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ABSTRACT

Anomaly detection is widely used in network intrusion detection, autonomous driv-

ing, medical diagnosis, credit card frauds, etc. However, several key challenges remain open,

such as lack of ground truth labels, presence of complex temporal patterns, and generaliz-

ing over different datasets. In this work, we propose TSI-GAN, an unsupervised anomaly

detection model for time-series that can learn complex temporal patterns automatically and

generalize well, i.e., no need for choosing dataset-specific parameters, making statistical

assumptions about underlying data, or changing model architectures. To achieve these

goals, we convert each input time-series into a sequence of 2D images using two encoding

techniques with the intent of capturing temporal patterns and various types of deviance.

Moreover, we design a reconstructive GAN that uses convolutional layers in an encoder-

decoder network and employs cycle-consistency loss during training to ensure that inverse

mappings are accurate as well. In addition, we also instrument a Hodrick-Prescott filter in

post-processing to mitigate false positives. We evaluate TSI-GAN using 250 well-curated

and harder-than-usual datasets and compare with 8 state-of-the-art baseline methods. The

results demonstrate the superiority of TSI-GAN to all the baselines, offering an overall

performance improvement of 13% and 31% over the second-best performer MERLIN and

the third-best performer LSTM-AE, respectively.
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1. INTRODUCTION

The aim of anomaly detection is to identify subsequences that are considered ab-

normal in a given context. Several applications rely upon accurate and automated anomaly

detection, such as network security, smart manufacturing, and autonomous driving. In

almost every application domain, time-series data is ubiquitous; therefore, time-series

anomaly detection has been studied for years, especially recently using machine learning.

There are three key challenges to this task, including the rarity of labels for abnormal data,

presence of noise and complex temporal patterns, as well as requiring domain knowledge.

To address the first challenge, we take a reconstruction-based unsupervised learning

approach. Reconstruction-based methods employ a model to learn a low-dimensional

representation of the input time-series signal, reconstruct that signal using the representation,

and then compare the reconstructed signal to the real input to calculate a reconstruction error.

A large reconstruction error usually indicates the presence of an anomaly. In order to address

the second challenge, we adopt a deep learning approach to harness deep neural networks’

superior capability to recognize complex temporal correlations and hidden patterns in data.

As a preprocessing step, we encode 1D time series into 2D images and exploit convolutional

neural networks (CNN) for their superior performance on computer vision tasks. For the

final challenge, we take a nonparametric approach throughout our design pipeline. As a

result, the model doesn’t make any assumptions about the underlying data, and it is not

required to change parameters or model architectures for each dataset.

Thus finally, in this work, we propose a novel generative adversarial network (GAN)

architecture called TSI-GAN for unsupervised time series anomaly detection. First, we

transform 1D time series to 2D images using two encoding techniques to capture the

temporal correlation and various types of deviance present in the time series. Second, we

design a GAN with two critics and two generators that consist of convolutional layers in

order to reconstruct encoded images and obtain effective reconstruction errors. In addition,
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GAN-based methods typically solve an optimization problem using gradient descent as a

separate step during inference to find the latent representation for each sample which is

highly efficient. In contrast, we train an encoder-decoder network in our GAN with cycle

consistency loss to obtain the inverse mapping of the latent representation automatically and

immediately, making our inference almost instantaneous. Third, as a further enhancement,

we address false positives (alarms) by post-processing the reconstruction errors and then

combining the errors from two encoding channels using a weighted sum. This way, we

obtain a reliable anomaly score vector which leads to reduced false positives.
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PAPER

I. TSI-GAN: UNSUPERVISED TIME SERIES ANOMALY DETECTION USING
CONVOLUTIONAL CYCLE-CONSISTENT GENERATIVE ADVERSARIAL

NETWORKS

Shyam Sundar Saravanan, Tony Luo
Department of Computer Science

Missouri University of Science and Technology
Rolla, Missouri 65401

Email: {ssdmw,tluo}@mst.edu

Mao V. Ngo
Singapore University of Technology and Design, Singapore

Email: vanmao_ngo@mymail.sutd.edu.sg

ABSTRACT

Anomaly detection is widely used in network intrusion detection, autonomous driv-

ing, medical diagnosis, credit card frauds, etc. However, several key challenges remain

open, such as lack of ground truth labels, presence of complex temporal patterns, and gen-

eralizing over different datasets. This paper proposes TSI-GAN, an unsupervised anomaly

detection model for time-series that can learn complex temporal patterns automatically and

generalize well, i.e., no need for choosing dataset-specific parameters, making statistical

assumptions about underlying data, or changing model architectures. To achieve these

goals, we convert each input time-series into a sequence of 2D images using two encoding

techniques with the intent of capturing temporal patterns and various types of deviance.

Moreover, we design a reconstructive GAN that uses convolutional layers in an encoder-

decoder network and employs cycle-consistency loss during training to ensure that inverse
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mappings are accurate as well. In addition, we also instrument a Hodrick-Prescott filter in

post-processing to mitigate false positives. We evaluate TSI-GAN using 250 well-curated

and harder-than-usual datasets and compare with 8 state-of-the-art baseline methods. The

results demonstrate the superiority of TSI-GAN to all the baselines, offering an overall

performance improvement of 13% and 31% over the second-best performer MERLIN and

the third-best performer LSTM-AE, respectively.

Keywords: Anomaly detection, unsupervised learning, time series, neural networks, gen-

erative adversarial networks

1. INTRODUCTION

Anomaly detection aims to identify sub-sequences of various lengths that are con-

sidered abnormal within a context represented by data. Accurate and automated anomaly

detection is crucial to a wide range of applications including network security, smart man-

ufacturing, autonomous driving, and digital healthcare. Time-series data is ubiquitous in

almost all application domains; hence, time-series anomaly detection has been actively

studied for years, especially recently using machine learning. However, it remains a very

challenging task for three key reasons: (i) labels for abnormal data are often rare, preventing

proper training of supervised learning models; (ii) real-world time-series data is often sub-

ject to noise and characterized by complex temporal patterns that are difficult to identify;

(iii) different datasets have different properties and thus often require a specific choice of

parameters (e.g., using domain knowledge) for anomaly detectors to work well, making

them hard to generalize.

To address the first challenge, we take an unsupervised learning approach. Modern

approaches to unsupervised time series anomaly detection are typically prediction-based

or reconstruction-based. Prediction-based methods [1, 2] forecast time-series signal and

compare the real data to the predicted signal to calculate a prediction error. Reconstruction-

based methods [3, 4, 5] employ a model to learn a low-dimensional representation of the
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input time-series signal, reconstruct that signal using the representation, and then compare

the reconstructed signal to the real input to calculate a reconstruction error. A large

prediction or reconstruction error usually indicates the presence of an anomaly.

To address the second challenge, we adopt a deep learning approach to reap deep

neural nets’ superior capability of recognizing complex temporal correlations and hidden

patterns from data [4, 6, 7]. In particular, we exploit convolutional neural networks (CNN)

for their nifty performance in computer vision tasks, and in order to bridge this gap to

time series, we encode 1D time series into 2D images as a preprocessing step, which also

explains part of our approach, TSI, which stands for Time Series to Images.

For the third challenge, we take a nonparametric approach throughout our design

pipeline. The resulting model does not make any assumptions about the underlying data

and does not require choosing parameters for each dataset, or altering model architectures

like [8].

Thus finally, in this paper, we propose a novel generative adversarial network (GAN)

architecture called TSI-GAN for unsupervised time series anomaly detection. First, we

perform 1D-to-2D using two encoding techniques to capture the temporal correlation and

any type of deviance present in the time series. This encoding also allows us to leverage

GAN’s outstanding performance on tasks of image generation [9] and image-to-image

translation [10]. Second, we design a GAN with two critics and two generators that

consist of convolutional layers in order to reconstruct encoded images and obtain effective

reconstruction errors. The aim of the GAN is to learn a generalized distribution of normal

samples such that it produces reconstruction errors that are (i) large on anomalous inputs

and (ii) small on normal data even in the presence of noise and time non-stationarity.

In addition, GAN-based methods typically solve an optimization problem using

gradient descent as a separate step during inference to find the latent representation for each

sample [11, 12]. This is highly inefficient on large datasets and impractical for real-time
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applications as proven by [8]. In contrast, we train an encoder-decoder network in our

GAN with cycle consistency loss to obtain the inverse mapping of the latent representation

automatically and immediately, making our inference almost instantaneous.

Third, as a further enhancement we address false positives (alarms), which are

often a pain point in existing anomaly detection methods. To this end, we post-process

the reconstruction errors using the Hodrick-Prescott filter [13] and then combine the errors

from two encoding channels using a weighted sum. This way, we obtain a reliable anomaly

score vector which leads to reduced false positives.

In summary, this paper makes the following contributions:

• We introduce TSI-GAN, a novel convolutional cycle-consistent GAN architecture

that learns to reconstruct 2D-encoded complex 1D time-series data and produces

reliable reconstruction errors for detecting non-trivial time series anomalies without

any labels, and in real-time.

• We address the challenge of model generalization by taking a fully nonparametric

approach throughout our design pipeline. As a result, our method makes no assump-

tions about underlying data and requires no manual parameter choice, or changing

model architectures.

• Wemitigate false alarms as a common issue in anomaly detection, by post-processing

the reconstruction error using a filtering technique and a weighting strategy.

• We benchmark TSI-GAN against eight state-of-the-art baseline methods on 250 well-

curated and harder-than-usual datasets. The results validate our approach as the best

performer overall, with a large winning margin over other methods.
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2. RELATED WORK

Anomalies can generally be classified into three categories: point anomalies, collec-

tive anomalies, and contextual anomalies [14]. Point anomalies are single instances of data

that are considered abnormal or irregular; collective anomalies are windows or sequences

of anomalous data; contextual anomalies are data that are only considered anomalous (point

or collective) depending on context such as time and space.

Due to the importance of anomaly detection in many applications, research in this

field has been active for years. While statistical methods are classical, machine learning

and especially deep learning based approaches have recently received increasingly more

attention due to their attractive performance.

Proximity-based methods classify a data point as a point anomaly or a sub-sequence

as a collective anomaly when its locality is sparsely populated. These methods can be

further classified into cluster-based methods such as k-means clustering [15], distance-based

methods such as k-nearest neighbors [16], and density-based methods such as DBSCAN

[17]. The main drawback of these methods when applied to time series anomaly detection

is that they require the number of anomalies to be known a priori and are unable to capture

temporal patterns.

Under the above category, Time-series discord discovery is a recently proposed

distance-based method for anomaly detection. Time series discords refer to very unusual

time series subsequences, i.e., those that are maximally different from other subsequences in

the same time series. Nakamura et al. introducedMERLIN [18] which works by measuring

the similarities between subsequences of all possible lengths and selecting the anomalous

ones using a discord refinement algorithm. MERLIN is considered to be the state-of-the-art

for anomaly detection in univariate time series, and is included in our experiments as a

baseline.
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Prediction-based methods try to predict future values of a given time series by

learning a predictive model; a data point is classified as an anomaly if the predicted value

differs from real data by more than a specified threshold. Time series forecasting methods

such as ARIMA [1] can be used for this but often require extensive examination and

preprocessing of data and are parameter sensitive. Several deep learning approaches have

been proposed to overcome these limitations. Notably, Hundman et al. [2] proposed an

LSTM model with Dynamic Thresholding (LSTM-DT) to make predictions and introduce

dynamic thresholding to reduce false positives.

Reconstruction-based methods learn a latent low-dimensional representation of the

input time-series data and try to reconstruct the input based on the representation. The

assumption is that anomalies will lose information when mapped to the latent space and

thus will not be reconstructed accurately, producing a larger reconstruction error. Hence,

reconstruction error is measured at each time step and thresholding techniques are applied

to detect the anomalies. Several deep learning approaches have been proposed includ-

ing LSTM based Autoencoder (LSTM-AE) [19], Dense Autoencoder (DENSE-AE) [20],

DONUT [21] which uses a Variational Autoencoder (VAE), and GAN-based methods

[4, 11, 12, 22]. TadGAN [4] presents a recent study using GAN to perform this task.

However, TadGAN requires the sampling interval of input data to be known for data prepro-

cessing; otherwise, anomalies that do not have high amplitude will not be detected. This

is a notable limitation because most anomalies in the real world are complicated rather

than just simple amplitude spikes. Another related work is T2IVAE [6], which transforms

time series to images and uses VAE to reconstruct the input time series. However, VAEs

are prone to overfitting and often reconstruct anomalous samples quite accurately, resulting

in unreliable reconstruction errors. Even though T2IVAE attempts to reduce this risk by

employing an adversarial training strategy in the last five training epochs, the overfitting

effect remains rather prominent.
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We take a GAN-based approach instead of VAE because we find that GAN is

strongly averse to the overfitting phenomenon when it comes to infrequent anomalous

samples. Unlike TadGAN, however, we use convolutional neural networks in our GAN to

learn feature maps as if learning from images. This way, we are able to reconstruct a more

effective 2D-encoded time series, which allows us to obtain more reliable anomaly scores

based on reconstruction errors.

There are also commercial tools including Microsoft Azure Anomaly Detector [23]

and LinkedIn Luminol [24]. Azure uses spectral residual (SR) from the saliency detection

domain [23] and CNN to learn a discriminating threshold. The output is a sequence of labels

indicating if a particular timestamp is anomalous or not. Luminol uses the Bitmap detector

algorithm [25] which divides input time series into chunks and calculates the frequency

of similar chunks to calculate anomaly scores. These commercial tools are included as

baselines in our experiments as well.

3. ENCODING TIME-SERIES TO IMAGES

To begin with, TSI-GAN transforms 1D time series input to 2D images in order

to capture the complex temporal correlation in the data. Consider an input time series

�̊� = {𝑥1, 𝑥2, ..., 𝑥𝑇 }, where 𝑇 is the time series length. We use a sliding window with

window size 𝑊 and step size 𝑆 to divide �̊� into 𝑁 overlapping sub-sequences, �̊�𝑘 =

{𝑥𝑘+1, 𝑥𝑘+2, . . . , 𝑥𝑘+𝑊 }, where 𝑘 = 0, . . . , 𝑁 − 1 and 𝑁 = ⌊𝑇−𝑊
𝑆
⌋. We set𝑊 = 64 and 𝑆 = 1

and convert each window of size 64 into a two-channel image of size 64× 64× 2, using two

time-series encoding techniques: Gramian Angular Field (GAF) [26] and Recurrence Plot

(RP) [27].
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(a) Normal window (b) GAF representation (c) RP representation

(d) Anomalous window (e) GAF representation (f) RP representation

Figure 1. Illustration of normal and anomalous windows encoded by GAF and RP for a
sub-sequence of time series taken from the InternalBleeding dataset

3.1. GRAMIAN ANGULAR FIELD (GAF)

The core idea behind employingGAF transformation is that, when anomalous values

exist in a time series, that transformation will amplify the difference between the normal

samples and anomalous samples in the 2D image (see Fig. 1) and as such our GAN model

will produce a large reconstruction error for the anomalous samples.

Given a sub-sequence �̊�𝑘 = {𝑥𝑘+𝑖}𝑊𝑖=1 at time step 𝑘 , GAF rescales all the observa-

tions into the interval [−1, 1] and calculates �̄�𝑘 = {𝑥𝑘+𝑖}𝑊𝑖=1, where

𝑥𝑘+𝑖 =
(𝑥𝑘+𝑖 −max( �̊�𝑘 )) + (𝑥𝑘+𝑖 −min( �̊�𝑘 ))

max( �̊�𝑘 ) −min( �̊�𝑘 )
(1)
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Next, we represent each rescaled �̄�𝑘 using polar coordinates, as radius 𝑟 = 𝑡𝑘+𝑖/𝑊 where

𝑡𝑘+𝑖 ∈ N is the timestamp, and angular 𝜙 = arccos(𝑥𝑘+𝑖) ∈ [0, 𝜋]. This polar conversion

produces a one-to-one mapping with a unique inverse function, and preserves absolute

temporal relation (as opposed to Cartesian coordinates). Thus, we can identify the temporal

correlation at different time intervals by calculating the trigonometric sum between each

point within the sub-sequence:

𝑋𝐺𝐴𝐹
𝑘 =



cos(𝜙1 + 𝜙1) · · · cos(𝜙1 + 𝜙𝑊 )

cos(𝜙2 + 𝜙1) · · · cos(𝜙2 + 𝜙𝑊 )
...

. . .
...

cos(𝜙𝑊 + 𝜙1) · · · cos(𝜙𝑊 + 𝜙𝑊 )


(2)

= ( �̄�𝑘 )𝑇 ⊗ �̄�𝑘 −
(√︃

𝐼 − ( �̄�𝑘 )2
)𝑇
⊗

√︃
𝐼 − ( �̄�𝑘 )2,

where 𝑋𝐺𝐴𝐹
𝑘

is a𝑊 ×𝑊 matrix, 𝐼 is the unit row vector [1, 1, ..., 1] (�̄�𝑘 is a row vector too),

and ⊗ represents outer product. We can easily derive (2) as follows:

cos(𝜙𝑎 + 𝜙𝑏) = cos(𝜙𝑎) · cos(𝜙𝑏) − 𝑠𝑖𝑛(𝜙𝑎) · 𝑠𝑖𝑛(𝜙𝑏)

= cos(𝜙𝑎) · cos(𝜙𝑏) −
√︃

1 − (𝑐𝑜𝑠(𝜙𝑎))2 ·
√︃

1 − (𝑐𝑜𝑠(𝜙𝑏))2

= 𝑥𝑎 · 𝑥𝑏 −
√︃

1 − 𝑥2
𝑎 ·

√︃
1 − 𝑥2

𝑏
(3)

The 𝑋𝐺𝐴𝐹
𝑘

matrix has several desired properties: it preserves the temporal depen-

dency since time increases from top-left to bottom-right; its diagonal retains the original

angular and value information (cos(2𝜙𝑎) = 2(cos(𝜙𝑎))2 − 1 = 2𝑥2
𝑎 − 1); its off-diagonal

values 𝑥𝐺𝐴𝐹
𝑘,(𝑎,𝑏); |𝑎−𝑏 |=𝑑 = cos(𝜙𝑎 + 𝜙𝑏) represent relative temporal correlations by a trigono-

metric sum of the angular directions (𝜙𝑎 and 𝜙𝑏) with respect to a time interval 𝑑. Fig. 1b

depicts a GAF-encoded normal window and Fig. 1e shows a GAF-encoded anomalous
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window. We can observe that the anomalous window is substantially different from the

normal window. Since normal windows occur with much higher probability than abnormal

ones in the training set, our GAN model will converge towards normal windows, thus able

to produce a larger reconstruction error when encountering an anomaly.

3.2. RECURRENCE PLOT (RP)

A recurrence plot (RP) [27] is an image that represents the distance between ob-

servations extracted from a sub-sequence time series. Given a sub-sequence window

�̊�𝑘 = {𝑥𝑘+𝑖}𝑊𝑖=1, we calculate a RP matrix 𝑋
𝑅𝑃
𝑘
of dimension𝑊 ×𝑊 where each element at

row 𝑎 and column 𝑏 is defined as

𝑥𝑅𝑃
𝑘,(𝑎,𝑏) = Θ(𝜖 − ∥𝑥𝑘+𝑎 − 𝑥𝑘+𝑏∥), ∀𝑎, 𝑏 ∈ {1, · · · ,𝑊} (4)

where Θ(·) : R→ {0, 1} is a Heaviside function, and 𝜖 is a predefined distance threshold.

In this work, instead of using binary representation, we use raw distances ∥𝑥𝑘+𝑎 − 𝑥𝑘+𝑏∥

(without the need for choosing 𝜖 orΘ(·)) to construct the RP matrix; the resulting 2D image

will thus have more granularity scales of the distances. In order to align RP images with

GAF images on the same scale, we scale the RP matrix into the range [−1, 1] before further

processing.

If any time step 𝑘 + 𝑎 is anomalous, then both row 𝑘 + 𝑎 and column 𝑘 + 𝑎 in the

RP image will be significantly different from other normal pixels because using multiple

observations amplify the distance, as illustrated in Fig. 1f.
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3.3. COMBINING TWO CHANNELS

After encoding the series using GAF and RP, respectively, we treat them as two

channels and stack them along the channel axis to obtain

𝑋𝑘 = 𝑆𝑡𝑎𝑐𝑘 (𝑋𝐺𝐴𝐹
𝑘 , 𝑋𝑅𝑃

𝑘 ). (5)

Since we have divided the original time series �̊� into 𝑁 overlapping sub-sequence windows

of size𝑊 , and encoded each window as a 2-channel image of shape [𝑊 ×𝑊 × 2], we thus

finally obtain a sequence of images X = {𝑋𝑘 }𝑁𝑘=1.

4. THE TSI-GAN MODEL

4.1. MODEL ARCHITECTURE

Reconstruction-based anomaly detection methods learn a model that maps input

data (in our case, an image with two channels) to the latent low-dimensional space and

then reconstructs the input using the latent representation. The objective is to train a model

that captures a generalized latent representation of the normal patterns, such that anomalies

will not be reconstructed accurately and hence result in a larger reconstruction error. In

our proposed method, we learn two mapping functions, E : X → Z and G : Z → X,

where X represents the input domain, Z represents the latent domain for which Gaussian

distribution N(0, 1) is used. For any given input image at time step 𝑘 , denoted by 𝑋𝑘 , the

model tries to reconstruct it as 𝑋𝑘 → E(𝑋𝑘 ) → G(E(𝑋𝑘 )) ≈ �̂�𝑘 .

The entire model architecture is presented in Fig. 2. We model the above mapping

functions as Generators, where E acts as an encoder which maps the input image to the

latent space using convolution layers, and G acts as a decoder which transforms the latent

representation to a reconstructed input image using transposed convolution. We use two

Critics C𝑥 and C𝑧: C𝑥 regulates the decoder G by trying to distinguish real images 𝑋
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E

E(𝑥)

𝑥 ∼ P𝑋

G 𝑧 ∼ P𝑍

C𝑥 𝐿2

G(E(𝑥))G(𝑧)

C𝑧

Figure 2. TSI-GAN model architecture

from the reconstructed images G(E(𝑥)); C𝑧 regulates the encoder E by trying to liken the

latent representation E(𝑥) to the Gaussian noise 𝑧. The 𝐿2-norm will be used in our cycle

consistency loss which we describe later in Section 4.2.2.

4.2. LOSS FUNCTION AND TRAINING STRATEGY

We use two loss functions: (1) Wasserstein loss, to match the distribution of gener-

ated images with the distribution of input images, and (2) cycle consistency loss, to ensure

the desired mapping route 𝑋𝑘 → 𝑍𝑘 → �̂�𝑘 .

4.2.1. Wasserstein Loss. Training a GAN-based model is a min-max game be-

tween the generator G and its critic 𝐶𝑥 with a vanilla adversarial loss function:

min
G

max
C𝑥
E

𝑥∼P𝑋
[logC𝑥 (𝑥)] + E

𝑧∼P𝑍
[log(1 − C𝑥 (G(𝑧)))] (6)

where C𝑥 outputs a probability score in the range [0, 1] indicating the realness of the

input image. However, the above objective suffers from two problems: mode collapse and

vanishing gradients. In adversarial learning, mode collapse occurs when a Generator is

trapped onto only a few particular samples that can fool the Critic well, thereby failing

to capture the entire distribution. Vanishing gradients refer to the situation where, as the
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Algorithm 1: Training TSI-GAN
Input
:

Batch size 𝑚, learning rate 𝛼, no. of 𝑒𝑝𝑜𝑐ℎ𝑠

1 for 𝑛 = 1, ..., 𝑒𝑝𝑜𝑐ℎ𝑠 do
2 Sample {(𝑋𝑘 )}𝑚𝑘=1 from input data X
3 Sample {(𝑍𝑘 )}𝑚𝑘=1 from Gaussian distribution
4 𝑔𝑐𝑥 ← ∇𝑤𝑐𝑥

[ 1
𝑚

∑𝑚
𝑘=1(C𝑥 (𝑋𝑘 ) − C𝑥 (G(𝑍𝑘 )))+

5 𝜆𝑔𝑝 (𝑋𝑘 ,G(𝑍𝑘 ))]
6 𝑤𝑐𝑥 ← 𝑤𝑐𝑥 + 𝛼 · 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤𝑐𝑥 , 𝑔𝑐𝑥 )
7 𝑔𝑐𝑧 ← ∇𝑤𝑐𝑧

[ 1
𝑚

∑𝑚
𝑘=1(C𝑧 (𝑍𝑘 ) − C𝑧 (E(𝑋𝑘 )))+

8 𝜆𝑔𝑝 (𝑍𝑘 , E(𝑋𝑘 ))]
9 𝑤𝑐𝑧 ← 𝑤𝑐𝑧 + 𝛼 · 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤𝑐𝑧 , 𝑔𝑐𝑧 )

10 𝑔E ← ∇𝑤E [ 1
𝑚

∑𝑚
𝑘=1(C𝑧 (𝑍𝑘 ) − C𝑧 (E(𝑋𝑘 ))+

11 ∥𝑋𝑘 − G(E(𝑋𝑘 ))∥2)]
12 𝑤E ← 𝑤E + 𝛼 · 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤E , 𝑔E)
13 𝑔G ← ∇𝑤G [ 1

𝑚

∑𝑚
𝑘=1(C𝑥 (𝑋𝑘 ) − C𝑥 (G(𝑍𝑘 ))+

14 ∥𝑋𝑘 − G(E(𝑋𝑘 ))∥2)]
15 𝑤G ← 𝑤G + 𝛼 · 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤G , 𝑔G)

Critic improves over time, the gradients approach zero and thus the loss function (6) starts

to stagnate, ceasing to provide feedback to the Generator. To overcome these two issues,

we use Wasserstein loss [9] in place of (6) to train our GAN:

min
G

max
C𝑥∈C𝑥

𝑉𝑋 (C𝑥 ,G) ≜ E𝑥∼P𝑋 [C𝑥 (𝑥)] −E𝑧∼P𝑍 [C𝑥 (G(𝑧))] (7)

where C𝑥 is the set of all the 1-Lipschitz functions. To ensure that Wasserstein Loss

approximates theEarth Mover’s Distance [28], theCritic needs to be 1-Lipschitz continuous.

This can be enforced by adding a gradient penalty [9] regularization term 𝜆𝑔𝑝 (𝑥,G(𝑧)) =

E (∥∇(C𝑥 (𝑥))∥2 − 1)2 to (7) where 𝑥 = 𝛽𝑥+(1−𝛽)G(𝑧) and 𝛽 is a randomnumber generated

in the interval [0, 1]. This term penalizes gradients not equal to 1.

Similarly, for Encoder E and its Critic C𝑧, the loss function as in the objective is

min
E

max
C𝑧∈C𝑧

𝑉𝑍 (C𝑧,E) ≜ E𝑧∼P𝑍 [C𝑧 (𝑧)] −E𝑥∼P𝑋 [C𝑧 (E(𝑥))] (8)
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where the Critic C𝑧 tries to distinguish between 𝑧 ∼ P𝑧 and the encoded images E(𝑥).

Again, we add a gradient penalty regularization term 𝜆𝑔𝑝 (𝑧, E(𝑥)) = E(∥∇(C𝑧 (𝑧))∥2 − 1)2

where 𝑧 = 𝛽𝑧 + (1− 𝛽)E(𝑥), to (8) to ensure a 1-Lipschitz continuous Critic. The complete

architecture is given in Figure 2.

4.2.2. Cycle Consistency Loss. The GAN model described above is able to map

𝑋𝑘 to a desired 𝑍𝑘 . However, the inverse mapping of 𝑍𝑘 back to �̂�𝑘 is not guaranteed by

training with just vanilla adversarial losses or Wasserstein losses alone. This is because

those losses only ensures distribution similarity but not instance similarity. To this end,

Schlegl et al. [11] proposed an iterative approach via backpropagation to find the best 𝑍𝑘

in the latent space that would generate G(E(𝑋𝑘 )) that is similar to the input image 𝑋𝑘 .

However, this method suffers from large search space and is inefficient for large datasets

and real-time applications, as shown by Zenati et al. [8]. Hence, we use cycle consistency

loss [29] to train the generators G and E by minimizing the 𝐿2-norm distance between the

input image and the reconstructed image:

min
{E,G}

𝑉𝐿2(E,G) ≜ E𝑥∼P𝑋 [∥𝑥 − G(E(𝑥))∥2] (9)

4.2.3. Final Objective. Combining the objectives (7), (8), (9) we arrive at the final

objective:

min
{E,G}

max
{C𝑥∈C𝑥 ,C𝑧∈C𝑧}

𝑉𝑋 (C𝑥 ,G) +𝑉𝑍 (C𝑧, E) +𝑉𝐿2(E,G) (10)

The complete training procedure is presented in Algorithm 1, where 𝑤𝑐𝑥 , 𝑤𝑐𝑧 , 𝑤G , 𝑤E are

the weights for critic C𝑥 , C𝑧, decoder G and encoder E, respectively, and 𝑔𝑐𝑥 , 𝑔𝑐𝑧 , 𝑔G , 𝑔E

are their corresponding gradients.
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4.3. POST-PROCESSING AND ANOMALY DETECTION

After training the above GAN model, we calculate the sum of squared errors (SSE)

between the input image 𝑋𝑘 and the reconstructed image �̂�𝑘 to get the reconstruction error

𝜖𝑟𝑒𝑐. We then extract the reconstruction error for each channel as 𝜖𝑔𝑎 𝑓 and 𝜖𝑟 𝑝. Calculating

thresholds directly on the raw reconstruction error will lead to many false positives. To

mitigate this, we smooth the reconstruction error to suppress frequently occurring minor

error peaks which are usually caused by normal behavior rather than anomalies. We use

the Hodrick-Prescott filter [13] because of its excellent capability of removing short-term

fluctuations in data since we are only concerned with peaks that persist for a sustained

period of time. It extracts a smooth trend 𝑟 from a given sequence 𝜖 of length 𝑁 by solving:

min
𝑟

(
𝑁∑︁
𝑘=1
(𝜖𝑘−𝑟𝑘 )2+𝜆

𝑁−1∑︁
𝑘=2
[(𝑟𝑘+1−𝑟𝑘 )−(𝑟𝑘−𝑟𝑘−1)]2

)
(11)

After smoothing 𝜖𝑔𝑎 𝑓 and 𝜖𝑟 𝑝, we find the local (neighborhood) peaks in each

channel and sort them in descending order to calculate a confidence level 𝜎∈[1,2] for each

channel:

𝜎 =
𝑝𝑒𝑎𝑘𝑠[0] − 𝑝𝑒𝑎𝑘𝑠[1]

𝑝𝑒𝑎𝑘𝑠[0] + 1,

where 𝑝𝑒𝑎𝑘𝑠[0] and 𝑝𝑒𝑎𝑘𝑠[1] are the first and the second highest peaks in the smoothed

reconstruction errors, respectively. The idea is that when the difference between these

two peaks is large, that channel is assumed to be more confident about its detection of

the anomaly and hence weighed higher in the final anomaly score. This score is defined

by combining the two reconstruction errors 𝜖𝑔𝑎 𝑓 and 𝜖𝑟 𝑝 using their respective confidence

level:

𝑠𝑐𝑜𝑟𝑒_𝑣𝑒𝑐 = 𝜎𝑔𝑎 𝑓 × 𝜖𝑔𝑎 𝑓 + 𝜎𝑟 𝑝 × 𝜖𝑟 𝑝 . (12)
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Algorithm 2: Anomaly Detection using TSI-GAN
// Post-processing for reliable anomaly scores

1 for 𝑘 = 1, ..., 𝑁 do
2 �̂�𝑘 ← G(E(𝑋𝑘 ))
3 �̂�𝐺𝐴𝐹

𝑘
, �̂�𝑅𝑃

𝑘
← extract GAF & RP channels from �̂�𝑘

4 𝜖𝑔𝑎 𝑓𝑘 ←
∑𝑊

𝑖=1
∑𝑊

𝑗=1(𝑋𝐺𝐴𝐹
𝑘,𝑖, 𝑗
− �̂�𝐺𝐴𝐹

𝑘,𝑖, 𝑗
)2

5 𝜖𝑟 𝑝𝑘 ←
∑𝑊

𝑖=1
∑𝑊

𝑗=1(𝑋𝑅𝑃
𝑘,𝑖, 𝑗
− �̂�𝑅𝑃

𝑘,𝑖, 𝑗
)2

6 for 𝑐ℎ ∈ {𝑔𝑎 𝑓 , 𝑟 𝑝} do
7 𝜖𝑐ℎ ← HP(𝜖𝑐ℎ) // HP: Hodrick-Prescott filter

8 𝑝𝑒𝑎𝑘𝑠𝑐ℎ ← find_peaks(𝜖𝑐ℎ)
9 𝜎𝑐ℎ ← (𝑝𝑒𝑎𝑘𝑠𝑐ℎ [0]−𝑝𝑒𝑎𝑘𝑠𝑐ℎ [1])

𝑝𝑒𝑎𝑘𝑠𝑐ℎ [0] + 1

10 𝑠𝑐𝑜𝑟𝑒_𝑣𝑒𝑐 ← 𝜎𝑔𝑎 𝑓 × 𝜖𝑔𝑎 𝑓 + 𝜎𝑟 𝑝 × 𝜖𝑟 𝑝
// Detect anomalies

11 𝑚𝑒𝑎𝑛← mean(𝑠𝑐𝑜𝑟𝑒_𝑣𝑒𝑐)
12 for 𝑘 = 1, ..., 𝑁 do
13 if 𝑠𝑐𝑜𝑟𝑒_𝑣𝑒𝑐𝑘 > 𝑚𝑒𝑎𝑛 then
14 𝑝𝑟𝑒𝑑𝑘 = 𝑡𝑟𝑢𝑒

15 else
16 𝑝𝑟𝑒𝑑𝑘 = 𝑓 𝑎𝑙𝑠𝑒

17 Group consecutive 𝑝𝑟𝑒𝑑𝑘 ’s into {𝑠𝑒𝑞𝑖}𝐿𝑖=1
// Pruning to reduce false alarms

18 {𝑚𝑖} ← max({𝑠𝑒𝑞𝑖})
19 {𝑚𝑖} ← sort({𝑚𝑖}, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒)
20 sort {𝑠𝑒𝑞𝑖} in the same order of {𝑚𝑖}
21 for 𝑖 = 1, ..., 𝐿 do
22 𝑝𝑖 ← (𝑚𝑖−1 − 𝑚𝑖)/𝑚𝑖−1
23 if 𝑝𝑖 < 𝜃 then
24 reclassify {𝑠𝑒𝑞 𝑗 }𝐿𝑗=𝑖 as normal
25 break;

Here it is defined as a vector (of length 𝑁) because each of the 𝑁 windows will

have an anomaly score. For the weight 𝜎, if there are multiple anomalies, the difference

between 𝑝𝑒𝑎𝑘𝑠[0] and 𝑝𝑒𝑎𝑘𝑠[1] will be small and thus 𝜎 will be smaller than the other

channel if the other channel detects a single outlier, which is desired since outliers are rare

by definition and thus single outliers are more likely than multiple. Otherwise, if both

channels detect multiple, they will be weighted by similar 𝜎’s.



19

After obtaining the anomaly score for each window, we calculate the mean anomaly

score over all the windows and any window that exceeds this threshold is flagged as an

anomaly. Following that, consecutive anomalous windows will be grouped together to form

a sequence (i.e., collective anomaly). To further mitigate false positives, we use an anomaly

pruning approach introduced by Hundman et al. [2]. Given a set of predicted anomalous

sequences {𝑠𝑒𝑞1, 𝑠𝑒𝑞2, ..., 𝑠𝑒𝑞𝐿}, where 𝑠𝑒𝑞𝑖 = (𝑠𝑒𝑞𝑠𝑡𝑎𝑟𝑡 (𝑖) , ..., 𝑠𝑒𝑞𝑒𝑛𝑑 (𝑖)) denotes a set of

points from the start to the end of an anomalous sequence 𝑖, we find the maximum score of

each sequence to obtain {𝑚1, 𝑚2, ..., 𝑚𝐿}. Sort these values in descending order (indexed

by 𝑖′) and compute a descent rate 𝑝𝑖′ = (𝑚𝑖′−1−𝑚𝑖′)/𝑚𝑖′−1. Then, look for the first sequence

that satisfies the condition 𝑝𝑖′ < 𝜃 (by default 𝜃 = 0.1), this and its subsequent sequences

are reclassified as normal.

The above post-processing and detection procedures are formulated in Algorithm 2.

5. PERFORMANCE EVALUATION

5.1. DATASETS

We use the UCR 2021 anomaly detection dataset1 which contains 250 sub-datasets

collected from a variety of sources. Unlike commonly used datasets such as Yahoo, Nu-

menta, and NASA which are found to have numerous flaws [30] including incorrect ground

truth labels, triviality of the anomalies and unrealistic anomaly density, this UCR dataset

is carefully curated, harder to detect and is much more reliable. Moreover, this dataset

contains a combination of point, collective, and contextual anomalies as well as amplitude,

seasonal, and trend anomalies, which offers a good variety for evaluation.

1http://bit.ly/3V2n6FY
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Table 1. Statistics of Datasets used in our experiments.

Property Dataset

AirTemperature PowerDemand InternalBleeding EPG NASA T-1 Noise All datasets

# Sub-datasets 14 8 26 12 10 16 250
# Data Points 98208 239448 194992 359304 113488 629494 19353766

# Anomalous Points 398 1688 3018 1292 644 3134 49363
# (% tot.) 0.004% 0.007% 0.015% 0.003% 0.005% 0.004% 0.002%

We choose a total of 6 categories from this dataset and each category contains

4-13 original sub-datasets; each original sub-dataset comes with a distorted duplicate by

adding artificial fluctuations. Therefore, the number of sub-datasets is doubled. The only

exception is the Noise category in which the sub-datasets are chosen from multiple other

categories with Gaussian noise added. A brief description of each category is as follows:

AirTemperature consists of hourly air temperature between 03/01 and 03/31 from 2009 to

2019, collected from CIMIS station 44 in Riverside, CA. PowerDemand consists of Italian

power demand data between 1/1/1995 and 5/31/1998. InternalBleeding consists of the

arterial blood pressure measurements of pigs. EPG is collected from an insect known as

Asian Citrus Psyllid, recorded using an Electropalatography (EPG) apparatus. NASA T-1

is collected from NASAMars Science Laboratory (MSL) dataset that consists of spacecraft

telemetry signals. Detailed statistics of each category and all the datasets is presented in

Table 1.

5.2. BASELINES

We compare our model against eight baselines.

LSTM-DT (Prediction-based). Similar to Hundman et al. [2], we use two layers of

LSTM with 80 units each and a subsequent dense layer with one unit to predict the value at

the next time step; point-wise prediction errors are then computed to detect anomalies.
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Table 2. Architecture and Hyperparameters of the proposed TSI-GAN.

Operation Kernel Strides Units BatchNorm? Activation

Encoder
Convolution 7 × 7 3 × 3 48 ✓ ReLU
Convolution 5 × 5 3 × 3 96 ✓ ReLU
Convolution 4 × 4 2 × 2 192 ✓ ReLU
Convolution 2 × 2 1 × 1 z_dim × −

Decoder
Transposed Convolution 2 × 2 1 × 1 192 ✓ LeakyReLU
Transposed Convolution 4 × 4 2 × 2 96 ✓ LeakyReLU
Transposed Convolution 5 × 5 3 × 3 48 ✓ LeakyReLU
Transposed Convolution 7 × 7 3 × 3 2 × Tanh

Critic X
Convolution 7 × 7 3 × 3 48 LayerNorm LeakyReLU
Convolution 5 × 5 3 × 3 96 LayerNorm LeakyReLU
Convolution 4 × 4 2 × 2 192 LayerNorm LeakyReLU
Convolution 2 × 2 1 × 1 1 × −

Critic Z
Fully Connected 50 LayerNorm ReLU
Fully Connected 25 LayerNorm ReLU
Fully Connected 1 × −

z_dim 100 Learning rate (𝛼) 1e-4
Optimizer RMSProp Weight decay (𝜆𝑤𝑑) 1e-4
Iterations 5000 Batch Size 128

Autoencoder (Reconstruction-based). We consider two versions of autoencoders:

one is a dense autoencoder consisting of three fully connected layers with 60, 20, and 60

units respectively; the other is an LSTM autoencoder which contains two LSTM layers each

with 60 units. Similar to our approach, these models try to reconstruct the input sample at

each time step and then use the reconstruction error to detect the anomalies.

TadGAN [4] (Reconstruction-based). The generators in TadGAN use a 1-layer

BiLSTM with 100 hidden units and a 2-layer BiLSTM with 64 hidden units. Additionally,

TadGAN uses a 1D (whereas we use 2D) convolutional layer for the critics to capture
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temporal correlation. Their best method of combining reconstruction error and critic score,

as reported by their paper, is Critic × DTW, which we adopt in our experiments to detect

anomalies for TadGAN.

DONUT [21] (Reconstruction-based) uses a Variational Autoencoder (VAE) to

detect anomalous seasonal KPIs in web applications. It computes reconstruction errors at

each time step and subsequently applies thresholding to detect anomalies.

Luminol [24] is an open source anomaly detection Python library. It uses the Bitmap

detector algorithm by default which divides the input time series into chunks and calculates

the frequency of similar chunks to calculate the anomaly scores.

MERLIN [18] (Distance-based) is an anomaly detection algorithm that measures

the similarities between subsequences of all possible lengths and flags the anomalous ones

using a discord refinement algorithm.

Microsoft Azure Anomaly Detector [23] (Commercial tool). Azure uses spectral

residuals (SR) adopted from a preprocessing step in computer vision called saliency detec-

tion, as well as CNN to learn a discriminating threshold, and outputs a sequence of labels

indicating if a particular timestamp is anomalous.

5.3. PERFORMANCE METRICS

In real world application scenarios, most anomalies happen in the form of collective

anomalies and hence we use the window based rules introduced by Hundman et al. [2]: (1)

If an anomalous window overlaps any predicted window, a true positive (TP) is recorded;

(2) If a predicted window does not overlap with any anomalous window, a false positive

(FP) is recorded; (3) If an anomalous window does not overlap with any predicted window,

a false negative (FN) is recorded. Based on this set of rules, we calculate Precision and

F1-Score as the performance metrics.
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Table 3. Average F1-Score on original and distorted datasets for each category, as well as
F1-Score and Precision averaged over all the 250 datasets.

Model AirTemperature PowerDemand InternalBleeding EPG NASA T-1 Noise All 250 datasets
Orig. Distor. Orig. Distor. Orig. Distor. Orig. Distor. Orig. Distor. F1 Precision

TSI-GAN 1.0 0.833 0.667 0.667 0.846 0.474 0.5 0.556 0.933 0.267 0.479 0.468 0.445
MERLIN 0.054 0.18 0.04 0.071 0.926 0.721 0.354 0.191 0.613 0.6 0.49 0.414 0.402
LSTM-AE 0.389 0.611 0.375 0.583 0.654 0.308 0.222 0.444 0.533 0.333 0.208 0.355 0.301
DONUT 0.611 0.444 0.083 0.1 0.59 0.564 0.278 0.167 0.333 0.533 0.458 0.351 0.325
LSTM-DT 0.778 0.833 0.25 0.5 0.615 0.449 0.222 0.222 0.6 0.6 0.271 0.32 0.289
DENSE-AE 0.194 0.111 0.0 0.0 0.231 0.077 0.222 0.222 0.2 0.0 0.271 0.159 0.136
TadGAN 0.0 0.133 0.0 0.0 0.282 0.24 0.233 0.189 0.267 0.2 0.171 0.131 0.092
Azure 0.181 0.199 0.083 0.196 0.099 0.176 0.167 0.167 0.007 0.017 0.084 0.05 0.037
Luminol 0.022 0.021 0.078 0.089 0.118 0.046 0.037 0.088 0.009 0.014 0.019 0.049 0.021

5.4. EXPERIMENTAL RESULTS

Table 3 reports the average F1-Score on the original and distorted datasets for each

category, and in the last column, the F1-Score and Precision averaged over all the 250

datasets.

Overall, it is observed that TSI-GAN achieves an F1-Score of 0.468 and Precision

of 0.445, outperforming all the baseline methods. More specifically, TSI-GAN offers an

improvement of 13% and 31% on F1-score over the second and the third best methods,

MERLIN (0.414) and LSTM-AE (0.355), respectively. We note that 85-95% of the im-

provement was attributed to GAN, while 5-15% was attributed to post-processing. When

the individual categories are considered, TSI-GAN performs the best on AirTemperature,

PowerDemand, EPG for both original and distorted datasets and wins over other meth-

ods by a significant margin; it also offers competitive performance on other categories

(InternalBleeding, NASA-T1 Distorted, and Noise) as well.

Using MERLIN as a benchmark, we measure the performance difference between

each method and MERLIN in Fig. 4. It indicates that TSI-GAN is the only one that offers

a positive performance improvement while all the other methods underperform MERLIN.

Next, we present an in-depth analysis of MERLIN.
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Figure 3. TSI-GAN vs. DONUT vs. TadGAN when applied to an example time series.
The translucent red interval depicts the ground-truth anomaly. DONUT as a VAE-based
model tends to overfit anomalies, while TadGAN tends to only detect high-amplitude data
points as anomalies since it does not use any feature engineering to capture other types of
anomalies. TSI-GAN, however, encodes input time series using GAF and RP and thus is
able to detect various types of deviance.

5.4.1. Comparison with MERLIN. Notably, MERLIN is a non-deep-learning

based method, but it is well-designed and outperforms other deep learning based methods

as shown by Table 3. On the other hand, MERLIN underperforms when compared to

TSI-GAN (0.414 vs 0.468) in terms of F1 score averaged over all the 250 datasets. After

an in-depth investigation, we identify the following important limitations of MERLIN.

First,MERLINpredictsmultiple integer positions surrounding each detected anomaly,

and those positions wander in an uncertain range. For example, a sub-dataset in the

AirTemperature category has an anomaly on the interval [5703, 5727] (ground truth),

butMERLIN’s prediction are “5673, 5672, 5671, 5670, 5669, 5668, 5667, 5675, 5675, 5664, 5674, 5674,
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Figure 4. Comparing all anomaly detection methods against MERLIN in terms of F1 score
averaged across all 250 datasets, expressed as a percentage of improvement.

5673, 5681, 5680, 5679, 5673, 5673, 5672, 5671, 5672, 5669, 2193, 2193, 2192, 2192, 2192, 2191, 2191,

2190, 2190, 2189, 2188, 2187, 2186, 2186, 2185, 2184, 2183, 2182, 2181, 2180, 2179, 2179, 2178, 2177”.

Because of this, MERLIN requires a relaxed scoring function to reap good performance,

where we deem its prediction 𝑝 correct if (𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑠𝑡𝑎𝑟𝑡−100) < 𝑝 < (𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑒𝑛𝑑+100).

However, if we reduce 100 to 5, it suffers from a large performance downgrade from 0.414

to 0.129, a 68% decrease, when averaged across all 250 datasets. Our experiments has

adopted 100 in favor of MERLIN.

Second, MERLIN builds on top of the DRAG algorithm [31] which requires a user-

defined parameter 𝑟, and the algorithm could fail depending on its value and the user has

to re-run it with a different value. MERLIN claims to have overcome this by trying many

𝑟 values in a somewhat brute-force manner, where it sets an upper bound and gradually

decreases it by tiny bits until the algorithm returns success. However, our experiments

observed that this approach still fails multiple times; the reason is that the upper bound

depends on a user provided value 𝐿 which requires knowing the length of each anomaly a

priori.
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Figure 5. Illustration TSI-GAN vs. MERLIN when applied to an example time series.
The translucent red interval denotes the ground-truth anomaly. MERLIN as a

distance-based method tends to produce multiple false positives when the envelope of the
time series varies randomly without a clear pattern. On the other hand, TSI-GAN learns a

good representation from normal data and does not produce any false positives.

Third, when the envelope of the input time series varies randomly without a clear

pattern, MERLIN tends to produce multiple false positives (see Figure 5) due to its distance-

based approach.

TSI-GAN does not have any such limitations, since it operates by windows, does

not require dataset-specific parameters, and takes a reconstruction-based approach.

5.4.2. Comparison with Deep Learning Based Methods. Among all the deep

learning based methods, LSTM-AE performs the best, with an average F1-Score of 0.355;

DONUT comes in second with a slightly lower score 0.351. We examine the possible

reasons for their shortfall as compared to TSI-GAN and how our approach overcomes them.

As we mentioned earlier, autoencoder based methods carry the risk of overfitting anomalies

during training, by reconstructing anomalous samples just as accurately as normal samples.

DONUT which employs VAE has this tendency as can be seen in Fig. 3. This is also a

plausible reason for underperformance of other autoencoder based models such as LSTM-

AE.
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Table 4. Training and Inference time of TSI-GAN

AirTemperature PowerDemand
# of Samples Total time Per-window time # of Samples Total time Per-window time

Training 7996 251s 0.06s 29772 246s 0.01s
Inference 4083 10s 0.002s 11862 27s 0.002s

In contrast, TSI-GAN uses an adversarial training strategy which makes our model

largely immune to this behaviour. However, while TadGAN and many others alike also

use adversarial learning, they are unable to capture anomalies that are not amplitude spikes

unless dataset-specific parameters such as sampling interval is known. The reason is that

they do not instrument feature engineering to capture anomalies that deviates in seasonality,

trend, etc., and therefore tend to only detect high amplitude points in the input as can be

observed in Fig. 3. This is a main reason why TadGAN only performs well on datasets in

which all anomalies are amplitude spikes; such anomalies, however, are trivial to detect

as pointed out by [30]. On the other hand, TSI-GAN uses GAF and RP encoding which

substantially enhances its ability to detect various types of non-trivial deviance, as can be

observed in Fig. 3.

5.4.3. Time Efficiency. We report the training and inference time of TSI-GAN in

Table 4. The times are measured on a NVIDIA RTX 3070 GPU with 8GB of VRAM along

with AMD Ryzen 7 5800H @ 3.20 GHz CPU. We can see that the training time remains

almost constant irrespective of the number of training samples, the reason is that we train

for iterations and not epochs. More importantly, the inference time per window is only

two milliseconds, which signifies that TSI-GAN is well suited for use on rapidly arriving

streaming data.
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6. CONCLUSION

In this paper, we introduce TSI-GAN, a novel convolutional cycle-consistent GAN

architecture that learns to reconstruct 2D-encoded time-series data and produces effective

and reliable reconstruction errors for detecting time series anomalies. We also address

the challenge of mitigating false alarms by post-processing the reconstruction error using

a filtering technique and computing a reliable score using a weighted combination of

channels. Our extensive experimental results demonstrate that TSI-GAN outperforms 8

state-of-the-art baseline methods and achieves the highest averaged F1-Score over all the

250 datasets (that are well-curated and non-trivial). We also provide an in-depth analysis

of the baselines’ limitations and how our model addresses them. TSI-GAN is unsupervised

and generalizes well without the need for parameter calibration, enabling it to be applicable

to most applications that involve time series, such as network intrusion detection, cyber

defense, IoT and edge computing.
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SECTION

2. UNPUBLISHED CONTENT

Building on top of the previous paper by exploitingDenoisingDiffusion Probabilistic

Models (DDPM) for anomaly detection. DDPMs have shown to outperform GANs in

image synthesis and thus it should translate to better anomaly detection performance as

well. However, due to time constraints this study will not be finished by the time of this

publication.
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3. SUMMARY AND CONCLUSIONS

This thesis presented TSI-GAN, a novel convolutional cycle-consistent GAN archi-

tecture that learns to reconstruct 2D-encoded complex 1D time-series data and produces

reliable reconstruction errors for detecting non-trivial time series anomalies without any

labels, and in real-time. Through a fully nonparametric design pipeline, we mitigate false

alarms, which are a common issue in anomaly detection, by post-processing reconstruction

error with a filtering technique and weighting strategy. We benchmark TSI-GAN against

eight state-of-the-art baseline methods on 250 well-curated and harder-than-usual datasets.

With a large winning margin over other methods, our approach is shown to be the best

performer overall.
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