
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2023

Computer Vision in Adverse Conditions: Small Objects, Low-Computer Vision in Adverse Conditions: Small Objects, Low-

Resoltuion Images, and Edge Deployment Resoltuion Images, and Edge Deployment

Raja Sunkara
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Sunkara, Raja, "Computer Vision in Adverse Conditions: Small Objects, Low-Resoltuion Images, and Edge
Deployment" (2023). Masters Theses. 8159.
https://scholarsmine.mst.edu/masters_theses/8159

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/8159?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMPUTER VISION IN ADVERSE CONDITIONS: SMALL OBJECTS,

LOW-RESOLUTION IMAGES, AND EDGE DEPLOYMENT

by

RAJA SUNKARA

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2023

Approved by:

Dr. Tony T. Luo, Advisor
Dr. Sid Nadendla

Dr. Ardhendu Tripathy

Copyright 2023

RAJA SUNKARA

All Rights Reserved

iii

PUBLICATION THESIS OPTION

This thesis consists of the following two articles, formatted in the style used by the

Missouri University of Science and Technology.

Paper I: Pages 3-25 have been accepted by European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). No

More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution

Images and Small Objects.

Paper II: Pages 26-53 have been accepted by Pattern Recognition Journal. YOGA:

Deep Object Detection in the Wild with Lightweight Feature Learning and Multiscale

Attention.

iv

ABSTRACT

Computer vision based on deep learning is an essential field that plays a significant

role in object detection, image classification, semantic segmentation, instance segmenta-

tion, and other applications. However, these models face significant challenges in adverse

conditions, such as small objects, low-resolution images, and edge deployment. These chal-

lenges limit the accuracy and efficiency of computer vision algorithms, making it difficult

to obtain reliable results.

The primary objective of this thesis is to assess the performance of deep learning-

based computer vision models in challenging conditions and provide viable solutions to

overcome the obstacles. The study will specifically address three key challenges, namely,

the detection of small objects, handling low-resolution images, and deployment of models

at the edge.

To address the challenges of small objects and low-resolution images, we propose

SPD-Conv. This new CNN building block eliminates strided convolution and pooling layers

to improve the detection of small objects and reduce the loss of fine-grained information.

To address the challenge of edge deployment, we propose YOGA, a lightweight

object detection model that achieves high accuracy on low-end edge devices by using a

two-phase feature learning pipeline with attention-based multi-scale feature fusion.

The proposed solutions are evaluated on COCO-val and COCO-testdev datasets and

compared with state-of-the-art models, demonstrating their effectiveness in overcoming

these challenging scenarios. This thesis places significant emphasis on the importance of

reproducibility in research. All experiments are conducted using open-source tools and

frameworks, and the code and models are made available to the research community. This

ensures that the results are transparent, and others can easily reproduce and build upon the

work presented in this thesis.

v

ACKNOWLEDGMENTS

Firstly, I would like to extend my heartfelt gratitude to my advisor, Dr. Tony Luo,

for his unwavering support, invaluable advice, and infinite patience throughout my research

journey. Without his guidance, I would not have achieved this milestone in my academic

career.

I would also like to express my profound appreciation to the other members of my

committee, Dr. Sid Nadendla and Dr. Ardhendu Tripathy, for their insightful comments,

invaluable suggestions, and unwavering encouragement. Their contributions played a cru-

cial role in shaping the direction of my research and helped me to navigate the challenges

along the way.

Furthermore, I am deeply grateful to the Computer Science department, including

all of the faculty and staff, for providing me with the necessary resources to conduct my

research and pursue my academic goals. The support and opportunities afforded to me by

this department have been truly instrumental in my success.

Finally, I would like to acknowledge the Foundry services at our university, particu-

larly for providing access to large GPUs that enabled me to train and evaluate the proposed

solutions.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

SECTION

1. INTRODUCTION. 1

1.1. SMALL OBJECTS AND LOW-RESOLUTION IMAGES. 1

1.2. EDGE DEPLOYMENT. 2

PAPER

I. NO MORE STRIDED CONVOLUTIONS OR POOLING: A NEW CNN BUILD-
ING BLOCK FOR LOW-RESOLUTION IMAGES AND SMALL OBJECTS 3

ABSTRACT . 3

1. INTRODUCTION . 4

2. PRELIMINARIES AND RELATED WORK . 6

2.1. SMALL OBJECT DETECTION . 8

2.2. LOW-RESOLUTION IMAGE CLASSIFICATION 8

3. A NEW BUILDING BLOCK: SPD-CONV . 9

3.1. SPACE-TO-DEPTH (SPD) . 9

3.2. NON-STRIDED CONVOLUTION . 10

4. HOW TO USE SPD-CONV: CASE STUDIES. 11

4.1. OBJECT DETECTION . 11

vii

4.1.1. YOLOv5-SPD . 11

4.1.2. Scalability. 11

4.2. IMAGE CLASSIFICATION. 13

4.2.1. ResNet18-SPD and ResNet50-SPD . 13

5. EXPERIMENTS . 14

5.1. OBJECT DETECTION . 14

5.1.1. Dataset & Setup . 14

5.1.2. Training . 15

5.1.3. Results . 16

5.1.4. Results on Val2017 . 16

5.1.5. Results on Test-Dev2017 . 17

5.1.6. Summary. 18

5.1.7. Visual Comparison . 18

5.2. IMAGE CLASSIFICATION. 19

5.2.1. Dataset & Setup . 19

5.2.2. Training . 20

5.2.3. Testing . 20

5.2.4. Results . 21

6. CONCLUSION . 21

REFERENCES . 23

II. YOGA: DEEP OBJECT DETECTION IN THE WILD WITH LIGHTWEIGHT
FEATURE LEARNING AND MULTISCALE ATTENTION 26

ABSTRACT . 26

1. INTRODUCTION . 27

2. RELATED WORK AND PRELIMINARIES . 29

3. DESIGN OF YOGA . 30

viii

3.1. BACKBONE: CSPGHOSTNET . 32

3.2. NECK: AFF-PANET . 35

3.3. HEAD: YOLO . 37

3.4. LABEL SMOOTHING . 38

4. PERFORMANCE EVALUATION . 39

4.1. EXPERIMENT SETUP . 40

4.1.1. Dataset and Metrics . 40

4.1.2. Training . 40

4.1.3. Hyperparameter Tuning . 41

4.2. RESULTS . 43

4.2.1. Nano and Small Models . 44

4.2.2. Medium and Large Models . 45

4.2.3. Visual Comparison . 47

4.3. HARDWARE IMPLEMENTATION AND EVALUATION 47

4.4. ABLATION STUDY . 48

5. CONCLUSION . 49

REFERENCES . 51

SECTION

2. SUMMARY AND FUTURE WORK . 54

VITA . 56

ix

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. Comparing AP for small objects (𝐴𝑃𝑆). “SPD” indicates our approach. 6

2. A one-stage object detection pipeline. 7

3. Illustration of SPD-Conv when 𝑠𝑐𝑎𝑙𝑒 = 2 (see text for details). 9

4. Overview of our YOLOv5-SPD. Red boxes are where the replacement happens. 12

5. Object detection examples from val2017. Blue boxes indicate the ground
truth. Red arrows highlight the differences. 19

6. Hyperparameter tuning in image classification: a sweep plot using wandb. 20

7. Green labels: ground truth. Blue labels: ResNet18-SPD predictions. Red
labels: ResNet-18 predictions. 22

PAPER II

1. A one-stage object detection model generally consists of a backbone for feature
extraction, a neck for feature fusion, and a head for regression and classification. 30

2. The YOGA architecture: (a) Backbone, (b) Neck, (c) Head. Zoom-in view
of CSPGhost module (light green) is provided in Figure 3. The 𝑛× repetition
allows our model to scale up and down easily. 31

3. (a) Internal structure of our CSPGhost module. (b) The Ghost bottleneck layer
(light blue in CSPGhost), where DWConv stands for depth-wise convolution.
(c) The Conv Block (yellow) used in both (a) and (b). 31

4. Ghost convolution vs. standard convolution. 33

5. (a) Attention Feature Fusion (AFF). (b) Multi-scale channel attention module
(MS-CAM).. 36

6. The training loss (green line) and validation loss (blue line) refer to the local-
ization loss. The red line denotes AP values on validation data. 41

7. Comparing YOGA with state-of-the-art object detection models. 45

8. A visual comparison. Blue boxes: the COCO-17 ground truth. Red arrows
highlight the differences. 46

9. Our hardware testbed setup and run-time outputs. 48

x

LIST OF TABLES

Table Page

PAPER I

1. A taxonomy of OD models. 7

2. Scaling YOLOv5-SPD to obtain different versions that fit different use cases. . . . 13

3. Our ResNet18-SPD and ResNet50-SPD architecture. 14

4. Comparison on MS-COCO validation dataset (val2017). 16

5. Comparison on MS-COCO test dataset (test-dev2017). 17

6. Image classification performance comparison. 21

PAPER II

1. A taxonomy of object detection models. 30

2. Depth and Width scaling factors in YOGA.. 40

3. Results on MS-COCO Validation Dataset. Percentages are in comparison
against the closest performer. 43

4. Results on MS-COCO Test-Dev Dataset. Percentages are in comparison
against the closest performer. 44

5. Performance on Jetson Nano 2GB with 640 x 640 (large) COCO images. 48

6. Ablation study on Backbone and Neck (YOGA-n). 49

1. INTRODUCTION

Computer vision based on deep learning has shown remarkable success in a wide

range of applications. Convolutional Neural Networks (CNNs) are the backbone of modern

deep learning-based computer vision systems, with models such as AlexNet, VGGNet,

ResNet and others achieving state-of-the-art performance in image classification, object

detection, and semantic segmentation tasks. However, despite their success, these models

often face significant challenges when dealing with adverse conditions. For instance,

small objects are challenging to detect, as they typically have lower resolution and limited

contextual information for the model to learn from. Low-resolution images, on the other

hand, can lead to a loss of fine-grained information and poorly learned features. Moreover,

deploying these models on edge devices is often constrained by limited resources, such

as memory and processing power. In this thesis, we investigate the effectiveness of deep

learning-based computer vision models in adverse conditions and propose solutions to

address these challenges, with a particular emphasis on small objects, low-resolution images,

and edge deployment.

1.1. SMALL OBJECTS AND LOW-RESOLUTION IMAGES

Convolutional neural networks (CNNs) have excelled at many computer vision tasks,

including image classification and object detection. However, existing CNN models need

high-quality inputs (fine images, medium to large objects) in both training and inference.

The use of strided convolution and pooling in CNN architecture design usually does not

exhibit adverse effects because most scenarios being studied have good resolutions and

objects are in fair sizes. However, in tougher tasks, such as when images are blurry or

objects are small, the current design starts to suffer from the loss of fine-grained information

and poorly learned features.

2

To address this issue, a new building block for CNNs, called SPD-Conv, is proposed

in substitution of strided convolution and pooling layers altogether. SPD-Conv is a space-to-

depth (SPD) layer followed by a non-strided (i.e., vanilla) convolution layer, which replaces

both strided convolution and pooling in a general and unified way. SPD-Conv can be

applied to most if not all CNN architectures and downsamples a feature map without any

information loss. In this way, SPD-Conv can learn features well in scenarios with small

objects or low-quality inputs.

1.2. EDGE DEPLOYMENT

While deep learning has revolutionized object detection in various applications,

the models’ increasing complexity demands more training data, tuning parameters, and

longer training and inference times. This presents a significant challenge for deployment

in the wild. Although researchers have attempted to address this issue through pruning

and quantization methods, their effect is often limited. Thus, a clean-slate design is much

desired for resource-conscious object detection at the edge. In this thesis, we propose a

novel object detection model named YOGA, based on a resource-conscious design principle.

YOGA achieves a reduction of up to 34% in model size, in terms of number of parameters

and floating-point operations, while maintaining competitive accuracy.

3

PAPER

I. NO MORE STRIDED CONVOLUTIONS OR POOLING: A NEW CNN
BUILDING BLOCK FOR LOW-RESOLUTION IMAGES AND SMALL OBJECTS

Raja Sunkara and Tie Luo (Corresponding author)
Computer Science Department

Missouri University of Science and Technology
{rs5cq,tluo}@mst.edu

ABSTRACT

Convolutional neural networks (CNNs) have made resounding success in many

computer vision tasks such as image classification and object detection. However, their per-

formance degrades rapidly on tougher tasks where images are of low resolution or objects

are small. In this paper, we point out that this roots in a defective yet common design in

existing CNN architectures, namely the use of strided convolution and/or pooling layers,

which results in a loss of fine-grained information and learning of less effective feature rep-

resentations. To this end, we propose a new CNN building block called SPD-Conv in place

of each strided convolution layer and each pooling layer (thus eliminates them altogether).

SPD-Conv is comprised of a space-to-depth (SPD) layer followed by a non-strided convo-

lution (Conv) layer, and can be applied in most if not all CNN architectures. We explain this

new design under two most representative computer vision tasks: object detection and image

classification. We then create new CNN architectures by applying SPD-Conv to YOLOv5

and ResNet, and empirically show that our approach significantly outperforms state-of-the-

art deep learning models, especially on tougher tasks with low-resolution images and small

objects. We have open-sourced our code at https://github.com/LabSAINT/SPD-Conv.

4

1. INTRODUCTION

Since AlexNet [18], convolutional neural networks (CNNs) have excelled at many

computer vision tasks. For example in image classification, well-known CNN models

include AlexNet, VGGNet [30], ResNet [13], etc.; while in object detection, those models

include the R-CNN series [9, 28], YOLO series [4, 26], SSD [24], EfficientDet [34], and

so on. However, all such CNN models need “good quality” inputs (fine images, medium to

large objects) in both training and inference. For example, AlexNet was originally trained

and evaluated on 227 × 227 clear images, but after reducing the image resolution to 1/4

and 1/8, its classification accuracy drops by 14% and 30%, respectively [16]. The similar

observation was made on VGGNet and ResNet too [16]. In the case of object detection,

SSD suffers from a remarkable mAP loss of 34.1 on 1/4 resolution images or equivalently

1/4 smaller-size objects, as demonstrated in [11]. In fact, small object detection is a very

challenging task because smaller objects inherently have lower resolution, and also limited

context information for a model to learn from. Moreover, they often (unfortunately) co-exist

with large objects in the same image, which (the large ones) tend to dominate the feature

learning process, thereby making the small objects undetected.

In this paper, we contend that such performance degradation roots in a defective yet

common design in existing CNNs. That is, the use of strided convolution and/or pooling,

especially in the earlier layers of a CNN architecture. The adverse effect of this design

usually does not exhibit because most scenarios being studied are “amiable” where images

have good resolutions and objects are in fair sizes; therefore, there is plenty of redundant

pixel information that strided convolution and pooling can conveniently skip and the model

can still learn features quite well. However, in tougher tasks when images are blurry or

objects are small, the lavish assumption of redundant information no longer holds and the

current design starts to suffer from loss of fine-grained information and poorly learned

features.

5

To address this problem, we propose a new building block for CNN, called SPD-

Conv, in substitution of (and thus eliminate) strided convolution and pooling layers alto-

gether. SPD-Conv is a space-to-depth (SPD) layer followed by a non-strided (i.e., vanilla)

convolution layer. The SPD layer downsamples a feature map 𝑋 but retains all the informa-

tion in the channel dimension, and thus there is no information loss. We were inspired by

an image transformation technique [29] which rescales a raw image before feeding it into

a neural net, but we substantially generalize it to downsampling feature maps inside and

throughout the entire network; furthermore, we add a non-strided convolution operation

after each SPD to reduce the (increased) number of channels using learnable parameters

in the added convolution layer. Our proposed approach is both general and unified, in that

SPD-Conv (i) can be applied to most if not all CNN architectures and (ii) replaces both

strided convolution and pooling the same way. In summary, this paper makes the following

contributions:

1) We identify a defective yet common design in existing CNN architectures and propose

a new building block called SPD-Conv in lieu of the old design. SPD-Conv down-

samples feature maps without losing learnable information, completely jettisoning

strided convolution and pooling operations which are widely used nowadays.

2) SPD-Conv represents a general and unified approach, which can be easily applied to

most if not all deep learning based computer vision tasks.

3) Using two most representative computer vision tasks, object detection and image

classification, we evaluate the performance of SPD-Conv. Specifically, we construct

YOLOv5-SPD, ResNet18-SPD and ResNet50-SPD, and evaluate them on COCO-

2017, Tiny ImageNet, and CIFAR-10 datasets in comparison with several state-

of-the-art deep learning models. The results demonstrate significant performance

improvement in AP and top-1 accuracy, especially on small objects and low-resolution

images. See Figure 1 for a preview.

6

nano small medium

5

10

15

20

25

A
P
S

YOLOv5-SPD

YOLOv5

EfficientDet

(a) Nano, small, and medium models.

25 26 27 28 29 30 31 32 33 34
APS

Y
O

LO
v5

-S
PD

-l
Y

O
LO

v5
l

U
niv

er
se

N
et

-2
0.

08

H
ou

gh
N

et
((

H
G

-1
04

, M
S))

R
et

in
aN

et
(V

iL
-B

as
e)

R
es

2N
et

10
1+

H
T
C

PV
T
-L

(R
et

in
aN

et
3x

,M
S)

(b) Large-scale models.

Figure 1. Comparing AP for small objects (𝐴𝑃𝑆). “SPD” indicates our approach.

4) SPD-Conv can be easily integrated into popular deep learning libraries such as Py-

Torch and TensorFlow, potentially producing greater impact. Our source code is

available at https://github.com/LabSAINT/SPD-Conv.

The rest of this paper is organized as follows. Section 2 presents background and

reviews related work. Section 3 describes our proposed approach and Section 4 presents two

case studies using object detection and image classification. Section 5 provides performance

evaluation. This paper concludes in Section 6.

2. PRELIMINARIES AND RELATED WORK

We first provide an overview for this area, focusing more on object detection since

it subsumes image classification.

Current state-of-the-art object detection models are CNN-based and can be cate-

gorized into one-stage and two-stage detectors, or anchor-based or anchor-free detectors.

A two-stage detector firstly generates coarse region proposals and secondly classifies and

refines each proposal using a head (a fully-connected network). In contrast, a one-stage

detector skips the region proposal step and runs detection directly over a dense sampling

7

Table 1. A taxonomy of OD models.

Model Anchor-based Anchor-free

One-stage

Faster R-CNN [27],
SSD [24],

RetinaNet [21],
EfficientDet [34],

YOLO [4, 14, 26, 36]

FCOS [35],
CenterNet [7],

DETR [5],
YOLOX [8]

Two-stage R-CNN [10],
Fast R-CNN [9]

RepPoints,
CenterNet2

Figure 2. A one-stage object detection pipeline.

of locations. Anchor-based methods use anchor boxes, which are a predefined collection

of boxes that match the widths and heights of objects in the training data, to improve loss

convergence during training. We provide Table 1 that categorizes some well-known models.

Generally, one-stage detectors are faster than two-stage ones and anchor-based mod-

els are more accurate than anchor-free ones. Therefore, later in our case study and exper-

iments we focus more on one-stage and anchor-based models, i.e., the first cell of Table

1.

8

A typical one-stage object detection model is depicted in Figure 2. It consists of a

CNN-based backbone for visual feature extraction and a detection head for predicting class

and bounding box of each contained object. In between, a neck of extra layers is added to

combine features at multiple scales to produce semantically strong features for detecting

objects of different sizes.

2.1. SMALL OBJECT DETECTION

Traditionally, detecting both small and large objects is viewed as a multi-scale

object detection problem. A classic way is image pyramid [3], which resizes input images

to multiple scales and trains a dedicated detector for each scale. To improve accuracy,

SNIP [31] was proposed which performs selective backpropagation based on different object

sizes in each detector. SNIPER [32] improves the efficiency of SNIP by only processing the

context regions around each object instance rather than every pixel in an image pyramid,

thus reducing the training time. Taking a different approach to efficiency, Feature Pyramid

Network (FPN) [20] exploits the multi-scale features inherent in convolution layers using

lateral connections and combine those features using a top-down structure. Following that,

PANet [22] and BiFPN [34] were introduced to improve FPN in its feature information

flow by using shorter pathways. Moreover, SAN [15] was introduced to map multi-scale

features onto a scale-invariant subspace to make a detector more robust to scale variation.

All these models unanimously use strided convolution and max pooling, which we get rid

of completely.

2.2. LOW-RESOLUTION IMAGE CLASSIFICATION

One of the early attempts to address this challenge is [6], which proposes an end-to-

end CNN model by adding a super-resolution step before classification. Following that, [25]

proposes to transfer fine-grained knowledge acquired from high-resolution training images

to low-resolution test images. However, this approach requires high-resolution training

9

Figure 3. Illustration of SPD-Conv when 𝑠𝑐𝑎𝑙𝑒 = 2 (see text for details).

images corresponding to the specific application (e.g., the classes), which are not always

available. This same requirement of high-resolution training images is also needed by

several other studies such as [37]. Recently, [33] proposed a loss function that incorporate

attribute-level separability (where attribute means fine-grained, hierarchical class labels) so

that the model can learn class-specific discriminative features. However, the fine-grained

(hierarchical) class labels are difficult to obtain and hence limit the adoption of the method.

3. A NEW BUILDING BLOCK: SPD-CONV

SPD-Conv is comprised of a Space-to-depth (SPD) layer followed by a non-strided

convolution layer. This section describes it in detail.

3.1. SPACE-TO-DEPTH (SPD)

Our SPD component generalizes a (raw) image transformation technique [29] to

downsampling feature maps inside and throughout a CNN, as follows. Consider any

intermediate feature map 𝑋 of size 𝑆 × 𝑆 × 𝐶1, slice out a sequence of sub feature maps as

10

𝑓0,0 = 𝑋 [0 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 0 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒], 𝑓1,0 = 𝑋 [1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 0 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒], . . . ,

𝑓𝑠𝑐𝑎𝑙𝑒−1,0 = 𝑋 [𝑠𝑐𝑎𝑙𝑒 − 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 0 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒];

𝑓0,1 = 𝑋 [0 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒], . . . , 𝑓𝑠𝑐𝑎𝑙𝑒−1,1 = 𝑋 [𝑠𝑐𝑎𝑙𝑒 − 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒];
...

𝑓0,𝑠𝑐𝑎𝑙𝑒−1 = 𝑋 [0 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒 − 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒], 𝑓1,𝑠𝑐𝑎𝑙𝑒−1, . . . ,

𝑓𝑠𝑐𝑎𝑙𝑒−1,𝑠𝑐𝑎𝑙𝑒−1 = 𝑋 [𝑠𝑐𝑎𝑙𝑒 − 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒 − 1 : 𝑆 : 𝑠𝑐𝑎𝑙𝑒].

In general, given any (original) feature map 𝑋 , a sub-map 𝑓𝑥,𝑦 is formed by all the entries

𝑋 (𝑖, 𝑗) that 𝑖 + 𝑥 and 𝑗 + 𝑦 are divisible by 𝑠𝑐𝑎𝑙𝑒. Therefore, each sub-map downsamples 𝑋

by a factor of 𝑠𝑐𝑎𝑙𝑒. Figure 3(a)(b)(c) give an example when 𝑠𝑐𝑎𝑙𝑒 = 2, where we obtain

four sub-maps 𝑓0,0, 𝑓1,0, 𝑓0,1, 𝑓1,1 each of which is of shape (𝑆2 ,
𝑆
2 , 𝐶1) and downsamples 𝑋

by a factor of 2.

Next, we concatenate these sub feature maps along the channel dimension and

thereby obtain a feature map 𝑋′, which has a reduced spatial dimension by a factor of 𝑠𝑐𝑎𝑙𝑒

and an increased channel dimension by a factor of 𝑠𝑐𝑎𝑙𝑒2. In other words, SPD trans-

forms feature map 𝑋 (𝑆, 𝑆, 𝐶1) into an intermediate feature map 𝑋′(𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝑠𝑐𝑎𝑙𝑒2𝐶1).

Figure 3(d) gives an illustration using 𝑠𝑐𝑎𝑙𝑒 = 2.

3.2. NON-STRIDED CONVOLUTION

After the SPD feature transformation layer, we add a non-strided (i.e., stride=1)

convolution layer with 𝐶2 filters where 𝐶2 < 𝑠𝑐𝑎𝑙𝑒
2𝐶1, and further transforms

𝑋′(𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝑠𝑐𝑎𝑙𝑒2𝐶1) → 𝑋′′(𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝐶2). The reason we use non-strided convolu-

tion is to retain all the discriminative feature information as much as possible. Otherwise,

for instance, using a 3 × 3 filer with stride=3, feature maps will get “shrunk” yet each pixel

is sampled only once; if stride=2, asymmetric sampling will occur where even and odd

rows/columns will be sampled different times. In general, striding with a step size greater

than 1 will cause non-discriminative loss of information although at the surface, it appears

to convert feature map 𝑋 (𝑆, 𝑆, 𝐶1) → 𝑋′′(𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝑆
𝑠𝑐𝑎𝑙𝑒

, 𝐶2) too (but without 𝑋′).

11

4. HOW TO USE SPD-CONV: CASE STUDIES

To explain how to apply our proposed method to redesigning CNN architectures,

we use two most representative categories of computer vision models: object detection and

image classification. This is without loss of generality as almost all CNN architectures use

strided convolution and/or pooling operations to downsample feature maps.

4.1. OBJECT DETECTION

YOLO is a series of very popular object detection models, among which we choose

the latest YOLOv5 [14] to demonstrate. YOLOv5 uses CSPDarknet53 [4] with a SPP [12]

module as its backbone, PANet [23] as its neck, and the YOLOv3 head [26] as its detection

head. In addition, it also uses various data augmentation methods and some modules

from YOLOv4 [4] for performance optimization. It employs the cross-entropy loss with a

sigmoid layer to compute objectness and classification loss, and the CIoU loss function [38]

for localization loss. The CIoU loss takes more details than IoU loss into account, such as

edge overlapping, center distance, and width-to-height ratio.

4.1.1. YOLOv5-SPD. We apply our method described in Section 3 to YOLOv5

and obtain YOLOv5-SPD (Figure 4), simply by replacing the YOLOv5 stride-2 convo-

lutions with our SPD-Conv building block. There are 7 instances of such replacement

because YOLOv5 uses five stride-2 convolution layers in the backbone to downsample the

feature map by a factor of 25, and two stride-2 convolution layers in the neck. There is a

concatenation layer after each strided convolution in YOLOv5 neck; this does not alter our

approach and we simply keep it between our SPD and Conv.

4.1.2. Scalability. YOLOv5-SPD can suit different application or hardware needs

by easily scaling up and down in the same manner as YOLOv5. Specifically, we can simply

adjust (1) the number of filters in every non-strided convolution layer and/or (2) the repeated

12

Figure 4. Overview of our YOLOv5-SPD. Red boxes are where the replacement happens.

times of C3 module (as in Figure 4), to obtain different versions of YOLOv5-SPD. The first

is referred to as width scaling which changes the original width 𝑛𝑤 (number of channels)

to ⌈𝑛𝑤 × 𝑤𝑖𝑑𝑡ℎ 𝑓 𝑎𝑐𝑡𝑜𝑟⌉8 (rounded off to the nearest multiple of 8). The second is referred

to as depth scaling which changes the original depth 𝑛𝑑 (times of repeating the C3 module;

e.g., 9 as in 9 × C3 in Figure 4) to ⌈𝑛𝑑 × 𝑑𝑒𝑝𝑡ℎ 𝑓 𝑎𝑐𝑡𝑜𝑟⌉. This way, by choosing different

width/depth factors, we obtain nano, small, medium, and large versions of YOLOv5-SPD

as shown in Table 2, where factor values are chosen the same as YOLOv5 for the purpose

of comparison in our experiments later.

13

Table 2. Scaling YOLOv5-SPD to obtain different versions that fit different use cases.

Models Depth Factor Width Factor

YOLOv5-SPD-n 0.33 0.25
YOLOv5-SPD-s 0.33 0.50
YOLOv5-SPD-m 0.67 0.75
YOLOv5-SPD-l 1.00 1.00

4.2. IMAGE CLASSIFICATION

A classification CNN typically begins with a stem unit that consists of a stride-2

convolution and a pooling layer to reduce the image resolution by a factor of four. A popular

model is ResNet [13] which won the ILSVRC 2015 challenge. ResNet introduces residual

connections to allow for training a network as deep as up to 152 layers. It also significantly

reduces the total number of parameters by only using a single fully-connected layer. A

softmax layer is employed at the end to normalize class predictions.

4.2.1. ResNet18-SPD and ResNet50-SPD. ResNet-18 and ResNet-50 both use

a total number of four stride-2 convolutions and one max-pooling layer of stride 2 to

downsample each input image by a factor of 25. Applying our proposed building block, we

replace the four strided convolutions with SPD-Conv; but on on the other hand, we simply

remove the max pooling layer because, since our main target is low-resolution images, the

datasets used in our experiments have rather small images (64 × 64 in Tiny ImageNet and

32 × 32 in CIFAR-10) and hence pooling is unnecessary. For larger images, such max-

pooling layers can still be replaced the same way by SPD-Conv. The two new architectures

are shown in Table 3.

14

Table 3. Our ResNet18-SPD and ResNet50-SPD architecture.

Layer Name ResNet18-SPD ResNet50-SPD
spd1 SPD-Conv

conv1 3 × 3 kernel, 64 output channels

conv2
[
3 × 3, 64
3 × 3, 64

]
× 2


1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

spd2 SPD-Conv

conv3
[
3 × 3, 128
3 × 3, 128

]
× 2


1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

spd3 SPD-Conv

conv4
[
3 × 3, 256
3 × 3, 256

]
× 2


1 × 1, 256
3 × 3, 256

1 × 1, 1024

 × 6

spd4 SPD-Conv

conv5
[
3 × 3, 512
3 × 3, 512

]
× 2


1 × 1, 512
3 × 3, 512

1 × 1, 2048

 × 3

fc (fully conn.) Global avg. pooling + fc(no. of classes) + softmax

5. EXPERIMENTS

This section evaluates our proposed approach SPD-Conv using two representative

computer vision tasks, object detection and image classification.

5.1. OBJECT DETECTION

5.1.1. Dataset & Setup. We use the COCO-2017 dataset [1] which is divided into

train2017 (118,287 images) for training, val2017 (5,000 images; also called minival)

for validation, and test2017 (40,670 images) for testing. We use a wide range of state-

of-the-art baseline models as listed in Tables 4 and 5. We report the standard metric of

average precision (AP) on val2017 under different IoU thresholds [0.5:0.95] and object

sizes (small, medium, large). We also report the AP metrics on test-dev2017 (20,288

15

images) which is a subset of test2017 with accessible labels. However, the labels are

not publicly released but one needs to submit all the predicted labels in JSON files to the

CodaLab COCO Detection Challenge [2] to retrieve the evaluated metrics, which we

did.

5.1.2. Training. We train different versions (nano, small, medium, and large) of

YOLOv5-SPD and all the baseline models on train2017. Unlike most other studies, we

train from scratch without using transfer learning. This is because we want to examine

the true learning capability of each model without being disguised by the rich feature

representation it inherits via transfer learning from ideal (high quality) datasets such as

ImageNet. This was carried out on our own models (∗-SPD-n/s/m/l) and all the existing

YOLO-series models (v5, X, v4, and their scaled versions like nano, small, large, etc.). The

other baseline models still used transfer learning because of our lack of resource (training

from scratch consumes an enormous amount of GPU time). However, note that this simply

means that those baselines are placed in a much more advantageous position than our own

models as they benefit from high quality datasets.

We choose the SGD optimizer with momentum 0.937 and a weight decay of 0.0005.

The learning rate linearly increases from 0.0033 to 0.01 during three warm-up epochs,

followed by a decrease using the Cosine decay strategy to a final value of 0.001. The

nano and small models are trained on four V-100 32 GB GPU with a batch size of 128,

while medium and large models are trained with batch size 32. CIoU loss [38] and

cross-entropy loss are adopted for objectness and classification. We also employ several

data augmentation techniques to mitigate overfitting and improve performance for all the

models; these techniques include (i) photometric distortions of hue, saturation, and value,

(ii) geometric distortions such as translation, scaling, shearing, fliplr and flipup, and (iii)

multi-image enhancement techniques such as mosaic and cutmix. Note that augmentation

is not used at inference. The hyperparameters are adopted from YOLOv5 without re-tuning.

16

Table 4. Comparison on MS-COCO validation dataset (val2017).

Model Backbone Image AP APS Params Latency (ms)
size (small obj.) (M) (batch size=1)

YOLOv5-SPD-n - 640 × 640 31.0 16.0 (+13.15%) 2.2 7.3
YOLOv5n - 640 × 640 28.0 14.14 1.9 6.3
YOLOX-Nano - 640 × 640 25.3 - 0.9 -

YOLOv5-SPD-s - 640 × 640 40.0 23.5 (+11.4%) 8.7 7.3
YOLOv5s - 640 × 640 37.4 21.09 7.2 6.4
YOLOX-S - 640 × 640 39.6 - 9.0 9.8

YOLOv5-SPD-m - 640 × 640 46.5 30.3 (+8.6%) 24.6 8.4
YOLOv5m - 640 × 640 45.4 27.9 21.2 8.2
YOLOX-M - 640 × 640 46.4 - 25.3 12.3

YOLOv5-SPD-l - 640 × 640 48.5 32.4 (+1.8%) 52.7 10.3
YOLOv5l - 640 × 640 49.0 31.8 46.5 10.1
YOLOX-L - 640 × 640 50.0 - 54.2 14.5

Faster R-CNN R50-FPN - 40.2 24.2 42.0 -
Faster R-CNN+ R50-FPN - 42.0 26.6 42.0 -
DETR R50 - 42.0 20.5 41.0 -
DETR-DC5 ResNet-101 800 × 1333 44.9 23.7 60.0 -
RetinaNet ViL-Small-RPB 800 × 1333 44.2 28.8 35.7 -

5.1.3. Results. Table 4 reports the results on val2017 and Table 5 reports the

results on test-dev. The APS,APM,APL in both tables mean the AP for small/medium/

large objects, which should not be confused with model scales (nano, small, medium, large).

The image resolution 640 × 640 as shown in both tables is not considered high in object

detection (as opposed to image classification) because the resolution on the actual objects

is much lower, especially when the objects are small.

5.1.4. Results on Val2017. Table 4 is organized by model scales, as separated by

horizontal lines (the last group are large-scale models). In the first category of nano models,

our YOLOv5-SPD-n is the best performer in terms of both AP and APS: its APS is 13.15%

higher than the runner-up, YOLOv5n, and its overall AP is 10.7% higher than the runner-up,

also YOLOv5n.

In the second category, small models, our YOLOv5-SPD-s is again the best per-

former on both AP and APS, although this time YOLOX-S is the second best on AP.

17

Table 5. Comparison on MS-COCO test dataset (test-dev2017).

Model ImgSize Params AP AP50 AP75 APS APM APL
(M) (small obj.)

YOLOv5-SPD-n 640 × 640 2.2 30.4 48.7 32.4 15.1(+19%) 33.9 37.4
YOLOv5n 640 × 640 1.9 28.1 45.7 29.8 12.7 31.3 35.4
EfficientDet-D0 512 × 512 3.9 33.8(Trf) 52.2 35.8 12.0 38.3 51.2

YOLOv5-SPD-s 640 × 640 8.7 39.7 59.1 43.1 21.9(+9.5%) 43.9 49.1
YOLOv5s 640 × 640 7.2 37.1 55.7 40.2 20.0 41.5 45.2
EfficientDet-D1 640 × 640 6.6 39.6 58.6 42.3 17.9 44.3 56.0
EfficientDet-D2 768 × 768 8.1 43.0(Trf) 62.3 46.2 22.5(Trf) 47.0 58.4

YOLOv5-SPD-m 640 × 640 24.6 46.6 65.2 50.8 28.2(+6%) 50.9 57.1
YOLOv5m 640 × 640 21.2 45.5 64.0 49.7 26.6 50.0 56.6
YOLOX-M 640 × 640 25.3 46.4 65.4 50.6 26.3 51.0 59.9
EfficientDet-D3 896 × 896 12.0 45.8 65.0 49.3 26.6 49.4 59.8
SSD512 512 × 512 36.1 28.8 48.5 30.3 - - -

YOLOv5-SPD-l 640 × 640 52.7 48.8 67.1 53.0 30.0 52.9 60.5
YOLOv5l 640 × 640 46.5 49.0 67.3 53.3 29.9 53.4 61.3
YOLOX-L 640 × 640 54.2 50.0 68.5 54.5 29.8 54.5 64.4
YOLOv4-CSP 640 × 640 52.9 47.5 66.2 51.7 28.2 51.2 59.8
PP-YOLO 608 × 608 52.9 45.2 65.2 49.9 26.3 47.8 57.2

YOLOX-X 640 × 640 99.1 51.2 69.6 55.7 31.2 56.1 66.1
YOLOv4-P5 896 × 896 70.8 51.8 70.3 56.6 33.4 55.7 63.4
YOLOv4-P6 1280 × 1280 127.6 54.5 72.6 59.8 36.8 58.3 65.9
RetinaNet 1280 × 1280 66.9 50.7 70.4 54.9 33.6 53.9 62.1
(w/ SpineNet-143)

In the third, medium model category, the AP performance gets quite close although

our YOLOv5-SPD-m still outperforms others. On the other hand, our APS has a larger

winning margin (8.6% higher) than the runner-up, which is a good sign because SPD-Conv

is especially advantageous for smaller objects and lower resolutions.

Lastly for large models, YOLOX-L achieves the best AP while our YOLOv5-SPD-l is

only slightly (3%) lower (yet much better than other baselines shown in the bottom group).

On the other hand, our APS remains the highest, which echos SPD-Conv’s advantage

mentioned above.

5.1.5. Results on Test-Dev2017. As presented in Table 5, our YOLOv5-SPD-

n is again the clear winner in the nano model category on APS, with a good winning

margin (19%) over the runner-up, YOLOv5n. For the average AP, although it appears as if

18

EfficientDet-D0 performed better than ours, that is because EfficientDet has almost double

parameters than ours and was trained using high-resolution images (via transfer learning,

as indicated by “Trf” in the cell) and AP is highly correlated with resolution. This training

benefit is similarly reflected in the small model category too.

In spite of this benefit that other baselines receive, our approach reclaims its top

rank in the next category, medium models, on both AP and APS. Finally in the large model

category, our YOLOv5-SPD-l is also the best performer on APS, and closely matches

YOLOX-L on AP.

5.1.6. Summary. It is clear that, by simply replacing the strided convolution and

pooling layers with our proposed SPD-Conv building block, a neural net can significantly

improves its accuracy, while maintaining the same level of parameter size. The improvement

is more prominent when objects are small, which meets our goal well. Although we do

not constantly notch the first position in all the cases, SPD-Conv is the only approach

that consistently performs very well; it is only occasionally a (very close) runner-up if not

performing the best, and is always the winner on APS which is the chief metric we target.

Lastly, recall that we have adopted YOLOv5 hyperparameters without re-tuning,

which means that our models will likely perform even better after dedicated hyperparameter

tuning. Also recall that all the non-YOLO baselines (and PP-YOLO) were trained using

transfer learning and thus have benefited from high quality images, while ours do not.

5.1.7. Visual Comparison. For a visual and intuitive understanding, we provide

two real examples using two randomly chosen images, as shown in Figure 5. We com-

pare YOLOv5-SPD-m and YOLOv5m since the latter is the best performer among all

the baselines in the corresponding (medium) category. Figure 5(a)(b) demonstrates that

YOLOv5-SPD-m is able to detect the occluded giraffe which YOLOv5m misses, and Fig-

ure 5(c)(d) shows that YOLOv5-SPD-m detects very small objects (a face and two benches)

while YOLOv5m fails to.

19

(a) Purple boxes: YOLOv5m predictions. (b) Green boxes: YOLOv5-SPD-m predictions.

(c) Purple boxes: YOLOv5m predictions. (d) Green boxes: YOLOv5-SPD-m predictions.

Figure 5. Object detection examples from val2017. Blue boxes indicate the ground truth.
Red arrows highlight the differences.

5.2. IMAGE CLASSIFICATION

5.2.1. Dataset & Setup. For the task of image classification, we use the Tiny

ImageNet [19] and CIFAR-10 datasets [17]. Tiny ImageNet is a subset of the ILSVRC-

2012 classification dataset and contains 200 classes. Each class has 500 training images,

50 validation images, and 50 test images. Each image is of resolution 64 × 64 × 3 pixels.

CIFAR-10 consists of 60,000 images of resolution 32 × 32 × 3, including 50,000 training

images and 10,000 test images. There are 10 classes with 6,000 images per class. We use

the top-1 accuracy as the metric to evaluate the classification performance.

20

5.2.2. Training. We train our ReseNet18-SPD model on Tiny ImageNet. We

perform random grid search to tune hyperparameters including learning rate, batch size,

momentum, optimizer, and weight decay. Figure 6 shows a sample hyperparameter sweep

plot generated using the wandb MLOPs. The outcome is the SGD optimizer with a

learning rate of 0.01793 and momentum of 0.9447, a mini batch size of 256, weight decay

regularization of 0.002113, and 200 training epochs. Next, we train our ResNet50-SPD

model on CIFAR-10. The hyperparameters are adopted from the ResNet50 paper, where

SGD optimizer is used with an initial learning rate 0.1 and momentum 0.9, batch size 128,

weight decay regularization 0.0001, and 200 training epochs. For both ReseNet18-SPD and

ReseNet50-SPD, we use the same decay function as in ResNet to decrease the learning rate

as the number of epochs increases.

Figure 6. Hyperparameter tuning in image classification: a sweep plot using wandb.

5.2.3. Testing. The accuracy on Tiny ImageNet is evaluated on the validation

dataset because the ground truth in the test dataset is not available. The accuracy on

CIFAR-10 is calculated on the test dataset.

21

5.2.4. Results. Table 6 summarizes the results of top-1 accuracy. It shows that

our models, ResNet18-SPD and ResNet50-SPD, clearly outperform all the other baseline

models.

Table 6. Image classification performance comparison.

Model Dataset Top-1 accuracy (%)

ResNet18-SPD Tiny ImageNet 64.52
ResNet18 Tiny ImageNet 61.68
Convolutional Nystromformer for Vision Tiny ImageNet 49.56
WaveMix-128/7 Tiny ImageNet 52.03

ResNet50-SPD CIFAR-10 95.03
ResNet50 CIFAR-10 93.94
Stochastic Depth CIFAR-10 94.77
Prodpoly CIFAR-10 94.90

Finally, we provide in Figure 7 a visual illustration using Tiny ImageNet. It shows

8 examples misclassified by ResNet18 and correctly classified by ResNet18-SPD. The

common characteristics of these images is that the resolution is low and therefore presents

a challenge to the standard ResNet which loses fine-grained information during its strided

convolution and pooling operations.

6. CONCLUSION

This paper identifies a common yet defective design in existing CNN architectures,

which is the use of strided convolution and/or pooling layers. It will result in the loss of

fine-grained feature information especially on low-resolution images and small objects. We

then propose a new CNN building block called SPD-Conv that eliminates the strided and

pooling operations altogether, by replacing them with a space-to-depth convolution followed

by a non-strided convolution. This new design has a big advantage of downsampling feature

maps while retaining the discriminative feature information. It also represents a general

22

Figure 7. Green labels: ground truth. Blue labels: ResNet18-SPD predictions. Red labels:
ResNet-18 predictions.

and unified approach that can be easily applied to perhaps any CNN architecture and to

strided conv and pooling the same way. We provide two most representative use cases, object

detection and image classification, and demonstrate via extensive evaluation that SPD-Conv

brings significant performance improvement on detection and classification accuracy. We

anticipate it to widely benefit the research community as it can be easily integrated into

existing deep learning frameworks such as PyTorch and TensorFlow.

23

REFERENCES

[1] Coco dataset. https://cocodataset.org (2017)

[2] CodaLab COCO detection challenge (bounding box). https://competitions.cod
alab.org/competitions/20794 (2019)

[3] Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid
methods in image processing. RCA engineer 29(6), 33–41 (1984)

[4] Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934 (2020)

[5] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European Conference on Computer
Vision. pp. 213–229. Springer (2020)

[6] Chevalier, M., Thome, N., Cord, M., Fournier, J., Henaff, G., Dusch, E.: Lr-cnn
for fine-grained classification with varying resolution. In: 2015 IEEE International
Conference on Image Processing (ICIP). pp. 3101–3105. IEEE (2015)

[7] Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: Keypoint triplets
for object detection. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 6569–6578 (2019)

[8] Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021. arXiv
preprint arXiv:2107.08430 (2021)

[9] Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1440–1448 (2015)

[10] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 580–587 (2014)

[11] Haris, M., Shakhnarovich, G., Ukita, N.: Task-driven super resolution: Object de-
tection in low-resolution images. In: International Conference on Neural Information
Processing. pp. 387–395. Springer (2021)

[12] He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE transactions on pattern analysis and machine
intelligence 37(9), 1904–1916 (2015)

[13] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 770–778
(2016)

[14] Jocher, G., et al.: https://github.com/ultralytics/yolov5 (2021), released
version available at the time of evaluation: Oct 12, 2021

24

[15] Kim, Y., Kang, B.N., Kim, D.: San: Learning relationship between convolutional
features for multi-scale object detection. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 316–331 (2018)

[16] Koziarski, M., Cyganek, B.: Impact of low resolution on image recognition with deep
neural networks: An experimental study. International Journal of Applied Mathemat-
ics and Computer Science 28(4) (2018)

[17] Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced re-
search) http://www.cs.toronto.edu/˜kriz/cifar.html

[18] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convo-
lutional neural networks. NeurIPS 25 (2012)

[19] Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

[20] Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid
networks for object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2117–2125 (2017)

[21] Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: IEEE ICCV. pp. 2980–2988 (2017)

[22] Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance seg-
mentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 8759–8768 (2018)

[23] Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance seg-
mentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2018)

[24] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD:
Single shot multibox detector. In: European conference on computer vision. pp. 21–37.
Springer (2016)

[25] Peng, X., Hoffman, J., Stella, X.Y., Saenko, K.: Fine-to-coarse knowledge transfer
for low-res image classification. In: 2016 IEEE International Conference on Image
Processing (ICIP). pp. 3683–3687. IEEE (2016)

[26] Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

[27] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems
28, 91–99 (2015)

[28] Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis and
machine intelligence 39(6), 1137–1149 (2016)

25

[29] Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 6626–6634 (2018)

[30] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

[31] Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - snip. In:
IEEE CVPR. pp. 3578–3587 (2018)

[32] Singh, B., Najibi, M., Davis, L.S.: Sniper: Efficient multi-scale training. Advances in
neural information processing systems 31 (2018)

[33] Singh, M., Nagpal, S., Vatsa, M., Singh, R.: Enhancing fine-grained classification for
low resolution images. In: 2021 International Joint Conference on Neural Networks
(IJCNN). pp. 1–8. IEEE (2021)

[34] Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 10781–10790 (2020)

[35] Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 9627–9636 (2019)

[36] Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-yolov4: Scaling cross stage
partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 13029–13038 (2021)

[37] Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.S.: Studying very low resolu-
tion recognition using deep networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 4792–4800 (2016)

[38] Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-iou loss: Faster and
better learning for bounding box regression. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 34, pp. 12993–13000 (2020)

26

II. YOGA: DEEP OBJECT DETECTION IN THE WILD WITH LIGHTWEIGHT
FEATURE LEARNING AND MULTISCALE ATTENTION

Raja Sunkara and Tie Luo (Corresponding author)
Department of Computer Science

Missouri University of Science and Technology
Rolla, MO 65409, USA
{rs5cq,tluo}@mst.edu

ABSTRACT

We introduce YOGA, a deep learning based yet lightweight object detection model

that can operate on low-end edge devices while still achieving competitive accuracy. The

YOGA architecture consists of a two-phase feature learning pipeline with a cheap linear

transformation, which learns feature maps using only half of the convolution filters required

by conventional convolutional neural networks. In addition, it performs multi-scale feature

fusion in its neck using an attention mechanism instead of the naive concatenation used by

conventional detectors. YOGA is a flexible model that can be easily scaled up or down

by several orders of magnitude to fit a broad range of hardware constraints. We evaluate

YOGA on COCO-val and COCO-testdev datasets with other over 10 state-of-the-art object

detectors. The results show that YOGA strikes the best trade-off between model size and

accuracy (up to 22% increase of AP and 23-34% reduction of parameters and FLOPs),

making it an ideal choice for deployment in the wild on low-end edge devices. This is

further affirmed by our hardware implementation and evaluation on NVIDIA Jetson Nano.

27

1. INTRODUCTION

Object detection empowered by deep learning has made booming success in di-

verse applications such as autonomous driving, medical imaging, remote sensing, and face

detection. Research in this area has been thriving and the performance competition is

fierce. Well-known detectors include the R-CNN series [9], YOLO series [22], SSD [20],

RetinaNet [16], EfficientDet [26], YOLO-Anti [32], UDNet [6], etc. Although the fierce

competition has led to better performance in general, it has also resulted in deeper neural

network architectures and more complex model designs, implying a need for more training

data, more tuning parameters, and longer training and inference time. This would not be

suitable for resource-constrained environments such as Internet of Things (IoT) devices at

the edge.

Researchers have attempted Pruning and Quantization methods toward this goal.

However, that is an “aftermath” approach and the effect is often limited (for example, we

applied PyTorch’s pruning utility to three popular object detection models and observed

a mere improvement of 0%, 8%, and -15%(negative), respectively). To fundamentally

address this problem for edge deployment in the wild, a clean-slate design is much more

desired.

In this paper, we propose YOGA, a new object detection model based on a resource-

conscious design principle. YOGA cuts down model size by up to 34% (cf. Table 4), in terms

of number of model parameters and FLOPs, yet notably, achieving competitive accuracy

(often even better, by up to 22%; cf. Table 4). YOGA consists of (i) a new backbone

called CSPGhostNet (cross stage partial GhostNet), (ii) a new neck called AFF-PANet

(attention feature fusion-based path aggregation network), and (iii) a YOLO-based head.

(The underlined letters account for the coined name, YOGA.) Our main idea is twofold.

First, to slim down the neural network, we use a two-phase feature learning pipeline with

a cheap linear transformation called group convolution throughout the network, which can

28

learn the same number of feature maps as in standard CNNs but using only half of the

convolution filters. Second, to achieve high accuracy, we fuse multi-scale feature maps at

the neck using a local attention mechanism along the channel dimension (besides global

attention along the space dimension), rather than using the conventional concatenation

which is essentially equal-weighted.

Apart from being lightweight and high-performing, YOGA also represents a flexible

design in that it can be easily scaled up or down in a wide range by choosing different

repetitions of one of its building blocks (CSPGhost; cf. Figure 2). This makes it easily fit

for a broad range of applications with different resource constraints, from small embedded

IoT systems to intermediate edge servers and to powerful clouds.

Besides the performance evaluation commonly seen in the literature, we have also

implemented YOGA on real hardware, NVIDIA Jetson Nano 2GB (the lowest-end deep

learning device from NVIDIA), and tested its performance to assess its applicability to edge

deployment in the wild. The results are promising (for instance, YOGA-n runs at 0.57 sec

per 640x640 image, which is close to real-time) and will surely be much more responsive

on less-restrictive hardware (e.g., Jetson Nano 4GB, or Jetson TX2).

In summary, the contributions of this paper are:

• We propose YOGA, a new object detection model that learns richer representation

(via attention based multi-scale feature fusion) with a much lighter model (reducing

nearly half convolution filters via group convolution).

• We provide a theoretical explanation of how label smoothing facilitates backpropa-

gation during training, by mathematically analyzing how the loss gradient vector is

involved in the recursive backpropagation algorithm when label smoothing is used.

We also overcome a GhostNet overfitting issue using a hyper-parameter tuning method

based on Genetic Algorithm.

29

• We compare YOGA with a large variety of (over 10) state-of-the-art deep learning

object detectors (as YOGA can be easily scaled up or down so we can make fair

comparison with models at different levels of scales). The results demonstrate the

superiority of YOGA on the joint performance of model size and accuracy.

• We also migrate YOGA to real hardware to assess its usability in the wild. Our

experiments show that YOGA is well suited for even the lowest-end deep learning

edge devices.

2. RELATED WORK AND PRELIMINARIES

Current state-of-the-art object detection models are convolutional neural network

(CNN) based and can be categorized into one-stage and two-stage detectors, or anchor-

based or anchor-free detectors. A two-stage detectors first use region proposals to generate

coarse object proposals, and then use a dedicated per-region head to classify and refine the

proposals. In contrast, one-stage detectors skip the region proposal step and run detection

directly over a dense sampling of locations. Anchor-based methods use anchor boxes,

which are a predefined collection of boxes that match the widths and heights of training

data objects, to improve the loss convergence during training. We provide a classification of

some well-known object detection models in Table 1. For a detailed review of such methods,

the reader is referred to a comprehensive survey [18]. For a overview of deep-learning based

methods for salient object detection in videos, refer to [33].

Generally, one-stage detectors are faster than two-stage ones and anchor-based mod-

els are more accurate than anchor-free ones. Thus, in the YOGA design, we focus on the

one-stage and anchor-based models, i.e, the first cell of Table 1.

30

Table 1. A taxonomy of object detection models.

Model Anchor-based Anchor-free

One-stage
Faster R-CNN [23], SSD [20],

RetinaNet [16], EfficientDet [26],
YOLO [22]

FCOS [27], CenterNet [5],
DETR [2], YOLOX [7]

Two-stage R-CNN [9],
Fast R-CNN [8]

RepPoints [35],
CenterNet2 [5]

Figure 1. A one-stage object detection model generally consists of a backbone for feature
extraction, a neck for feature fusion, and a head for regression and classification.

A typical one-stage object detection model is depicted in Figure 1. It consists of a

CNN-based backbone for visual feature extraction and a detection head for predicting class

and bounding box of each contained object. In between, a neck is added to combine features

at multiple scales to produce semantically strong features for detecting objects of different

sizes.

3. DESIGN OF YOGA

An overview of the YOGA architecture is given in Figure 2.

31

Figure 2. The YOGA architecture: (a) Backbone, (b) Neck, (c) Head. Zoom-in view of
CSPGhost module (light green) is provided in Figure 3. The 𝑛× repetition allows our model
to scale up and down easily.

Figure 3. (a) Internal structure of our CSPGhost module. (b) The Ghost bottleneck layer
(light blue in CSPGhost), where DWConv stands for depth-wise convolution. (c) The Conv
Block (yellow) used in both (a) and (b).

32

3.1. BACKBONE: CSPGHOSTNET

Our design of backbone, called CSPGhostNet, is motivated by two observations

and guided by two corresponding aims. First, we identify that standard CNNs add many

redundant features in order to learn better representation of input images. For example,

ResNet [12] generates numerous similar feature maps. Such designs come at a price of high

computational cost and heavyweight models. Therefore, we pose the following question as

our first aim: Is it possible to generate the same number of features with similar (necessary)

redundancy but using much less computation and less parameters?

Second, we observe that the training and inference time of current deep learning

models has a large room to improve. We are therefore motivated to also speed up training

and inference processes in our context, object detection.

To achieve the first aim, we adapt GhostNet [10] to exploit a low-cost two-phase

convolutional pipeline. For the second aim, we integrate half of the feature maps across

backbone and neck from the beginning to the end to create a shortcut, by leveraging

CSPNet [30]. Specifically, it splits each input feature map into two parts, feeds one part

through a group of convolution blocks while letting the other part bypass those blocks, and

merges these two branches at the end via concatenation. This shortcut also reduces the

repetition of gradient information during backpropagation. In the following, we focus on

explaining how we achieve the first aim using GhostNet because CSPNet can be applied

without much change to its original architecture (however, we are the first that creates a new

module combining GhostNet and CSPNet).

Ghost bottleneck (G-bneck) as in Figure 3(b), which we draw based on the GhostNet

paper [10] (but does not exist in [10]), was designed specially for small CNNs. It is not

trivial to use G-bneck to build medium and large CNNs. In fact, this is also the reason

why GhostNet, which is built on top of G-bneck, was compared with only small neural nets

33

Convolution

Convolution Cheap Linear
Operations

Figure 4. Ghost convolution vs. standard convolution.

like MobileNetv2 and MobileNetv3. To overcome this limit, we designed a new CSPGhost

module as in Figure 3(a), where G-bneck layer is just part of it (the light blue block). This

CSPGhost module allows us to build medium and large CNNs.

CSPGhost (in light green) is located at multiple positions in both our backbone and

neck (see Figure 2), and its internal structure is shown in Figure 3(a). CSPGhost contains

a Ghost bottleneck layer (in light blue) and multiple Conv Blocks (in light yellow). Each

Conv Block consists of a 2D Convolution, a BatchNorm, and a SiLU non-linear activation

function (Figure 3(c)). The Ghost bottleneck layer is similar to ResNet’s basic residual block

that integrates several convolutional layers and short-cut connections. It mainly consists

of two GhostConv modules (in orange) with depth-wise convolution in between: the first

GhostConv module acts as an expansion layer that increases the number of channels, while

the second GhostConv module reduces the number of channels to match the input shortcut

path, after which the input of the first GhostConv and the output of the second GhostConv

is connected by the shortcut through the depth-wise convolution and Conv block.

The GhostConv block (in orange) stands for Ghost convolution and its structure

is given in Figure 4. In standard convolution, 𝐶2 filters each of depth 𝐶1 will be used

to transform an input feature map of depth 𝐶1 to an output feature map of depth 𝐶2, as

shown in Figure 4a. In contrast, GhostConv uses only 𝐶2/2 standard filters to generate

34

an intermediate feature map, denoted by 𝑋𝑎, of depth 𝐶2/2, and then applies a group

convolution with 𝐶2/2 groups to 𝑋𝑎 to generate a feature map, 𝑋𝑏, of identical depth 𝐶2/2.

Group convolution with 𝐶2/2 groups is a cheap linear transformation which only performs

per-channel instead of cross-channel convolution as in the standard convolution. Finally,

the two feature maps 𝑋𝑎 and 𝑋𝑏 are concatenated to obtain the output feature map, which

has a depth of 𝐶2.

Mathematically, we can formulate this process as follows:

𝑋𝑎 = 𝒘1 ⊗ 𝒙0 (first half; std conv)

𝑋𝑏 = 𝒘2 ⊗̃ 𝑋𝑎 (second half; group conv) (1)

𝒚 = 𝑋𝑎 ⊕ 𝑋𝑏 (output feature maps)

where ⊗ denotes the standard convolution, ⊗̃ denotes the group convolution, and ⊕ denotes

concatenation along the channel dimension. Thus, we can see that GhostConv adopts

ordinary convolution to generate a few intrinsic feature maps and then utilizes cheap linear

operations to augment the features and increase the number of channels.

Because of this, GhostConv can speed up the convolution process as well as reduce

the number of parameters by 2 approximately. In general, the improvement factor is

𝑠 = 𝐶2/𝐷 (𝑋𝑎) where 𝐷 (𝑋) is the number of channels of a feature map 𝑋 . Based on the

empirical analysis in [10], 𝑠 = 2 results in the best performance. Therefore, we choose half

filters to generate intermediate feature maps in GhostConv as shown in Figure 4.

Our redesigned backbone CSPGhostNet enables YOGA to substantially reduce the

number of parameters and FLOPs without sacrificing its detection performance (mAP).

Moreover, as a general guideline in deep learning, less parameters also tend to imply a more

generalizable neural network.

Finally, we add spatial pyramid pooling (SPP) [11] to the tail of our backbone

network in order to increase the receptive field.

35

3.2. NECK: AFF-PANET

We also design a new neck architecture called AFF-PANet that addresses a fun-

damental problem in object detection: feature fusion. An object detection task inevitably

requires fusing low-level and high-level feature maps extracted from the backbone. However,

current research all centers around fusing these feature maps using a naive concatenation

with no learning involved. As illustrated in Figure 1, such a neck simply stacks the feature

maps 𝑍3, 𝑍4 and 𝑍5 along the channel dimension, and then applies a standard convolution

to match the output channels.

The problem with this kind of naive fusion is that concatenation essentially treats

each feature map equally, but the features learned by the backbone have multiple scales

and larger-scale ones tend to overshadow smaller-scale ones. Therefore, we propose to

incorporate learning into the fusion process using an attention mechanism. However, this is

non-trivial because typical attention methods such as SENet [13] cannot be directly applied

to multi-scale features. The underlying reason is that those channel attention mechanisms

use an extreme and coarse feature descriptor that implicitly assumes that large objects

occupy a large portion of space and averages the feature maps across the spatial dimension,

which would wipe out much of the image signal present in small objects. More specifically,

such methods compress each feature map into a scalar and thus the average of feature maps

along the spatial dimension becomes very small, resulting in poor detection of small objects.

In fact, these are global attention mechanisms alone which cannot well handle multi-scale

feature fusion.

Our design is the first that introduces AFF [4] into the area of object detection in

order to add local attention to feature fusion (besides global attention), and the first that

incorporates it in PANet [19] to shorten the pathway of passing feature information to the

head. The paper [4] proposed an AFF module in Feature Pyramid Networks (FPN), but in

our case, we integrated the AFF module into the Path Aggregation Network (PANet) and

build a new neck architecture called AFF-PANet, which we explain the details below.

36

AFF uses a multi-scale channel attention module (MS-CAM) as depicted in Figure 5.

Given an intermediate feature map Z ∈ R𝐶×𝐻×𝑊 , there are two network pathways, one

computing a global channel context g(Z) and the other is responsible for computing a local

channel context L(Z). The two contexts g(Z) and L(Z) are then combined through a

broadcasting addition operation, followed by a Sigmoid non-linearlity to map values into

the range of 0-1, to obtain the attentional weights M(Z) = 𝜎(g(Z) ⊕ L(Z)). Therefore,

by ushering AFF into object detection, we mainly exploit its local attention pathway, i.e.,

L(Z).

Figure 5. (a) Attention Feature Fusion (AFF). (b) Multi-scale channel attention module
(MS-CAM).

Mathematically, this process can be expressed as

AFF(X,Y) = M(X ⊎ Y) ⊙ X + (1 − M(X ⊎ Y)) ⊙ Y (2)

where X ∈ R𝐶×𝐻×𝑊 is a low-level feature map, and Y ∈ R𝐶×𝐻×𝑊 is a high-level feature map,

⊎ denotes the initial feature integration which we choose to be element-wise summation,

M(X⊎Y) is a MS-CAM function that computes fusion weights between 0 and 1, which are

37

finally applied to X and Y to form a weighted average. Corresponding to Figure 2, X and

Y are the outputs of blocks 4 and 15 respectively, and AFF(X,Y) ∈ R𝐶×𝐻×𝑊 is the fused

feature as the output of block 16.

We also incorporate PANet in our neck. The reason is as follows. The feature

pyramid network (FPN) [15] is comprised of only a top-down pathway to concatenate

feature maps (cf. Figure 1 left part of neck), but PANet adds a bottom-up pathway and

multiple lateral connections. This addition will help shorten the path of passing feature

information from earlier layers to the head through only a few convolutional layers, thereby

learning richer representations for multi-scale objects (as shorter paths have a better gradient

flow from earlier CNN layers to the neck).

In summary, our AFF-based neck design introduces learning into multi-scale feature

fusion by combining feature maps using learnable weights rather than naive concatenation.

3.3. HEAD: YOLO

The purpose of the head is to perform dense predictions, where each prediction

consists of an object confidence score, a probability distribution of the object classes, and

bounding box coordinates. A head makes these predictions based on the feature maps (𝑍′3,

𝑍′4, and 𝑍′5 as shown in Figure 1), obtained from the neck.

We adopt the YOLO head architecture which consists of a 3 × 3 convolution layer

followed by a 1 × 1 convolution layer. The number of filters used in this 1 × 1 convolution

layer is 𝑁 (𝐶 + 5), where 𝐶 is the number of classes and 𝑁 is the number of anchor boxes

(each prediction is made by using an anchor at one of three different scales). The output

of the head is post-processed by non-maximum suppression (NMS) to eliminate redundant

and low-confidence bounding boxes.

38

3.4. LABEL SMOOTHING

We use a regularization technique called label smoothing [25] to improve backprop-

agation gradients during neural network training. Unlike one-hot vector where the entire

probability mass is concentrated on a single true class, label smoothing weighs 1− (𝐾 −1)𝜖

on the true class and 𝜖 on the remaining 𝐾 − 1 classes. This section provides an in-depth

mathematical explanation of how this method helps backpropagation during model training,

as [25] proposed it only heuristically.

Given an input sample, let y be its true label encoded by label smoothing, and y𝑛 be

its prediction made at a neural network’s last (the 𝑛-th) layer. Using the cross-entropy loss

𝐿 (y, y𝑛) = −∑𝐾
𝑖=1 𝑦𝑖 log 𝑦𝑛𝑖 , the gradient of this loss with respect to the predicted output y𝑛

is given by

∇y𝑛𝐿 =


−1−(𝐾−1)𝜖

𝑦𝑛𝑐
, for the true class 𝑐

− 𝜖
𝑦𝑛𝑖
, any other classes 𝑖

(3)

This gradient is then applied to the recursive backpropgation step given below:

∇z𝑘𝐿 = (∇y𝑘𝐿)𝐽y𝑘 (z𝑘), ∇y𝑘−1𝐿 = (∇z𝑘𝐿)W𝑘

∇W𝑘
𝐿 = y𝑘−1∇z𝑘𝐿, ∇b𝑘

𝐿 = ∇z𝑘𝐿

(4)

where z𝑘 and y𝑘 represent the pre-activation and post-activation vectors, respectively, at

layer 𝑘 . We compute Jacobian 𝐽y𝑛 (z𝑛) using the last layer activation function, and then

apply the recursion (4) from 𝑘 = 𝑛 (last layer) to 1 (first layer) to compute all the gradients.

The Jacobain matrix 𝐽y𝑘 (z𝑘) and weight matrix W𝑘 for the 𝑘-th layer are given, respectively,

by

39



𝜕𝑦𝑘1
𝜕𝑧𝑘1

𝜕𝑦𝑘1
𝜕𝑧𝑘2

. . .
𝜕𝑦𝑘1
𝜕𝑧𝑘𝐷

𝜕𝑦𝑘2
𝜕𝑧𝑘1

𝜕𝑦𝑘2
𝜕𝑧𝑘2

. . .
𝜕𝑦𝑘2
𝜕𝑧𝑘𝐷

...
...

. . .
...

𝜕𝑦𝑘𝑀
𝜕𝑧𝑘1

𝜕𝑦𝑘𝑀
𝜕𝑧𝑘2

. . .
𝜕𝑦𝑘𝑀
𝜕𝑧𝑘𝐷


,



𝑤
(𝑘)
11 𝑤

(𝑘)
21 . . . 𝑤

(𝑘)
𝐷𝑘−11

𝑤
(𝑘)
12 𝑤

(𝑘)
22 . . . 𝑤

(𝑘)
𝐷𝑘−12

...
...

. . .
...

𝑤
(𝑘)
1𝐷𝑘

𝑤
(𝑘)
2𝐷𝑘

. . . 𝑤
(𝑘)
𝐷𝑘−1𝐷𝑘


(5)

where 𝐷𝑘 represents the number of neurons in the 𝑘-th layer.

For the label-smoothing based loss, all the entries of the gradient ∇y𝑛𝐿 (Eq. 3) are

non-zero. As this gradient vector is multiplied with the Jacobian 𝐽y(z) and the weight

matrix W𝑘 in the recursive backpropagation step, using such gradient to update weights

during gradient descent would significantly mitigate the gradient vanishing problem and

thus help the training and convergence of deep neural networks.

4. PERFORMANCE EVALUATION

For an extensive performance evaluation, we compare YOGA with a large number of

state-of-the-art object detection models as our baselines, including YOLOv5, EfficientDet,

YOLOX, YOLOv4, PP-YOLO, DETR, Faster-RCNN, SSD512, etc. and the complete list

can be seen from Tables 3 and 4. Code is available at https://github.com/LabSAINT/YOGA.

As mentioned before, YOGA can easily scale up or down to suit different application

or hardware needs. For example, we have tested that its Nano version YOGA-n can run near

real-time on Jetson Nano and its Large version YOGA-l can run real-time on a V-100 GPU.

Specifically, one can scale YOGA by simply adjusting the number of filters in each

convolutional layer (i.e., width scaling) and the number of convolution layers in the backbone

(i.e., depth scaling) to obtain different versions of YOGA, such as Nano, Small, Medium,

and Large. The width and depth scaling will result in a new width of ⌈𝑛𝑤 × width factor⌉8

and a new depth of ⌈𝑛𝑑 × depth factor⌉, respectively, where 𝑛𝑤 is the original width and 𝑛𝑑

is the original number of repeated blocks (e.g., 9 as in 9× CSPGhost as in Figure 2), and

40

⌈·⌉8 means rounded off to the nearest multiple of 8. The width/depth factors are given in

Table 2, where YOGA-n/s/m/l correspond to the Nano, Small, Medium, and Large versions

of YOGA, respectively.

Table 2. Depth and Width scaling factors in YOGA.

Model Depth Factor Width Factor

YOGA-n 0.50 0.33
YOGA-s 0.57 0.68
YOGA-m 1.00 1.20
YOGA-l 1.50 1.41

4.1. EXPERIMENT SETUP

4.1.1. Dataset and Metrics. We use the COCO-2017 dataset [17] which is di-

vided into train2017 (118,287 images) for training, val2017 (5,000 images; also called

minival) for validation, and test2017 (40,670 images) for testing. We use a wide range

of state-of-the-art baseline models as listed in Tables 3 and 4. We report the standard metric

of average precision (AP) on val2017 under different IoU thresholds [0.5:0.95] and object

sizes (small, medium, large). We also report the AP metrics on test-dev2017 (20,288

images) which is a subset of test2017 with accessible labels. However, the labels are

not publicly released but one needs to submit all the predicted labels in JSON files to the

CodaLab COCO Detection Challenge [3] to retrieve the evaluated metrics, which we

did.

4.1.2. Training. We train different versions (nano, small, medium, and large) of

YOGA on train2017. Unlike most other studies, we train from scratch without using

transfer learning. This is because we want to examine the true learning capability of each

model without being disguised by the rich feature representation it inherits via transfer

learning from ideal (high quality) datasets such as ImageNet. This was carried out on our

own models (YOGA-n/s/m/l) and all the existing YOLO-series models (v5, X, v4, and their

41

0 25 50 75 100 125 150 175
Epochs

0.03

0.04

0.05

0.06

0.07

0.08

0.09

L
o
ss

Train Loss

Validation Loss

AP

0

10

20

30

40

A
P

Figure 6. The training loss (green line) and validation loss (blue line) refer to the localization
loss. The red line denotes AP values on validation data.

scaled versions like nano, small, large, etc.). The other baseline models still used transfer

learning because of our lack of resource (training from scratch consumes an enormous

amount of GPU time). However, note that this simply means that those baselines are placed

in a much more advantageous position than our own models as they benefit from high

quality datasets.

We apply this the same way to our YOLO series baselines (v5, X, v4, and their scaled

versions) as well. On the other hand, other baseline models still use (and thus benefit from)

transfer learning because of lack of resource (training from scratch consumes enormous

time and GPU resources). However, this simply means that those baselines are in a much

more advantageous position than YOGA.

4.1.3. Hyperparameter Tuning. We use the Genetic Algorithm (GA) to tune hy-

perparameters for YOGA. We ran GA on 𝑚 = 20 hyperparameters for 200 generations on a

subset of the COCO dataset. Our choice of 𝑚 = 20 is based on the Vapnik–Chervonenkis

(VC) inequality:

𝑃[|𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 | > 𝜖] ≤ 4𝑚ℎ (2𝑁)𝑒−
1
8 𝜖

2𝑁 (6)

42

where 𝐸𝑖𝑛 is the error on the validation set, 𝐸𝑜𝑢𝑡 is the error on the test set, 𝑁 is the number

of validation samples, and 𝑚ℎ is the growth function of a hypothesis set defined by 𝑚. For

a small 𝜖 = 0.05 and with probability 95%, we choose 𝑁 ≥ 10× VC-dimension by rule

of thumb for good generalization (𝐸𝑖𝑛 ≈ 𝐸𝑜𝑢𝑡), where VC-dimension [1] is the number

of independent parameters which is upper-bounded by 𝑚. Since COCO validation data

contains 𝑁 = 5000 images, choosing 𝑚 = 20 satisfies the above inequality, which ensures

the difference between test and validation error to be arbitrarily small according to (6).

Therefore, our mAP estimates computed from validation data will be reliable to use and is

a good proxy for mAP on test data.

The hyperparameters of GA-based optimization are as follows. It uses the SGD

optimizer with momentum 0.937, weight decay of 0.005, a learning rate that linearly

increases from 0.0033 to 0.01 for the first three epochs, and then decreases using the Cosine

decay strategy to a final value of 0.001. The total number of epochs is 200, which is chosen

based on our observation as shown in Figure 6, where the model enters the overfitting region

beyond 200 epochs.

In neural network training, a larger batch size can lead to faster training, but it also

requires more memory. On the other hand, a smaller batch size may require more training

steps, but it may also be more memory efficient. When training on a GPU, the available

memory is a limiting factor on the maximum batch size. Therefore, we trained our YOGA

nano and small models on 4 V-100 32 GB GPU with a batch size of 128, and medium

and large models with batch size 32. We employed CIoU loss for objectness and cross-

entropy loss for classification. To mitigate overfitting, we applied several data augmentation

techniques following YOLOv5, including photometric distortions of hue, saturation, and

value, as well as geometric distortions such as translation, scaling, shearing, fliplr and flipup.

Multi-image enhancement techniques such as mosaic and cutmix were also employed.

For baselines, we use their best hyperparameters stated in their respective papers, or

given in their respective online repositories.

43

Table 3. Results on MS-COCO ValidationDataset. Percentages are in comparison against
the closest performer.

Models Backbone Image-size AP APS Params (M) FLOPs (B)

YOGA-n CSPGhostNet-n 640 × 640 32.3 (+15.35%) 15.2(+7.4%) 1.9 4.9
YOLO-n [14] - 640 × 640 28.0 14.14 1.9 4.5
YOLOX-Nano [7] - 640 × 640 25.3 - 0.9 1.08

YOGA-s CSPGhostNet-s 640 × 640 40.7 (+8.8%) 23.0(+9.0%) 7.6 (+5%) 16.6 (+0.6%)
YOLO-s [14] - 640 × 640 37.4 21.09 7.2 16.5
YOLOX-S [7] - 640 × 640 39.6 - 9.0 26.8
YOLOv7-tiny [29] - 640 × 640 38.7 - 6.2 13.8

YOGA-m CSPGhostNet-m 640 × 640 45.2 28.0 16.3 (-23%) 34.6 (-29%)
YOLO-m [14] - 640 × 640 45.4 27.9 21.2 49.0
YOLOX-M [7] - 640 × 640 46.4 - 25.3 73.8

YOGA-l CSPGhostNet-l 640 × 640 48.9 31.8 33.6 (-27.7%) 71.8 (-34%)
YOLO-l [14] - 640 × 640 49 31.8 46.5 109.1
YOLOX-L [7] - 640 × 640 50.0 - 54.2 155.6
YOLOv7 [29] - 640 × 640 51.2 - 36.9 104.7
HTC [31] HRNetV2p-W48 800 × 1333 47.0 28.8 79.42 399.12
HoughNet [24] HG-104 - 46.1 30.0 - -
DETR-DC5 [2] ResNet-101 800 × 1333 44.9 23.7 60 254
RetinaNet [36] ViL-Small-RPB 800 × 1333 44.2 28.8 35.68 254.8
YOLOv7-X [29] - 640 × 640 52.9 - 71.3 189.9

4.2. RESULTS

With no test-time augmentation, we compare YOGA with baselines at the image

resolution of 640 × 640. Table 3 reports the results on the validation dataset (5000 images

with ground truth). Table 4 reports the results on the test-dev dataset (20000 images with

no public ground truth). In order to obtain the accuracy on test-dev, we submitted all

our predictions to the CodaLab COCO Detection Challenge (Bounding Box) [3] in JSON

files. The APS/APM/APL in Table 3 and 4 means AP obtained on small/medium/large

objects (not model scales). To simplify notation (e.g., in tables and figures), this section

denotes by YOLO the YOLOv5 latest version v6.1 release in February 2022.

The scales of YOLO-v7 models (tiny-6.2M, base-36.9M, and X-71.3M) do not

match our and and other baseline models, and thus prevent a fair comparison. For example,

YOGA-n/m/l has only 1.9/16.3/33.6 M parameters, hence we did not compare YOGA with

YOLOv7. However, we still included YOLO-v7 results in both Tables 3 and 4 for reference.

44

Table 4. Results on MS-COCO Test-Dev Dataset. Percentages are in comparison against
the closest performer.

Method ImgSize FPS Params (M) FLOPs (B) AP[0.5: 0.95] AP50 AP75 APS APM APL

YOGA-n 640 74 1.9 4.9 32.3 (+15%) 50.3 34.6 14.2 (+12%) 34.7 (+11%) 43.1 (+22%)
YOLO-n [14] 640 158 1.9 4.5 28.1 45.7 29.8 12.7 31.3 35.4
EfficientDet-D0 [26] 512 98.0 3.9 2.5 33.8 52.2 35.8 12.0 38.3 51.2

YOGA-s 640 67 7.6 (+5%) 16.6 (+0.6%) 40.3 (+8.6%) 59.1 43.5 20.4 43.5 (+5%) 53.1 (+17%)
YOLO-s [14] 640 156 7.2 16.5 37.1 55.7 40.2 20.0 41.5 45.2
EfficientDet-D1 [26] 640 74.1 6.6 6.1 39.6 58.6 42.3 17.9 44.3 56.0
EfficientDet-D2 [26] 768 56.5 8.1 11 43.0 62.3 46.2 22.5 47.0 58.4
YOLOv7-tiny-SiLU [29] 640 286 6.2 13.8 38.7 56.7 41.7 18.8 42.4 51.9

YOGA-m 640 64 16.3 (-23%) 34.6 (-29%) 46.4 65.0 50.3 26.6 50.1 58.9 (+4%)
YOLO-m [14] 640 121 21.2 49.0 45.5 64.0 49.7 26.6 50.0 56.6
EfficientDet-D3 [26] 896 34.5 12 25 45.8 65.0 49.3 26.6 49.4 59.8
YOLOX-M [7] 640 81.3 25.3 51.4 46.4 65.4 50.6 26.3 51.0 59.9
SSD512 [20] - - 36.1 - 28.8 48.5 30.3 - - -

YOGA-l 640 62 33.6 (-27.7%) 71.8 (-34%) 47.9 (-2.2%) 66.4 51.9 28.0 (-6.3%) 51.6 60.6
YOLO-l [14] 640 99 46.5 109.1 49.0 67.3 53.3 29.9 53.4 61.3
YOLOX-L [7] 640 69.0 54.2 115.6 50.0 68.5 54.5 29.8 54.5 64.4
YOLOv4-CSP [28] 640 73 52.9 - 47.5 66.2 51.7 28.2 51.2 59.8
PP-YOLO [21] 608 72.9 52.9 - 45.2 65.2 49.9 38.4 59.4 67.7
YOLOv7 [29] 640 161 36.9 104.7 51.4 69.7 55.9 31.8 55.5 65.0

YOLOX-X [7] 640 57.3 99.1 219.0 51.2 69.6 55.7 31.2 56.1 66.1
YOLOv4-P5 [28] 896 43 70.8 - 51.8 70.3 56.6 33.4 55.7 63.4
YOLOv4-P6 [28] 1280 32 127.59 - 54.5 72.6 59.8 36.8 58.3 65.9
YOLOv4-P7 [28] 1536 17 287.57 - 55.5 73.4 60.8 38.4 59.4 67.7
EfficientDet-D5 [26] 1280 - 34 135 51.5 70.5 56.7 33.9 54.7 64.1
ATSS 800 - - - 46.3 64.7 50.4 27.7 49.8 58.4
EfficientDet-D6 [26] 1280 - 52 226 52.6 71.5 57.2 34.9 56.0 65.4
RDSNet (R-101) [34] 800 - 0 - 38.1 58.5 40.8 21.2 41.5 48.2
RetinaNet (SpineNet-143) 1280 - 66.9 524.4 50.7 70.4 54.9 33.6 53.9 62.1
YOLOv7-X [29] 640 114 71.3 189.9 53.1 71.2 57.8 33.8 57.1 67.4

Figure 7 provides a comparison of YOGA with multiple SOTA models in terms

of AP and number of parameters. The four YOGA points correspond to YOGA-n/s/m/l.

Similarly, the points of other models correspond to their respective model sizes too. The

results show that YOGA has the best AP at every model scale, or equivalently the lightest

model for any target AP. For instance, PPYOLO [21] has an AP of 22.7 at 4.20M parameters,

while YOGA achieves an AP of ∼35 (interpolated) with the same number of parameters,

amounting to a 54% improvement. More thorough and detailed comparisons are presented

in Tables 3 and 4 and discussed below.

4.2.1. Nano and Small Models. With the same number (1.9M) of parameters,

YOGA-n achieves an AP of 32.3 which is 15.35% higher than the best-performing model,

YOLO-n, whose AP is 28.0. In the comparison on small objects, YOGA-n achieves an

improvement of 7.4% APS over YOLO-n.

45

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
20

30

40

50

A

B

C

Number of parameters in Millions

A
P

YOGA
YOLO

EfficientDet-lite
PPYOLO

A YOLOv4

B SSD512

C Faster-RCNN

Figure 7. Comparing YOGA with state-of-the-art object detection models.

Similarly, our YOGA-s achieves 40.7 AP while the best-performing YOLO-s achieves

37.4, with almost the same number of parameters and FLOPs, which indicates a 8.8% in-

crease in the AP value. Our YOGA-s achieves 23.0 AP on small objects (APS) while the

best-performing YOLO-s achieves 21.09 APS, a +9.0% increase in the APS. Compared to

state-of-the-art models on test-dev (Table 4), our YOGA-n model compared to YOLO-n

achieves an improvement of 15% AP (+4.2 AP). When we compare on object scales, on

small objects, there is an improvement of 12% APS (+1.5 APS); on medium objects, there

is an improvement of 11% APM (+3.4 APM), and on large objects, there is an improvement

of 22% APL (+7.7 APL).

Similarly, our YOGA-s model compared to YOLO-s, achieves an improvement of

8.6% AP (+3.2 AP). When we compare on object scales, on medium objects, there is an

improvement of 5% APM (+2.0 APM); on large objects, there is an improvement of 17%

APL (+7.9 APL).

4.2.2. Medium and Large Models. When compared to YOLO-m, our YOGA-m

achieves similar AP value of 45.2 but significantly reduces parameters and FLOPs by 23%

and 29% respectively. simlarly, comparing with YOLOX-M model, our YOGA-m has

significantly reduction in parameters and FLOPs by 35% and 53%.

46

(a) Green boxes: YOLO-n predictions. (b) Purple boxes: YOGA-n predictions.

(c) Green boxes: YOLO-n predictions. (d) Purple boxes: YOGA-n predictions.

Figure 8. A visual comparison. Blue boxes: the COCO-17 ground truth. Red arrows
highlight the differences.

Compared to YOLO-l, our YOGA-l model achieves the same AP (48.9) but with a

significantly lower number of parameters and FLOPs: 27.7% and 34% respectively. sim-

larly, comparing with YOLOX-L, our YOGA-l model has significant reduction in parameters

and FLOPs by 38% and 53.8%.

When compared to state-of-the-art models on test-dev (Table 4), YOGA-m achieves

AP of 46.4, a 2% improvement to YOLO-m and it uses only 16.3 M parameters and and

34.6 BFLOPs, which are significantly (23% and 29%) lower than YOLO-m.

47

4.2.3. Visual Comparison. We compare the bounding box predictions of the

YOLO-n and our YOGA-n model on two random sample images on COCO validation

dataset. In Figure 8, we see that the top row image has two ground truth objects (Blue

boxes) and our YOGA-n detects both objects (Purple boxes), while YOLO-n (Green boxes)

fail to detect one object (Bench). Similarly, the bottom row image has a total of eleven

ground truth objects, and YOLO-n detects only eight objects while our YOGA-n model

detects nine objects, an extra object called Baseball bat.

4.3. HARDWARE IMPLEMENTATION AND EVALUATION

To assess the edge suitability of YOGA and its usability in the wild, we migrate

YOGA code to NVIDIA Jetson Nano 2GB, which comes with 2 GB 64-bit LPDDR4 25.6

GB/s RAM and 32 GB MicroSD storage and is the lowest-end deep learning hardware

product from NVIDIA.

Figure 9 shows the hardware setup for our edge inference experiments, where

we have set up the runtime environment (Ubuntu 20.04, PyTorch 1.12, Jetpack 4.6) for

evaluation. We measure the inference time of YOGA to see how near-real-time it can be

when performing object detection. The results are reported in Table 5, where we see that

YOGA-n achieves an inference time of of 0.57 sec per image (each image is of large size

640x640) which is close to real-time. We highlight an important fact that, as seen from

Figure 9 (in oval shapes), the 2GB memory on Jetson Nano was fully utilized at peak time

and 1.828 GB swap space on the disk had to be used to compensate for the memory shortage.

This means that the disk I/O had throttled the performance substantially, and it is therefore

reasonable to anticipate a significantly better performance on the 4 GB Jetson Nano and

even better on Jetson TX2, which would no longer or rarely need to use swap space, making

the inference indeed (near)real-time.1

1Both before and at the time of writing, the global market has been undergoing a severe GPU product
shortage and many products have been out of stock in the market. As a consequence, we could not procure
more hardware for testing.

48

Figure 9. Our hardware testbed setup and run-time outputs.

Table 5. Performance on Jetson Nano 2GB with 640 x 640 (large) COCO images.

Model Inference time (sec)

YOGA-n 0.57
YOGA-s 0.77
YOGA-m 0.98
YOGA-l 1.30

4.4. ABLATION STUDY

We also design experiments to investigate the individual effect of our new backbone

and neck: specifically, how our CSPGhostNet backbone compares to the YOLO backbone

(arguably the best backbone so far) and how our AFF-PANet neck compares to the naive

concatenation as used in all SOTA architectures. Moreover, we also evaluate the effect of

label smoothing on the gradient descent convergence. We conduct these ablation studies

using YOGA-n.

49

Table 6. Ablation study on Backbone and Neck (YOGA-n).

Backbone Neck AP

YOLO Backbone Naive Concat 28.4
YOLO Backbone AFF-PANet 29.2

CSPGhostNet Naive Concat 31.1
CSPGhostNet AFF-PANet 32.3

The results for backbone and neck are given in Table 6. We observe that, using

the AFF-PANet neck architecture consistently leads to improved performance compared to

using the Naive Concat (PANet) neck architecture. Additionally, using our CSPGhostNet

backbone leads to better performance than using the existing YOLO backbone in both

cases. Overall, these results suggest that both the AFF-PANet neck and the CSPGhostNet

backbone contribute positively to the performance of YOGA.

For label smoothing, we observed during our training that it helped our model

training to converge to a desirable AP[0.5:0.95] and recall in ∼10% less number of epochs

than without label smoothing.

5. CONCLUSION

This paper presents YOGA, a novel object detection model with an efficient con-

volutional backbone and an enhanced attention-based neck. It is a deep yet lightweight

object detector with high accuracy, which we have validated with extensive evaluation

benchmarked against more than 10 state-of-the-art modern deep detectors. For instance, in

its Nano version, our YOGA-n outperforms the current best-performing model YOLOv5n

by 15.35% in AP, with similar number of parameters and FLOPs; this improvement further

increases to 22% on detecting large objects (APL) on the test-dev dataset. In its Medium ver-

sion, our YOGA-m achieves the same AP (45.2) as the best-performing model YOLOv5m

50

but with 23% fewer parameters and 29% fewer FLOPs. In its Large version, our YOGA-l

achieves the same AP (48.9) as the best-performing model YOLOv5-l but with 27.7% fewer

parameters and 34% fewer FLOPs.

We have also implemented and assessed YOGA on the lowest-end deep learning

device from NVIDIA, Jetson Nano 2GB, and the results affirmed that YOGA is suitable for

edge deployment in the wild. For instance, YOGA-n runs at 0.57 sec per 640x640 image,

which is close to real-time.

The main limitation of YOGA is that it could be prone to overfitting when training

extremely large models. Nonetheless, such extra-large models are rather unlikely to be

adopted in edge deployments. Future directions for improving YOGA or object detection

in general, include: (1) investigating different attention mechanisms such as incorporating

self-attention or transformer architectures; (2) exploring ways to further optimize the model

for specific hardware platforms such as mobile devices; (3) extending YOGA to handle

additional tasks or challenges such as semantic segmentation, instance segmentation, and

object tracking.

In summary, YOGA represents a new contribution to the field of object detection

by ushering in high run-time efficiency, low memory footprint, and superior accuracy

simultaneously. In addition, its flexible scalability makes it applicable to a wide range of

applications with different hardware constraints in IoT, edge and cloud computing.

51

REFERENCES

[1] Abu-Mostafa, Y.S., 1993. Hints and the vc dimension. Neural Computation 5, 278–
288.

[2] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S., 2020.
End-to-end object detection with transformers, in: European Conference on Computer
Vision, Springer. pp. 213–229.

[3] CodaLab, 2019. CodaLab COCO detection challenge (bounding box). https:
//competitions.codalab.org/competitions/20794.

[4] Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K., 2021. Attentional feature
fusion, in: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 3560–3569.

[5] Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q., 2019. Centernet: Key-
point triplets for object detection, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6569–6578.

[6] Fang, Y., Zhang, H., Yan, J., Jiang, W., Liu, Y., 2023. Udnet: Uncertainty-aware deep
network for salient object detection. Pattern Recognition 134, 109099.

[7] Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J., 2021. Yolox: Exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430 .

[8] Girshick, R., 2015. Fast R-CNN, in: Proceedings of the IEEE international conference
on computer vision, pp. 1440–1448.

[9] Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for
accurate object detection and semantic segmentation, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580–587.

[10] Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C., 2020. Ghostnet: More features
from cheap operations, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1580–1589.

[11] He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial pyramid pooling in deep convo-
lutional networks for visual recognition. IEEE transactions on pattern analysis and
machine intelligence 37, 1904–1916.

[12] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

[13] Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.

52

[14] Jocher, G., et al., 2021. https://github.com/ultralytics/yolov5. Released
version available at the time of evaluation: Feb 22, 2022.

[15] Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Feature
pyramid networks for object detection, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2117–2125.

[16] Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017b. Focal loss for dense object
detection, in: ICCV, pp. 2980–2988.

[17] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft coco: Common objects in context, in: European
conference on computer vision, Springer. pp. 740–755.

[18] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.,
2020. Deep learning for generic object detection: A survey. International Journal of
Computer Vision 128, 261–318.

[19] Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path aggregation network for instance
segmentation, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8759–8768.

[20] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016.
SSD: Single shot multibox detector, in: European conference on computer vision,
Springer. pp. 21–37.

[21] Long, X., et al., 2020. Pp-yolo: An effective and efficient implementation of object
detector. arXiv preprint arXiv:2007.12099 .

[22] Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 .

[23] Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS 28, 91–99.

[24] Samet, N., Hicsonmez, S., Akbas, E., 2020. Houghnet: Integrating near and long-
range evidence for bottom-up object detection, in: European Conference on Computer
Vision, Springer. pp. 406–423.

[25] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the
inception architecture for computer vision, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2818–2826.

[26] Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detec-
tion, in: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10781–10790.

[27] Tian, Z., Shen, C., Chen, H., He, T., 2019. Fcos: Fully convolutional one-stage object
detection, in: Proceedings of the IEEE/CVF international conference on computer
vision, pp. 9627–9636.

53

[28] Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M., 2021. Scaled-yolov4: Scaling cross stage
partial network, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13029–13038.

[29] Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M., 2022. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696 .

[30] Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H., 2020a.
Cspnet: A new backbone that can enhance learning capability of cnn, in: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition workshops,
pp. 390–391.

[31] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan,
M., Wang, X., et al., 2020b. Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence 43, 3349–
3364.

[32] Wang, K., Liu, M., 2022. Yolo-anti: Yolo-based counterattack model for unseen
congested object detection. Pattern Recognition , 108814.

[33] Wang, Q., Zhang, L., Li, Y., Kpalma, K., 2020c. Overview of deep-learning based
methods for salient object detection in videos. Pattern Recognition 104, 107340.

[34] Wang, S., Gong, Y., Xing, J., Huang, L., Huang, C., Hu, W., 2020d. Rdsnet: A
new deep architecture forreciprocal object detection and instance segmentation, in:
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12208–12215.

[35] Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S., 2019. Reppoints: Point set representation
for object detection, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9657–9666.

[36] Zhang, P., Dai, X., Yang, J., Xiao, B., Yuan, L., Zhang, L., Gao, J., 2021. Multi-scale
vision longformer: A new vision transformer for high-resolution image encoding,
in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2998–3008.

54

SECTION

2. SUMMARY AND FUTURE WORK

This thesis investigates the effectiveness of deep learning-based computer vision

models in challenging conditions, including small objects, low-resolution images, and edge

deployment. To address these challenges, two solutions are proposed: SPD-Conv, which

eliminates strided convolution and pooling layers to improve detection of small objects

and classifying low-resolution images through preserving fine-grained information; and

YOGA, a lightweight object detection model that achieves high accuracy on low-end edge

devices by using two-phase feature learning pipeline with attention-based multi-scale feature

fusion. The proposed solutions are evaluated on COCO-val and COCO-testdev datasets

and compared with state-of-the-art models, demonstrating their effectiveness in overcoming

these challenges.

this thesis emphasizes the importance of reproducibility by conducting experiments

using open-source tools and frameworks, and making code and models available to the

research community. Future directions for improving SPD-Conv include to see how it

performs when the stride is grearthan than two and reducing GPU memory consumptions

across the SPD-Conv block. and for YOGA include investigating different attention mecha-

nisms, optimizing the models for specific hardware platforms, and extending them to handle

additional tasks or challenges such as semantic segmentation, instance segmentation, and

object tracking. Overall, this thesis contributes to advancing the field of computer vision

and provides a foundation for future research in improving deep learning-based models in

challenging scenarios.

55

In addition to proposing solutions, this thesis emphasizes the importance of re-

producibility through the use of open-source tools and frameworks, and making code and

models available to the research community. To further improve the proposed models, fu-

ture directions for SPD-Conv include investigating its performance with strides greater than

two and reducing GPU memory consumption. For YOGA, future work includes exploring

different attention mechanisms, optimizing the models for specific hardware platforms, and

extending them to handle additional tasks such as semantic segmentation, instance seg-

mentation, and object tracking. Overall, this thesis contributes to advancing the field of

computer vision and provides a foundation for future research in improving deep learning-

based models in challenging scenarios.

56

VITA

Raja Sunkara is a skilled machine learning and deep learning researcher/engineer.

He obtained his Master of Science in Computer Science from Missouri University of Science

& Technology in May 2023, and his Bachelor’s degree in Aerospace Engineering with a

minor in Systems Engineering from the Indian Institute of Technology Madras in 2017.

Raja has a strong research background and has published several papers in machine

learning conferences. He has also worked as a research assistant at the Securing Artificial

Intelligence and IoT Lab and the Statistical Machine Learning Lab, both at Missouri S&T.

Additionally, Raja has industry experience as a research engineer (AI/CV) at Matdun Labs

and as a data scientist at Agrometrics. Moreover, he worked as an R&D Data Scientist Intern

at Alcon, where he developed an image registration algorithm using CNN architecture and

semi-supervised learning.

	Computer Vision in Adverse Conditions: Small Objects, Low-Resoltuion Images, and Edge Deployment
	Recommended Citation

	tmp.1706301926.pdf.5BO_C

