production rates, boosts energy efficiency, and reduces operational costs, 

presenting a win-win situation for the operator and the organization. 

❖ This author also recommends the following for future work: 

• Future work should consider expanding the dataset to capture more 

comprehensive data for each operator. The current data is limited and 

might not fully reveal the significant influence of variables such as boom 

angle, digging, and swing-out times, and a broader dataset can help 

uncover these nuanced differences between operators. 

• Future research should incorporate additional measures of energy use. The 

current calculation of energy per unit loading rate only factors in the 

energy used by the boom. Including energy expended by the stick, swing, 

bucket, and other components can provide a more comprehensive 

understanding of energy efficiency. 

• Although this study used a linear regression model to analyze mixed data 

types (both linear and circular), there is potential for even more accurate 

insights if future research incorporates a linear-circular regression model. 

This approach, as suggested by Fisher et al. (1992), Kim et al. (2018), 
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Kato et al. (2008), and Mohammed et al. (2021) could be more reliable in 

their inferences. Therefore, future studies should endeavor to apply these 

linear-circular regression models for potentially enhanced results and 

deeper insights into hydraulic shovel operator efficiency. 

• Given the apparent influence of payload on operator differences, further 

research should investigate the reasons behind varying payloads between 

operators. The insights gleaned could contribute significantly to operator 

training and performance optimization strategies. Any effort that helps 

operators fill the bucket better (and thus improve payload) will improve 

their energy efficiency. 

• Future research should consider delving deeper into operator behavior and 

decision-making processes under challenging digging situations. This 

study has touched upon the operator practices influencing efficiency and 

productivity, but there is room to understand how operators navigate 

complex digging situations. Investigating this aspect could yield 

invaluable insights into operator skills, learning mechanisms, and 

adaptability, potentially leading to further optimization of hydraulic shovel 

operation and a significant increase in energy efficiency. 

 



 

 

 

APPENDIX A. 

GRAPHICAL PLOTS FOR NORMALITY TEST 
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Figure A.1. Distributions of energy per unit loading rates of operators 
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Figure A.2. Distributions of log-energy per unit loading rates of operators 
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Figure A.3. Q-Q plots of energy per unit loading rates of operators 
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Figure A.4. Q-Q plots of log-energy per unit loading rates of operators 
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POTENTIAL ENERGY SAVINGS ESTIMATES 
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ENERGY EFFICIENCY IMPROVEMENT ESTIMATES 

APPENDIX B shows the analysis done to estimate the possible energy savings if 

the mine was to get operator E (worst performance) to produce (load) at the level of 

operator G (highest performance). The energy price of “$3.806/gal ($0.000025976/kJ)” 

used in the analysis is based on the diesel fuel price obtained from the U.S. Energy 

Information Administration (U.S. Energy Information Administration, 2023). 

 

Table B-1. Potential energy efficiency and energy cost savings estimates 

  Best Worst   

Parameters Operator G Operator E 

E’s payload 

Improved to 

G’s Payload 

Energy per cycle (kJ) 15,102 16,575 16,575 

Cycle time (sec) 27.65 30.20 30.20 

Payload per cycle (tonnes) 53.15 47.18 53.15 

Production rate (tonnes/sec) 1.92 1.56 1.76 

Energy per unit loading rate 7,855 10,611 9,419 

% of best operator’s loading rate 100% 81.25% 91.53% 

Energy price ($/kJ) 2.6 × 10-5 2.6 × 10-5 2.6 × 10-5 

Energy cost for loading rate $0.20 $0.28 $0.24 

Energy costs (savings)   14.29% 
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