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ABSTRACT

Real-time road traffic information is crucial for intelligent transportation systems

(ITS) applications, like traffic navigation or emergency response management, but ac-

quiring such data is tremendously challenging in practice because of the high costs and

inefficient placement of sensors. Some modern ITS applications contribute to this problem

by equipping vehicles with multiple light detection and ranging (LiDAR) sensors, which

are expensive and gather data inefficiently; one solution that avoids vehicle-mounted Li-

DAR acquisition has been to install elevated LiDAR instruments along roadways, but this

approach remains unrefined. The eventual development of sixth-generation (6G) wireless

communication will enable new, creative solutions to solve these challenges. One new

solution is to deploy multiple multirotor unmanned aerial vehicles (UAVs) outfitted with

LiDAR sensors (ULiDs) to acquire data remotely. These ULiDs can capture accurate and

real-time road traffic information for ITS applications while maximizing the capabilities of

LiDAR sensors, which in turn reduces the number of sensors required. Accordingly, this

thesis aims to find the optimal 3D placement of multiple ULiDs to maximize road coverage

efficiency for ITS purposes. The formulated optimization problem is constrained by unique

ULiD specifications, including field-of-view (FoV), point cloud resolution, geographic

information system location, and road segment coverage priorities. A computational intel-

ligent algorithm based on particle swarm optimization is proposed to solve the designed

optimization problem. Furthermore, this thesis illustrates the benefits of using the proposed

algorithm over existing baselines.
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1. INTRODUCTION

Since the 1960s, the phenomenon known as urbanization, the process by which

populations migrate from rural to urban areas, has been accelerating around the globe [1].

The global population reached a remarkable milestone in 2007, as shown in Figure 1.1,

with more than half of all people worldwide residing in urban areas, and projections suggest

that 7 in 10 people will live in urban areas by the year 2050 [1, 2, 3]. This figure is

even higher in the United States, whose urban areas are predicted to sustain 75% of the

country’s populace by the same year, according to the Department of Transportation [4].

Unfortunately, crowded urban areas are typified by highly complicated road networks, high

pedestrian and vehicle densities, unpredictable behaviors, new constructions, and accidents,

all of which frequently result in the blockage of roads and disturb the normal flow of traffic.

It follows, then, that modern transportation infrastructures must drastically improve and

scale with the densification of urban areas.

1.1. TRAFFIC CONGESTION

Upgrades to transportation infrastructure—specifically capacity—are made urgently

necessary by the expansion of urban areas. This strain is particularly apparent in the United

States, whose transportation infrastructure is already reaching its limit; according to the

United States Census Bureau, 85% of its total workforce (totaling more than 130 million

people) drove to work in 2019 [5, 6]. As urbanization progresses, the number of cars in

urban areas grows, ultimately worsening the congestion due to traffic. A decades-long trend

of increasing commute times to and from work in the United States is evident in Figure 1.2a,

with the average one-way travel time for the 130 million drivers in 2019 approaching 28

minutes. Likewise, Figure 1.2b shows how travel times fewer than 10 minutes have decreased
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Figure 1.1. Time series of the numbers of people living in urban and rural areas world-
wide [2].

while travel times exceeding 60 minutes have risen, contributing to the overall increase in

the average travel time. These data clearly reflect how urbanization can increase the average

commute time, increasing the demand for infrastructure improvements.

1.2. PUBLIC SAFETY

Such improvements and the provision of timely navigation data are similarly nec-

essary for public safety. In addition to causing more drivers to be on the road for longer

periods, an increased population density swells the demand for (and thus the congestion due

to) freight, which plays a crucial role in the economy; specifically, United States’ “freight

system moves approximately 63 tons of goods per American each year,” and this volume

is expected to increase more than 40% by 2045 [4]. Moreover, rises in demand cause

freight to become increasingly concentrated in large, expanding urban areas. Together with

the increased average travel time, due to the rise in the number of urban commuters, and

the heightened stress on the freight system, due to the increase in demand, two prominent

effects on public safety emerged: vehicle accidents and environmental pollution.
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(a) Average travel time. (b) Traveling fewer than 10 minutes
or greater than/equal to 60 minutes.

Figure 1.2. Travel times to work in the United States from 2006 to 2019 [7]

1.2.1. Vehicular Accidents. Although design advances and technological break-

throughs have improved vehicle safety over the years, vehicle accident-related deaths have

not diminished. The number of people killed each year on roadways reached approximately

1.35 million in 2018, and in the United States, vehicle accidents are the leading cause

of death for people aged 1–54 years old [8]. From 2020 to 2021, the number of vehicle

accident-attributable deaths increased by 10.5%, totaling almost 43,000 deaths; this num-

ber represents the highest traffic fatality rate in the United States since 2005. Furthermore,

vehicle crash deaths increased 18% between 2019 and 2021, the most significant two-year

increase since 1946 [9]. While these additional fatalities cannot be attributed solely to

urbanization, more vehicles on urban roads nevertheless complicate existing congestion

and make vehicle crash fatalities more likely to occur.

1.2.2. Environmental Pollution. The increase in the number of vehicles on urban

streets also contributes to a rise in environmental pollution. Pollution has become a

predominant global concern, particularly the rampant emission of greenhouse gases, which

have been identified as the cause of anomalous warming trends worldwide [10, 11, 12].

These amplified temperatures have had profound impacts on the global population as a result

of increased flooding, rising sea levels, stronger hurricanes, hazards to animal and plant
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life, and more [11]. Although a variety of greenhouse gases (including methane, nitrous

oxide, and fluorinated gases) play a role in these warming temperatures, the abovementioned

detrimental effects are attributed primarily to carbon dioxide (CO2), an alarming amount

of which (75% of all greenhouse gas emissions worldwide) is emitted into the atmosphere,

with transportation being the principal source in countries around the globe, including the

United States [10, 13]. Unfortunately, studies have already shown that commute times rise

as urbanization expands, as demonstrated in Figure 1.2, and longer periods of driving cause

proportionally greater amounts of CO2 to be ejected into the atmosphere. Figure 1.3a shows

different projections of global carbon emissions for the 21st century based on projections

from the Intergovernmental Panel on Climate Change (IPCC) given certain representative

concentration pathways (RCP) scenarios, and Figure 1.3b displays the projected global

temperature increases under the same RCP conditions. According to these predictions, even

under a relatively low-emission scenario (i.e., without immediate and drastic reductions

in carbon emissions), the global temperature will rise a minimum of 4◦F by the end

of the century. These data clarify the situation markedly: the sooner carbon emissions

are reduced, the better the world will be. In the context of this research, improving

transportation infrastructure with timely navigation data can help reduce the largest source

of CO2 emissions—transportation—by reducing driving times.

1.2.3. Issues with Emergency Response Management. Urbanization corresponds

to an increased population density in urban areas, requiring first responders such as ambu-

lances, firefighters, and police officers to service larger populations in smaller geographical

areas. Furthermore, without improvements to the existing transportation infrastructure, ris-

ing populations in urban areas lead to anomalously long travel times and a high occurrence

frequency of vehicle accidents. The consequence of this worsening traffic situation is more

accidents to which emergency services must respond under increasingly oppressive condi-

tions [14, 15, 16]. One journal article [14] looked at emergencies attributable to California

wildfires over a 7-year period and examined the correlation between traffic and emergency
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(a) Hypothetical RCP scenarios of carbon emissions in gigatonnes of carbon (GtC) based
on global climate model predictions given different socioeconomic and emission inputs.

(b) Projected temperature increases relative to the 1901–1960 average based on different
RCP scenarios.

Figure 1.3. Projected global carbon emissions and temperatures based on IPCC model
predictions [12].
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response times. The authors concluded that traffic was directly correlated to delays in the

response times of fire trucks and medical personnel; the cascading effects of these delays

further impacted other emergency endeavors. These findings are consistent with data pub-

lished in 2022 [16] indicating that the response times for emergency and non-emergency

calls in New Orleans doubled and tripled, respectively, between 2019 and 2022 and that,

while other factors appeared to contribute to the rise in response times, traffic congestion

was the leading cause. As such, providing timely traffic navigation data is crucial for traffic

management, public safety, and emergency response [4, 14].

Emergency response services can also refer to the management of evacuation routes.

In particular, it is critical to evacuate people to safety during both natural (e.g., wildfires

and floods) and human-made (e.g., terrorist attacks) disasters, the frequencies and severities

of which are increasing in the wake of climate change [17]. The United States Census

Bureau estimated that 3.4 million adults, or 1.4% of the adult population, were evacuated

from their homes in 2022 [18], although the trend of this statistic, which the Census Bureau

first recorded in 2020 to monitor the increase in evacuations over the last decade, is not

yet known [19]. Deploying a safe and effective evacuation system will remain essential

as urbanization continues and evacuation routes become increasingly complex. Therefore,

real-time services such as route navigation, accident avoidance, and accurate traffic network

monitoring can reduce traffic congestion and enhance network flow.

1.3. TRANSPORTATION INFRASTRUCTURE SOLUTIONS

The demand for improved transportation infrastructure is not new; both local, state,

and federal governmental entities and private companies have been working for decades

to improve transportation infrastructure. Nevertheless, this demand is accelerating due to

urbanization and population growth. Physical road improvements, such as adding lanes,

paving new roads, and improving intersections, represent a traditional approach to meet

this demand. However, physically altering road networks in urban areas is not always
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Figure 1.4. Global intelligent transportation system market, 2020-2024 [27].

possible due to spatial limitations. More recently, the rise of digital technology in the

1970s and 1980s has yielded a new approach to implement such improvements: intelligent

transportation systems (ITS) [20, 21, 22, 23]. ITS, which aims to improve safety and

minimize congestion by assisting with traffic and mobility management [24, 25], combines

information and communication technologies “to increase information to users of roadways

and transit systems and make managing the assets and infrastructure more efficient and

effective” [26]. As shown in Figure 1.4, the ITS industry is currently estimated to have a

compound annual growth rate (CAGR) of almost 10%, with the largest growth projected in

North America.

While ITS has become commonplace in modern society, the industry has taken

decades to evolve. Early ITS technology was integrated into urban areas first by the public

sector, i.e., by local governments and by state-run departments of transportation (DOTs)

that build and operate urban roadways. One example of an early ITS technology is the traffic

light, which emerged in the 1970s with the use of in-ground sensors to detect traffic [20, 28].

Dynamic message signs (DMSs) are another early application of ITS [20]; at present,

DMSs are commonly placed alongside roadways to display various warnings, for instance,

informing road users of traffic congestion, accidents, work zones, or changing speed limits.

Over the years, new technologies such as cameras and radars were incorporated into ITS to
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acquire data over larger tracts of space [22]. Among the most crucial implements of ITS,

however, are traffic management centers (TMCs), which have been deployed throughout the

public sector [20]. These TMCs were created as information hubs to collect and process

data (e.g., weather, traffic speeds, and accidents) relevant to a road system. The decision

to collect numerous types of data and then to process the data at a centralized location has

been necessary for the continued success and progress of ITS [24]. Among these types

of ITS data, timely spatial data about the transportation infrastructure are among the most

impactful, as real-time geospatial data can inform TMCs about current road conditions

(such as traffic conditions and accidents) and allow the system to make better-informed

decisions.

Geographic information systems (GIS) was among the early technologies applied

for ITS. In the United States, GIS functionality pivots around the Global Positioning System

(GPS), and was first developed in the 1970s (and remains operated) by the military. Since

the 1980s, however, GPS has been broadly utilized for vehicle navigation [29, 30]. Private

companies utilized GPS to create digital maps for vehicles before the technology evolved

into onboard GPS devices by the late 1990s. However, in those days, GPS functionality was

limited and unreliable because the United States military distorted the GPS signals [30, 31].

The technology was also very costly for the general public, with a GPS navigation system

costing hundreds of dollars to own; nevertheless, GPS has advanced by leaps and bounds

since its conception. The military removed its restriction on GPS in the early 2000s,

allowing the technology to yield more precise locations, and the cost of GPS has drastically

diminished over time. With the help of modern technological advancements, GPS has

become an integral part of everyday life for transportation needs in both the public and

the private sectors. However, the private sector has undoubtedly benefited more from the

technology, with many private applications (colloquially referred to as “apps”) utilizing

GPS services built into most smartphones.
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Today, millions of drivers in the United States utilize ITS via GPS navigation. Some

studies estimate that more than 164 million people, or 68% of drivers, used apps on their

smartphones to help them navigate in 2022, although some estimates reach as high as 93%

of drivers [32, 33]. The most popular navigation app among drivers is Google Maps, which

was downloaded more than 24 million times in 2022 and is favored by 67% of app users; the

other 33% of app users appear to be evenly split between Apple Maps and Waze [34, 35].

These kinds of apps utilize GPS to help users reach their destination by providing possible

routes and an estimated time of arrival (ETA) for each potential route. Most apps allow

routes to be selected based on the shortest distance, shortest time, or fewest number of turns

and can give users directions based on a manually selected mode of transportation, such as

personal vehicle, train, bicycle, or bus.

1.4. ARTIFICIAL INTELLIGENCE APPLICATIONS IN ITS

The route-planning performance of navigation apps has recently been improved

using new data sources and computer algorithms. In particular, technological advances

have enabled a variety of tools to be used in conjunction with GPS to assist ITS. The

most prominent example is artificial intelligence (AI), which enables computers to find

patterns and learn from large data sets to improve their output; computers can typically

learn these patterns far better and faster than humans with the help of AI. As a result, all

of the leading apps (including the abovementioned Google Maps, Apple Maps, and Waze)

use AI to improve their navigation and route-planning accuracy [35]. In the context of

navigation, these AI algorithms are fed many types of data, such as GPS data, business

hours, past traffic conditions, satellite images, weather conditions, and user-reported events

or locations. Nevertheless, although these apps are continuously improving, and while these

algorithms are capable of achieving more efficient route navigation with more accurate

ETAs [36, 37], there remain many drawbacks to the app solution.
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Artificial Intelligence � Machines imitating intelligent behaviors, namely, the abilities to 

sense, reason, act independently, and adapt.

Computation Intelligence � Bio-inspired 

algorithms using functional approximation.

Fuzzy 

Systems

Neural 

Networks

Evolutionary 

Computation

Machine Learning � Machines 
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Figure 1.5. Schematic depicting AI and the relationships among its sub-fields.

The use of the term “AI” originated in 1955, when it was first coined by Stan-

ford professor John McCarthy [38, 39, 40]. Since then, references to AI, defined as “the

science and engineering of making intelligent machines, especially intelligent computer pro-

grams” [38], have become prevalent in today’s society, with terms such as machine learning

(ML), computational intelligence (CI), deep learning (DL), and reinforcement learning (RL)

becoming commonplace. However, these terms are sometimes used interchangeably, which

is incorrect; rather, although some of these sub-fields may overlap, each one exhibits its

own distinct attributes. In fact, AI encompasses all of these sub-fields, as visualized by

the interrelationship among AI, ML, CI, DL, and RL in Figure 1.5; consequently, “AI” has

become an umbrella term. Nevertheless, AI is composed of two major sub-fields: ML and

CI. ML focuses on using statistical methods to improve the behavior of a machine (e.g.,

a computer). An ML algorithm always requires a training phase in which the machine

“learns” the data before it can output the desired results. RL and DL are sub-fields of ML

and refer to specific algorithm training methods.
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CI, sometimes called “soft computing”, is the other major sub-field of AI and

constitutes the focus of this thesis. CI is defined as “the theory, design, application, and

development of biologically and linguistically motivated computational paradigms” [41, 42].

This definition essentially means that biological organisms inspire CI algorithms, and when

such techniques are successfully designed and deployed, they allow computers to learn a

specific task using data and/or experimental observations. These algorithms started to gain

traction within the AI community in the 1980s [42]. Unlike ML methods, CI algorithms

do not always need to be trained, so they can typically be deployed more easily than can

ML approaches. CI comprises three main sub-fields that, while all being capable of being

applied within the ML domain, are not necessarily ML techniques: neural networks, fuzzy

systems, and evolutionary computation. This thesis utilizes the lattermost of the three CI

sub-fields. Evolutionary computation is the idea that individuals in a population become

“fitter” over time through biological processes, such as adaptation, natural selection, and

selective breeding. A popular example of an evolutionary computation algorithm that

adopts these concepts (specifically, the behaviors of populations searching for food and

reproducing over generations) is particle swarm optimization (PSO).

PSO is a population-based, bio-inspired stochastic optimization algorithm that was

created in 1995 by Kennedy and Eberhart, who hypothesized that groups of animals traveling

as a collective entity (e.g., schools of fish or flocks of birds) maximize their rewards

when the experiences gained by its individual members are shared amongst the group;

moreover, shared experiences by the group can increase positive outcomes and minimize

unfavorable results [43]. The application of PSO has increased dramatically over the last

decade [44]; in fact, numerous previous studies [45, 46, 47, 48] have utilized PSO in similar

ways to solve non-convex optimization problems. Particularly challenging (e.g,. high-

dimensional) problems can be computationally expensive in terms of both the time and the

computing resources necessary to perform an exhaustive global search for the solution. In

this context, PSO algorithms can be quite useful: they typically demand fewer resources
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and can yield near-optimal solutions at computational speeds exponentially greater than

those of deterministic models. Furthermore, the optimization problem designed for this

thesis contains discrete functions, so the problem is not differentiable; however, PSO

does not require the problem to be differentiable, making it suitable for solving nonlinear

problems [49].

Centralized processing, such as that performed within TMCs, is what enables ITS to

thrive; however, each privately operated navigation app can access only the data it collects.

In other words, public ITS applications do not have access to private companies’ data

and vice versa. This disconnect between systems means that the AI algorithms used in

navigation apps are trained on incomplete urban data sets. Figure 1.6 provides one example

of an AI-trained navigation app that is optimized to minimize travel times but is unaware of

the entire scope of the urban area. The scenario in this figure is described as follows [50]:

Figure 1.6. An example of routing inadequacy by smartphone navigation apps [50].

A sporting event at a nearby stadium [A] causes a traffic backup on the highway

that bypasses the center of this imaginary urban area. That’s a problem for our

hypothetical driver trying to get home from work, so she turns to a navigation

app for help. The shortest—and, according to the app, the fastest—alternate

route [blue line] winds through a residential neighborhood with blind turns,
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a steep hill [B], and a drawbridge [C], which can create unexpected delays

for those unfamiliar with its scheduled openings. The red route cuts through

the city center [D] and in front of an elementary school [E]; the app doesn’t

know school just let out for the day. Fortunately, our driver knows the area,

so she selects the purple route, even though the app indicates that it isn’t the

fastest option. Drivers unfamiliar with the area and looking for a shortcut to

the stadium could find themselves in chaotic—even hazardous—situations.

The above example aptly demonstrates how these apps ignorantly and ineffectively

route their users. Such apps can utilize the vast wealth of private data, such as individuals’

travel routes, speeds, and travel times, to improve their navigation guidance; however, the

data provided by individual app users limit the apps’ realm of knowledge by precluding a

full understanding of the urban environment. Furthermore, forfeiting these data poses a

risk to the user: such apps can track an individual on the road, and since these apps are tied

to the individual’s smartphone, these data can be wielded maliciously to the detriment of

the user, thereby constituting an enormous security risk [51, 52]. On the other hand, public

ITS applications in urban areas act within their own realm of incomplete information,

including access to general information collected about the urban environment through

public surveillance technologies such as radar, video cameras, and other sensors [22];

however, these systems lack the capability to gather or utilize real-time GPS data about

individual drivers. Hence, ITS technologies are deficient in real-time spatial knowledge

about the urban environment that, if collected, would greatly improve these systems’ ability

to more efficiently and effectively manage assets and infrastructure.
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1.5. RELATED ITS RESEARCH

The ITS industry is growing and fueling the need for solutions to improve the system.

Thus, the ability to capture greater amounts of real-time spatial data is an intense research

focus. Light detection and ranging (LiDAR) sensors (colloquially termed ’LiDARs’) are

capable of providing such data to ITS and have been replacing the normal video camera.

LiDARs project a multitude of laser beams across their field of view (FoV) and measure the

time it takes for the beam to return, allowing the distance between the sensor aperture and

the object(s) from which the laser beam has reflected to be calculated [53]. This process is

repeated hundreds of thousands (sometimes millions) of times per second, and the resulting

data is called a point cloud. Point cloud data consist of attributes such as 3D coordinates,

time, and the intensity of the returned signal [54]. Current state-of-the-art LiDARs have

an accuracy typically within a couple of centimeters [55, 56, 57]. Since these sensor

measurements represent distances, the 3D point cloud data generated do not contain normal

RGB values that video cameras provide, thus preserving personal identifiable information

(PII); a comparison between the notable aspects of LiDARs and video cameras is shown in

Table 1.1. Hence, highly accurate, privacy-conserving 3D data maps can be generated for

an urban environment in real time when LiDAR data is coupled with a GPS. This is why

LiDAR sensors are among the most critical for ITS applications [58, 59].

Table 1.1. LiDAR versus video camera characteristics.

LiDAR Sensor Video Camera
Data Output 3D point cloud RGB data

3D Information Provided Not provided
Privacy Does not reveal PII Reveals PII
External

Illumination Not required Required except for ther-
mal cameras

Optical Illusions Negligible Subject to
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Many authors who conduct ITS research have exploited the benefits of LiDAR to

improve the quality of their work [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72].

Numerous scholars have focused on the ability of LiDAR to aid autonomous vehicles

(AVs), which can subsequently provide ITS data. One review [60] covers the many uses

and benefits of LiDAR in AVs, such as its powerful potential to perform object detection

and tracking, which are capabilities necessary for numerous ITS applications (e.g., AV

navigation). Likewise, some researchers [61] built upon the use of LiDAR for object

tracking to propose a method that automatically annotates the lane markings on roadways

to assist AV driving. The detection of objects assists in AV navigation, but when LiDAR is

paired with GPS, it can also aid in vehicle localization [62, 63, 64].

However, equipping every AV with LiDAR imposes high computational and finan-

cial costs. For instance, to ensure their safety and reliability, AVs require multiple high-end

LiDAR sensors to sense their surroundings at all angles and perspectives, with each LiDAR

sensor costing tens of thousands of dollars; furthermore, these AVs then require a powerful

graphics processing unit (GPU) to process the data efficiently in real time, and a GPU

capable of processing LiDAR data costs thousands of dollars; finally, processing all the data

required for autonomous driving consumes thousands of watts [65]. These effects dramat-

ically raise the cost of AVs while reducing fuel efficiency by up to 10% [73]. In addition,

although reducing the operational costs of LiDARs is crucial to their widespread use in

ITS applications, LiDARs are limited by another consideration: they produce tremendous

amounts of data. Capturing the millions of data points per second needed to construct ac-

curate 3D maps results in the acquisition of several gigabytes per second [74]. As a result,

many works have aimed to reduce the processing cost of LiDAR data [66, 67, 68], and

their findings will be crucial in advancing the use of LiDAR in ITS applications; however,

installing multiple LiDAR sensors on every AV still yields enormous amounts of data and

comes at a steep financial cost.
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An alternative to mounting multiple LiDAR sensors on every AV is to mount them

along roadways [59, 69, 70, 71, 72]. Unlike sensors installed around the body of an

AV, elevated LiDAR sensors (ELiDs) deployed at elevated positions along a roadway can

perceive more of the surrounding urban environment and enjoy an unobstructed FoV. In

addition, this approach would require far fewer LiDAR arrays for ITS applications, such

as navigation and traffic management. Lucic et al. [69] were the first to investigate the

optimal placement of ELiDs along a roadway while considering the energy and throughput

constraints required to efficiently process the data in a backhaul network in real-time; they

then expanded upon their research by optimizing the connected backhaul network that the

ELiDs use to communicate data [70]. Other scholars [71] focused on the fifth-generation

(5G) wireless communication between the backhaul infrastructure operating with ELiDs

and the AVs on the road. [59] considered the real-time communication between a cloud-

based server and an ELiD and between the ELiD and AVs. Even though ELiDs are not

mounted on AVs, the sensors can still help with driving decisions, as shown by Ali et

al. [72]. However, the ELiDs proposed in the stated works are placed only meters above

the ground, for instance, on lampposts or streetlights. Consequently, this strategy would

still necessitate hundreds of LiDAR sensors to cover an urban environment, and while the

final number of ELiDs may be less than the number of AV-mounted LiDARs, ELiDs do not

maximize the potential of LiDAR sensors insomuch that state-of-the-art LiDAR sensors can

provide highly detailed and accurate maps at distances exceeding 100 meters [55, 56, 57].

Thus, it would be greatly valuable to utilize even fewer LiDAR sensors while still capturing

relevant, highly precise data for ITS applications, thereby reducing costs and the overall

volume of data.

Multirotor unmanned aerial vehicles (UAVs) have been around since the early 20th

century, but only in the last two decades have the technology and price improved to the

point where they can be routinely deployed for commercial and consumer use [75, 76, 77].

Many recent works have focused on the potential wireless communication capabilities that
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UAVs can provide for ITS purposes. [78] proposed a UAV-direct protocol to assist with

mobile device-to-device communication. Alsharoa et al. [79] similarly studied UAVs as

relays for wireless communication with the aim of optimizing the placement of relay UAVs.

[80] proposed a vehicular ad hoc network in which UAVs communicate with vehicles and

other UAVs. Assi et al. [81] and Alsharoa et al. [82] proposed UAV path planning solutions

in a dynamic environment to serve AVs and mobile communication needs, respectively.

Unfortunately, the current capabilities of 5G wireless communication do not allow UAVs

to provide the necessary information (e.g., LiDAR data) in real time. It is because of this

limitation that UAVs in ITS are utilized mainly for communication needs instead of being

deployed to gather information.

Nevertheless, communication technology continues to undergo dramatic develop-

ments, and UAVs are continually benefiting from this evolution. As a result, UAVs have

recently been deployed for emerging communication technologies, such as intelligent reflect-

ing surfaces (IRS) and the sixth generation of wireless communication (6G) [83, 84, 85, 86].

In cooperation with technologies such as IRS, 6G is projected to enable peak wireless trans-

fer speeds of one terabyte per second [87], which is two orders of magnitude greater than

the theoretical speed of 5G (only 10 gigabytes/second) [88, 89]. Accordingly, UAVs armed

with 6G capabilities will transcend their current design objective as communication devices

for ITS applications and achieve the ability to perform both information and communica-

tion applications. One future UAV application of interest is attaching LiDARs to UAVs for

real-time ITS purposes.

For more than four decades, numerous industries have deployed UAVs equipped with

LiDARs (ULiDs) for mapping purposes [90], although none were real-time applications.

For example, Lucieer et al. [91] developed a ULiD for forest inventory applications, while

Fowler et al. [92] and Wei and Jian [93] used ULiDs for topographic scanning and analyzing

data, respectively, and Salvaggio and Sun in [94] detected and modeled buildings using data

collected by ULiDs. As ITS has become increasingly relevant due to urbanization, research
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has focused more on the benefits of utilizing LiDAR technology, but the unwieldy amounts

of data produced by LiDARs have forced previous ITS studies to connect LiDARs directly

to a backhaul network or to a GPU (in the case of AV-mounted LiDARs).

Nevertheless, while 5G cannot currently support the wireless real-time transfer needs

of LiDAR applications, the emerging 6G technology will be more than capable, and thus,

the real-time utilization of ULiDs is an emerging field of research. One previously discussed

study [81] on the use of UAVs for communication in ITS focused on the communication

between AVs and UAVs, and the authors suggested that LiDAR as a potential data source

could be valuable in real-time ITS applications. Anand et al. [95] streamed LiDAR data in

real-time with low latency over the internet; it should be noted, however, that their model

considered only one LiDAR, and that sensor did not transmit from a UAV. Unfortunately,

relatively few other works have focused on potential real-time ULiD applications that could

be realized given the inevitable evolution of communication technology capable of providing

the necessary transfer speeds. One such study [96] investigated a vehicle identification

method and a vehicle speed measurement method based on ULiD data. Similarly, Chen et

al.[97] proposed a real-time ULiD approach for the detection of power transmission lines.

In this context, this thesis investigates a potential application of ULiDs in ITS, namely,

the acquisition of real-time traffic navigation data by multiple ULiDs, and aims to find the

optimal placement of those ULiDs within an urban environment.

1.6. THESIS SCOPE AND CONTRIBUTIONS

As evidenced above, LiDARs and the precise 3D maps they can produce in real-

time are indispensable for ITS applications. LiDARs are currently the dominant type of

sensor mounted onto AVs to collect data on driving in urban environments, and many

researchers are studying how to exploit LiDAR technology to provide accurate ITS data

about urban environments. However, because LiDARs are relatively expensive and generate

large amounts of data, finding a way to utilize fewer sensors while still providing the same
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or improved data quality is of considerable interest. As an alternative to outfitting AVs with

numerous LiDAR sensors for the sake of collecting ITS data, LiDARs have been mounted at

elevated positions (i.e., ELiDs) along urban roadways. This method utilizes fewer sensors,

which in turn reduces their financial burden and diminishes the amount of ITS data that

must be processed. However, ELiDs do not maximize the FoV potential of LiDAR sensors,

and thus, many sensors are still needed to provide adequate coverage of urban roadways.

Of course, some roadways may not always require coverage (e.g., during non-peak travel

times), but because ELiDs are fixed, they cannot adapt to temporal variations in traffic.

One alternative is to deploy ULiDs. Attaching LiDAR sensors to UAVs provides the sensor

with an aerial view of the environment and thus maximizes their FoV potential. Moreover,

ULiDs require fewer LiDAR sensors than do ELiDs to cover the same area, and since ULiDs

are maneuverable, they have the ability to cover (or not cover) roadways as demanded by

the ITS need for data.

In consideration of the above, this thesis considers multiple ULiDs that are being

operated in an urban environment to capture LiDAR data from roadways of interest to assist

in traffic navigation. Specifically, this thesis is concerned with finding the optimal placement

of multiple ULiDs while adhering to roadway priority and LiDAR characteristic constraints.

Some works have considered LiDAR placement under constraints; for instance, Lucic et

al. [69] investigated the placement of ELiDs while adhering to the data requirements of

the backhaul network. The optimized placement determined by Diels et al. [98] took into

account the placement and mounting angles of LiDAR sensors on a UAV to maximize

scanning and minimize vibrations, but the authors did not consider the placement of the

UAV. Many other works have considered the placement of UAVs, though. For example, [79]

and [82] optimized the placement of UAVs based on the communication needs of device

users while considering transmission power constraints. Assi et al. [81] considered the

optimal UAV placement to serve AV communication needs based on the age of information

constraint. Ghazzai et al. [48] accounted for the joint placement of UAVs and their base
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stations under multiple constraints (power, time of flight, and priority events). [99] discussed

a similar UAV placement problem with similar constraints but formulated the problem with

respect to roadside units and solar panels. [100] attempted to achieve optimal placement

considering road priorities, but because their model utilized a camera instead of LiDAR,

they could not consider LiDAR constraints. Ultimately, however, the author of this thesis

is unaware of any studies that have attempted to optimally place multiple UAVs equipped

with LiDAR sensors under road priority and LiDAR-specific constraints.

In this thesis, a novel ULiD placement framework under road priority and resolution

requirements is proposed. The contributions of this thesis are summarized as follows:

• A placement optimization problem involving multiple ULiDs is formulated that maxi-

mizes the road coverage efficiency and considers the road priorities, LiDAR resolution

quality, available number of ULiDs, and trajectory boundaries.

• Due to the non-convexity of the formulated problem, a PSO-based CI algorithm is

proposed to solve the optimization problem.

• The proposed solution is investigated in environments with different road character-

istics.

• Finally, the proposed solution is compared with other baselines to emphasize the

advantages of the solution.
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2. URBAN ROADWAY AND ULID SYSTEM MODEL

This section will describe the model of the designed system. Section 2.1 will

outline the urban environment within which the ULiDs must operate. After the urban

area is considered, the physical characteristics and limitations of the ULiD units will be

explained in Section 2.2. Lastly, how the ULiDs interact with and observe the modeled urban

environment will be examined in Section 2.3 in consideration of the ULiD characteristics.

2.1. ROADWAY CHARACTERISTICS

The urban environment has unique characteristics that must be considered when

modeling this problem. Most importantly, for this problem, the road network is modeled

as a traditional roadway grid in a dense, urban area with only straightaways, as shown

in Figure 2.1. Modeling the network with only straight roads simplifies the process of

modeling the ULiD coverage discussed later in this section. Since the roadways are straight

and intersect only at 90◦ angles, the roadway can be broken up into smaller segments,

𝑔 ∈ G, and then modeled as squares. The center coordinates of each segment 𝑔 are defined

by (𝑥𝑔, 𝑦𝑔, 0) ∈ R3, where the vertical coordinate 𝑧𝑔 of each segment 𝑔 is always zero

because the ground is modeled as a flat plane. Each segment has identical side lengths of

𝑎; therefore, the area of each road segment equals 𝑎2 = 𝐴𝑔.

Each roadway segment 𝑔 may have concentrated areas of activity, e.g., intersections,

busier roads, or areas occupied by traffic or accidents. Because these active segments

represent more consequential data and thus are particularly relevant to the ULiD coverage

area, an importance metric is introduced to represent segment activity: a continuous and

normalized utility function, 𝐼𝑔 ∈ [0, 1]. Values closer to 1 represent critical, busy, or risky

segments, whereas values closer to 0 signify segments that are not as important. Each

area 𝐴𝑔 has an associated importance value 𝐼𝑔. Figure 2.2 shows one road layout used in

the simulation, named Layout 1. Figure 2.2a shows a traditional view of Layout 1, while
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Figure 2.1. Traditional street grid.

Figure 2.2b shows the segmented representation and the color scale for the importance

metric, 𝐼𝑔, for Layout 1. Each square box represents a segment. The colors are consistent

with how 𝐼𝑔 will be displayed throughout this thesis: darker colors signify relatively

unimportant segments (with an importance value closer to 0), and lighter colors are more

relevant segments with values closer to 1.

2.2. ULID CHARACTERISTICS

It is considered that a set of ULiDs 𝜆 ∈ Λ operates above the roadways, and

the maximum number of ULiDs that can be deployed may be based on either financial

(budgetary) restrictions or available resource restrictions. The 3D coordinates associated

with the location of a given ULiD are denoted (𝑥𝜆, 𝑦𝜆, 𝑧𝜆) ∈ R3, where 𝑥𝜆 and 𝑦𝜆 signify the

locations of the ULiD parallel to the two orthogonal axes composing the flat ground plane

and 𝑧𝜆 represents the ULiD’s height above the ground (positive upward). It is assumed that

all ULiDs have their LiDAR mounted on the underside of the UAV with their apertures

always fixed parallel to the 𝑧 axis and pointed in the negative 𝑧 direction with an unobstructed
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(a) Layout 1. (b) Layout 1 heat map.

Figure 2.2. Layout 1 as a grid and as a heat map.

view of the roadway. Therefore, there is no rotation of the ULiD about the 𝑥 or 𝑦 axes.

However, a new variable, 𝜇𝜆, is introduced to represent the rotation of the ULiD about the 𝑧

axis. Since the roadway is modeled as a grid with straight roads, the ULiD orientation about

the 𝑧 axis that maximizes coverage can be either 0◦ or 90◦, which correspond to values of

0 or 1, respectively. Finally, the scan rate of a ULiD is denoted 𝑛𝜆𝑠𝑐𝑎𝑛, which represents the

number of data points per second collected by the ULiD. It is common for LiDARs to be

capable of capturing a variable number of data points without requiring them to alter their

hardware [55, 56, 57]. Each ULiD can have a different 𝑛𝜆𝑠𝑐𝑎𝑛, but this value is set at the

beginning of a flight and cannot be changed while the ULiD is in flight.

2.3. MODELING ULID COVERAGE

After accounting for the characteristics of the roadways and ULiDs, the FoV of the

ULiD can be modeled. To align with current state-of-the-art LiDAR scanning patterns [55,

56, 57], the ULiDs are considered to adopt a horizontal scanning pattern, namely, a pattern

comprising scans parallel to the 𝑥 plane that move downward along the negative 𝑦 axis. An
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Figure 2.3. ULiD scan pattern [55].

example of the ULiD scan pattern is illustrated in Figure 2.3. All ULiDs have the same

two FoV angles, 𝜃 and 𝜙: 𝜃 is the maximum arc that the LiDAR can scan in the direction

of flight (parallel to the roadway), and 𝜙 is similarly the maximum arc the LiDAR can scan

from side to side (orthogonal to the direction of flight). The FoV angles are restricted by

hardware limitations and cannot be altered during flight.

To simplify the system model, the area of a road segment scanned by a ULiD, 𝐴𝜆
𝑐𝑜𝑣

(hereafter referred to as the coverage area), is approximated as a rectangle (black rectangle

in Figure 2.3). Figure 2.4 shows the same conceptual coverage area outlined in red and the

area of a road segment outlined in blue. In this figure, 𝐻𝜆 represents the ground distance

from the horizontal edge of the ULiD’s FoV to the point on the road directly below the

ULiD, and 𝑉𝜆 is the ground distance from the vertical edge of the ULiD’s FoV to the point

on the road directly below the ULiD. If the ULiD unit is rotated about the 𝑧 axis by 90◦,

then 𝜇𝜆 is equal to 1, and the ULiD coverage area is calculated as follows by swapping the

values of 𝜃 and 𝜙 to account for the rotation:
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𝐴𝜆
𝑐𝑜𝑣 = 2(𝐻𝜆) ∗ 2(𝑉𝜆), (2.1a)

where

𝐻𝜆 = 𝑧𝜆 tan( 𝜃
2
), (2.1b)

𝑉𝜆 = 𝑧𝜆 tan( 𝜙
2
). (2.1c)
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Figure 2.4. ULiD coverage of a road segment.

An important aspect of modeling the ULiD coverage area is the scan resolution,

denoted 𝑅𝜆, which is defined as the number of data points collected per second, 𝑛𝜆𝑠𝑐𝑎𝑛, per

square meter. Defining this metric is crucial because an ITS application requires a certain

standard within the data to detect and track objects [101]. In the described model, as the

height of the ULiD increases, the coverage area increases, but 𝑛𝜆𝑠𝑐𝑎𝑛 is fixed before the

ULiD takes flight. Therefore, the resolution is inversely proportional to the covered area as

follows:

𝑅𝜆 =
𝑛𝜆𝑠𝑐𝑎𝑛

𝐴𝜆
𝑐𝑜𝑣

. (2.2)



26

3. ULID PLACEMENT PROBLEM FORMULATION

This section will formulate the placement optimization problem of multiple ULiDs

with the goal of maximizing road coverage efficiency. Specifically, the problem seeks to

maximize the weighted coverage area of a given road grid while minimizing the number of

utilized ULiDs. Because this problem involves binary variables, it is non-convex and thus

will be considered a mixed-integer nonlinear programming (MINLP) problem.

3.1. CONSTRAINTS

The system contains limitations that must be codified as constraints. These con-

straints are based on the physical characteristics of the system as well as the ITS data

requirements.

3.1.1. Scannable Segment Constraint. In Section 2, a ULiD 𝜆 was defined to have

a coverage area in the shape of a rectangle, and the roadways were broken up into square

segments 𝑔, each having area 𝐴𝑔. A new variable, 𝜂𝜆𝑔, is introduced here to represent when

an ULiD covers a road segment. 𝜂𝜆𝑔 is a binary variable: its value is 1 when the entire area

of a segment is contained within the ULiD coverage area 𝐴𝜆
𝑐𝑜𝑣 and 0 if any of the segment’s

area lies outside of the coverage area. Therefore, 𝜂𝜆𝑔 can be expressed as:

𝜂𝜆𝑔 =


1, if 𝑎

2 + 𝛿
𝑔
𝑥 < 𝐻𝜆 and 𝑎

2 + 𝛿
𝑔
𝑦 < 𝑉𝜆

0, otherwise
, (3.1a)

where

𝛿
𝑔
𝑥 = |𝑥𝑔 − 𝑥𝜆 |, (3.1b)

𝛿
𝑔
𝑦 = |𝑦𝑔 − 𝑦𝜆 |. (3.1c)
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3.1.2. Number of Available ULiDs Constraint. The ULiDs utilized in the prob-

lem space, 𝜖𝜆, cannot exceed the maximum number of available ULiDs, Λ, which may be

based on financial (budgetary) restrictions or available resource restrictions. Therefore, the

following constraint needs to be satisfied:

∑︁
𝜆

𝜖𝜆 ≤ Λ. (3.2)

3.1.3. Resolution Constraint. Each road segment 𝑔 has a minimum resolution of

𝑅
𝑔

𝑚𝑖𝑛
based on the importance value of that segment. This minimum value is based on the

requirements of the ITS system. A starting coefficient value established by the ITS, 𝑅𝑜, is

multiplied by the importance to determine the minimum required resolution. The resolution

provided by each ULiD, 𝑅𝜆, must meet or exceed all 𝑅𝑔

𝑚𝑖𝑛
values within its FoV to count

that covered segment, as shown below:

𝑅𝜆 ≥ 𝜂𝜆𝑔𝑅
𝑔

𝑚𝑖𝑛
, ∀𝜆 ∈ Λ, ∀𝑔 ∈ 𝐺, (3.3a)

where

𝑅
𝑔

𝑚𝑖𝑛
= 𝑅𝑜 𝐼

𝑔, ∀𝑔 ∈ 𝐺. (3.3b)

3.1.4. Problem Space Constraint. The problem space,𝛀 ∈ R3, is partially defined

by the road grid’s 𝑥 and 𝑦 coordinate boundaries. The placement of any ULiD outside of

these boundaries would preclude the optimization problem from being solved (i.e., prevent

any attempt to maximize the road coverage efficiency). In addition, the 𝑧 axis problem space

is limited insomuch that all ULiDs must fly above either a minimum height above the road

or a maximum height outlined in the Federal Aviation Administration’s UAV regulations.
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Hence, the placement positions of the ULiDs must be within the solution space defined as:

(𝑥𝜆, 𝑦𝜆, 𝑧𝜆) ∈ 𝛀, ∀𝜆 ∈ Λ. (3.4)

3.1.5. Unweighted Coverage Constraint. A final constraint, 𝜉𝑚𝑖𝑛, is introduced to

ensure that the ULiDs cover a predetermined percentage of the urban road grid. In other

words, this constraint guarantees that a minimum percentage of all road segments 𝑔 ∈ 𝐺 is

covered by the set of utilized ULiDs and is expressed as:∑
𝑔∈𝐺 𝜂𝜆𝑔𝐴𝑔∑
𝑔∈𝐺 𝐴𝑔

≥ 𝜉𝑚𝑖𝑛,∀𝜆 ∈ Λ. (3.5)

3.2. MATHEMATICAL FORMULATION

The full optimization problem can be formulated with the problem’s constraints

codified above. The complete optimization problem (P) is as follows:

(P) maximize
𝑥𝜆,𝑦𝜆,𝑧𝜆,𝜇𝜆,𝜖𝜆

∑
𝜆∈Λ

∑
𝑔∈𝐺 𝜂𝜆𝑔𝐴𝑔 𝐼𝑔∑

𝑔∈𝐺 𝐴𝑔 𝐼𝑔
− 𝐸𝑜

∑︁
𝜆∈Λ

𝜖𝜆 (3.6)
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subject to

𝜂𝜆𝑔 ≤ 1 −
( 𝑎2 + 𝛿

𝑔
𝑥 ) − 𝐻𝜆

𝑀
, ∀𝜆 ∈ Λ, ∀𝑔 ∈ 𝐺, (3.7a)

𝜂𝜆𝑔 >
𝐻𝜆 − ( 𝑎2 + 𝛿

𝑔
𝑥 )

𝑀
, ∀𝜆 ∈ Λ, ∀𝑔 ∈ 𝐺, (3.7b)

𝜂𝜆𝑔 ≤ 1 −
( 𝑎2 + 𝛿

𝑔
𝑦) −𝑉𝜆

𝑀
, ∀𝜆 ∈ Λ, ∀𝑔 ∈ 𝐺, (3.7c)

𝜂𝜆𝑔 >
𝑉𝜆 − ( 𝑎2 + 𝛿

𝑔
𝑦)

𝑀
, ∀𝜆 ∈ Λ, ∀𝑔 ∈ 𝐺, (3.7d)∑︁

𝜆∈Λ
𝜖𝜆 ≤ Λ, (3.7e)

𝑅𝜆 ≥ 𝜂𝜆𝑔𝑅
𝑔

𝑚𝑖𝑛
, ∀𝜆 ∈ Λ, ∀𝑔 ∈ 𝐺, (3.7f)

(𝑥𝜆, 𝑦𝜆, 𝑧𝜆) ∈ 𝛀, ∀𝜆 ∈ Λ, (3.7g)∑
𝑔∈𝐺 𝜂𝜆𝑔𝐴𝑔∑
𝑔∈𝐺 𝐴𝑔

≥ 𝜉𝑚𝑖𝑛, ∀𝜆 ∈ Λ. (3.7h)

The first term in the objective function represents the weighted coverage percentage, and the

second term represents a penalty for the energy consumed by the ULiDs. 𝑀 is an arbitrarily

large value, and 𝐸𝑜 is a penalizing constant. As stated at the beginning of this section, the

formulated optimization problem (P) is an MINLP problem. In the next section, a CI-based

solution for the designed problem will be proposed, and the results of its deployment will

be evaluated.
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4. ULID PLACEMENT SOLUTION

This section will describe the PSO algorithm developed to solve the MINLP problem

presented in Section 3.2. It will then explain the deployment of this algorithm and discuss

the simulation results.

4.1. COMPUTATIONAL INTELLIGENCE ALGORITHM

As mentioned in Section 1.4, PSO algorithms boast a number of properties that make

them especially useful for solving nonlinear problems. Consequently, this thesis deployed a

PSO-based CI algorithm to solve the proposed MINLP problem. PSO algorithms typically

share a few key design elements, beginning with the initialization of a population that then

searches iteratively for the optimal solution based on its current fitness; then, its fitness

updates as the population moves throughout the iterations; finally, the algorithm terminates

its search after completing a certain number of iterations or fulfilling a predetermined

condition. This general structure is schematically represented by the flow chart in Figure 4.1.

The PSO algorithm designed for this MINLP problem starts with a set number of

particles, i.e., the population in the solution space, 𝑛𝑝𝑜𝑝. Each particle in the population

represents one possible ULiD placement solution and is initialized at a random location,

𝑙𝑜(𝑖), with zero velocity, 𝑣𝑒(𝑖). The optimization problem is evaluated as the cost, 𝑐𝑜𝑠𝑡,

using the particle’s location while adhering to the designed constraints. The particles

then begin to iteratively search for the maximum cost, and while doing so, each particle

remembers both its personal best location and cost, 𝑏𝑙𝑜 (𝑖) and 𝑏𝑐𝑜 (𝑖), respectively, and

the global best location and cost, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒.𝑏𝑒𝑠𝑡.𝑙𝑜 and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒.𝑏𝑒𝑠𝑡.𝑐𝑜, respectively.

Each particle’s velocity, 𝑣𝑒(𝑖), is updated at the start of each iteration using knowledge

of that particle’s best location, the global best location, and the particle’s last velocity as
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Figure 4.1. Flow chart of a generic PSO algorithm.
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follows [43]:

𝑣𝑒(𝑖) = 𝑤 ∗ 𝑣𝑒(𝑖) + 𝑐1 ∗ 𝑟𝑝
(
𝑏𝑙𝑜 (𝑖) − 𝑙𝑜(𝑖)

)
+ 𝑐2 ∗ 𝑟𝑝

(
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒.𝑏𝑒𝑠𝑡.𝑙𝑜 − 𝑙𝑜(𝑖)

)
, (4.1a)

where

𝑤 = (𝑤1 − 𝑤2) ∗ (1 − 𝑡

𝑚𝑎𝑥𝑖𝑡
). (4.1b)

In the above update equation, 𝑐1 and 𝑐2 are the personal and global learning co-

efficients, respectively; 𝑟𝑝 is a random positive number; the current particle and current

iteration are given as 𝑖 and 𝑡, respectively; the integer value denoting the number of iter-

ations over which the particles are evaluated is 𝑚𝑎𝑥𝑖𝑡; and 𝑤 denotes the inertia weight,

with 𝑤1 and 𝑤2 being set values that determine the range of inertia weights. The inertia

weight is updated every iteration via a modified version of the linearly varying inertia weight

model [44], which enables an early global search (exploration) to adapt into a local search

(exploitation) towards the end of the iterative process. The location of each particle 𝑖 is

updated every iteration by the following:

𝑙𝑜(𝑖) = 𝑙𝑜(𝑖) + 𝑣𝑒(𝑖). (4.2)

As mentioned above, each particle represents one possible ULiD location. Once

the PSO algorithm has finished iterating, a single location, namely, the best calculated

ULiD position, is returned. It follows, then, that because this algorithm yields only a single

ULiD placement, the PSO algorithm must be executed a number of times to achieve the

goal, which is to determine the optimal placement positions of multiple ULiDs. After each

PSO iteration, a new ULiD position is added to the total cumulative output values, which

are updated with each addition. The urban environment is likewise updated to reflect the
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newly determined ULiD placement by setting the importance values, 𝐼𝑔, for all of the road

segments covered by the newest ULiD to 0; these road segments are represented by the

variable 𝜂𝜆𝑔. Updating these values to 0 serves both to reduce the overlapping area covered

by the ULiDs and to further maximize the total number of segments covered within the

urban environment. The PSO algorithm iteratively places one ULiD at a time until the

unweighted coverage constraint (3.7h) is met. To complete this process, the PSO algorithm

requires as input only the simulation parameters, collectively denoted 𝑆𝑖𝑚𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠,

which consist of the roadway and ULiD characteristics described in Section 2 and will be

assigned values in the next section. The pseudocode for the implemented PSO algorithm is

given in Algorithm 38.

A subset objective problem, named the weighted coverage problem, P1, is extracted

from P to account for the cost function in the simulated problem. This change is due to

the discrete variable representing the number of utilized ULiDs, 𝜖𝜆, in the optimization

problem. Since the PSO algorithm is executed iteratively, it is not possible to reduce 𝜖𝜆 or

to alter a ULiD’s position once its placement has been selected. The problem P1 does not

penalize the system for a new ULiD placement since the PSO algorithm cannot optimize

that portion of problem P. The subset objective problem is defined as:

(P1) maximize
𝑥𝜆,𝑦𝜆,𝑧𝜆,𝜇𝜆

∑
𝜆∈Λ

∑
𝑔∈𝐺 𝜂𝜆𝑔𝐴𝑔 𝐼𝑔∑

𝑔∈𝐺 𝐴𝑔 𝐼𝑔
, (4.3)

subject to (3.7a) - (3.7d), (3.7f) - (3.7h).

4.2. SIMULATION RESULTS

This section presents selected simulation results to validate the proposed PSO al-

gorithm. The urban area of interest is assumed to be 250 𝑚 × 250 𝑚, and the UAV flight

domain is given as 𝛀 ∈ ([0, 250], [0, 250], [20, 200]). The simulation parameters define

the urban environment and ULiD characteristics, the default values of which are defined in
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Algorithm 1: Proposed PSO Algorithm
Input: SimParameters
Initialization:

1: ULiD = 0;
Iterative PSO Loop:

2: while Unweighted Coverage < 𝜉𝑚𝑖𝑛 do
3: ULiD = ULiD + 1;
4: iterative(ULiD).best.co = -inf;
5: iterative(ULiD).best.lo = [];
6: for i = 1:npop do
7: lo(i)=unifrnd(Ω𝑚𝑖𝑛, Ω𝑚𝑎𝑥 , varsize);
8: ve(i)=zeros(varsize);
9: 𝑏𝑐𝑜(i)=costfunction(lo(i));

10: 𝑏𝑙𝑜(i)=lo(i);
11: if 𝑏𝑐𝑜(i) > iterative(ULiD).best.co then
12: iterative(ULiD).best.co = 𝑏𝑐𝑜(i);
13: iterative(ULiD).best.lo = 𝑏𝑙𝑜(i);
14: end
15: end
16: for t = 1:maxit do
17: Update inertia coefficient.
18: for i = 1:npop do
19: Update the velocity and location of particle i (4.1),(4.2)
20: if lo(i) < Ω𝑚𝑖𝑛 then
21: 𝑙𝑜(𝑖) = Ω𝑚𝑖𝑛;
22: else if lo(i) > Ω𝑚𝑎𝑥 then
23: 𝑙𝑜(𝑖) = Ω𝑚𝑎𝑥;
24: end
25: cost=costfunction(lo(i));
26: if cost > 𝑏𝑐𝑜(i) then
27: 𝑏𝑐𝑜(i) = cost;
28: 𝑏𝑙𝑜(i) = lo(i);
29: end
30: if 𝑏𝑐𝑜(i) > iterative(ULiD).best.co then
31: iterative(ULiD).best.co = 𝑏𝑐𝑜(i);
32: iterative(ULiD).best.lo = 𝑏𝑙𝑜(i);
33: end
34: end
35: end
36: iterative(ULiD) = outputCalculations();
37: OutputTotal = [OutputTotal; iterative(ULiD)];
38: end
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Table 4.1a unless otherwise specified. The parameters 𝑎, 𝜃, 𝜙, and 𝑛𝜆𝑠𝑐𝑎𝑛 were set to realistic

values [55], while 𝑅𝑜 and 𝜉𝑚𝑖𝑛 were assigned arbitrarily. The values of the PSO parameters

(shown in Table 4.1b), which dictate how the PSO algorithm is executed, were chosen

because they have previously been shown to yield positive PSO outcomes [44]. Layout 1,

first described in Section 2.1, was simulated as the default layout for all scenarios except

those discussed in Section 4.2.1.

Table 4.1. Simulation and PSO parameters

(a) Simulation parameters.

Parameter Value
a 10 𝑚

𝜃 81.7◦
𝜙 25.1◦

𝑛𝜆𝑠𝑐𝑎𝑛 480𝑘 𝑝𝑡𝑠/𝑠
𝑅𝑜 250 𝑝𝑡𝑠/𝑠 ∗ 𝑚2

𝜉𝑚𝑖𝑛 80%

(b) PSO parameters.

Parameter Value
𝑛𝑝𝑜𝑝 20
𝑚𝑎𝑥𝑖𝑡 250
𝑐1 1.496
𝑐2 1.496
𝑤1 0.8
𝑤2 1.4

4.2.1. ULiD Placements in Different Urban Layouts. This section presents the

simulated ULiD placement positions corresponding to four distinct urban layouts, as shown

in Figure 4.2. The colors of the segments represent the 𝐼𝑔 values, where lighter colors

represent larger 𝐼𝑔 values, i.e, more important road segments. The different urban layouts

were assigned different 𝐼𝑔 distributions to test the effective placements of the ULiDs.

Each ‘X’ marker represents the (𝑥𝜆, 𝑦𝜆) position of a ULiD, and the colored rectangles

(denoted “FoV Outline N”, with N being an integer matching the FoV to its ULiD) show the

boundaries of the corresponding FoV, 𝐴𝜆
𝑐𝑜𝑣 . Segments contained entirely inside a ULiD’s

FoV are the segments covered by the ULiD marked with an ‘X’ of the same color. The

higher the altitude 𝑧𝜆 at which a ULiD flies, the greater the area 𝐴𝜆
𝑐𝑜𝑣 the ULiD can cover

and thus the larger the FoV outline of that ULiD.
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According to Figure 4.2a, the PSO algorithm utilized 12 ULiD units to achieve a

minimum percentage 𝜉𝑚𝑖𝑛 of 80%. Furthermore, half of the ULiDs were rotated 90◦ to

better cover the roads paralleling the 𝑦 axis. Layouts 2 and 3, shown in Figure 4.2b and

4.2c, respectively, each required only 8 ULiDs to satisfy the 𝜉𝑚𝑖𝑛 constraint. These two

layouts had ≈ 2% fewer segments than did Layout 1 but utilized 4 fewer ULiD units. This

significant reduction in the number of utilized ULiD units is attributed both to the layout of

the road segments and to the larger 𝐼𝑔 values being more centralized than those in Layout 1.

In other words, the segments were closer together, which meant that a single ULiD could

cover more ground, resulting in fewer utilized ULiDs. In addition, Layout 4 (Figure 4.2d)

had ≈ 20% more segments than Layout 1 but utilized 2 fewer ULiD units; this result is

attributed to Layout 4 having more centralized segments and larger 𝐼𝑔 values than Layout

1. Ultimately, the placement and rotation of the ULiD units for each of the four simulated

layouts are appropriate.

4.2.2. ULiD Placement Details for Layout 1. The ULiD placements from Layout

1 are examined below. The legend shown in Figure 4.3b is used for both sub-figures, and the

colors correlate with those used in Figure 4.2a to identify the ULiDs. Figure 4.3a shows the

initial ULiD placements (drawn as circles) at the beginning of a PSO iteration and the final

ULiD placements (drawn as ‘X’ markers) at the end of a PSO iteration. The like-colored

line connecting each pair of initial and final placement markers shows the path that ULiD

took throughout its PSO iteration. The algorithm placed ULiDs 1 through 11 at altitudes

between 48 and 70 meters to optimally cover the segments within its FoV and provide the

required 𝑅
𝑔

𝑚𝑖𝑛
. ULiD 12 was the only unit placed above 70 meters, which occurred because

the unit covers segments with low 𝑅
𝑔

𝑚𝑖𝑛
values. Figure 4.3b reveals a total weighted coverage

value of 87.31% for Layout 1 calculated using cost function P1 and demonstrates how the

individual weighted coverage of each ULiD contributed to the total weighted coverage of

the system. As more ULiDs populated the problem space, the number of available optimal
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(a) Layout 1 (b) Layout 2

(c) Layout 3 (d) Layout 4

Figure 4.2. ULiD placement heat maps for four distinct urban layouts.

placement positions diminished, which resulted in later-placed ULiDs contributing less to

the weighted coverage. The results of this simulation are logical and consistent with the

expected outcome.

4.2.3. Effects of Changing 𝑅𝑜 with Different 𝜉𝑚𝑖𝑛. Each segment has a minimum

resolution, 𝑅𝑔

𝑚𝑖𝑛
, that a ULiD must provide to properly cover that segment. This minimum

resolution is computed by multiplying the coefficient 𝑅𝑜 by 𝐼𝑔. 𝑅𝑜 was statically set for the

previous simulations, but for this section, the value was altered to investigate how it affects

the number of utilized ULiDs. As stated earlier, the resolution provided by a ULiD, 𝑅𝜆,

is based on the height of its placement. Thus, larger values of 𝑅𝑜 should require ULiDs
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(a) ULiD search paths during the PSO itera-
tions. Circles represent the starting 3D po-
sitions of the ULiDs, while the ‘X’ markers
represent their final 3D positions.

(b) Weighted coverage versus total iterations
of the PSO algorithm. The colors of the hor-
izontal bars correspond to the different ULiD
units, and the size reflects each ULiD’s con-
tribution to the total weighted coverage.

Figure 4.3. ULiD search paths and individual contributions to the total weighted coverage
for Layout 1.

to be placed at lower altitudes to satisfy the constraint (3.7f). Additionally, since a lower

flight altitude would mean that a ULiD cannot cover as many segments, a larger 𝑅𝑜 should

require more ULiDs to be utilized to satisfy the stopping criterion 𝜉𝑚𝑖𝑛, which is defined

as the unweighted coverage constraint that requires the entire set of utilized ULiD units to

cover a certain percentage of the total segments in the urban layout. Accordingly, larger

values of 𝜉𝑚𝑖𝑛 are expected to correspond to a greater number of utilized ULiDs.

Figure 4.4 shows the required number of ULiD units for different 𝑅𝑜 values. 𝑅𝑜 was

simulated with values of 100, 200, 300, and 400, each of which was simulated with 𝜉𝑚𝑖𝑛

set to 60%, 70%, 80%, and 90% (plotted as the four lines in the graph). As expected, when

the value of 𝑅𝑜 increased, more ULiD units were needed to meet the minimum resolution

constraint. In addition, a positive correlation was expected between 𝜉𝑚𝑖𝑛 and 𝑅𝑜, and the

figure indicates that this prediction was true; however, the 80% and 90% lines overlap at

𝑅𝑜 values of 100 and 200. This overlap is attributed to the stochastic nature of the PSO
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algorithm. Nevertheless, because the trends of the curves (based on 𝜉𝑚𝑖𝑛) are all fairly

linear, a middle-ground 𝑅𝑜 value of 250 𝑝𝑡𝑠/𝑠 ∗𝑚2 was chosen as the baseline for the other

simulations.

Figure 4.4. Number of ULiDs versus 𝑅𝑜 with different 𝜉𝑚𝑖𝑛 values.

4.2.4. Effects of Changing 𝑛𝜆𝑠𝑐𝑎𝑛 with Different 𝜉𝑚𝑖𝑛. The ULiDs are all assumed

have a fixed scan rate, 𝑛𝜆𝑠𝑐𝑎𝑛, during each execution of the PSO algorithm. This parameter

defines how many points the ULiD collects per second using its LiDAR sensor. 𝑛𝜆𝑠𝑐𝑎𝑛

directly affects the ULiD’s resolution, 𝑅𝜆, defined as the number of data points per second

per square meter. A faster scan rate allows the ULiDs to meet the 𝑅
𝑔

𝑚𝑖𝑛
requirements from

higher altitudes, while a slower scan rate requires the unit to position itself at a lower

altitude, thus requiring more ULiDs to meet the 𝜉𝑚𝑖𝑛 constraint.

The scan rate was set to five values, 100𝑘 , 200𝑘 , 300𝑘 , 400𝑘 , and 500𝑘 𝑝𝑡𝑠/𝑠, to

test the number of ULiD units required to meet two values of 𝜉𝑚𝑖𝑛, 60% and 80%. The

results for these simulations are shown in Figure 4.5. The two color bars are the two tested

values of 𝜉𝑚𝑖𝑛, and the five groups of bars represent the five different 𝑛𝜆𝑠𝑐𝑎𝑛 values. When the

scan rate was set to 100𝑘 𝑝𝑡𝑠/𝑠 with 𝜉𝑚𝑖𝑛 equal to 80%, the PSO algorithm placed 43 ULiD

units to meet the constraints. With the same scan rate at 𝜉𝑚𝑖𝑛 equal to 60%, the number of
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required units decreased to 32. Thus, a 20% decrease in 𝜉𝑚𝑖𝑛 resulted in a 26% decrease in

the number of utilized ULiDs. However, when the scan rate was set to the maximum value

of 500𝑘 𝑝𝑡𝑠/𝑠, the numbers of utilized ULiDs were 11 and 9 when 𝜉𝑚𝑖𝑛 was set to 80% and

60%, respectively. In this case, the 20% decrease in 𝜉𝑚𝑖𝑛 resulted only in an 18% decrease

in the number of utilized ULiDs. These results show that as the ULiD scan rate rises, the

𝜉𝑚𝑖𝑛 requirement has a diminishing effect on the number of utilized ULiD units.
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Figure 4.5. Number of ULiD units versus 𝑛𝜆𝑠𝑐𝑎𝑛.

4.2.5. PSO Algorithm versus Two Baseline Placements Using Monte Carlo. In

this section, the PSO algorithm is compared with two baseline placement methods: the first

utilizes a uniform placement distribution to deploy a set number of ULiDs, while the second

uses a random Gaussian distribution to select ULiD placements. A Monte Carlo simulation

was performed with 1000 trials, and every trial generated 15 ULiD positions with the

appropriate random distribution. The weighted coverage cost function was calculated for

each of the 15 ULiD positions. After the 1000 trials of 15 randomly placed ULiDs, the trials

were averaged so that a single weighted coverage was given for each of the 15 simulated

ULiDs. The random placement algorithms employed the same method, and both baseline

placements followed the same constraints as those listed in P1. The PSO algorithm was
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manually simulated with the default parameters for 1 to 15 ULiD units. It should be noted

that it was unnecessary to perform multiple PSO trials because the algorithm inherently

conducts an iterative searching process.

The weighted coverage values yielded by the three placement methods are plotted

versus the number of utilized ULiDs in Figure 4.6. Note that the 𝑦 axis is a logarithmic

scale; this scale was used because the PSO algorithm greatly outperformed the two random

placement methods. The PSO algorithm approached a weighted coverage value of 95%

when placing 15 ULiD units compared to the value of ≈4.5% that both random placement

methods achieved with 15 units. In addition, the first ULiD unit placed using the PSO

algorithm had a weighted coverage of ≈11%. Ultimately, the value for a single placed

ULiD using the PSO algorithm was greater than twice the total weighted coverage for 15

ULiDs using either of the two random placement methods.
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Figure 4.6. Weighted coverage versus number of ULiD units with different placement
algorithms.
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5. CONCLUSIONS

This thesis explained how urbanization amplifies the need for improved transporta-

tion infrastructure by exacerbating traffic congestion and leads to multiple public safety

concerns: vehicle accidents, environmental pollution, and issues with emergency response

management. Research into ITS may hold the critical key that will inevitably remedy the

described problems, but many possible solutions exist within this field. The public sector

has historically been responsible for developing and deploying ITS technologies, but recent

technological advancements have allowed the private sector to contribute their own solu-

tions. Among the most helpful and widely distributed ITS solutions are privately created

GPS-enabled navigation applications, which utilize AI algorithms to help improve naviga-

tion suggestions; nevertheless, the techniques used to collect the data with which to train

these AI algorithms are inadequate due to the disconnect between the public and private

ITS sectors.

Consequently, researchers have long focused on methods to increase the efficiency of

data collection for public ITS. LiDAR has emerged as a leading data acquisition technique;

LiDAR sensors can generate highly precise 3D maps, thereby enabling real-time object

detection and tracking, which can be used for traffic navigation and management in ITS.

However, LiDAR sensors are notably expensive and generate vast volumes of data. Hence,

reducing the number of sensors and maximizing their potential is a considerable field of

interest. Some scholars have suggested moving LiDAR sensors from autonomous vehicles to

elevated positions along roadways, but this solution is still insufficient: the fixed placement

of LiDAR sensors still limits the sensors’ FoVs and necessitates using an excessively large

number of sensors. In contrast, ULiDs have been used for decades to deploy sensors with

an aerial vantage point to capture data. Unfortunately, due to the limitations of wireless

communications, these ULiDs have been unable to communicate data in real time for
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ITS purposes. Nevertheless, inevitable improvements to communication networks and

the development of 6G will eventually enable real-time ULiD data acquisition for ITS

applications.

Accordingly, this thesis formulated a placement optimization problem involving

multiple ULiD units with the goal of maximizing their road coverage efficiency while

considering spatial and LiDAR-specific constraints, road coverage priorities, and scanning

resolution requirements. Due to the non-convexity of the formulated problem, a PSO-

based CI algorithm was proposed to solve the problem. Simulations demonstrated that the

developed PSO algorithm was robustly capable of efficiently placing multiple ULiD units

in different road layout scenarios. These results were further confirmed when the PSO

algorithm greatly outperformed two baseline algorithms.

Research in ITS, particularly the utilization and placement of LiDAR sensors, is

expected to accelerate. Consequently, future work will expand upon this thesis to investigate

a more complex system model and more intelligent algorithm. The author of this thesis

intends to model a dynamic road and traffic scenario to analyze the effects of a changing

importance factor on the dynamic placement of multiple ULiDs. More variables will also

be considered, such as the rotation of the LiDAR sensor and the energy requirements of

the ULiDs. Moreover, to solve a more complex system, a more sophisticated algorithm

will be utilized. Nevertheless, the algorithm proposed herein is part of the RL field of AI

algorithms and will be well-suited to handle the increased difficulty of such systems.
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