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ABSTRACT

Vulnerability to adversarial attacks is a recognized deficiency of not only deep neural

networks (DNNs) but also multi-task deep neural networks (MT-DNNs) that attracted much

attention in the past few years. To the best of my knowledge, all multi-task deep neural

network adversarial attacks currently present in the literature are non-targeted attacks that

use gradient descent to optimize a single loss function generated by aggregating all loss

functions into one. On the contrary, targeted attacks are sometimes preferred since they give

more control over the attack. Hence, this paper proposes a novel targeted Multi-objective

adversarial ATtack (MAT) based on genetic algorithms (GA)s that can create an adversarial

image capable of affecting only targeted loss functions of the MT-DNN system. MAT is

trained on the Taskonomy dataset using a novel training algorithm GAMAT that consists

of seven specific stages. The superiority of the proposed attack is demonstrated in terms of

the fitness-distance metric.
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1. INTRODUCTION

1.1. MULTI-TASK DEEP NEURAL NETWORKS

Multi-task deep neural networks (MT-DNNs) have become a superior choice in

safety-critical applications, such as medical imaging and cyber-physical systems (e.g.,

autonomous driving) due to their ability to learn multiple related tasks simultaneously,

resulting in improved efficiency and accuracy in the models [1, 2]. MT-DNNs have shown

proficiency in learning transferable and generalizable representations across tasks, which

is crucial in safety-critical applications where reliability and robustness are imperative.

Furthermore, by jointly learning multiple tasks, MT-DNNs can efficiently exploit shared

structures and dependencies between tasks, resulting in superior performance compared to

single-task models. Consequently, MT-DNNs have gained popularity in various domains

where multiple related tasks must be performed simultaneously, and accuracy and reliability

are crucial factors. Additionally, MT-DNNs perform two or more vision tasks on a single

image or video in computer vision applications, such as object detection [3, 4, 5], image

segmentation [6, 7, 8, 9], and image classification [10, 11, 12, 13], making them well-suited

for tasks such as self-driving cars and autonomous indoor multi-task robots.

1.1.1. Architectures Of Multi-Task Deep Neural Networks. Different MT-DNN

architectures have been developed to allow deep neural network models to learn common

features across tasks and leverage this shared knowledge to perform better on each task.

However, in computer vision, the most used architecture is the shared encoder-decoder

framework.

The shared encoder-decoder framework is a famous architecture for multi-task learn-

ing in deep learning [1]. In this framework, a single encoder is used to process the inputs for

all tasks, and each task is associated with a separate decoder that generates the correspond-

ing outputs. The shared encoder allows the model to learn common representations across
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Task Specific Layer
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Task Specific LayerTask Specific Layer Task Specific Layer

Figure 1.1. Hard parameter sharing in encoder-decoder framework

all tasks. Such a manner of sharing parameters is called hard parameter sharing (HPS) [14].

At the same time, the task-specific decoders enable the model to learn the specific output

formats required for each task (refer to Figure 1.1). This approach is practical for various

multi-task learning scenarios, such as numerous computer vision tasks [15, 16] and natural

language processing [17].

1.1.2. Improved Performance Of MT-DNNs. The growing attention to MT-

DNNs in vision applications can be attributed to improved performance of multi-task

learning due to sharing parameters across tasks that leads towards a better generalization

performance on each task; instead of designing multiple neural networks, each carrying out

single-task learning on one individual task [18, 19].
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1.1.3. MT-DNNs Vulnerabilities. However, MT-DNNs are generally vulnerable to

adversarial inputs designed to degrade the performance of a specific loss function maximally.

Exploiting interdependence across multiple tasks [16] could enable the design of robust

multi-objective adversarial perturbations that can significantly compromise the reliability

of safety-critical systems. Furthermore, developing such perturbations encourages the

development of more robust and reliable MT-DNN systems.

1.2. RELATED WORK

There is little work on multi-objective adversarial attacks, particularly for computer

vision applications. Traditionally, the adversarial input design is cast as a single-objective

optimization problem via aggregating task-specific loss functions in some manner. One

such approach is to compute the empirical average of all the single-task losses to obtain a

single objective [20, 21], and design adversarial inputs using traditional approaches such

as Fast Gradient Sign Method (FGSM) [22], iterative FGSM (I-FGSM) [23], Projected

Gradient Descent (PGD) [24], and Momentum Iterative Methods (MIM) [25]. However,

such single-objective adversarial attacks on MT-DNNs can be impractical when the attacker

cannot combine the individual task losses due to the computational resource constraints of

the attacker. For example, the Multitask-PGD algorithm [20] assigns identical weights

to both highly-vulnerable and less-vulnerable tasks by evaluating the joint gradient as a

sum of gradients from each of the tasks. Such a strategy could be expensive for a resource-

constrained attacker, who may prefer to attack only a small subset of highly-vulnerable tasks.

Moreover, in some cases, MT-DNNs have grown resilient to Multitask-PGD-based attacks

via obfuscating gradients [26] (a particular case of gradient masking [27]) and adjusting

task weights to protect sensitive tasks [15]. Later, adaptive single-objective adversarial

attacks such as Auto-PGD (APGD) [28] and Weighted Gradient Descent (WGD) [21]

were developed to deteriorate the performance of adaptive MT-DNNs further. APGD

progressively reduces the step size in PGD to gradually transition from exploiting the whole
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feasible set to a local optimization [28]. On the other hand, WGD weighs the contribution

of each task when computing the perturbation to ensure the attack’s effect on all tasks

[21]. However, both APGD and WGD attacks also aggregate all loss functions into a single

loss function, which results in a linear, single-objective optimization problem. In other

words, such adversarial attacks are feasible only when the attacker knows the weights used

to combine the individual task losses. Without such knowledge, a natural approach for the

attacker is to rely on the principle of domination, as found in multi-objective optimization.

1.3. CONTRIBUTIONS

Therefore, the main contributions of this paper are three-fold. Firstly, inspired by

the ResNet generator model [29], which is, to the best of my knowledge, the first gener-

ative attack model that utilizes the principles of multi-objective optimization to generate

adversarial examples. Consequently, MAT can adopt any non-linear Pareto-front, including

non-contiguous Pareto-fronts. Furthermore, MAT offers real-time generation of adversarial

inputs over a quick, single forward pass on the trained network, as opposed to traditional

iterative adversarial input generators. Secondly, a novel learning algorithm based on genetic

algorithms1 [30] (in short, GAs, e.g., NSGA-II algorithm [31]) called GAMAT is proposed

that can be executed on multiple GPU cards for faster training convergence. Thirdly, the per-

formance of MAT is validated by training it using GAMAT on a benchmark dataset called

Taskonomy, the largest publicly available multi-task dataset. Apparent domination of MAT

regarding loss degradation, time to generate adversarial inputs, and convergence to desired

Pareto-front under various scenarios are observed when compared against state-of-the-art

attack models.

1To read about genetic algorithms, the reader can refer to the appendix.
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2. THREAT MODEL

Consider a neural network 𝒚 = 𝑓 (𝑋; 𝜃) (as shown in Figure 2.1) that performs

inference (or, prediction) on M tasks to produce labels

𝑦1 = 𝑏1(𝑐(𝑋; 𝜃0); 𝜃1),
...

𝑦𝑀 = 𝑏𝑀 (𝑐(𝑋; 𝜃0); 𝜃𝑀),

(2.1)

where 𝑐(𝑋; 𝜃0) denotes the output of the common core (trunk) of the inference network with

parameters 𝜃0, and 𝑏𝑚 (𝑋; 𝜃𝑚) is the network branch with parameters 𝜃𝑚 that corresponds

to the 𝑚𝑡ℎ task, for a given input 𝑋 ∈ X. The inference network is evaluated using a loss

function ℓ𝑚 (𝑦𝑚, 𝑦∗𝑚 |𝑋) corresponding to the 𝑚𝑡ℎ task, where 𝑦∗𝑚 is the true label for a given

input 𝑋 corresponding to the 𝑚𝑡ℎ task.

Consider an attacker whose goal is to design a neural network �̃� = 𝑔(𝑋; 𝜏) with

model parameters 𝜏, which generates an adversarial input �̃� via perturbing the original input

𝑋 with minimal effort. In other words, the attacker has access to the inference network

model 𝑓 to carry out inference on any input 𝑋 ∈ X. Let S = {(𝑋1, 𝒚1), · · · , (𝑋𝐾 , 𝒚𝐾)}

denotes the set of 𝐾 training images. Then, the generator network 𝑔 is trained such that the

multi-task performance of the inference network ℓ(S, 𝑓 , 𝑔) = {𝑙1, · · · , 𝑙𝑀} averaged over

the entire training set S lies in the attacker’s desired region L∗, where

𝑙𝑖 =
1
𝐾

𝐾∑︁
𝑘=1

ℓ𝑖 (𝑏𝑖 (𝑐( �̃�𝑘 ; 𝜃0); 𝜃𝑖), 𝑦∗𝑘,𝑖) (2.2)

is the empirical average loss attained at the 𝑖𝑡ℎ task. Without any loss of generality, if the

attacker’s desired region L∗ is represented by the inequality ℎ(ℓ1, · · · , ℓ𝑁 ) ≥ 0, my goal is to

design the attacker’s neural network such that, for any input 𝑋 , the generated perturbation �̃�

will satisfy ℎ
(
ℓ( 𝑓 ( �̃�; 𝜃), 𝒚∗)

)
≥ 0. Due to the multi-objective nature of the original neural
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Figure 2.1. MAT - An adversarial generator to attack MT-DNNs

network 𝑓 , this threat model is labeled as a Multi-objective adversarial ATtack (MAT). For

the sake of simplicity, the desired region is denoted as L∗ with its Pareto-Optimal Front

(POF) ℎ(ℓ1, · · · , ℓ𝑁 ) = 0.

To better visualize the described environment, let us consider input image X, adver-

sarial input generator 𝑔(·), and MT-DNN 𝑓 (·) that consists of its core 𝑐(·) and two branches

where branch 𝑏1(·) performs depth estimation and branch 𝑏2(·) performs surface normal

estimation, two tasks commonly used in self-navigating machines (refer to Fig. 2.2). After

evaluation of each branch’s output, resulting loss values form a post-inference loss point

(ℓ̃1, ℓ̃2) in the loss space where one can observe the minimal distance between (ℓ̃1, ℓ̃2) and

the attacker’s desired region L∗, denoted as 𝑑 ((ℓ̃1, ℓ̃2),L∗). Therefore, the main objective

of the generator 𝑔(·) is to generate a model that will reduce the distance 𝑑 and satisfy the

inequality ℎ(ℓ1, ℓ2) ≥ 0.

Note that MAT has two significant advantages over state-of-the-art adversarial attack

models. Firstly, a neural network-based adversarial attack generator in MAT offers real-time

performance via redistributing the iterative computations into the training stage. Secondly,

to the best of my knowledge, MAT is the only threat model that is known to have the ability

to adopt any non-linear POF. MAT possesses such an advantage because all multi-objective
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threat models are designed to maximize a linear combination of individual task losses,

equivalent to a linear POF. Moreover, the region-of-interest is not necessarily contiguous,

i.e., L∗ can also be a union of disjoint regions.
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Figure 2.2. MAT-Attack framework
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3. GENETIC ALGORITHM BASED TRAINING OF MAT

Given that MAT is designed to attack an MT-DNN, the attacker’s generator net-

work 𝑔(·; 𝜏) demands a multi-objective optimizer during training. Therefore, this section

proposes a novel genetic algorithm-based training approach called GAMAT to design the

desired MAT generator 𝑔. GAMAT consists of seven main stages, as shown in Figure 3.7,

and takes the POF ℎ(·), as well as 𝑇 target points ℓ∗1, · · · , ℓ
∗
𝑇 on the POF (i.e., ℎ(ℓ∗𝑡 ) = 0

for all 𝑡 = 1, · · · , 𝑇) as its input attributes. These 𝑇 targets (also called prey particles) on

the POF are included in GAMAT to improve the diversity of model candidates (also called

predators since they seem to chase the prey across generations of off-springs) that arise

during the training phase.

3.1. FITNESS EVALUATION (FE)

Given any MAT generator 𝑔(·; 𝜏) (which will be referred to as a particle 𝜏 hence-

forth), its fitness (performance) will be evaluated at each stage via computing the distance

𝑑 (𝜏) as the ℓ2 norm between the loss vector 𝒍 (𝜏) and the POF ℎ(·), i.e., the Euclidean

distance between the post-inference generated loss point in the loss space and the desired

region of the attacker. Note that such a fitness metric evaluates the ability of MAT to drive

the MT-DNN’s performance into the attacker’s desired region L∗. The smaller the task

fitness, the closer the post-inference generated loss point to the POF and L∗ desired region.

The remainder of this section discusses the seven stages of GAMAT in detail, as depicted

in Figure 3.7.
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3.2. STAGE 1 - POPULATION INITIALIZATION

In the first stage, GAMAT initializes the attack generator 𝑔 by choosing a random

population of 𝑁0 model parameters. Let Ω0 = {𝜏1, · · · , 𝜏𝑁0} denote the set of the initial

model parameters chosen using diverse initialization techniques such as Glorot-Xavier-

Uniform and Glorot-Xavier-Normal. Given an input 𝑋 , each particle 𝜏𝑛 ∈ Ω0 generates a

different adversarial perturbation �̃�𝑛 = 𝑔(𝑋; 𝜏𝑛) for the 𝑛𝑡ℎ particle in the population set Ω0.

Upon passing each perturbed input 𝑋 + �̃�𝑛 through the inference network 𝑓 , a population

of outcomes is obtained 𝑌0 = {𝒚1, · · · , 𝒚𝑁0}, where

𝒚𝑛 = 𝑓 (𝑋 + �̃�𝑛; 𝜃) = 𝑓

(
𝑋 + 𝑔(𝑋; 𝜏𝑛); 𝜃

)
. (3.1)

Let Ω𝑘 denote the population of models (particles) considered in the 𝑘 𝑡ℎ iteration.

Each particle 𝜏 ∈ Ω𝑘 can be evaluated using an empirical loss average vector 𝒍 (𝜏) =

{𝑙1(𝜏), · · · , 𝑙𝑀 (𝜏)}, where each 𝑙𝑖 (𝜏) is the empirical average of the 𝑖𝑡ℎ task loss using

Equation (2.2) upon substituting �̃� = 𝑔(𝑋; 𝜏) for each image 𝑋 in the training set S.

3.3. STAGE 2 - OFFSPRING GENERATION

In the offspring generation stage, four techniques are used to generate offspring

particles to obtain a new set Ω̃𝑘+1; each discussed as a different substage in detail below:

3.3.1. Stage 2.1 - Selective Gradient-Based Update. Since not all particles in Ω𝑘

are worthy of updating, the closest-𝑟 predators in Ω𝑘 are selected for each 𝑡𝑡ℎ prey ℓ∗𝑡 for

all 𝑡 = 1, · · · , 𝑇 , based on the distance 𝑑 (𝜏, ℓ∗𝑡 ) between the predators and ℓ∗𝑡 . Let the

selected predator particles for the 𝑡𝑡ℎ prey be denoted as 𝑃𝑡 . Then, loss gradients ∇𝑑 (𝜏, ℓ∗𝑡 )

are computed for each predator particle 𝜏 ∈ 𝑃𝑡 on images in training set 𝑆. Specifically,

the training set is further partitioned into mini-batches. Using the CUDA toolkit, each

minibatch is sent to a different GPU to compute empirical gradient estimates using the
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backprop algorithm and then aggregate. These loss gradients are then used to update the

selected predators in 𝑃𝑡 for all 𝑡 = 1, · · · , 𝑇 , using stochastic gradient descent (SGD) with

Nesterov’s momentum-based acceleration [32] and learning rate 𝜂. The new offspring

generated using this method are included in Ω𝑘 to obtain a new set of particles called Ω̃𝑘+1.

Finally, the fitness of each particle 𝜏 ∈ Ω̃𝑘+1 is evaluated using the FE method.

For example, consider a scenario where the MT-DNN 𝑓 (·) has two branches 𝑏1(·)

and 𝑏2(·). After the initial forward pass of the input image through the generator 𝑔(·) and

MT-DNN 𝑓 (·), the generated result is 𝑁0 population of model parameters for 𝑔(·). Each

model parameter, when placed in 𝑔(·), gives a different post-inference generated loss point

in the loss space, which in this example contains the POF with two prey points ℓ∗1 and ℓ∗2. At

the same time, the number of predators per prey is set as 𝑟 = 3 (refer to Fig. 3.1). Therefore,

when performing the selective gradient-based update, 𝑟 number of closest predators to prey

ℓ∗1 are selected (denoted as set 𝑃1 in the Fig. 3.1) for gradient step update based. The same

process is repeated for prey ℓ∗2 where the selected points for the selective gradient-based

update are denoted as 𝑃2. Finally, each model’s parameters are updated using an SGD

optimizer based on the distance 𝑑 between the selected predator and prey.

3.3.2. Stage 2.2 - Reproduction. In this stage, a novel reproduction method is

proposed based on statistical sampling of logit probabilities, which are constructed using

the fitness evaluation 𝑑 (𝜏) for each 𝜏 ∈ Ω̃𝑘+1. The logit probability of the 𝑖𝑡ℎ particle 𝜏𝑖 in

Ω̃𝑘+1 is computed as

𝑝𝑖 = P(𝜏𝑖) =
exp

(
− 𝜆 · 𝑑 (𝜏𝑖)

)∑︁
𝜏𝑗∈Ω̃𝑘+1

exp
(
− 𝜆 · 𝑑 (𝜏𝑗 )

) , (3.2)

where 𝜆 ∈ [0,∞) can be interpreted as a tunable diversity parameter, which ensures that

the sampled particles are spread out in all directions. Note that when 𝜆 = 0, 𝒑 reduces to

a uniform distribution. On the other hand, when 𝜆 → ∞, 𝒑 reduces to the min operator

on the distance scores, i.e., the distribution will always sample the particle with the least

distance score. Given the logit distribution 𝒑, sample𝑈 particles and append them to Ω̃𝑘+1.
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Figure 3.1. Selective gradient-based update

3.3.3. Stage 2.3 - Crossover. Given any two particles 𝜏𝑖, 𝜏𝑗 ∈ Ω̃𝑘+1, the goal of

any crossover method is to design a pair of offsprings 𝜏𝑗 ,𝑖, 𝜏𝑗 ,𝑖, which share characteristics

of both of their parent particles. Specifically, within each convolutional layer of 𝜏𝑖 and

𝜏𝑗 , every other weights vector, gotten by splitting each kernel across the second dimension

of each respective kernel, is crossed or swapped to form two new particles, as illustrated

in Figure 3.2. Similarly, every other weight is swapped in each batch normalization layer

of 𝜏𝑖 and 𝜏𝑗 . This process is repeated 𝐾 times, where 𝐾 is a hyper-parameter. All the

new offspring generated in this stage are included in Ω̃𝑘+1, then evaluated using the FE

method. Furthermore, the above crossover method is also augmented by two parent-

selection methods. Therefore, based on the two parent selection methods, this thesis

proposes two novel crossovers: Antipodes-Crossover and POF-Based Crossover.
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Figure 3.2. Crossover Stage – For simplicity reasons, crossover is represented between two
3D weight tensors across dimension with index 2.

3.3.3.1. Antipodes-crossover. In the Antipodes-Crossover method, the same se-

lection procedure used in Stage 2.1 is used to determine 𝐾 predators for each of the two

most-separated target points (antipodal preys) amongst ℓ∗1, · · · , ℓ
∗
𝑇 . In a greedy variant of

Antipodes-Crossover, 𝐾 closest predator points to both prey points are sorted in ascending

order based on their distance from their prey. The crossover method is performed across

both predator sets following the ascending order of points to generate offspring of size 𝐾 .

An illustrative example of the greedy selection method in antipodes-crossover is shown in

Figure 3.3 where 𝐾 = 3 and there are two prey points ℓ∗1 and ℓ∗2. The selected particles

of the two prey points are denoted as sets 𝑃1 and 𝑃2. The predator pairs chosen for the

crossover procedure are pointed to using the bidirectional arrow. On the other hand, the

non-greedy selection method in antipodes-crossover randomly selects a predator from each

set 𝑃. The selected predators are then used in the crossover procedure. The non-greedy

selection method of the antipodes-crossover is shown in Figure 3.4 using the identical setup

as in Figure 3.3.

3.3.3.2. POF-based crossover. POF-Based Crossover’s selection method differs

from the Antipodes-Crossover’s selection method in a way that 2𝐾 particles for crossover

procedure are chosen uniformly at random from Ω̃𝑘+1 (refer to Fig. 3.5). However, in its
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Figure 3.3. Greedy variant of the antipodes-crossover selection method

greedy variant, the selected points are chosen based on the minimal distance 𝑑 from the

POF, where the two closest points to POF would be selected for the crossover procedure,

then the following two closest points, and so on (refer to Fig. 3.6).

3.3.4. Stage 2.4 - Mutation. For this stage, two mutation approaches are proposed

in this thesis. Given any 𝜏 ∈ Ω̃𝑘+1, the proposed mutation method replaces the weights of

𝑡 random layers in 𝜏 with (i) random numbers sampled uniformly across the region [−1, 1]

in the first method, or (ii) the weights are inverted. The mutation method is applied on

𝛾 number of layers of Γ particles from the current population Ω̃𝑘+1. The new offspring

generated by either of the proposed mutation methods are evaluated using the FE method

and then appended to Ω̃𝑘+1. In addition, both mutation methods are augmented with

parent-selection methods proposed in Stages 2.1 and 2.2.
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Figure 3.4. Non-Greedy variant of the antipodes-crossover selection method

3.4. STAGE 3 - RANK-BASED ELITISM

In this stage, all particles in Ω̃𝑘+1 are sorted in increasing order based on their fitness

evaluations (i.e., their distance from POF). Then, the top-𝐼 particles in this sorted list are

stored in Ω𝑘+1, the list of particles preserved for the next iteration of the algorithm.

3.5. STAGE 4 - STOPPING CRITERIA

Termination of the training algorithm is based on having at least one 𝜏 ∈ Ω𝑘+1 such

that 𝒍 (𝜏) ∈ L∗, i.e., ℎ( 𝒍 (𝜏)) = 0. In the worst case where the training never terminates, the

algorithm is forced to terminate after some large but fixed number of iterations.
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Figure 3.6. Non-Greedy variant of the POF-based crossover selection method
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4. EXPERIMENT SETUP

Consider a scenario where a robot uses a deep neural network to carry out multiple

tasks while navigating an unknown indoor environment. Examples of these tasks include

depth estimation to detect proximity to surrounding objects, surface-normal estimation to

discern spatial orientation and ground slope, keypoint detection to identify essential features

in the image, and edge detection to determine edges of obstacles and other occlusions.

Taskonomy dataset is the largest publicly available multi-task dataset for such settings. It

contains 4.5 million images of indoor scenes from around 600 buildings in 1024 × 1024

resolution [15], each containing labels corresponding to 26 tasks. In this thesis, due to

limited resources, the ”Tiny” version of the Taskonomy dataset (called Tiny-Taskonomy)

that contains 9464 images from 1500 rooms in 30 buildings is used for experimentation.

The images in Tiny-Taskonomy are further downsized to 256× 256, as in the case of [20] 1.

The dataset is split at an 80%-20% ratio for training and testing of the models. The dataset

is curated such that there is no overlap in the rooms that appear in both the training and

testing dataset.

A pretrained model called Xception that contains a single encoder and custom

decoders for each task is acquired from [16] and utilized as the default MT-DNN model in

my experiments. This architecture was primarily chosen for its low inference time so that

the real-time performance of the proposed algorithm can be validated. For more details

about the MT-DNN architecture, interested readers can refer to [16]. These experiments

are designed for two tasks, namely Z-Buffer Depth Estimation (labeled (𝑑), as in [16]),

and Surface Normal Estimation (labeled (𝑛), as in [16]), each of which is evaluated using

𝐿1 loss. For a detailed account of these tasks, please refer to the supplementary material

provided with the Taskonomy dataset paper [15].

1Ref.: https://github.com/columbia/MTRobust
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This thesis uses ResNet generator [29, 33, 34] as the adversarial input generator

model against Xception-based MT-DNN. Upon training the ResNet generator using the

proposed training algorithm stated in Section 3, the input image, 𝑋 , is passed through the

trained ResNet Generator to obtain a perturbation 𝑔(𝑋). Then, the perturbation 𝑔(𝑋) is

statistically normalized and scaled by a factor of 𝑚𝑖𝑛(1, 𝜖
∥𝑔(𝑋)∥∞

) so that the perturbation is

barely perceptible to a human eye on the perturbed image. Here, 𝜖 is chosen such that the

norm of the perturbation is 𝐿∞ = 10. This resultant perturbation is then clipped to the size

of the original input image, which is then aggregated with the original input and fed to the

MT-DNN. The performance of each task in Xception-based MT-DNN is evaluated using

ℓ1 loss function. The fitness of the resultant loss vector is then evaluated using ℓ2 norm, as

discussed in the FE method in Section 3.

In this thesis’ experimentation, numerous models are trained using the GAMAT

training algorithm such that different GAMAT hyperparameters are used for every trained

model. More precisely, four models are trained such that the crossover method used in

GAMAT is different for every model. The crossover methods are:

1. Greedy Antipodes-Crossover,

2. Non-Greedy Antipodes-Crossover,

3. Greedy POF-Based-Crossover,

4. Non-Greedy POF-Based-Crossover.

The attention of the experimentation is then transferred to the effect of the number

of predator particles and the number of prey points on the POF during the training process.

Hence, another set of the above-explained four models is then trained for each of the

following scenarios:
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• two preys with two predators per prey,

• three preys with three predators per prey,

• two preys with five predators per prey,

• five preys with two predators per prey

Finally, all the experiments are conducted on the following POF:

ℎ
(
ℓ(𝑑) , ℓ(𝑛)

)
= 1.8 × ℓ(𝑑) × ℓ(𝑛) − 1 = 0 (4.1)

The following hyperparameters stayed consistent across all trained models: number

of initial models (10), number of models generated by reproduction (2), learning rate

in gradient-based update (0.01), 𝜆 in probability distribution 𝑝 (1.0), number of models

generated by mutation (4), the number of mutated weight layers for each mutation (2),

activation function (relu), and the number of models carried into the next generation (10).

Finally, all models in this thesis’ experiments are conducted using V-100 GPUs.
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5. RESULTS AND DISCUSSION

The results are broken into several sections of this section. First, the evolution of

particles over stages of GAMAT within a single iteration is presented. Such a presentation

gives the reader a better impression of how each stage of the algorithm affects the search

space of the GAMAT learning algorithm. The second experiment presents the evolution

of particles over ten epochs while being trained on a single image in each epoch. Such

a presentation better shows the effect of the GAMAT algorithm over epochs. Third, the

comparison based on the model’s fitness, computed using the FE method, is conducted

amongst models trained using different crossover methods described in stage 2.3 of the

GAMAT training algorithm. Fourth, analyses are conducted on the losses of models’ tasks

throughout the training and validation process. Afterward, the analysis of hyperparameters

is conducted. Finally, in the last section, the reader will see the comparison between many

MAT models and current state-of-the-art attacks.

5.1. EVOLUTION THROUGH GAMAT STAGES

For the sake of inspecting and envisioning the effect that GAMAT’s stages may have

on the algorithm’s search space, 2 task MT-DNN is considered, where the two tasks are

Depth Estimation (labeled (d)) and Surface Normal Estimation (labeled (n)). The simulated

attacker has a desired region with a non-linear POF

ℎ
(
ℓ(𝑑) , ℓ(𝑛)

)
= 1.8ℓ(𝑑)ℓ(𝑛) − 1 = 0, (5.1)

which will be used in the fitness evaluation and Stage 2.1 using disciplined convex

programming, as employed in the optimization solver called cvxpy. Since this is a minor

experiment, hyperparameters are chosen to be slightly different from the previously defined

setup in the section 4. More precisely, the GAMAT hyperparameters are increased to
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recognize each stage’s effect better. Therefore, the number of particles generated in the

reproduction stage is 8, the number of predators per prey point is 7, the number of particles

generated by crossover remains the same (a quarter of the current population), and the

number of particles generated after mutation is 10, where each particle has four mutated

weight layers. Finally, a greedy version is used for every stage with such augmentation, and

the crossover method used is greedy POF-based crossover and five prey points on POF.

The post-inference loss points generated after the input images are perturbed by

the generator 𝑔 whose weight parameters are not changed from the previous epoch and

passed through MT-DNN 𝑓 is marked black in Figure 5.1. Similarly, the post-inference

loss points generated after the gradient-based selection stage are marked in cyan color (refer

to Fig. 5.1). Gradient-based selection performed very well in this case as some of the

particles reached the POF, generating a fair diversity among the particles, which is crucial

for the crossover stage. The next stage, the reproduction stage, is marked red in Figure 5.2.

Naturally, the particles selected are closest to the POF because the reproduction stage can

be greedy in selecting particles. Next, the particles generated by the crossover stage are

marked in purple (refer to Fig. 5.3). Due to the nature of the crossover stage, one may

assume that the models generated by the crossover stage will lie somewhere between its

parents since the offspring is composed of the parents’ weight parameters. However, that is

not always the case, as one can notice in Figure 5.3. Such a scenario shows the possibility

of crossover stage generating models that are distinctive and whose post-inference loss

points lie in regions distant from their parental models. Therefore, the crossover stage may

have a powerful impact on the algorithm’s search space. Finally, in Figure 5.4, one can

observe the models generated using the greedy mutation operator, whose post-inference

points are marked orange. As can be noticed, the post-inference point of a model generated

by mutation introduces only a slight difference in distance from its parent. Such behavior

is expected due to a very high number of weight parameters in the generator 𝑔 and only a

fraction of these weight parameters being mutated.
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Figure 5.1. Initial losses and gradient-based selection particles
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Figure 5.2. Reproduction stage
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Figure 5.3. Crossover stage

Figure 5.4. Mutation stage
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5.2. EVOLUTION OF POST-INFERENCE LOSS POINTS OVER EPOCHS

In this minor experimentation, a batch of size one is used when iterating over ten

epochs in the training process. In addition, a batch of size one is chosen to understand

better the effect generated models have on the images. The chosen tasks for MT-DNN and

hyperparameters remain the same as in the section 5.1. From Figure 5.5 to Figure 5.10,

the post-inference loss points of models (marked in black) show a fair diversity that offers

a variety of distinguished models. However, the diversity of the post-inference loss points

on one image does not guarantee the diversity on another input image. Such a scenario can

be seen in figures 5.10 and 5.11. Finally, from Figure 5.11 to Figure 5.14, the diversity of

points is smaller than in the previous figures. Such a scenario is expected since the used

batch is of size one, and images can have significantly different features. Finally, one may

notice that the algorithm converged for seven out of ten images in a single epoch, which

may hint to the reader about the convergence time. The convergence is discussed in the

following section.
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Figure 5.5. Evolution of post-inference loss points over epochs - Epoch 1



26

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
depth_zbuffer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no
rm

al

POF
POF_points

Figure 5.6. Evolution of post-inference loss points over epochs - Epoch 2
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Figure 5.7. Evolution of post-inference loss points over epochs - Epoch 3
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Figure 5.8. Evolution of post-inference loss points over epochs - Epoch 4
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Figure 5.9. Evolution of post-inference loss points over epochs - Epoch 5
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Figure 5.10. Evolution of post-inference loss points over epochs - Epoch 6
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Figure 5.11. Evolution of post-inference loss points over epochs - Epoch 7
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Figure 5.12. Evolution of post-inference loss points over epochs - Epoch 8
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Figure 5.13. Evolution of post-inference loss points over epochs - Epoch 9
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Figure 5.14. Evolution of post-inference loss points over epochs - Epoch 10

5.3. MAT MODELS - TRAINING AND VALIDATION

5.3.1. Training. In this experimentation of this thesis, all models are trained for

ten epochs, with a batch size of four. The reason for choosing size four is that a smaller

batch may result in faster convergence and better model generalization performance due to

more frequent updates of the weights and biases [35]. Let us first consider ℎ
(
ℓ(𝑑) , ℓ(𝑛)

)
=

1.8 × ℓ(𝑑) × ℓ(𝑛) − 1 = 0, throughout the four different scenarios are based on the number

of preys and predators (refer to section 4). Figures 5.15 through 5.18 represent the training

process of the four models with different crossover methods in all prey-predator scenarios

refer to section 4). Models generally converge by the sixth epoch, which is expected

because models are trained using a small batch size, and the distance from the POF is not

overwhelmingly large. However, in Figure 5.17, one may notice that the model containing

the greedy version of antipodes-crossover converges much slower than other models. The

same holds for the model containing the non-greedy version of POF-based crossover in
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Figure 5.18. When using a small batch size, the noise in the gradient estimates of the

optimizer can be higher because the gradient is calculated on a smaller subset of data rather

than on the whole dataset. Hence, the optimization process can be more unstable due to

a potentially wrong gradient direction, which may cause the model to converge to a sub-

optimal solution or oscillate around the optimal solution [36]. During the first three epochs,

the validation fitness of the two mentioned models decreases, which means the models

find a ”good enough” solution quickly. However, after the third iteration, the models

stagnate, which can be interpreted as struggling of the models to find a better solution due

to either model getting stuck in a local minimum or a plateau region, where the gradient

is close to zero, and the model is unable to improve further. Surprisingly, the validation

fitness of the model again decreases starting from epochs six and eight, respectively. The

reignited decrease represents the models finding a way to escape the local minimum and

continue optimizing toward the global minimum. Hence, the models’ generalization keeps

improving. Under the assumption that the training is continued, convergence would be

possible since the models’ fitness caught a decreasing trend. Such a possibility is left as

part of future work.

5.3.2. Validation. As previously stated in section 4, 20% of the dataset is used to

validate the trained models. Figures 5.19 through 5.26 are ordered in pairs such that a pair

of figures show the testing results of a model with a specific crossover method over epochs,

and the average post-inference loss point of each model across entire training portion of

the dataset for each epoch respectively. Please note that there is a ”clean” result for every

adversarial fitness result. The ”clean” result represents the result of the same MT-DNN

model without the attack. Clean results are based on the same testing data used to train the

models. Such a representation allows the reader to get a better insight into the magnitude

of the impact of the MAT attack.
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Figure 5.15. Training with a scenario: two preys with two predators per prey
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Figure 5.16. Training with a scenario: two preys with five predators per prey
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Figure 5.17. Training with a scenario: five preys with two predators per prey

1 2 3 4 5 6 7 8 9 10
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Fit
ne

ss
-D

ist
an

ce

GAMAT Crossover Types
antipodes-non-greedy
antipodes-greedy
POF-based-non-greedy
POF-based-greedy

Figure 5.18. Training with a scenario: three preys with three predators per prey
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For example, figures 5.19 and 5.20 represent the training scenario where GAMAT

uses two prey points and two predators per prey point. Figure 5.19 shows that all models

were trained such that the validation results have the fitness value of 0. An intriguing

point about this result is that the validation reached a fitness distance of 0 in only two

to four iterations depending on the model. Therefore, further training after converging is

unnecessary, and the training can be terminated. Such technique is also known as early

stopping [37]. In the implementation of this experimentation, the model’s state is recorded

after every epoch, which allows using the model’s state of any epoch. Following the

fitness-distance line in Figure 5.19, the reader can envision the evolution of the average

post-inference loss points over epochs in Figure 5.20. The post-inference loss points of

the model with the greedy version of the POF-based crossover are located deeply in the L∗

region, satisfying the inequality ℎ
(
ℓ(𝑑) , ℓ(𝑛)

)
= 1.8 × ℓ(𝑑) × ℓ(𝑛) − 1 = 0. Hence, the given

model is well trained for this particular POF.
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Figure 5.19. Scenario: two preys with two predators per prey - Fitness validation over
epochs
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Figure 5.20. Scenario: two preys with two predators per prey - Post-inference loss points

Figures 5.21 and 5.22 represent the training scenario where GAMAT uses two prey

points and five predators per prey point. Figure 5.21 shows that all models converged after

only two epochs. Such a fast convergence rate indicates that this scenario, with an increased

number of predators per prey, yields better performance of all variants of the GAMAT

algorithm. As stated before, the states of the models are again preserved. However, the

fast convergence of the models raises a point for future work: training models on a POF

further away from the ”clean loss” of the MT-DNN. Such an experiment would better show

the effectiveness of the learning algorithm. Again, to better visualize the evolution of the

search space of each model, the reader may refer to Figure 5.22.

Figures 5.23 and 5.24 represent the training scenario where GAMAT uses five

prey points and two predators per prey point. All models converge. However, the model

trained by GAMAT with the greedy antipodes-crossover converges by the tenth epoch, while

other models converge by the time they hit epoch three. The validation loss curve of the

model in Figure 5.23 indicates that the model either got stuck in a local minimum or on a

plateau with zero gradients until it found its way to progress toward the global minimum.
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Figure 5.21. Scenario: two preys with five predators per prey - Fitness validation over
epochs
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Figure 5.22. Scenario: two preys with five predators per prey - Post-inference loss points
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Therefore, the scenario with five preys and two predators per prey point seems slightly less

effective than the previous two scenarios in the case of GAMAT with the greedy version of

antipodes-crossover. At the same time, other models show a similar convergence rate.

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

Fit
ne

ss
-D

ist
an

ce

GAMAT Crossover Types
antipodes-non-greedy
antipodes-greedy
POF-based-non-greedy
POF-based-greedy
clean antipodes-non-greedy
clean antipodes-greedy
clean POF-based-non-greedy
clean POF-based-greedy

Figure 5.23. Scenario: five preys with two predators per prey - Fitness validation over
epochs

Finally, Figures 5.25 and 5.26 represent the training scenario where GAMAT uses

five prey points and two predators per prey point. All models but the model trained by

GAMAT with non-greedy POF-based crossover converge within ten epochs. However, even

the model trained by GAMAT with non-greedy POF-based crossover shows the potential

to converge after the tenth epoch due to a decrease in fitness distance after the eighth epoch

before which it hits the plateau in loss space where the gradient is zero, or it gets stuck

in a local minimum until it finds its way to progress further towards the global minimum.

Therefore, given more epochs to train, all models can converge in such a scenario. However,

as in the previous scenario, this scenario is less effective than other scenarios regarding the

model trained by GAMAT with the non-greedy version of the POF-based crossover.
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Figure 5.24. Scenario: five preys with two predators per prey - Post-inference loss points
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Figure 5.25. Scenario: three preys with three predators per prey - Fitness validation over
epochs
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Figure 5.26. Scenario: three preys with three predators per prey - Post-inference loss points

5.4. CROSSOVER ANALYSIS

To better understand under which scenario the specific models are doing best, this

thesis presents another experiment. Figure 5.27 represents the model trained by GAMAT

with non-greedy antipodes-based crossover in all scenarios for which the model was trained.

The model does well in all scenarios since it converges within two epochs in every scenario.

Therefore, the GAMAT with non-greedy antipodes-based crossover is worth pursuing in

future work.

Figure 5.28 represents the model trained by GAMAT with greedy antipodes-based

crossover in all scenarios for which the model was trained. The model trained by GAMAT

with greedy antipodes-based crossover converges in all scenarios but at a slightly lower

convergence rate than models trained by GAMAT with non-greedy antipodes-crossover,

which indicates that GAMAT with greedy antipodes-based crossover is less effective than

the GAMAT with non-greedy antipodes-crossover.
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Figure 5.27. Fitness validation of model trained by GAMAT with non-greedy antipodes-
crossover in all preys-predators settings
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Figure 5.28. Fitness validation of model trained by GAMAT with greedy antipodes-
crossover in all preys-predators settings



41

In Figure 5.29, a model trained by GAMAT with non-greedy POF-based crossover is

considered in the same four scenarios. Similarly, as with the GAMAT with greedy antipodes-

crossover, all the models trained by GAMAT with non-greedy POF-based crossover converge

within ten epochs, but one. The model that has not converged within the given ten epochs

was trained in the scenario with three preys and three predators per prey. Though the model

has the potential of converging after the tenth epoch, it may not be worth considering this

model in future work due to a low convergence rate. Finally, the model generated by
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Figure 5.29. Fitness validation of model trained by GAMAT with non-greedy POF-based
crossover in all preys-predators settings

GAMAT with greedy POF-based crossover is presented in figure 5.30 across the same four

scenarios. The results indicate that this model converges in all scenarios within four epochs,

which is still less effective than the models trained by GAMAT with non-greedy antipodes-

crossover. However, models trained by GAMAT with greedy POF-based crossover are still

worth considering in future work.
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Figure 5.30. Fitness validation of model trained by GAMAT with greedy POF-based
crossover in all preys-predators settings

5.5. HYPERPARAMETER ANALYSIS

Having multiple models with only one difference in the training process and having

some of the models converge slower than others raises the question of how each crossover

method impacts the model’s learning process. Unfortunately, this question is hard to answer

based on only four settings and one POF. Therefore, this question remains another challenge

in future work. On the other hand, the time it takes to train a model is directly related to

the number of prey points and the number of predators per prey point. The higher the

product of prey points and the number of predators per prey point, the more time it takes

to complete the training process. The cause of the relationship between the two is the

gradient-based update stage. The model’s weights must be updated using SGD after the

forward and backward pass for every predator. The higher the number of predators, the

higher the number of forward and backward passes, which causes an increase in the training

time. However, the training time is not a concern in this setting.
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Another question worth considering is how the ratio between the number of prey

points and the number of predators per prey point affects the training process and validation.

According to section 5.3, the reader can notice a difference between models trained in the

scenario with two preys and two predators per prey and the scenario with two preys and

five predators per prey. The difference is the convergence rate. All the models trained in

the scenario with two preys and five predators per prey converge in the second epoch. In

comparison, some models trained in the scenario with two preys and two predators per prey

do not converge until the fourth epoch. Nevertheless, the scenario with two preys and five

predators per prey holds the same advantage over all other tested scenarios. Therefore, the

conclusion is that a higher number of preys does not necessarily lead to a better convergence

rate. On the contrary, the number of predators per prey is inversely related to the number

of epochs necessary for the model’s convergence. The higher the number of predators per

prey, the smaller the number of epochs necessary for convergence.

The fast convergence of the models is expected due to the batch size being set to

four. On the contrary, one of the models did not converge during the training phase; the

most probable cause is the small batch size. Therefore, the increased batch size is a fair

consideration for future experiments. Furthermore, increasing the batch size will reduce the

possible noise in gradient estimates and improve generalization during training. However,

the downside of larger batch size is a longer converging time and requires more resources.

Finally, all models in this experimentation are trained on ten epochs. This number

is chosen considering a small batch size and expecting a relatively fast convergence of the

models. However, there was a case where a model got stuck in a local minimum and finally

found its way out while nearing the end of the training process. Afterward, the training

curve of the model kept decreasing, and it did not converge due to a lack of training epochs.

Therefore, training the models on more than ten epochs is worth considering.
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5.6. COMPARISON WITH STATE-OF-THE-ART MODELS

This section provides a detailed comparison of the proposed attack model with

several state-of-the-art adversarial attacks designed for multi-task neural networks such as

Weighted Gradient Descent (WGD) [21], Projected Gradient Descent attack (PGD) [24],

and Momentum Iterative Projected Gradient Descent (MI-PGD) [25]. First, the inference

time of each attack is calculated as the average attack time for a single input image across

ten iterations, where the computations are performed on an NVIDIA TITAN RTX GPU

card. Table 5.1 compares MAT attack inference time and the inference time of the attacks

mentioned above measured in seconds, the measure of frames per second that could be

affected by each attack, and the fitness-distance metric of each attack from the POF chosen

for the experimentation. WGD, PGD, and MI-PGD are iterative attacks; therefore, the MAT

attack is compared with each iterative attack where the number of steps ranges from one

to twenty. Since the MAT attack is based on an offline trained model, it requires only a

single forward pass through the trained generator to create the perturbation. On the other

hand, current state-of-the-art attacks for multi-task neural networks are iterative and require

backpropagation in every attack step. Therefore, the MAT attack drastically outperforms

the state-of-the-art attacks in the inference time. The time it takes for an attack to create a

perturbed image should be as close as possible to ”real-time” (25-30 frames per second).

Such a performance of an attack would give an attacker the ability to affect almost if not

every, frame of the input video in the autonomous machines, which gives very little or

no time to the MT-DNN system to correct its incorrect decision made after processing a

perturbed image. As shown in table 5.1, the MAT attack achieves 66.67 frames per second

(FPS), while other attacks achieve 2.16 FPS in the best case.

Additionally, table 5.1 shows the performance of each attack, where each iterative

attack has the number of steps it took to reach the corresponding performance. The

comparison of attacks based on the fitness distance across all experimented scenarios

can be observed from Figure 5.31 to Figure 5.34. As the number of steps increases in
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iterative attacks, the average fitness distance decreases while the time it takes to generate

the perturbation increases, which reduces the number of impacted frames per second.

Therefore, a desired fitness distance performance is costly when using iterative attacks. On

the other hand, the desired fitness distance performance of the MAT attack is not related to

the time the attack takes to create the perturbation since the MAT attack model is trained

offline, and it takes a single forward pass through the generator to create the perturbation.

Therefore, the MAT attack is fast and effective compared to current state-of-the-art attacks

on MT-DNN systems, and it represents a benchmark for creating more robust MT-DNNs.
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Figure 5.31. Comparison between MAT attack and current state-of-the-art attacks in loss
space - scenario with two preys and two predators per prey
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Figure 5.32. Comparison between MAT attack and current state-of-the-art attacks in loss
space - scenario with two preys and five predators per prey
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Figure 5.33. Comparison between MAT attack and current state-of-the-art attacks in loss
space - scenario with five preys and two predators per prey
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Figure 5.34. Comparison between MAT attack and current state-of-the-art attacks in loss
space - scenario with three preys and three predators per prey
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Adversarial Attack Perturbation
Time (s)

Frames Per
Second (FPS)

Average Fitness
Distance

MAT-BEST (10 epochs) 0.015 66.67 0.00
MAT-WORST (10 epochs) 0.015 66.67 0.04

WGD (1 step) 0.462 2.16 0.12
WGD (2 steps) 0.777 1.29 0.00
WGD (4 steps) 1.309 0.76 0.00

WGD (10 steps) 2.776 0.36 0.00
WGD (20 steps) 5.688 0.18 0.00
MI-PGD (1 step) 0.984 1.02 0.12
MI-PGD (2 steps) 1.813 0.55 0.00
MI-PGD (4 steps) 3.1996 0.31 0.00

MI-PGD (10 steps) 5.706 0.17 0.00
MI-PGD (20 steps) 11.919 0.08 0.00

PGD (1 step) 0.930 1.08 0.12
PGD (2 steps) 1.887 0.53 0.00
PGD (4 steps) 3.8698 0.26 0.00
PGD (10 steps) 8.367 0.12 0.00
PGD (20 steps) 19.657 0.05 0.00

Table 5.1. Run-time comparison (in seconds) to compute the adversarial inputs, frames per
second (FPS), and the average fitness-distance comparison with state-of-the-art attacks
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6. CONCLUSION AND FUTURE WORK

In summary, this paper proposed a novel targeted Multi-objective adversarial AT-

tack model called MAT and a novel training algorithm called GAMAT based on genetic

algorithms to create adversarial images capable of affecting MT-DNNs in a targeted manner.

Based on simulation experiments designed using the Taskonomy dataset, the superiority

of the proposed attack is demonstrated in terms of fitness-distance metric and affected

frames per second. Furthermore, the GAMAT learning algorithm has the potential to be a

very effective learning algorithm. Therefore, future work will include training and testing

GAMAT’s variants on larger datasets and more distanced POFs and designing scalable

variations that can take better advantage of GPUs.
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APPENDIX

GENETIC ALGORITHMS

1. GENETIC ALGORITHMS

Genetic Algorithms (GAs) are a class of optimization algorithms that draw inspi-

ration from the principles of natural selection and evolution in biology. John Holland

introduced genetic algorithms in the 1970s to solve optimization problems [38]. The cen-

tral idea behind genetic algorithms is to employ a population of potential solutions to a

given problem, each represented as a point in an objective function space. Then, iteratively

refine this population over generations to achieve improved solutions that closely approxi-

mate the desired Pareto-optimal front(s). Such a framework holds significant potential as

a benchmark for optimizing deep neural networks with multiple objectives or creating an

adversarial attack on MT-DNNs. The evolution of the solution population is guided by

a set of evolutionary operators, such as selection, reproduction, crossover, and mutation,

that progressively enhance the quality of the solutions over generations [39]. Finally, the

evolution process continues until a termination criterion is satisfied, which can be either a

satisfactory level of solution quality or a maximum number of generations (refer to Fig. 1).

Each evolution process stage is described in the remainder of this section.

1.1. POPULATION INITIALIZATION. Population initialization is a crucial step in

genetic algorithms that determines the initial set of candidate solutions. Therefore, a

suitable initialization method can significantly improve the efficiency and effectiveness of

the algorithm. Several techniques have been proposed for population initialization in genetic

algorithms, including random initialization, Latin hypercube sampling, and clustering-based

initialization methods [39, 40, 41]. Random initialization is the simplest and most commonly
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used method in genetic algorithms. This method randomly generates individuals within the

search space without knowledge of the problem. However, random initialization can often

lead to a slow convergence rate despite its simplicity, as the initial population may need

to contain reasonable solutions. Latin hypercube sampling is another popular initialization

method that generates individuals by dividing the search space into equally sized intervals

and sampling one point per interval. This method ensures that the individuals in the initial

population are well spread out over the search space, which can improve the convergence

rate [40]. Clustering-based initialization methods, such as k-means clustering, have also

been proposed for population initialization in genetic algorithms [41]. These methods aim

to identify regions of the search space where reasonable solutions are likely to exist and

generate individuals in those regions. Clustering-based initialization methods can lead to

faster convergence and better solutions, but they require prior knowledge of the problem

and could be computationally expensive. Overall, the choice of population initialization

method depends on the problem at hand and the available knowledge of the search space.

However, carefully selecting an appropriate initialization method can significantly improve

the efficiency and effectiveness of genetic algorithms.

1.2. EVALUATION & FITNESS ASSIGNMENT. Evaluation and fitness assignment

are other crucial components of genetic algorithms that determine the quality of candidate

solutions and guide the search process. Fitness assignment involves assigning a fitness

value to each individual in the population based on their performance on the problem

objective(s) [39]. The fitness value reflects the degree of suitability of an individual as a

potential solution and is used to rank individuals for the selection process. Evaluation, on

the other hand, involves computing the objective function(s) for each candidate solution

[42]. The objective function(s) represent the problem to be solved and provide a measure

of the quality of each solution. The evaluation process can be computationally expensive,

especially for complex problems and high-dimensional search spaces, often encountered
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when dealing with deep neural networks. As a result, various techniques for evaluation and

fitness assignment in genetic algorithms have been proposed, including single-objective and

multi-objective fitness functions, ranking-based and tournament-based selection methods,

and penalty functions for handling constraints [40]. Single-objective fitness functions are

commonly used in genetic algorithms for problems with a single objective. These functions

evaluate the performance of each individual on the objective function and assign a fitness

value based on its performance. Multi-objective fitness functions, such as the Pareto

dominance-based NSGA-II algorithm, are used for problems with multiple conflicting

objectives. These functions assign fitness values based on the degree of dominance of

the individual in the Pareto front [40]. Ranking-based selection methods, such as roulette

wheel selection and rank-based selection, assign probabilities to individuals based on their

ranking in the population. These methods have the advantage of being computationally

efficient and easy to implement [42]. Tournament-based selection methods, such as binary

tournament and multi-tournament selection, select individuals by randomly selecting pairs

of individuals and choosing the fittest one. These methods can lead to faster convergence

and better solutions, especially for problems with rugged fitness landscapes [39]. Penalty

functions handle constraints in optimization problems by assigning a significant penalty

value to individuals that violate the constraints. This approach can ensure that the solutions

generated by the algorithm satisfy the constraints of the problem [40].

In summary, the choice of evaluation and fitness assignment techniques depends

on the problem, the available knowledge of the objective function(s), constraints, and

the computational resources available. Careful consideration of these factors can lead to

effective and efficient genetic algorithm design.

1.3. SELECTION OR REPRODUCTION OPERATOR. Genetic algorithms’ selec-

tion or reproduction operator is crucial in maintaining diversity and promoting convergence

towards optimal solutions [43]. Selection involves choosing individuals from the current
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population for reproduction to create the next generation. The primary objective of the

reproduction operator is to create duplicates of individuals with good results and eliminate

the ones with lower-quality solutions in the current population while maintaining the same

population size [43]. The most commonly used selection methods are proportionate fitness

selection, tournament selection, and rank-based selection. Proportionate fitness selection

is a popular method in which the probability of selection of an individual is proportional to

the individual’s fitness score [44]. Tournament selection is another widely used method in

which individuals are selected by conducting a tournament among a few randomly chosen

individuals from the population [43]. Finally, rank-based selection is a method in which

individuals are sorted according to their fitness scores and selected based on their rank in

the sorted list [44]. Different selection methods have their strengths and weaknesses, and

the choice of selection method depends on the problem being addressed. For example,

research has shown that proportionate fitness selection can lead to premature convergence

and reduced diversity. In contrast, tournament and rank-based selection are more effective

in maintaining diversity and avoiding premature convergence in specific problem domains

[43, 44]. In addition, researchers have proposed hybrid selection methods that combine the

strengths of different selection methods to achieve better performance [45].

The selection method is a critical component of genetic algorithms that plays a

crucial role in shaping the population and influencing the search process. Therefore,

the choice of selection method should be carefully considered to balance the need for

convergence and diversity and to ensure a compelling exploration of the search space.

1.4. CROSSOVER OPERATOR. Crossover is a genetic operator that combines genetic

information from two parent individuals to create new offspring individuals with potentially

better fitness than the parents [39]. In the classic one-point crossover, a single crossover

point is randomly chosen along the length of the parent chromosomes, and the genetic

material beyond the crossover point is exchanged between the parents to create two offspring
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individuals. The two-point crossover and uniform crossover are other commonly used

crossover methods [39]. The two-point crossover exchanges genetic material between

two randomly chosen crossover points, while uniform crossover randomly selects genes

from each parent with a probability of 0.5 [39]. The choice of the crossover method can

significantly impact the performance of genetic algorithms. Specific crossover methods

may lead to premature convergence in some problem domains, while others may be more

effective in maintaining diversity and exploring the search space [46, 47]. Researchers

have proposed several extensions and variations of the classic crossover methods, such

as modified crossover operators that incorporate problem-specific knowledge or bias the

search towards some areas of the search space [48]. Research has also investigated the

effects of different crossover methods on the performance of genetic algorithms in various

problem domains. For example, studies have shown that uniform crossover can effectively

solve continuous optimization problems, while one-point crossover may be more suitable

for discrete optimization problems [47, 49]. Moreover, some studies have suggested that

combining multiple crossover methods can improve performance and robustness [50].

Overall, the crossover method is essential in designing and implementing genetic

algorithms. However, the selection of an appropriate crossover method depends on the

characteristics of the problem being addressed and the specific goals of the optimization

process [46].

1.5. MUTATION OPERATOR. The mutation is a crucial operator in genetic algo-

rithms, which helps to introduce diversity into the population and avoid premature conver-

gence [39]. The mutation operator randomly modifies one or more genes of an individual in

the population, and its probability can vary depending on the specific problem domain [38].

Mutation can escape local optima and explore new regions of the search space, improving

the overall convergence of the algorithm. Several mutation strategies have been proposed,

including bit-flip mutation, swap mutation, inversion mutation, and scramble mutation [40]
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[51]. The bit-flip mutation is the most widely used strategy, where a random bit in a binary

string is flipped from 0 to 1, or vice versa [52]. The choice of mutation strategy and its

probability is problem-dependent and can significantly affect the algorithm’s performance

[53]. The mutation probability should be large enough to allow exploration but not too

large to prevent convergence [52]. Researchers have proposed various methods to adapt the

mutation probability dynamically during the optimization process, such as using adaptive

mutation operators [54], self-adaptive mutation rates [55], and fuzzy-based mutation rates

[56]. Several studies have investigated the effects of different mutation operators and their

parameters on the performance of genetic algorithms in various applications [57] [58]. For

example, Gao et al. (2019) proposed a hybrid genetic algorithm with an adaptive mutation

strategy for feature selection in breast cancer diagnosis. They used a combination of bit-flip

and swap mutations and adaptively adjusted the mutation probability based on the evolution

of the population [57]. Similarly, Rahman et al. (2018) proposed a multi-objective genetic

algorithm with adaptive mutation and crossover operators for optimizing the parameters of

a solar water heater system. They used fuzzy-based mutation rates to control the diversity

of the population and balance between exploration and exploitation [58].

In summary, mutation is an essential operator in genetic algorithms that introduces

diversity into the population and helps to escape local optima [39]. However, the choice of

mutation strategy and its probability is problem-dependent and can significantly affect the

algorithm’s performance [53]. Therefore, researchers have proposed various methods to

adapt the mutation probability dynamically during the optimization process, such as using

adaptive mutation operators, self-adaptive mutation rates, and fuzzy-based mutation rates

[54] [55] [56].

1.6. ADVANTAGES OF GENETIC ALGORITHMS. One of the critical advantages

of genetic algorithms is that they can search for solutions in a highly parallel and distributed

manner, which can be more efficient than traditional search algorithms that explore the search
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space sequentially. In addition, genetic algorithms are relatively easy to implement and can

be used in various optimization problems, including function optimization, combinatorial

optimization, and machine learning. GAs are effective in solving a wide range of problems,

including those with multiple objectives [40], dynamic environments [59], and those with

non-linear and non-convex solution spaces [60]. Another advantage of GAs is their ability

to handle complex optimization problems involving many variables or constraints. GAs can

also find near-optimal solutions quickly and easily parallelized to take advantage of modern

computing architectures [61].

1.7. LIMITATIONS OF GENETIC ALGORITHMS. Despite their advantages, ge-

netic algorithms also have some limitations and challenges. One of the biggest challenges is

to find the right balance between exploration and exploitation in the search process, which

means that the algorithm needs to explore enough of the search space to find potentially

better solutions and exploit the best solutions found so far to converge toward the optimal

solution. For example, a study by Goldberg and Deb [62] showed that selection strategy and

genetic operators could significantly impact the balance between exploration and exploita-

tion. In addition, different problems may require different strategies to achieve optimal

performance. Another challenge is to avoid premature convergence, which occurs when

the algorithm converges to a sub-optimal solution too early in the search process. To mit-

igate this issue, researchers have proposed various methods such as diversity preservation

techniques [63] and hybrid approaches that combine GAs with other optimization methods

[64]. Another limitation of GAs is that they may suffer from slow convergence and high

computational costs for complex optimization problems with many variables or constraints.

Such problems occur because the search space size increases exponentially with the number

of variables. The search process may need to be more efficient due to evaluating many pos-

sible solutions. To address this issue, researchers have proposed various techniques such as

parallelization [61] and surrogate modeling [65] to improve the efficiency of GAs for large-



58

scale optimization problems. Finally, GAs may also suffer from the problem of premature

convergence to local optima, especially for problems with rugged landscapes and multiple

local optima. Algorithms that suffer from such problems can lead to suboptimal solutions

far from the global optimum. To mitigate this issue, researchers have proposed methods

such as niching [66] and multi-objective optimization [40] to encourage exploration of the

search space and maintain diversity in the population. Overall, while genetic algorithms

have demonstrated significant advantages for solving optimization problems, they also face

several limitations and challenges that require careful consideration in their application.

In summary, genetic algorithms are a powerful and flexible optimization technique

that can be applied to various problems. While they have some limitations and challenges,

they are valuable tools for solving complex optimization problems and exploring the search

space in a parallel and distributed manner.
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