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ABSTRACT

Ridesharing platforms rely on connecting available taxi drivers to potential pas-

sengers to maximize their revenue. However, predicting the stopping decision made by

every driver, i.e., the final task performed during a given day, is crucial to achieving this

goal. Unfortunately, little research has been done on predicting drivers’ stopping decisions,

especially when they deviate from expected utility maximization behavior. This research

proposes a Dynamic Discounted Satisficing (DDS) heuristic to model and learn the task at

which human agents will stop working for that day, assuming that the human agents are

taking sequential decisions based on their preference order. We apply this approach to the

problem of predicting the stopping decision of taxi drivers in a ridesharing platform. To

estimate the model parameters and predict the stopping time, we propose an algorithm -

Sampling Based Back Propagation Through Time(SBPTT) and evaluate it using real-time

data from the Chicago taxi dataset. The proposed model consistently has better accuracy

on simulated and real world data sets, when compared with discounted satisficing model.
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1. INTRODUCTION

Ridesharing platforms connect available taxi drivers to potential passengers when-

ever a service request is submitted to the platform. The use of ridesharing platforms has

become increasingly popular over the past few years, with more and more people relying on

them for transportation [1]. One of the biggest challenges faced by drivers on these platforms

is the long hours required to meet their income goals [2]. As the hours of work accumulate,

the level of cognitive fatigue experienced by drivers may increase, resulting in a decline in

their decision-making abilities. This can affect their ability to navigate routes, make quick

decisions in traffic, and assess passenger safety [3]. If the ridesharing platform can predict

the stopping decision made by every driver, then it can improve driver’s decision-making

ability and reduce the likelihood of fatigue-related errors. Predicting drivers’ final tasks can

improve the performance of ridesharing platforms by assigning ride requests optimally to

maximize the efficiency and average revenue of the platform.

The stopping decision of a driver may depend on task demands and cognitive fatigue

levels of drivers and various external factors such as such as traffic conditions, passenger

behavior and the length of their workday. However, To the best of our knowledge, there is

little work on the analysis of driver’s behavior (e.g. stopping time) on a ridesharing platform,

especially when they exhibit behavioral deviations from expected utility maximization

(EUM) behavior [4]. While traditional satisficing models [5, 6, 7] have been shown to

model human decision-making under conditions of cognitive fatigue, they may not fully

capture the dynamic nature of decision-making in the context of ridesharing platforms.

Devaguptapu et al., in [8] predicts the stopping time of an agent using Discounted Satisficing

heuristic where the agent’s threshold discounts over time. However, the model was found to

be inaccurate when dealing with human agents with greater discontent levels. For example,

in a ridesharing platform, the threshold of a driver discounts over time and also changes

across days.
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To address these limitations, there is a need for a more dynamic approach to satis-

ficing or discounted satisficing that can adapt to the changing demands of the ridesharing

context. By accounting for the dynamic nature of decision-making, these models could

help drivers make more informed decisions about when to take breaks, how much effort to

expend on driving, and when to stop working altogether. In addition, dynamic discounted

satisficing models could help ridesharing companies allocate resources more effectively.

For example, they could optimize work schedules to reduce the likelihood of driver burnout

and increase overall productivity. Overall, the development of dynamic discounted satisfic-

ing models has the potential to improve the safety and well-being of ridesharing drivers, as

well as increase organizational productivity and improve outcomes. Therefore, this thesis

focuses on the prediction of drivers’ stopping decision to help improve the performance of

ridesharing platforms.

The main contribution of this thesis is threefold. Firstly, it proposes a novel approach

to model the sequential decisions made by drivers using dynamic discounted satisficing

(DDS). By capturing the dynamics of the satisficing threshold, the DDS heuristic provides

a more accurate representation of the decision-making process, which can lead to more

effective way to predict a driver’s stopping task. Secondly, the thesis develops a learning

algorithm for stochastic neural networks to estimate the model parameters of dynamic

discounted satisficing. This algorithm addresses the challenges involved in estimating

model parameters to capture randomness in the decision-making process. Finally, the

thesis validates the proposed model on the real-world dataset (Chicago taxi dataset)from

a ride-sharing platform [9]. This validation demonstrates the practical applications of the

proposed model and its effectiveness in predicting the stopping time of drivers.
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2. LITERATURE REVIEW

Ridesharing applications [10], have revolutionized the transportation industry by

providing a convenient and cost-effective alternative to traditional taxis. One of the key

features of these applications is sequential taxi requests, which allow the driver to complete

multiple rides every day. There are two types of ridesharing platforms depending on whether

the driver has the autonomy to pick the request. For example, in traditional taxi services,

drivers are expected to serve passengers who are assigned to them by the platform without

any choice. On the other hand, modern ridesharing platforms such as Uber and Lyft match

drivers with passengers while preserving the decision autonomy at both types of agents.

By allowing drivers to pick up passengers according to requests, these platforms maximize

the efficiency of each trip and reduce idle time between rides. In either setting [11, 12],

a taxi driver services a sequence of ride requests until they decide to stop working for

that day, as in the case of [13, 14, 15, 16]. The use of ridesharing platforms has become

increasingly popular over the past few years, with more and more people relying on them

for transportation [1]. This led to long hours for drivers on these platforms [2]. As the hours

of work accumulate, the level of cognitive fatigue experienced by drivers may increase,

resulting in a decline in their decision-making abilities. This can affect their ability to

navigate routes, make quick decisions in traffic, and assess passenger safety [3]. If the

ridesharing platform can predict the stopping decision made by every driver, then it can

improve driver’s decision-making ability and reduce the likelihood of fatigue-related errors.

Practical ridesharing platforms offer diverse recommendations to both passengers

as well as drivers. For example, passengers are provided with wait-location recommen-

dation to reduce the trip-cost [17] and/or plan ride suggestions [18] (e.g. compact car

vs. luxury car vs. large SUV) to improve their experience. On the other hand, drivers

are provided with ride choices, along with incentives if/when passengers’ future activity is

predicted in a location that has very few drivers. The success of such recommendations
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relies heavily on the accuracy of network state information (NSI) [19, 20] available at the

platform. For example, Tal Altshuler et.al., in [21] predicted spatio-temporal utilization

of ridesharing services from passenger activity models extracted from NSI. [22] extracted

NSI from GPS data and identifed the passengers’ demand hot area and proposed a taxi

station optimization model by analyzing the time series distribution dynamic characteris-

tics of passengers’ temporal variation in certain land use types and taxi driver’s searching

behavior in connection with different activity spaces for different lengths of observation

period. Charles C Macadam in [23] emphasizes the importance of including human char-

acteristics in models of driver control behavior to accurately predict the performance of the

driver-vehicle system. He identified physical limitations and unique attributes of human

drivers and presented driver models commonly used for prediction. However, this paper

does not address driver/passenger activity or the impact of driver’s physical/cognitive state

on system efficiency.

Ride-sharing platforms involve complex decision-making processes for drivers, who

need to evaluate limited information about passengers and their destinations in a short

amount of time. These decisions are subject to physical and cognitive limitations, such

as time constraints and the ability to process and remember information. Simon [24]

introduced the concept of bounded rationality to explain how humans deviate from the ideal

of economic rationality, such as Expected Utility Maximization (EUM) [25], when making

decisions under such limitations. One manifestation of bounded rationality is Satisficing. In

the context of multi-armed bandit problems, where an agent must choose between multiple

options with uncertain rewards over time, satisficing has been studied extensively. [26]

showed that the satisficing model based on mean or instantaneous reward is equivalent to the

exploration/exploitation trade-off problem in multi-armed bandit problems, and presented

bounds on the agent’s performance.
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However, one assumption made by [27] is that the threshold for acceptability remains

constant throughout the decision process. In reality, the threshold may change over time due

to various factors, such as the driver’s mood, fatigue, or experience. Understanding how the

threshold changes and affects the decision-making process could help improve the perfor-

mance and satisfaction of drivers and passengers on ride-sharing platforms. To address this

issue, [8] proposed a Discounted Satisficing heuristic, where the agent’s threshold discounts

over time. This means that the decision-maker becomes less satisfied with a given level of

utility as time goes on. The decision-maker still does not aim for the optimal outcome, but

instead aims to achieve a level of utility that is at least as good as the discounted threshold.

However, such a model is restrictive since people typically exhibit different discounting

factors over days, making it infeasible to learn the model parameters on a daily basis in

practice.
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3. DYNAMIC DISCOUNTED SATISFICING

Dynamic Discounted Satisficing (DDS) is a novel decision heuristic which models

dynamic thresholds in satisficing behavior when agents deviate from optimal decisions due

to cognitive and/or informational limitations. Specifically, DDS captures the cognitive

atrophy dynamics within the agent over the course of a day due to changing fatigue levels

across days. Traditional models such as satisficing and discounted satisficing assume that

an agent always begins with the same threshold and/or discounting factor across days.

However, this is not observed in practice because people start their working day with a

different target and discounting factor each day. For example, a driver may start the day

with a fresh mind today, but can start working tomorrow with either higher fatigue levels

due to lack of sleep, or a higher target when he/she realizes additional domestic expenses

in the near future.

Consider a ridesharing platform where a driver is presented with an indefinite se-

quence of ride requests, until he/she decides to stop working for the day. In the 𝑑𝑡ℎ

day, assume that the driver serves 𝑇𝑑 rides, for which he/she obtains a utility sequence

{𝑢𝑑,1, · · · , 𝑢𝑑,𝑇𝑑 } for tasks 𝑘 = 1, · · · , 𝑇𝑑 respectively. In other words, the driver’s accumu-

lated utility on day 𝑑 after completing 𝑡 tasks can be computed as

𝑈𝑑,𝑡 =

𝑡∑︁
𝑘=1

𝑢𝑑,𝑘 . (3.1)

Henceforth, for simplicity, we ignore the subscript 𝑇𝑑 in𝑈𝑑,𝑇𝑑 and denote the total accumu-

lated utility as 𝑈𝑑 . In practice, the driver typically exhibits two types of dynamics within

their decision behavior:

• the constant deterioration of threshold (as modeled in Eqn. (3.3)) within a given day

due to increasing weariness over time, and
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• the evolution of the initial target (as modeled in Eqn. (3.4)) and fatigue rate (as in

Eqn. (3.5)) across days.

Let PS (𝑥) denote a projection operator that projects the input argument 𝑥 onto the

set S, i.e.,

PS (𝑥) =



𝑥𝐿 , if 𝑥 ≤ 𝑥𝐿 ≜ inf S,

𝑥, if 𝑥 ∈ S,

𝑥𝑈 , if 𝑥 ≥ 𝑥𝐿 ≜ supS,

(3.2)

In other words, the projection operator returns the closest value to 𝑥 that is also in

S, or the boundary value of S if 𝑥 is outside of the range defined by S. Then, DDS can be

formally defined in the following manner:

Definition 1. A driver exhibits dynamic discounted satisficing heuristic, if there exists four

real numbers 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ R, one positive real number 𝜆 ∈ R+, one bounded real number

𝛽 ∈ (0, 1], and two arrays of random numbers 𝜖𝑑 ∼ N(0, 1) and 𝜂𝑑 ∼ N(0, 1) for 𝑑 ∈ N,

such that his/her final ride count 𝑡∗ is given by

𝑡∗ = minimize

{
𝑡 ∈ T𝑑 | 𝑈𝑑,𝑡 =

𝑡∑︁
𝑘=1

𝑢𝑑,𝑘 ≥ 𝛽𝑡−1
𝑑 · 𝜆𝑑

}
(3.3)

where the dynamics of initial target 𝜆𝑑 and the discounting factor 𝛽𝑑 are given by

𝜆𝑑 = P[0,∞]
(
𝑎1𝜆𝑑−1 + 𝑎2 ·𝑈𝑑−1 + 𝜖𝑑

)
(3.4)

and

𝛽𝑑 = P[0,1]
(
𝑏1𝛽𝑑−1 + 𝑏2 · 𝑒−𝑇𝑑−1 + 𝜂𝑑

)
(3.5)

respectively.
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Illustrative Example: In order to understand the differences between satisficing,

discounted satisficing, and dynamic discounted satisficing heuristics, we consider an illus-

trative example of a ride-sharing platform. Specifically, we examine the case of a driver

who has the same set of taxi rides across three days, where the utility vector follows an

exponential distribution.

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 = [6.04, 4.34, 2.27, 0.41, 9.33, 12.96, 1.27, 4.62, 4.04, 17.41] .

The exponential distribution is a suitable choice for modeling the driver’s utilities

because it is a continuous probability distribution that is commonly used to model the events

in a Poisson process. In the context of our example, the exponential distribution captures

the randomness and unpredictability of the driver’s utility from each ride.

Figure 3.1. Illustrative Example: Day 1
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Figure 3.2. Illustrative Example: Day 2

Figure 3.3. Illustrative Example: Day 3
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To develop the various satisficing models, we initialize their parameters as follows:

𝜆0 = 15 and 𝛽0 = 0.78, along with 𝑎1 = 0.68, 𝑎2 = 0.37, 𝑏1 = 1.2, and 𝑏2 = 0.23. In the

satisficing (S) model as shown in Figure 3.1, the threshold 𝜆𝑠 is fixed at 15 for all days,

yielding a constant stopping task of 𝑡𝑠 = 5 for all days. In the discounted satisficing (DS)

model as shown in Figure 3.2, both the threshold 𝜆𝑑𝑠 and discounting factor 𝛽𝑑𝑠 are held

constant at 15 and 0.78, respectively, resulting in a consistent stopping task of 𝑡𝑑𝑠 = 3 for

all days.

In the dynamic discounted satisficing (DDS) model as shown in Figure 3.3, the

threshold and discounting factor vary across days, as determined by the functions presented

in Eqn. 3.4 and Eqn. 3.5. On day 1, the threshold and discounting factor for DDS are

𝜆𝑑𝑑𝑠1 = 17.89 and 𝛽𝑑𝑑𝑠1 = 0.8579, respectively, resulting in a stopping task of 𝑡𝑑𝑑𝑠1 = 4. On

day 2, the threshold and discounting factor for DDS are 𝜆𝑑𝑑𝑠2 = 16.957 and 𝛽𝑑𝑑𝑠2 = 0.958,

respectively, resulting in a stopping task of 𝑡𝑑𝑑𝑠2 = 5. On day 3, the threshold and discounting

factor for DDS are 𝜆𝑑𝑑𝑠3 = 18.475 and 𝛽𝑑𝑑𝑠2 = 0.798, respectively, resulting in a stopping

task of 𝑡𝑑𝑑𝑠3 = 3.

Notably, the satisficing and discounted satisficing models yield the same stopping

time every day respectively, when the utility vector remains constant. However in the case

of dynamic discounted satisficing the model produces different stopping times for each day

due to the changing threshold and discounting factor.The dynamic nature of the DDS model

is particularly relevant for understanding the decision-making behavior of taxi drivers, who

often face a variety of factors that can affect their stopping behavior on any given day.

For example, traffic conditions, weather, and personal factors such as fatigue or mood can

influence how long a driver is willing to continue working.

As a result, even if a taxi driver performs similar tasks each day, their stopping task

may vary depending on various external factors. For instance, let us assume that the taxi

driver has an upcoming rent payment that they needs to be made. In this situation, the

driver may be more motivated to work for longer hours to earn as much money as possible



11

to cover their expenses. This increased motivation might cause the DDS model to adjust

the threshold value upwards, reflecting the driver’s higher need for income. Additionally,

the driver may be more willing to accept rides that are further away or require more effort,

as these can result in higher payouts that would bring them closer to their financial goal.

In this case, the higher threshold value would likely result in a higher stopping task Figure

3.2 for the driver, as they become more willing to continue working for longer periods of

time to achieve their financial target. On the other hand, let us assume that the taxi driver

did not enough sleep the previous night due to personal reasons. As a result, they begin

their workday feeling fatigued and less motivated than usual. In this situation, the DDS

model might adjust the discounting factor downwards to reflect the driver’s immediate need

for rest and recuperation. This would result in the driver placing less weight on future

rewards and prioritizing their current well-being over earning more money. The lower

discounting factor would likely result in a lower stopping task Figure 3.3 for the driver. In

all of these scenarios, the DDS model adjusts the threshold and discounting factor based on

external factors that affect the driver’s motivation and perceived utility. By accounting for

these factors, the DDS model provides a more nuanced and accurate representation of how

satisficing behavior plays out in practice.
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4. MODELING DYNAMIC DISCOUNTED SATISFICING USING STOCHASTIC
NEURAL NETWORKS

4.1. MODEL ARCHITECTURE

Figure 4.1. Model Architecture

In this thesis, we model Dynamic Discounted Satisficing using the combination

of classical statistical modeling techniques and data-driven systems as discussed in [28].

Classical statistical modeling techniques provide a solid foundation for decision-making,

while data-driven systems capture the dynamic and complex nature of real-world decision-

making, resulting in a more accurate and effective model.

The Model Architecture in Figure 4.1 represents dynamic discounted satisficing

heuristic as the sequential decision-making strategy employed by a driver. This architecture

incorporates an adaptive decision-making approach through the Task Decision Maker and

Parameter Update Network.
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Figure 4.2. Task Decision Maker - Neural Network Architecture

Let 𝑥𝑑,𝑡 denote the probability of driver choosing to accept the 𝑡𝑡ℎ ride request on day

𝑑. Note that, according to the DDS heuristic stated in Definition 1, the driver continues to

accept the ride requests as long as the difference between the discounted threshold 𝛽𝑡−1
𝑑 · 𝜆𝑑

and the accumulated utility 𝑈𝑑,𝑡 up to task 𝑡 on day 𝑑 is non-negative.

The decision-making process for the Task Decision Maker (TDM) is shown in Figure

4.2. The TDM considers the driver’s utility vector and the dynamically updated parameters

𝜆𝑑 and 𝛽𝑑 to make decisions on each task. The stopping task decision is computed

by considering the accumulated utility as shown in Equation (3.3). Let 𝑥𝑑,𝑡 denote the

probability of the driver choosing to accept the 𝑡𝑡ℎ ride request on day 𝑑. According to the

DDS heuristic stated in Definition 1, the driver continues to accept ride requests as long as

the difference between the discounted threshold 𝛽𝑡−1
𝑑 · 𝜆𝑑 and the accumulated utility 𝑈𝑑,𝑡

up to task 𝑡 on day 𝑑 is non-negative.

The Parameter Update Network updates 𝜆𝑑 and 𝛽𝑑 as shown in Equation (3.5) and

(3.4). The initial threshold for a driver on day 𝑑, denoted by 𝜆𝑑 , is a positive real number,

which depends on the previous day 𝜆𝑑−1, the total accumulated utility of the driver up to

the previous day 𝑈𝑑−1, and 𝜖𝑑 with a standard normal distribution 𝜖𝑑 ∼ N(0, 1), as shown
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(a) Modeling Dynamics in Satisficing Threshold (b) Modeling Dynamics in Discounting Factor

Figure 4.3. Neural Network Models to Characterize Dynamics in DDS Parameters

in Figure 4.3a. The neural network model used is a noisy perceptron, which introduces

randomness into the model. The dynamics of the parameter update network are updated ,

where 𝑎1 and 𝑎2 are the model parameters. The model uses the rectified linear unit (ReLU)

activation function, which maps input values to the set [0, ∞). The discounting behavior

of the driver over time is determined by the discounting factor 𝛽𝑑 , where 𝛽𝑑 ∈ (0, 1]. The

value of 𝛽𝑑 on day 𝑑, as shown in Figure 4.3b, depends on the previous day’s discounting

factor, 𝛽𝑑−1, the stopping task of the driver on the previous day, 𝑇𝑑−1, and 𝜂𝑑 with a standard

normal distribution, 𝜂𝑑 ∼ N(0, 1). The neural network model used is a noisy perceptron,

where 𝜂𝑑 introduces randomness into the model. The dynamics of the parameter update

network are updated , where 𝑏1 and 𝑏2 are the model parameters. The model uses the

sigmoid activation function, which maps input values to the set [0,1).

In this stochastic neural networks, 𝜂𝑑 and 𝜖𝑑 represent the randomness in 𝜆𝑑 and

𝛽𝑑 iterations. This randomness can be interpreted as a way of capturing the inherent

variability in human decision-making, as human behavior is often influenced by various

random factors such as emotions and other environmental factors. By incorporating this

randomness into the parameter update network, the model can adapt to the dynamic nature

of human decision-making and capture the variability in decision-making behavior over

time.
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4.2. PROPOSED TRAINING ALGORITHM AND PERFORMANCE METRICS

In order to effectively train our neural networks on sequential data, we propose

a novel approach called Sampling-based Backpropagation Through Time (SBPTT). This

method is inspired by the conventional Backpropagation Through Time (BPTT) algorithm

[29].

Algorithm 1 Sampling based Back Propagation Through Time(SBPTT)
1: Inputs:

�̂�𝐷×𝑇 , 𝑥
∗
𝐷×𝑇

, 𝜖 ∼ N(0, 1), 𝜂 ∼ N(0, 1)
2: Initialize:

Model parameters 𝑤 = [𝑎1, 𝑎2, 𝑏1, 𝑏2]
Learning rate 𝛼 = 0.01
Initial gradient 𝜕L

𝜕𝑤
= 0

3: for 𝑑 = 𝐷 to 1 do
4: for 𝑟 = 1 to 𝑅 do
5: Perform forward propagation to compute predicted output: 𝑥𝑑,𝑟 =

𝑓 (�̂�𝑑×𝑇 , 𝑥
∗
𝐷×𝑇

, 𝜖𝑟 , 𝜂𝑟)
6: Compute loss between predicted and target output: 𝐿𝑑,𝑟 = L(𝑥𝑑,𝑟 , 𝑥∗𝐷×𝑇

)
7: Compute the gradients of the loss with respect to the network parameters: 𝜕L𝑑,𝑟

𝜕𝑤

8: end for
9: Compute the mean gradients of the loss across R: 𝜕𝐿

𝜕𝑤
= 1

𝑅

∑𝑅
𝑟=1

𝜕L𝑑,𝑟

𝜕𝑤

10: Update the network parameters using gradient descent: 𝑤 ← 𝑤 − 𝛼 𝜕L
𝜕𝑤

11: end for

The SBPTT algorithm (Algorithm 1) works by inputting a sequence �̂�𝐷×𝑇 into the

network one time step at a time. The network then generates a prediction 𝑥𝑑,𝑟 for each

time step. In Algorithm 1, we perform forward propagation to compute the predicted

output 𝑥𝑑,𝑟 for each random sample 𝑟 by passing the input sequence �̂�𝑑×𝑇 through the

network, incorporating random variables 𝜖𝑟 and 𝜂𝑟 sampled from a normal distribution.

Subsequently, we calculate the loss 𝐿𝑑,𝑟 between the predicted output 𝑥𝑑,𝑟 and the true

output 𝑥∗
𝐷×𝑇

. The gradients of the loss with respect to the network parameters are then

computed for each random sample, and the average gradients 𝜕𝐿
𝜕𝑤

are obtained by averaging

the gradients over all the random samples. Finally, we update the model parameters 𝑤

using gradient descent with a learning rate 𝛼, and repeat this process for all time steps 𝑑
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until the model converges to a satisfactory level of accuracy on the training data. Notably,

by incorporating randomness through 𝜖𝑟 and 𝜂𝑟 , we account for the inherent variability

and randomness in human behavior, potentially enhancing the overall performance and

generalization capabilities of the model.
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5. VALIDATION ON SIMULATION DATA

To validate the performance of the model, we generated a simulated data for a driver

for 50 epochs over 500 days with 𝜆𝑑 , 𝛽𝑑 . Task-utilities �̂�𝐷×𝑇 are randomly generated from

an exponential distribution with 𝑠𝑐𝑎𝑙𝑒 = 10 and 𝑦∗
𝐷×𝑇

is the expected binary output, where

the value is set to 1 if the driver performs a task and the value is set to 0 otherwise.

Figure 5.1. Error performance in estimating 𝜆 and 𝛽 across epochs when R = 1.

Lambda and Beta errors graph as shown in Figure 5.1, Figure 5.2, Figure 5.3

illustrates that the estimation error of 𝜆 converges to zero consistently as 𝛽 converges. This

can be attributed to the fact that the dynamic thresholds of the driver with higher values of

𝛽 generally deteriorate at a much slower rate, thereby revealing about the model parameters

in their choices.
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Figure 5.2. Error performance in estimating 𝜆 and 𝛽 across epochs when R = 8.

Figure 5.3. Error performance in estimating 𝜆 and 𝛽 across epochs when R = 32.



19

(a) Training Loss across epochs.

(b) Testing Loss across epochs.

Figure 5.4. Loss across Epochs on Simulation data.
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(a) Training Accuracy across epochs.

(b) Testing Accuracy across epochs.

Figure 5.5. Accuracy across Epochs on Simulation data.
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The training and testing loss as shown in Figure 5.4 illustrates that the model’s

performance improves as 𝑅 value increases. Training and Testing loss decreased by almost

70% when compared between 𝑅 = 32 and Discounted Satisficing model. Similarly, training

and testing accuracy as shown in Figure 5.5 also illustrates that the model’s performance

improves as 𝑅 value increases.
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6. VALIDATION ON REAL DATA

6.1. DATASETS AND PREPROCESSING

The dataset used in this study is obtained from the City of Chicago’s Open Data

Portal [9], and consists of taxi trips taken in the city during the year 2022. It contains detailed

information about each taxi trip, including attributes such as trip start and end timestamps,

trip durations, trip distances, fare amounts, payment types, and more. The dataset covers a

time period of 2013 to the present day, and is updated monthly, providing researchers with

a comprehensive and up-to-date resource for studying taxi usage in Chicago. To prepare

the data for training our stochastic neural network model, we split the dataset into a 40%

training set and a 60% test set for model evaluation.

The preprocessing steps involve converting the attribute ’Trip Start Timestamp’

column to a datetime object and creating a new column with only the date information.

The data is then grouped by date, and the values from the attribute ’Trip Total’ column,

which represents the total amount paid for each trip, are extracted and stored as a list. A

new dataframe is constructed with the ’Trip Total’ column and the grouped values, which

is transposed to obtain the ’Trip Total’ values as columns. To further prepare the data for

model training, we create two files - one with the grouped ’Trip Total’ values as input �̂�𝐷×𝑇

and another with the same values as the expected output. The input file is padded with

the average of all ’Trip Total’ values to fill rest, and the expected output file is transformed

into a binary format where ’Trip Total’ values are set to 1’s and rest are set to 0’s , which

represents 𝑦∗
𝐷×𝑇

.

For training model, we utilize forward propagation to compute the predicted output

for each random sample by passing the input sequence through the network, incorporating

random variables sampled from a normal distribution. Subsequently, we calculate the binary

cross-entropy loss between the predicted output and the true output. The gradients of the
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loss with respect to the network parameters are then computed for each random sample,

and the average gradients are obtained by averaging the gradients over all the random

samples. Finally, we update the model parameters using the gradient descent algorithm

with a learning rate of 𝛼 = 0.01, and repeat this process for all time steps until the model

converges to a satisfactory level of accuracy on the training data. Notably, a significant

aspect of our approach is the incorporation of randomness through the use of random

variables in the model. This allows us to effectively account for the inherent variability

and randomness in human behavior, potentially enhancing the overall performance and

generalization capabilities of our model. The stochastic nature of the model enables it

to effectively capture uncertainties and variations in the data, making it well-suited for

predicting the stopping time of taxi drivers in the City of Chicago based on the total amount

paid (utility) for each trip.

6.2. RESULTS AND DISCUSSION

This section presents the results obtained from applying Algorithm 1 to the Chicago

Taxi dataset [9]. The model was trained on data from 10 different drivers, and the average

loss and accuracy of the model were computed for both the training and testing datasets. To

evaluate the performance of the proposed model across different 𝑅 values, we conducted a

comparison analysis.

In addition, the Discounted Satisficing model proposed by Devaguptapu et al. in [8]

was also trained on the same datasets of the 10 drivers. We compared the loss and accuracy

of this model with those of SBPTT to assess their relative performance.

Figure 6.1a shows the average training loss graph, which illustrates that the loss

consistently decreases as 𝑅 increases, improving the model’s performance. This trend

aligns with the idea that increased random samples allow for better optimization of the

model parameters, resulting in reduced loss and improved model performance. Moreover,

the test loss graph Figure 6.1b shows that the model performs well until reaching a certain
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(a) Training Loss across epochs.

(b) Testing Loss across epochs.

Figure 6.1. Loss across Epochs.
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number of epochs, after which it needs to be retrained. Furthermore, comparing the training

and testing loss of the Discounted Satisficing model presented in [8], in graphs Figure 6.1a

and Figure 6.1b, we can see that the loss for our proposed DDS model has decreased by

almost 65%.

Figure 6.2 shows the average accuracy graph, which illustrates that the model’s

accuracy improves as 𝑅 increases. The accuracy is calculated as the percentage of correct

predictions with respect to the target output 𝑦∗
𝑑×𝑇

. This suggests that the model becomes

more accurate in predicting the target output with a larger number of random samples during

training. As the model is exposed to more diverse data points, it can adjust its parameters

accordingly, leading to enhanced accuracy in its predictions. Furthermore, comparing

the training and testing accuracy of the Discounted Satisficing model presented in [8], in

Figure 6.2a and Figure 6.2b, we can see that the accuracy for our proposed DDS model has

increased by almost 35%.

In addition, we analyzed the average 𝜆 (Figure 6.3a) and 𝛽 (Figure 6.3b) of 10

drivers across epochs for different 𝑅 values. These graphs show that as 𝑅 increases, the

average 𝜆 and 𝛽 values become more stable across epochs, indicating that the model’s

parameters become better optimized with more diverse training data. This stability in the

parameters suggests that the model becomes more robust and less sensitive to the specific

training data it is exposed to. In summary, the results demonstrate that increasing the

value of 𝑅 has a positive impact on both the loss and accuracy of the model. The trend of

decreasing loss and increasing accuracy with higher values of 𝑅 indicates that the model’s

performance improves as it learns from more diverse training data. These findings suggest

that increasing the number of samples, as represented by the parameter 𝑅, can lead to better

model performance and improved accuracy in predicting the target output. Furthermore,

we show that Dynamic Discounted Satisficing model has higher accuracy in predicting the

stopping decision of a driver when compared with Discounted Satisficing model.
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(a) Training Accuracy across epochs.

(b) Testing Accuracy across epochs.

Figure 6.2. Accuracy across Epochs.
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(a) Average 𝜆 for 10 drivers across Epochs

(b) Average 𝛽 for 10 drivers across Epochs

Figure 6.3. Average 𝜆 and 𝛽 across epochs
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7. CONCLUSION AND FUTURE WORK

In this study, we developed a custom neural network model to predict the stopping

time of taxi drivers in the City of Chicago based on the total amount paid for each trip

they make. Our model achieved an accuracy of 35% and outperformed a baseline model

[8] that predicted a constant value as the stopping time. In the future, we can improve

the model’s performance by incorporating additional features such as weather data, traffic

congestion data, and the taxi driver’s demographics. We can also explore other machine

learning algorithms to compare their performance with our custom neural network model.

Additionally, we can evaluate the model’s performance on a more datasets to further validate

its effectiveness in predicting the stopping time of taxi drivers in the City of Chicago.
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