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ABSTRACT 

Interferometric Synthetic Aperture Radar (InSAR) is a popular technique for 

studying Earth's surface deformation caused by phenomena like earthquakes and 

subsidence. However, its accuracy is limited by tropospheric delays caused by water vapor 

in the atmosphere. This limitation can be overcome by using methods that correct for 

tropospheric noise, such as statistical, empirical, and predictive approaches. This study 

explores the potential of using machine learning algorithms to predict the zenith total delay 

caused by tropospheric effects in InSAR measurements. The study employs two different 

machine learning algorithms, random forest, and neural networks, to learn the relationship 

between numerical weather prediction model data and InSAR parameters in Continental 

USA and the globe. The neural network model outperforms both the random forest model 

and the traditional approach, reducing the RMSE by approximately 30%. The study 

demonstrates that machine learning algorithms can effectively correct tropospheric noise 

in most interferograms, resulting in a 30-60% improvement in Pennsylvania and Hawaii. 

However, the neural network model faces challenges in making predictions in areas with 

high variability in local climate and weather patterns. Overall, this research presents a 

promising approach for improving InSAR accuracy by using machine learning algorithms 

to correct for tropospheric noise. 
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NOMENCLATURE 

Symbol Description  

P  Pressure 

T  Temperature 

e  Partial pressure of water vapor 

STD  Slant Total Delay 

ZTD  Zenith Total Delay 

NWP  Numerical Weather Prediction 

q  incidence angle from radar satellite 

LOS  Line Of Sight 



 

 

1. INTRODUCTION 

1.1. PROBLEM  

Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique 

that can accurately measure surface deformation on the Earth's crust. InSAR has been 

extensively used to study various geophysical phenomena such as earthquakes (Barnhart 

& Lohman, 2013, Funning et al., 2005), subsidence (Buzzanga et al., 2020), volcanoes 

(Albino et al., 2020), and others. However, there are limitation into wide-ranging 

applicability of InSAR due to the accuracy of its measurements which is affected by 

atmospheric delays. Atmospheric delays consist of both ionospheric and tropospheric. 

Ionospheric delays are triggered by change of free electrons along the signal's path, leading 

to a phase advancement. However, ionosphere is comparatively easier to model and have 

been resolved with empirical method (Liang et al. 2019) hence, this thesis will only focus 

on the tropospheric component. Tropospheric delay arises from variations in the refractive 

index of the atmosphere (troposphere) and can cause significant errors in Synthetic 

Aperture Radar (SAR) satellite measurements, especially for long-wavelength deformation 

signals. Therefore, it is crucial to correct for the tropospheric delay in InSAR measurements 

to obtain accurate and reliable results. Tropospheric delays are caused by spatio-temporal 

changes in atmospheric refractivity related to pressure, temperature, and water vapor. It 

can cause up to 15–20 cm of interferogram signals (Zebker et al., 1986, Rosen et al., 1999, 

Massonnet et al., 1998, Hanssen, 2001, Hooper and Bekaert 2014). Some 20 % changes in 

the water vapor content in the atmosphere could result with delay of 10 cm (Zebker et al., 
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1997) and can greatly obscure the other signal of interest such as crustal deformation and 

other ground movement. Tropospheric delay remains challenging to address. 

1.2. TROPOSPHERIC CORRECTION METHODS 

There are three main categories of tropospheric correction methods used in InSAR: 

empirical, statistical, and predictive corrections. Empirical corrections rely on analyzing a 

significant amount of InSAR data and are usually applied on a per-case basis. Statistical 

corrections use the information from the interferometric phase and other data sources, such 

as ground-based GPS measurements, to estimate the tropospheric delay. Predictive 

corrections utilize atmospheric models, such as Numerical Weather Prediction (NWP) 

models, to predict the tropospheric delay based on atmospheric parameters, such as 

temperature, pressure, and water vapor. 

The process of empirical correction eliminates the correlation between the phase 

values in interferograms and changes in topography (Lin et al. 2010; Bekaert et al. 2015; 

C. W. Wicks et al. 2002; Zebker, 2021). This technique is advantageous because it does 

not depend on external data and can be easily computed. However, it requires consistently 

correlated high-quality pixels (Zebker, 2021), and it may not account for fluctuations in 

atmospheric water vapor due to turbulence (Massonnet and Feigl, 1995; Hanssen, 2001). 

Another class of methods, statistical correction, uses time averaging to reduce the 

tropospheric phase lag from time series InSAR (Massonnet and Feigl, 1995; Zebker et al., 

1997) and stacking (Rosen et al., 2018; Sandwell & Sichoix, 2000) are two examples of 

this class of methods. Recently, methods based on least squares have been proposed to 

estimate and remove tropospheric noise using shared data between multiple interferograms 
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(Kang et al., 2021; Kirui et al., 2022; Tymofyeyeva & Fialko, 2018). These methods are 

very effective at removing tropospheric noise if the underlying deformation style (e.g., 

linear deformation rate) is known, such as slow slip events. 

Auxiliary data for prediction is the last major method for correcting phase delays 

in the troposphere. Examples of ancillary data include GNSS measurements of zenith total 

delay (Wadge et al., 2002; Onn and Zebker, 2006; Yu et al., 2018; Shamshiri et al., 2020), 

multispectral satellite observations of water vapor such as the Moderate Resolution 

Imaging Spectrometer (MODIS) onboard the Terra and Aqua satellites (Liang, 2014), and 

NWP such as the European Center for Medium-Term Forecasts (ECMWF) ERA-5 global 

NWP model. There are multiple open-source software packages and online services make 

use of NWP to provide tropospheric delays globally such as Python Based Atmospheric 

Phase Screen estimation (PyAPS) (Jolivet, Agram, et al., 2014), Direct integration method 

along the LOS direction (D-LOS) (Hu & Mallorquí, 2019), and Generic Atmospheric 

Correction Online Service for InSAR (GACOS) (Yu et al., 2018). However, the accuracy 

of such corrections depends on the spatial and temporal resolutions of auxiliary data or 

NWP model outputs (Cao et al., 2021). Bekaert et al (2015) reviewed of different state-of-

the-art atmospheric correction method and it’s briefly summarized in Table 1.1. 

The development of NWP models has significantly improved our understanding of 

atmospheric behaviors. NWP models such as the North American Regional Reanalysis 

(NARR; Mesinger et al., 2006), the European Reanalysis – Interim (ERA-I; Dee et al., 

2011), the Modern-Era Retrospective analysis for Research Applications (MERRA-2; 

Gelaro et al., 2017), and ECMWF-HRES (Haiden et al., 2018) could allow tropospheric 

estimation in wider range of area. 
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Table 1.1. Comparison of state-of-the-art atmospheric correction method 

Method Inputs Limitation 

Weather model GAMS High temporal resolution, but low 
spatial resolution of 30 -80 km 

GPS measurement GNSS ZTD Not constant everywhere in Spatial 
and temporal resolution 

Multi spectral 
observation MODIS/ MERIS 

Re-visit time of the instrument are 
not simultaneously acquired with 

SAR data and require interpolation 
in time 

GPS + Spectrometer data GNSS ZTD + 
Spectrometer data 

Spectrometer only available under 
cloud-free and daylight 

Empirical method Topography (DEM) + 
Interferograms phase 

Only in non-deforming region or in 
spatial band insensitive to 

deformation  

Power-law model Topography (DEM) + 
Interferograms phase 

An estimate of spatially varying 
tropospheric signal that require 
defined boundary of stagnation 

 

1.3. ZENITH DELAY 

The zenith total delay in the signal path between a GNSS receiver and satellite, also 

known as the path delay, is primarily dependent on the satellite's position. To simplify 

calculations and create a more generalizable model, empirical models often use the zenith 
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total delay (ZTD) and reproject to the slant total delay (STD). To convert the ZTD to STD, 

a mapping function is applied. The mapping function is a simple equation as equation (1): 

     (1) 

Where q  refers to the incidence angle to the satellite. Zenith delay is only discussed in 

model prediction for this thesis. Slant delay is used when discuss of the InSAR application. 

1.4. MOTIVATION 

Machine learning (ML) has been extensively adopted in various fields in the past 

two decades due to the advancements in cheaper and more powerful computing power and 

sophisticated algorithms. ML algorithms enable computers to extract complex 

relationships from sizeable volumes of data, and the growing of geospatial data being 

generated in recent years has created new opportunities to understand and deliver insights 

from large, high-dimensional datasets. ML has the potential to develop new methods for 

processing and analyzing large, complex datasets where traditional methods may fail, and 

it improves accuracy with short computation times compared to empirical approaches. 

In estimating of tropospheric delay, previous studies have shown successful 

application with machine learning. For example, Shamshiri et al.(2020) used machine 

learning Gaussian process (GP) regression and GNSS derived zenith total delay (ZTD) to 

predict phase delay trigger by troposphere. By applying the ML technique, the root mean 

square error (RMSE) of zenith total delay prediction reduces on average by 83%, compared 

to a 50% reduction obtained by using traditional approaches. In another study, Selbesoglu 

(2020) developed an artificial neural network model with weather station and GNSS data 

ZTD = STD
cos(θ)
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to estimate tropospheric wet delay. Their model was able to predict the zenith wet delay 

for up to six hours with a root mean square error (RMSE) of 1.5 cm. 

Instead of estimating the ZTD with a fixed equation, machine learning approach 

may be an alternative in leveraging product derived from NWP models which are globally 

and hourly available. NWP models is not limited spatially as the GNSS ZTD and could 

possibly be used in areas where no GNSS station available. The trained model will be 

beneficial to provide an alternative correction method for InSAR processes which result 

with getting accurate subsurface deformation measurement.  

1.5. PROPOSED APPROACH 

The thesis aims to investigate the capability of machine learning techniques in 

predicting the zenith total delay (ZTD) at GNSS stations based on NWP model parameters 

and geographic coordinate information. A traditional approach that utilizes the same NWP 

model parameters to estimate ZTD is set as a baseline model for this study. This traditional 

approach involves raytracing of refractivity, which will be discussed further in the method 

section. 

The necessary data is divided into two separate datasets based on time: a training 

and testing set. Two machine learning algorithms are employed to learn the relationship 

between NWP parameters and ZTD from the training set. The prediction which evaluate 

the performance of the model uses the testing set only. 

The first algorithm used is random forest, which is commonly used for 

classification and regression problems. It is utilized as a reference for the development of 

the machine learning model due to its ease of implementation and interpretability. The 
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second algorithm used is a fully connected neural network, which can solve more complex 

problems when larger datasets are available. 

The models' performance is evaluated by comparing the predicted delays with the 

actual delays at GNSS stations to determine if there was any improvement over the baseline 

model. The desired target accuracy of the prediction is set to be within 2 cm in root mean 

square error (RMSE) from all models. The models are trained on two datasets based on the 

geographic boundary: one that includes data from the Continental US and the other that 

includes data from the globe. 

The accuracy of the prediction is further compared with any dependency variables 

such as elevation, latitude, and time of year. Two examples of individual GNSS stations 

are chosen for in-depth analysis. 

After evaluating the model's accuracy, in preparation for tropospheric correction 

for InSAR, the optimized model will perform tropospheric estimates to make corrections 

at two locations in the US: Pennsylvania and Hawaii. These two locations represent 

different circumstances and environments, and the test provides a better understanding of 

the model's capabilities. Several date pairs of interferograms at these locations are used to 

showcase the correction power by calculating the change in standard deviation. 
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2. DATASET 

Data of NWP models and GNSS ZTD are download through RAiDER package. 

GitHub repository is linked as follow (https://github.com/dbekaert/RAiDER) 

2.1. NWP MODELS 

ERA-5 is a weather model developed by the European Centre for Medium-Range 

Weather Forecasts (ECMWF). It is the fifth-generation reanalysis dataset that provides 

global atmospheric conditions from 1979 to present. The ERA-5 model uses a state-of-the-

art numerical weather prediction (NWP) system to assimilate a wide range of observations, 

including surface weather stations, radiosondes, and satellite measurements, into a 

comprehensive and consistent atmospheric model (Hersbach, H et al. 2020).  

The ERA-5 model provides a range of atmospheric variables at various spatial and 

temporal resolutions. These variables include temperature, wind speed, humidity, 

precipitation, cloud cover, and other parameters that describe the state of the atmosphere. 

The model has a horizontal resolution of 31 km and 137 vertical levels, providing a detailed 

picture of atmospheric conditions from the surface up to 80 km altitude. 

The ERA-5 model also includes a variety of auxiliary data products, such as surface 

solar radiation and soil moisture, which can be used for various applications, including 

weather forecasting, climate monitoring, and research. The outputs that are of interest are 

Pressure (in Kelvin), Pressure (in Pa), and partial pressure of water vapor (in Pa).  

The high spatial and temporal resolution of the ERA-5 model makes it an essential 

tool for various weather-related applications, such as predicting extreme weather events, 

studying the impact of climate change, and supporting renewable energy production. The 
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ECMWF continues to improve the ERA-5 model, and updates are released regularly to 

provide the most accurate and reliable atmospheric data possible. 

We used the output of weather model as the input of our deep learning model. These 

data are uniformly gridded as a 3D cube (netCDF) and referenced with the associate 

latitude, longitude, and elevation. (Figure 2.1) 

 

Figure 2.1. Illustration of weather model parameters in 3D cube. 

The ERA5 model is created using over 240 input parameters derived from a wide 

range of datasets, including satellite, in-situ, and surface elevation data. These datasets 

include information from sources such as stratospheric sounding units, infrared and 

microwave sounders, all-sky microwave radiances, GPS radio occultation, geostationary 

radiances, atmospheric motion vectors, scatterometers, WAVE integrated parameters, 

ground-based radar, and conventional methods such as meteorological stations, aircraft, 

ships, buoys, and radiosondes. These input parameters contribute to generating global 

analysis models of atmospheric variables, including pressure, temperature, partial pressure 

of water vapor, humidity profile, cloud liquid water, precipitation, ocean surface wind 
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speed, surface and cloud top temperature, wind vectors, ozone, backscatter, soil moisture, 

rain rates, snow depth, and snow cover. (ERA5, 2023) 

The model is freely available to the public and can be accessed through the 

ECMWF data archive via C3S Climate Data Store. 

2.2. GNSS DATA 

GNSS stations are ground-based receivers that collect signals from Global 

Navigation Satellite Systems (GNSS) such as GPS, GLONASS, Galileo, and BeiDou. 

These stations collect precise positioning and timing data, which can be used for a variety 

of applications, including navigation, surveying, and geophysics. 

One of the most important applications of GNSS stations is in the estimation of 

Zenith Total Delay (ZTD) products. Delay occurs when radar signals pass through the 

atmosphere before reaching the receiver and is caused by atmospheric variables such as 

temperature, pressure, and partial pressure of water vapor. (Yu et al. 2021). 

To generate ZTD products, GNSS stations collect data on the signals received from 

the GNSS satellites and the station's position. At a GNSS station, the receiver collects 

signals from multiple satellites at various slant angles. As shown in Figure 2.2, the 

illustration depicts an upside-down cone on top of a GPS station. To calculate ZTD, the 

slant delays for multiple GPS satellites are measured and then combined using a process 

called precise point positioning (PPP) or a similar approach. PPP allows for precise 

determination of the position of a GPS receiver by using GPS measurements and precise 

satellite orbit and clock information (Benevides. 2013). 
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By combining the slant delays from multiple GPS satellites, the ZTD can be 

determined with a high degree of accuracy. The resulting ZTD value represents the total 

delay in the GPS signal as it passes through the Earth's atmosphere from the GPS satellite 

to the GPS receiver at the zenith.  

 

Figure 2.2. ZTD estimation from a single GPS station (Benevides. 2013) 

GNSS ZTD data is collected from the Raytracing Atmospheric Delay Estimation 

for RADAR (RAiDER) package, it is created by Caltech as to calculate tropospheric 

correction for Radar. In supplement it also provides access to the Nevada Geodetic Lab to 

retrieve data by region or location with a 5-minute temporal resolution at locations around 

the globe (Blewitt, 2018). In this thesis, we focus on the area of the US continent and the 

globe between 50N 68.5W 30N 125W with a total of ~8,000 GNSS stations selected at 

11:00:00 UTC and 89N 180W 89S 180E with a total of ~17,000 stations selected at 

00:00:00 UTC, respectively. The data are taken from the years 2017 to 2022. Not all 

stations have continuous data available for analysis; therefore, some stations consist of 

discontinued data. 
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The distribution of GNSS stations around the globe is not evenly spread across 

every continent. Referring to Figure 2.3, most GNSS stations are in North America, 

Europe, and Japan. As shown in Figure 2.3, zenith total delay (ZTD) correlates with 

changes in elevation and latitude. ZTD increases as latitude approaches the equator (0°) 

and at locations closer to sea-level (< 1000m. As the ray propagates through a thinner 

troposphere, the effect on the delay is smaller. 

 

Figure 2.3. The distribution of GNSS station around the globe with ZTD and ZTD with 
elevation and latitude on 01-01-2017 at 00:00:00 UTC. 

2.3. TIMEFRAME 

The timeframe for the data ranges over six years from the beginning of 2017 to the 

end of 2022. Although ZTD data from GNSS stations have a higher temporal resolution, it 

was decided to match the timeframe with the NWP model's temporal resolution to keep 

consistency. However, not all GNSS stations essentially have continuous data for long 

periods of time, which may result in some data discontinuity due to no available data on 

some date or time. For NWP model, due to the natural of a model it is generally not an 
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issue, as each datetime and location can be treated as a singular observation and dismissed 

if needed. For this thesis, the US continent model takes daily measurements, and for the 

global model, it takes measurements at 15-day intervals for training with the respective ML 

model. 

2.4. DATA VALIDATION 

To determine if we can improve spatial resolution of ERA-5 output for the machine 

learning algorithms, we checked if it was relevant, representative, and comprehensive. The 

data underwent a geostatistical analysis to determine the spatial correlation between ERA-

5 outputs and ZTD.  

We first sampled the NWP model between 51N 120W 48N 123W at pressure levels 

of 400m, 1000m, and 4000m. Then, we calculated the distance between points and grouped 

them by distances to measure the variance between the response variables. This generates 

semi-variograms that provide information on the variation change with increasing lag 

distance. In general, points that are closer will have higher covariance/more similarity than 

points that are farther away (see Figure 2.4). 

Variograms consist of measurements of the variance and covariance of weather 

parameters, such as pressure, temperature, and partial pressure of water vapor content, in 

comparison to hydrostatic delay and wet delay derived from RAiDER. The variance of 

pressure, temperature, and partial pressure of water vapor tends to have high variation in 

the shorter range at lower elevations (~400m), but the variance tends to decrease as altitude 

increases. 
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Figure 2.4. Plot of a subset of semivariogram in pressure at 3 different elevations. 

 
Variograms are an essential tool in geostatistics, as they help us understand the 

spatial correlation between variables. Specifically, they provide information about how the 

variance of a particular variable changes as a function of distance between locations. In the 

context of this study, the variograms help us to evaluate the spatial correlation between the 

ERA-5 outputs. Figure 2.5 illustrates the variability of NWP model products. Figure 2.5a 

reflects of the correlation between elevation change and wet delay, which is similar to the 

partial pressure of water vapor (Figure 2.5b). This indicates that wet delay is reliant on the 

partial pressure of water vapor. Partial pressure of water vapor, temperature, and pressure 

exhibit distinct spatial variations (Figure 2.5c-e). Although partial pressure of water vapor 

and pressure display similar variability at different altitudes, their correlation distance 

differs, with partial pressure of water vapor being 200 km and pressure being over 300 km. 

At a point of 49˚N and 122˚W, the changing in partial pressure of water vapor versus 

elevation (Figure 2.5b) indicates most of the variation in water vapor is in the area close to 
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the surface of the earth. (Lower troposphere <10km). This is consistent with the estimated 

spatial variation of water vapor partial pressure at distinctive heights (Figure 2.5c), which 

demonstrate a significant variability in partial pressure of water vapor in the portion of the 

atmosphere that is closer to the Earth’s surface with a variance of around 12000 Pa2 at 400 

m, compared to 4000 Pa2 at 4000 m.  

 

Figure 2.5. Variogram of weather model parameters, hydrostatic, and wet delay 

The results of geostatistical analysis demonstrate a limitation of using interpolation 

for NWP model output. Variograms indicate that values cannot be interpolated from 0 km 

due to the regular gridded spatial resolution of ERA-5 (~30 km). Interpolation performed 

between grid points of the NWP model results in smoothing out of data due to the absence 

of additional information. Previous research by Cao et al. (2021) attempted to address this 

issue by applying a 3D interpolation scheme for NWP model (ERA5) parameters. Their 

approach increased the resolution of the NWP model parameters from 30 km to 2.5 km, 
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followed by raytracing along the LOS. The study resulted in a noise reduction of 87% in 

interferograms after applying correction. However, the success of this approach may still 

be limited by the geostatistical analysis mentioned earlier. Thus, the effectiveness of this 

approach could be attributed to the calculation of raytracing along the line-of-sight (LOS) 

instead of increasing the resolution of the weather model output.  

2.5. ACCURACY OF THE DATA 

In GNSS data analysis, outliers can cause significant problems in data processing 

and affect the accuracy of the results. To address this issue, the Nevada Geodetic 

Laboratory provides an uncertainty factor called sigZTD for the ZTD data. However, it 

does not automatically remove the outliers from the data. Therefore, it is crucial to filter 

out the GNSS station acquisition with high uncertainty to ensure data integrity for further 

analysis. In this thesis, the threshold used for filtering is a sigZTD of 0.01 or higher. 

Removing these high-uncertainty data points can improve the overall accuracy of the 

results. 

The ERA5 Numerical Weather Prediction (NWP) model's accuracy and uncertainty 

rely on various factors, such as the spatial and temporal resolution, physics 

parameterization schemes, and input data quality. With a spatial resolution of 

approximately 31 km and a temporal resolution of one hour, ERA5 is one of the most 

advanced NWP models available. Nevertheless, the accuracy of the model remains 

uncertain due to the inherent complexities of atmospheric processes. The accuracy may 

also fluctuate depending on the location and period studied, with regions with complex 

terrain or extreme weather conditions displaying lower accuracy than others. Moreover, 
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the quality of input data from satellites, radiosondes, and ground-based stations can impact 

the model's precision. 

2.6. DATA EXTRACTION AND PREPROCESSING 

The extraction of NWP model products is a crucial step in this study, as it forms 

the basis for subsequent analysis. To ensure that the data are representative of the 

atmospheric conditions at each station, a two-step interpolation process is employed. The 

first step involves vertical interpolation, which is performed by interpolating the NWP 

model output into 51 fixed pressure levels. The method used for interpolation is similar to 

that used by Cao et al. (2021), who found that the atmospheric refractivity beyond 40 km 

can be ignored, while it increases significantly towards the lowermost 5 km of the 

atmosphere. To account for this change in refractivity, different sampling steps are used 

for different altitude ranges (Figure 2.6), with finer sampling steps employed for the lower 

altitudes. The second step involves horizontal interpolation, which is performed by 

interpolating the NWP model output to the GNSS stations based on their geographic 

coordinates. This generates a comprehensive database comprising 155 parameters, 

including pressure, temperature, water vapor, latitude, and elevation. Each row in the 

database represents an individual observation for a specific station at a given date and time. 

This approach ensures that the data are spatially and temporally consistent, enabling 

accurate evaluation of the spatial correlation between the NWP model outputs. It is worth 

noting that the accuracy of the extracted NWP model products is dependent on the spatial 

and temporal resolution of the NWP model output and the accuracy of the interpolation 
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techniques employed. Therefore, careful consideration must be given to these factors when 

interpreting the results of this study. 

 

Figure 2.6. ZTD (m) versus elevation (m). 

After extracting data from the NWP model, it needs to be processed into at least 

two different datasets (training and testing) before the training phase. The training dataset 

is the most crucial aspect of machine learning as it teaches the machine learning model 

about the relationship between input and labelled data. It trains the algorithms iteratively 

in batches along with the labelled data.  

The validation dataset is used during the training process to monitor the progress 

of the training phase. The model sees this data throughout the training, but it doesn’t learn 

from it. Instead, it's used as an indicator of overfitting and underfitting of the model. 

Overfitting occurs when the model is too complex and learns the noise within the data, 

resulting in a model that is not generalizable to new data. Underfitting occurs when the 

model is too simple and does not learn the underlying patterns in the data.  
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The testing dataset is used to evaluate the performance and accuracy of the model. 

It's a sample of data that is not included in the training of the model and gives an unbiased 

evaluation of the final model's performance. Testing and validation dataset are usually 

shared because they are excluded from training. 

To ensure fair training without data leakage, the data is split in time. The training 

dataset consists of the years in 2017-2020, while the validation / testing datasets are from 

the year in 2021-2022. This helps ensure that the model is generalizable and can make 

accurate predictions on new data. 

It's important to note that the size of each dataset may vary depending on the amount 

of data available and the complexity of the problem. Additionally, it's crucial to ensure that 

the datasets are balanced and representative of the overall population. 

Table 2.1. Training and testing data distribution. 

 US model Global model 

Training 5,644,952 1,082,502 

Testing 2,086,682 457,480 

Total 7,731,634 1,539,982 

 

Feature scaling is a pre-processing technique used in machine learning to normalize 

the data features to a similar scale. Machine learning models rely on numerical features to 

make predictions and they may have different units or scales. By scaling the features to a 

similar range, we can ensure that no feature dominates over the others in influencing model 

predictions. Feature scaling can also improve the convergence of machine learning 

algorithms, such as gradient descent, by allowing them to reach the optimal solution more 
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quickly. Common scaling methods include standardization (scaling to zero mean and unit 

variance) and normalization (scaling to a range between 0 and 1). In this thesis, we employ 

normalization as our preprocessing step instead of standardization. The reason for this is 

that the weather model parameters at each altitude level do not follow a normal distribution. 

Standardization may not accurately represent the data after scaling. 

Normalization is also known as min-max scaling, it is done by having each feature 

subtracting the minimum value from each column of data and divided by its range (max – 

min). The value in a column is bounded between a fixed range of 0 and 1. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒!"#$ = (&'()*#'+&'()*#'!"#)
(&'()*#'!$%+&'()*#'!"#)

   (2) 
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3. METHOD 

3.1. RANDOM FOREST MODEL 

Random Forest is a type of ensemble learning algorithm that combines multiple 

decision trees to make predictions. In this approach, each tree is built using a random subset 

of the training data and features, resulting in a diverse set of trees that collectively make 

more accurate and stable predictions than a single decision tree. During prediction, the 

algorithm aggregates the output of all trees to generate the final prediction. 

3.1.1. The Concept of Random Forest. A decision tree is a simple machine 

learning algorithm that can be used for both regression and classification. It has been 

applied in various fields such as finance, medicine, marketing, and engineering (Zheng et 

al. ,2022, Liu et al., 2022). The algorithm builds a tree-like model in which each internal 

node represents a test on a particular feature, each branch represents the outcome of that 

test, and each leaf node represents a class label or a regression value. Decision tree uses 

splitting criteria to divide the dataset into subsets based on the value of an attribute. Each 

split taking the model closer to the final decision.  

To evaluate the quality of the split, metrics such as mean square error (MSE) are 

used. decision trees are prone to overfitting and can be sensitive to noise and outliers, fitting 

strongly with the given dataset and failing to generalize when extracting complex relations 

in datasets. Random forest, on the other hand, predicts results with greater precision when 

multiple decision trees form a committee, particularly when the individual trees have no 

correlation with one another. The random forest algorithm is an extension of the bagging 
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method and uses feature randomness in creating an uncorrelated forest of decision trees. 

The key concepts are as follows: 

• Bagging (Bootstrap Aggregation): Since decision trees are sensitive to the data they 

are trained on; bootstrapping is done by randomly sampling the whole training data 

with replacement. This results in tree structures that can vary significantly even with 

relatively insignificant changes to the training set. 

• Feature Randomness: This forces variation within the decision trees in the model and 

generates low-correlation and high-diversity models to minimize possible error from 

a single decision tree model. 

• Aggregating: Each decision tree model is a prediction of the forest. To make a 

prediction with the forest, the mean of all tree's predictions is taken as the model 

output. 

3.1.2. Implementation of Model. This thesis employed random forest consisting 

of 100 trees for the dataset described earlier. It was discovered that adding more estimators 

(trees) did not increase the accuracy of the model, but it did lead to an increase in 

computational time. Inversely, using fewer trees had an adverse impact on prediction 

quality. The mean squared error (MSE) was used to assess the suitability of features or 

thresholds for splitting samples. While having more data is typically advantageous for 

machine learning algorithms, the random forest algorithm does not require as many 

samples as neural networks. It was also observed that enhancing the size of training 

samples lead to an increase in computational time and did not improve prediction accuracy. 
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3.2. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network (ANN) is a type of machine learning algorithm that is 

inspired by the structure and function of biological neural networks. It has become 

increasingly popular in the past decade, especially in geological scientific research, due to 

its ability to analyze and learn from complex data sets. The basic building block of an ANN 

is a neuron, which receives inputs, performs a computation, and produces an output. In an 

ANN, multiple neurons are connected to form layers, and layers are stacked together to 

form a network. ANNs or neural networks are fundamental processes using statistical 

methods for training computational algorithms that split, sort, and transform a set of data 

to maximize the ability to classify, predict clusters, or discover patterns in a target dataset 

(Reichstein et al. 2019).  

ANNs can be used for both classification and regression problems. During the 

training process, the weights of the connections between neurons are regulated based on 

the difference between the predicted output and the actual output, using an optimization 

algorithm such as backpropagation. The objective is to minimize the error between the 

predicted output and the actual output, so that the network can generalize to new data. 

To use ANN effectively, it is important to consider some key points, such as the 

network architecture. The number of layers and neurons in each layer can have a significant 

effect on the performance of the network. Choosing the right architecture for a given 

problem is important and can involve experimentation and tuning. Additionally, ANNs 

require a large amount of training data to learn the underlying patterns in the data. The 

quality and quantity of the data used for training can impact the accuracy of the model. 
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Another important consideration is regularization techniques. ANNs can easily 

overfit the training data, which can lead to poor generalization performance. Regularization 

techniques such as L1/L2 regularization, dropout, and early stopping can be used to prevent 

overfitting. Moreover, the choice of activation functions in the neurons can also impact the 

performance of the network. Common activation functions include sigmoid, rectified linear 

activation unit (ReLU), and tanh. 

Interpretability is another important factor to consider. One potential drawback of 

ANN is that they can be difficult to interpret, especially for complex architectures. 

Techniques such as visualization and sensitivity analysis can be used to help understand 

the model's behavior and how it makes predictions. 

ANN can solve a wide variety of problems with the help of a backpropagation 

learning algorithm. There are various types of ANN, and the most common type consists 

of three layers containing an input layer, a hidden layer, and an output layer. Nodes in each 

layer connect with another layer with weights and thresholds. A neural network with more 

than three layers, including input and output, is considered a deep learning algorithm or 

deep neural network. Deep learning can take in unstructured data in its raw form, and it 

can distinguish categories of data from one another. Early uses of machine learning 

involved the classification of land cover and clouds with the use of high-resolution satellite 

data (Pritt & Chern, 2018, Bai et al., 2016). 

3.2.1. Concept of Neural Network. ANN (or multi-layer perceptron (MLP)) 

become popular in the field of scientific research especially when handling large datasets. 

ANNs consist of neurons that are interconnected nodes in the hidden layers, that process 

information and make predictions based on that information. The input layer receives 
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data, which is then processed by the neurons in the hidden layers using a set of weighted 

connections. The output layer produces the final prediction or output (Figure 3.1).  

The performance of a neural network depends on several factors, including the 

architecture of the network, the training algorithm used, and the size and quality of the 

training dataset. The architecture of the network, which determines the number of layers 

and the number of neurons in each layer, can have a significant impact on the performance 

of the network. For example, a deeper network with more layers can learn more complex 

representations but may also be more difficult to train. 

In addition, the choice of training algorithm can also have a significant impact on 

the performance of the network. The backpropagation algorithm, which is commonly 

used to train neural networks, adjusts the weights between neurons based on the 

difference between the predicted output and the actual output. Other algorithms, such as 

stochastic gradient descent and adaptive learning rate methods, can also be used to train 

neural networks. The objective is to minimize the error between the predicted output and 

the actual output, so that the network can generalize to new data. 

 

Figure 3.1. Illustration of a single neuron (source from 
https://www.kaggle.com/code/ryanholbrook/a-single-neuron ) 
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Deep learning and neural networks are closely related concepts, but there are some 

key differences between them. Neural networks are a type of machine learning algorithm 

that are designed to mimic the structure and function of the human brain. They are 

composed of interconnected nodes that process information and generate output based on 

a set of inputs. Deep learning, on the other hand, is a subset of neural networks that involves 

training neural networks with many layers (Goodfellow et al., 2016). These deep neural 

networks are capable of learning more complex features and patterns from data than 

shallow neural networks, and they have been particularly successful in tasks such as image 

and speech recognition (LeCun et al., 2015).  

In other words, deep learning is a more advanced form of neural networks that 

involves training neural networks with many layers, enabling them to learn more complex 

features and patterns from data. While neural networks can be shallow or deep, deep 

learning specifically refers to neural networks with many layers. 

The idea of neural network model can be formulated by equation (3): 

𝑦 = 	𝜙(𝑧) = 	𝜙(𝑤-𝑥 + 𝑏)    (3) 

Where x is the input, along with a bias, b and w is the weight. The neuron's output 

is determined by combining the input vector x, weight vector w, and scalar bias value b, 

which are added together and passed as the argument of the activation function ϕ. (Emmert-

Streib, F et al., 2020). 

In a neural network, the activation function is used to determine the output of each 

neuron in the network based on the weighted sum of the inputs. The choice of activation 

function can have a significant impact on the performance of the network, as it determines 
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the nonlinearity of the model and can affect the ability of the network to learn complex 

relationships in the data. 

Activation functions are typically chosen to be nonlinear, as this allows the network 

to model complex nonlinear relationships in the data. There are several commonly used 

activation functions, including sigmoid, tanh, and ReLU. In this thesis we used ReLU as 

our activation function and it is used in the hidden layers and allows for faster training and 

better performance in deep neural networks. 

The choice of activation function and its parameters can have a significant impact 

on the performance of the network. Researchers have shown that choosing the right 

activation function can lead to better performance and faster training times in deep neural 

networks (Glorot and Bengio, 2010). It can be defined by the following equation (4): 

𝑓(𝑥) = max	(0, 𝑥)     (4) 

It describes the situation as value form x is negative, the function will output as 

zero. On the other hand, when x is positive, the function will output as x. Figure 3.2. shows 

the graphical representation of the equation described above. 

 

Figure 3.2. Graphical representation of the ReLU activation function above 
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3.2.2. Gradient Descent. Gradient descent (GD) is an optimization algorithm 

used in machine learning to minimize the cost function. It works by calculating the 

gradients of the cost function with respect to the model parameters and updating them in 

the opposite direction of the gradient to reach the minimum cost. The algorithm 

iteratively takes small steps towards the minimum cost, and step size is determined by the 

learning rate (Figure 3.3). 

The GD algorithm can be computationally expensive when the training data is 

large, and the model parameters are high dimensional. There are several variants of GD, 

including batch gradient descent, mini-batch gradient descent, and stochastic gradient 

descent. The choice of variant depends on the size of the training data, computational 

resources available, and the convergence rate required. GD is a widely used optimization 

algorithm in machine learning due to its simplicity and effectiveness (Goodfellow et al., 

2016). 

 

Figure 3.3. Illustration of gradient descent from O’Reilly 

Stochastic Gradient Descent (SGD) is an optimization algorithm that improves 

upon the traditional Gradient Descent (GD) algorithm. Unlike GD, which computes the 
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gradient of the cost function over the entire training set, SGD updates the model's 

parameters by computing the gradient over a single randomly chosen training instance 

(batch size) at each iteration (epoch). This results in a faster convergence rate and better 

generalization performance, especially in large-scale datasets. (Bottou 2012) 

3.2.3. Learning Rate. The learning rate is a crucial hyperparameter that governs 

the magnitude of the steps taken while optimizing a model. It plays a significant role in 

determining the extent of the changes made to the model's parameters during the training 

process. If the learning rate is set too high, the model can converge quickly, but it may 

overshoot the optimal solution. Conversely, a low learning rate can lead to slow 

convergence and may get trapped in a local minimum. Hence, selecting an appropriate 

learning rate is essential for optimizing the model's overall performance. 

For example, in the popular optimization algorithm SGD, the learning rate 

determines the step size taken in the direction of the negative gradient of the loss function. 

A small learning rate means smaller steps and slower convergence, while a large learning 

rate means larger steps and faster convergence (Goodfellow et al. 2016). 

An appropriate learning rate is crucial for achieving the best performance of a 

machine learning model. If the learning rate is set too high, the model may diverge and fail 

to converge to a good solution. If it is set too low, the model may converge too slowly or 

get stuck in a local minimum. Therefore, it is often necessary to experiment with different 

learning rates to find the optimal value for a given problem (Figure 3.4). 
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Figure 3.4. Comparison of different learning rate. 

3.2.4. Loss Function. Mean Squared Error (MSE) is a commonly used loss 

function in machine learning for regression problems. It measures the average of the 

squared differences between the predicted values and the target values and can reference 

with the following equation (5). 

𝑀𝑆𝐸 = .
!
∑ (𝑝𝑟𝑒𝑑/ − 𝑙𝑎𝑏𝑒𝑙/)0!
/1.     (5) 

where n is the number of training examples. 

The goal of training a machine learning model is to minimize the loss function. In 

the case of MSE, this means finding the set of model parameters that result in the smallest 

average squared error between the predicted and actual target values. 

MSE has several desirable properties, including being a differentiable, convex 

function that is easy to optimize. However, it can be sensitive to outliers in the data, which 

can lead to overfitting if not addressed properly. MSE is a useful and widely used loss 

function in regression problems due to its simplicity and ease of optimization. 
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3.2.5. Implementation. The architecture of the neural network model is 

compiled with 11 hidden layers, and the details can be found in Table 3.1. The network 

has a funnel structure, which is a commonly used design. The model begins with 155 

neurons, the same number as the input parameters, to account for all possible features. In 

each consecutive hidden layer, the number of neurons remains the same as the previous 

layer. However, from the next hidden layer onwards, the number of neurons is halved 

from the previous layer. This process is repeated until reaching the final layer, which 

outputs one neuron to ensure one prediction value is obtained.  

Network described is constructed with python package of Tensorflow – Keras.  

Table 3.1. Architecture of model 

Layer Input 
layer Hidden 

layer 1 Hidden 
layer 2 Hidden 

layer 3 Hidden 
layer 4 Hidden 

layer 5 Hidden 
layer 6 Hidden 

layer 7 Hidden 
layer 8 Hidden 

layer 9 Hidden 
layer 

10 
Hidden 
layer 

11 
Output 
layer Total 

Number of 
Neurons 155 155 155 80 80 40 40 20 20 10 10 5 1 - 

Parameters - 24335 24335 12560 6560 3280 1680 840 440 220 120 60 6 74436 

 

In machine learning, hyperparameters such as learning rate, batch size, and epochs 

need to be carefully tuned for optimal performance. However, determining the best values 

for these hyperparameters can be a tedious and time-consuming process involving trial and 

error. To streamline this process, the randomized search cross-validation method from the 

Scikit-Learn model selection module is used for this thesis. This method allows for setting 

out a range of marginal values for the hyperparameters and then randomly searches for the 

optimal combination of hyperparameters automatically during the training runs. This 
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approach can save considerable time and effort in finding the best hyperparameters for a 

given model. The final set of optimal hyperparameters can be summarized in Table 3.2, for 

easy reference and reproducibility. 

In Figure 3.5, the progress during training is shown. The training curve appears to 

have a fairly high learning rate, but the validation curve closely follows the training curve 

until it reaches its minimum. Additionally, increasing the number of epochs does not appear 

to aid in convergence or result to a lower MSE. Therefore, it only adds more computational 

time.  

Table 3.2. Hyperparameters 

Hyperparameters Values 

Learning Rate 0.0001 

Batch Size 128 

Epochs 50 

 

 

Figure 3.5. Mean square error during training. 
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3.3. COMPUTATION OF TROPOSPHERIC DELAY WITH TRADITIONAL 
METHOD 

In this thesis, the theoretical model is used as the baseline for predicting zenith total 

delay (ZTD) at the same station and timeframe as comparisons. The tropospheric phase 

delay, which is mainly caused by refractivity (N), is composed of hydrostatic, wet, liquid, 

and ionospheric components (Smith and Weintraub, 1953; Davis et al., 1985). These delays 

result from variations in temperature, pressure, and relative humidity that are spatially 

correlated with topography. This study concentrates solely on the hydrostatic and wet 

components of refractivity. Refractivity, N, can be expressed in the following manner as 

described in equation (6) (Hanssen, 2021): 

𝑁 = (𝑘.
2
-
)345#" + (𝑘60

'
-
+ 𝑘7

'
-&
)8') = 𝑁345#" + 𝑁8')  (6) 

where 𝑃 represents the total atmospheric pressure, 𝑇 is the temperature, and 𝑒 is the partial 

pressure of water vapor at a specific height. The coefficients 𝑘., 	𝑘60, and	𝑘7	are empirical 

constants estimated in literature as 𝑘. = 77.6	𝐾	ℎ𝑃𝑎+., 𝑘60 = 23.3	𝐾	ℎ𝑃𝑎+., and 𝑘7 =

3.75 ∙ 109	𝐾0	ℎ𝑃𝑎+. (Smith and Weintraub, 1953).  

The phase delay caused by troposphere, 	𝜙)#":" , at a given height, ℎ = ℎ; , 

represents the accumulation of refractivity between ℎ; and the top of the troposphere ℎ)": 

along the radar’s line of sight as explained by Hanssen (2001). The tropospheric phase 

delay can be calculated by integrating the refractivity value at grid points using the 

following equation (7): 

𝜙)#":" =
+<=
>

.;'(

?"@A ∫ P𝑁345#" + 𝑁8')Q𝑑ℎ
3)*+
3,

    (7) 

Where	𝜃	is	the incidence angle, 𝜆	is	the radar wavelength, and−4𝜋⁄𝜆	is	a conversion factor 

used to convert from pseudo range increase to phase delay. 
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A package RAiDER is used for deriving this pointwise delay. The python script 

will download the NWP model and create a 3D map where it calculates all the refractivity 

at each grid nodes. The final product (hydrostatic total and wet total) is derived using a 3D 

grid interpolator by considering latitude, longitude, and elevation of interest. The zenith 

total delay is the summation of the hydrostatic total and wet total. All the NWP model ZTD 

discuss later in the result section are referring to the product derived from RAiDER 

package. 
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4. RESULT  

4.1. COMPARISON RESULTS BETWEEN MODELS 

4.1.1. CONUS Model. The preliminary version of the model architecture 

described in Section 3.2.2 was trained on GNSS stations situated in the US continent. The 

testing dataset consisted of data collected from the period of 2021 to 2022. To evaluate 

the accuracy of the model's predictions, a histogram was generated to display the 

distribution of residuals for each GNSS station (refer to Figure 4.1 and 4.2). The 

histogram showed a normal distribution with a mean close to zero 0.00039 m for RF 

model and -0.00144m for NN model. The RMSE shows for both models are well below 1 

cm which is 0.972 cm and 0.874 cm for RF model and NN model respectively. NN 

model with a lower RMSE suggests that the models’ predictions were highly accurate 

and exhibited consistent performance. 

 

Figure 4.1. Residual for CONUS RF model prediction 
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Figure 4.2. Residual for CONUS NN model prediction.  

To further evaluate the model's performance, Figures 4.3 and 4.4 were utilized to 

show the root mean square error and average error for individual GNSS stations, 

respectively. These figures demonstrate that the model's RMSE predictions in the 

continental US were less than 2 cm, signifying that the model performed exceptionally well 

in forecasting the target values. The accuracy of the model's predictions in this region is a 

positive indication of its ability to forecast complex weather patterns at a local level, which 

could possibly be extended to a global scale. Overall, these results provide strong support 

for the capability of machine learning to accurately predict zenith total delay from NWP 

model features. 

Accuracy of the prediction seems to decrease as GNSS that are closer to the equator 

(Figure 4.3). From the northern part up in Canada with a RMSE range from 0.0025 m – 

0.0050 m to the southern part down in Texas, Louisiana, and Florida states, we see an 

increase of RMSE up to 0.0125 m. This is possibly related to the increase of humidity in 
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the atmosphere from the ocean. The same kind of effect also appear to some inland area 

such as the city of Toronto where huge lake could introduce large variation in humidity in 

the atmosphere and could be difficult for the model to predict.  

 

Figure 4.3. CONUS NN model prediction RMSE. 

 

Figure 4.4. CONUS model prediction average error. 
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4.1.2. Global Model. This section is to compare the performance of the global 

Neural Network (NN) model and the global Random Forest (RF) model, which were 

trained using data from a 15-day interval with fewer input features than the previous 

model. While the previous model focused on daily data at a specific time, this new model 

considers the temporal and spatial variability of the data, covering a larger geographical 

area with more diverse latitude and elevation values. Figures 4.5 and 4.6 demonstrate the 

performance of the two models, where both models exhibit a normal distribution with a 

mean close to zero. The normal distribution indicates that the predictions made by both 

models are close to the actual values, which is an essential factor in evaluating the 

accuracy of the models. The mean value from the residual plot shows that random forest 

model does not seems to have a bias with value very close to zero, however, neural 

network model may seemingly to have slightly bias in overpredicting with the mean 

value of 0.224 cm. 

 

Figure 4.5. Residual plot of Random Forest result. 
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Figure 4.6. Residual plot of Neural Network result. 

 

 

Figure 4.7. Histogram of RMSE by GNSS station from RF and NN model. 
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In Figure 4.7, a direct comparison of the RMSE distribution from all stations 

between the NN and RF models is presented. While the NN model has a slightly lower 

mean RMSE than the RF model, the standard deviation distributions are similar. 

Additionally, the histogram reveals that over 80% of stations have an RMSE lower than 

0.02 m. 

When comparing the two models, it is evident that the neural network model is 

more accurate in predicting zenith total delay, with an overall RMSE of 1.39 cm. This 

result is below the target of 2 cm set for this study, indicating that the neural network model 

is well-suited for this task. On the other hand, the RF model shows a slightly higher overall 

RMSE of 1.48 cm, still within the margin but suggesting that it may not be as accurate as 

the neural network model. 

Taken together, these metrics and plots suggest that the neural network model is 

the more suitable option for predicting zenith total delay due to its higher accuracy 

compared to the RF model. However, it is worth noting that both models performed 

exceptionally well in predicting zenith total delay with high accuracy.  

The residual plots highlight the potential of machine learning techniques in 

improving the accuracy of atmospheric correction in remote sensing applications. Overall, 

these findings demonstrate the promise of machine learning in advancing our 

understanding of complex atmospheric processes and improving the accuracy of zenith 

total delay predictions. 
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Figure 4.8. Globe NN model prediction average error. 

 

Figure 4.9. Globe NN model prediction RMSE 
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.  

Figure 4.10. Global RF model prediction average error. 

 

Figure 4.11. Global RF model prediction RMSE. 
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Compared to the machine learning model, the NWP model derived ZTD was 

calculated at the same GNSS stations as presented earlier. Figures 4.12 and 4.13 depict the 

average error and RMSE at GNSS stations in the globe. These plots display a significant 

range of error that appears to follow a systematic pattern, which correlates with the 

continent or longitude. Interestingly, Europe and Japan seem to have better predictions, 

while North America shows the lowest RMSE and average error. These results may suggest 

that the NWP model performs better in certain geographical areas than others. 

Additionally, it is worth noting that the systematic pattern observed in the error range may 

indicate the presence of unaccounted-for factors that affect the NWP model's predictions. 

Further research is necessary to investigate and identify these factors and how they 

influence the accuracy of the NWP model's predictions. 

 

Figure 4.12. Global WM prediction average error. 
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Figure 4.13 Global WM prediction RMSE. 

4.2. CORRELATION BETWEEN PARAMETERS AND ERROR 

4.2.1. Elevation. The variability in the accuracy of Global Navigation Satellite 

System (GNSS) stations is to be expected due to the individual circumstances surrounding 

each station. Factors such as station height and latitude can differ greatly from one station 

to another, leading to a wide range of potential errors in the data collected. This variability 

is demonstrated in Figure 4.14, where the relationship between the root mean square error 

(RMSE) and station elevation shows a wide range of potential errors. The dependency is 

not linear and can vary depending on the region. The plot suggests that the prediction of 

station RMSE is dependent on elevation, with higher RMSE in area of low elevations and 

lower RMSE in area at high elevations. This trend observed for both neural network (NN) 

and random forest (RF) models. As anticipated trend is primarily because at lower 
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elevations, there is typically more water vapor in the atmosphere, leading to increased 

atmospheric delay. Conversely, at higher elevations, the atmosphere tends to be drier, 

resulting in less atmospheric delay. However, the impact of elevation on prediction error 

seems to decrease for stations above an altitude of 1000 m. This is the case in general but 

at some cases we see in higher elevation it can have a large RMSE as well. The impact of 

elevation on ZTD can also be influenced by local factors such as topography, vegetation, 

and meteorological conditions, which can differ from one region to another. 

 

Figure 4.14. Scatter plot between RMSE (m) and elevation of stations with comparison 
between NN model and RF model. 

4.2.2. Latitude. Figure 4.15 have shown that ZTD is influenced by latitude, and 

that the dependency is not linear. In general, ZTD is higher at lower latitudes and lower 

at higher latitudes. This trend is since at lower latitudes, there is typically more water 



 

 

46 

vapor in the atmosphere, leading to increased atmospheric delay. Conversely, at higher 

latitudes, the atmosphere tends to be drier, resulting in less atmospheric delay. 

Furthermore, the dependency of ZTD on latitude is not constant across different 

regions of the world as seen in Figure 4.8 - 4.11. In some areas, the impact of latitude on 

ZTD may be more significant than in others due to local atmospheric conditions.  

 

Figure 4.15. Scatter plot between RMSE and latitude of stations with comparison 
between NN model and RF model. 

4.3. RANDOM FOREST FEATURE IMPORTANCES 

One advantage of the random forest model is its interpretability, as compared to 

other machine learning models. This is achieved by reviewing each feature importance 
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during the splitting of node and branch in decision trees and the creation of forest. The 

weighting of each feature ranges from 0 to 1 and sums up to 1. These weights indicate the 

importance of the input features when determining a split in a decision tree. 

Table 4.1 presents the eight most important features with their corresponding 

weights. It can be observed that the elevation of the GNSS station is the most important 

feature on the list. This means that the elevation of the GNSS station is the most influential 

factor in predicting the target values. Other important features include the water vapor 

profile specifically below 5 km. 

This information is valuable in helping us understand which features are most 

useful in predicting the target values. By knowing which features have the most impact, 

we can focus our efforts on improving data quality and ensuring that these features are 

accurately measured and recorded. This knowledge can also guide future model 

development and refinement, leading to more accurate and reliable predictions. 

Table 4.1. Importance of feature and weightings 

Hgt_m e_14 e_8 e_15 e_16 e_10 e_5 e_20 

0.794 0.1246 0.0181 0.0147 0.00536 0.00399 0.00387 0.00240 

 

4.4. COMPARE PREDICTION WITH TRADITIONAL METHOD  

To thoroughly evaluate the accuracy of the machine learning prediction, it is 

compared with the prediction from traditional Empirical model as described earlier. This 

comparison is conducted over the exact same timeframe, ensuring a fair and direct 
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comparison between the two approaches. Table 4.2 presents several properties of the 

residuals obtained from both the machine learning and Empirical models, along with a third 

comparison method. Analyzing the properties of the residuals can provide additional 

insight into the performance of each model. For example, the mean and standard deviation 

of the residuals can indicate the overall bias and precision of each model, respectively. The 

comparison of these properties can help in determining the strengths and weaknesses of 

each model and guide further development of GNSS prediction models. 

Table 4.2. Comparison between random forest, neural network, and traditional method 

 Random Forest Neural Network Traditional Method 

Root Mean Square 

Error [m] 
0.01478 0.01389 0.02017 

Mean residual [m] -0.00024 0.00224 0.01301 

Amount of residual 

> 2cm [%] 
7.77 6.51 42.5 

Mean Absolute 

Error [m] 
0.01107 0.01024 0.01614 

 

After analyzing the results, both the random forest and neural network predictions 

demonstrate significantly lower errors compared to the Traditional method approach. The 

RMSE and MAE errors are lower by approximately 5-6 mm, leading to a 27% reduction 

in error. Additionally, the number of residuals exceeding the 2 cm threshold is significantly 
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lower with model utilized machine learning, particularly neural network predictions. It 

shows that Traditional method have more than 40 % of estimation with residual larger than 

the threshold while machine learning approach have more 90 % of estimation within the 2 

cm threshold. It indicates machine learning approach have higher accuracy than Traditional 

method. 

A bias in the ZTD prediction is identified with the Traditional approach. While the 

Traditional method produces a mean of over 1.3 cm, the mean residuals for both the random 

forest and neural network models is very close to zero. This reflects that the Traditional 

method have the tendency to overpredict the ZTD. Comparatively machine learning 

algorithms are close to no bias, except for a slight overprediction by the neural network 

model.  

To further analyze the prediction corresponding to error fluctuate with times of 

year, Figure 4.16 illustrates a month-by-month comparison of RMSE for all three models. 

In general, the prediction error is lower in the months of winter and spring, while the 

months of June, July, August, and September being the highest errors within a year. This 

is likely related to the increased of moisture in the atmosphere which increase more 

fluctuation in wet delay during the summer months, which is much more difficult to 

determine precisely compared to the dry part, thus increasing the error. However, it appears 

that both machine learning predictions handle these seasonal patterns better than the 

Traditional method. Comparing between machine learning approaches, neural network 

model appears have lower RMSE than random forest model in most of the months except 

in the month of July and August. 
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Figure 4.16. Compare RMSE from between model prediction and GNSS true ZTD of 
each station and plot by month.  

4.5. COMPARE PREDICTION BY STATIONS 

To further analyze the properties of the prediction from the neural network, random 

forest, and traditional method, two stations are selected to further investigate. 

4.5.1. IABL Station. The station is situated at (-92.4309 W, 40.7408 N) and has an 

elevation of 239.93 m. It is in the center of the United States, in the south of Iowa, near the 

border of Missouri. The area is characterized by relatively flat topography without any 

mountains. Figure 4.17 depicts the monthly variation of RMSE for this station. It is 

observed that the monthly distribution of RMSE exhibits similar characteristics to the error 

observed for all the stations. The error is commonly lower during winter months. The 
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difference in summer months is not as significant, where the RMSE of neural network 

predictions in typical month are less than half compared to Traditional approach but it’s 

not the case during summertime. It indicates at sites that are in lower elevation will have a 

difficult time in predicting high accuracy ZTD in summertime due to the increase volume 

of moisture in the atmosphere.  

 

Figure 4.17. Histogram compare of RMSE by month for station IABL between each 
model prediction. 

Upon closer examination of the residuals of the time series predictions, as depicted 

in Figures 4.18 and 4.19, it becomes apparent that the initial observation holds true. 

Specifically, the Traditional model tends to overpredict the ZTD, a trend that is especially 

prominent during the summer months. Conversely, the neural network proves capable of 

handling these extreme events, though it does have a tendency to underpredict the delay. 

However, the line of neural network prediction fits closely with the actual delay, as 
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evidenced by both the time series and residual plots of the predictions. Interestingly, while 

it is indistinguishable from the random forest model, the neural network stands out as being 

markedly different from the traditional method. 

Indeed, this divergence is reflected in the metric of RMSE, with the neural network 

achieving a value of 1.15 cm and the traditional method lagging behind at 1.36 cm - almost 

double that of the former. This difference is particularly noteworthy given that the 

maximum error recorded from this station can exceed ±6 cm. Figure 4.19 underscores the 

robustness of both machine learning methods, as neither displays a strong bias and the 

residual plot indicates that the error is consistently close to zero throughout the year. 

However, the traditional method presents a different picture altogether, with a bias 

of 0.02 m evident throughout the year. The root cause of this bias remains elusive, and it 

is possible that it may stem from some constant in the equation or other factors. Thus, 

further investigation is necessary to address this issue and determine a path forward. 

 

Figure 4.18. Time series of predictions for station IABL 
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Figure 4.19. Residuals plot of station IABL compare with three model. 

 
4.5.2. LINC Station. The station is located at (-119.01 W, 37.63 N) in the eastern 

state of California near by a ski resort at Mammoth Mountain, with an elevation of 

3056.94 m. This station is selected for comparison to evaluate the correlation between 

elevation and tropospheric delay. It is known that higher elevations have lower water 

vapor content, resulting in lower tropospheric delay. However, a similar seasonal pattern 

of higher tropospheric delay in the summer months and lower effect during the winter 

months can still be observed at higher elevations (Figure 4.20). In contrast, Figure 4.21 

shows that the residual plot of the station still exhibits a positive bias or overprediction 

for the Traditional method. It is surprising to note that the Global neural network model 

behaves as an under-predictor at this station, while the Global random forest model 

remains close to zero throughout the year. The overall RMSE for all models is much 

lower than 2 cm, ranging between 1 – 1.4 cm. 
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Figure 4.20. Monthly RMSE for station LINC. 

 

 

Figure 4.21. Time series of prediction for station LINC. 
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Figure 4.22. Residuals plot of station LINC compare with three model. 

The elevation of the station appears to have an impact on the improvement of 

random forest prediction compared to the neural network model. The RMSE values suggest 

that the random forest model is marginally more precise by approximately 1 cm. However, 

these findings are preliminary in nature and further tests are necessary to assess the 

correlation more accurately between weather model parameters and the target variable. 

This thesis is of interest of the ability to predict the magnitude of the ZTD. During 

the process of tropospheric correction, this bias will be canceled out from each other when 

calculating the interferometric total delay from two date. As long as the bias are consistent 

within each method, it does not raise the flag for getting the correct interferometric delay 

between two dates.  
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4.6. APPLICATION TO INSAR 

4.6.1. Background of Test Site. An investigation was conducted to determine the 

effectiveness of different tropospheric InSAR correction methods in two regions, 

Pennsylvania, and Hawaii. The geocoded unwrapped interferogram (GUNW) and its 

related products were downloaded from ARIA-tools, an open-source Python package that 

contains tools to manipulate ARIA standard InSAR products (Buzzanga et al., 2020). 

In Pennsylvania, there were eight ascending interferograms from February 2020 to 

November 2020 at around 23:00:00 UTC (Track 004, 033, 077, and 106). The study area 

covered an area of approximately 440 km by 500 km (Figure 4.23a), extending from the 

south of Pennsylvania to the north of Virginia across the Appalachian Mountain range.  

There was no significant crustal deformation other than landslides and possible 

subsidence. The topography in this area increases from sea-level up to 900. The northern 

part of the interferogram had mountain ranges with a maximum elevation of 900 m, which 

can act as a sink for air flow, introducing different atmospheric conditions in between them. 

The testing area in this study exhibited large tropospheric phase delays (>5 cm). The 

weather model grid node has a coverage of 18 x 16 grid points. 

In Hawaii, seven ascending interferograms were collected over the largest island in 

Hawaii between July and November 2019 at around 4:30:00 UTC (Track 124) with a short 

temporal baseline (6-12 days). Signals from these interferograms should be clear from 

deformation and the major measurement are tropospheric signals. The landmass, spanning 

around 130 km in width and 160 km in length, is in the midst of an oceanic expanse and 

harbors two shield volcanoes - Mauna Loa and Kilauea - that are currently active and 

positioned towards the southern region of the island. Additionally, the island is also marked 
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by two mountain summits - Mauna Kea and Mauna Loa - which have the highest altitudes 

on the island, reaching up to 4,170 m and 3,980 m correspondingly. The topography of the 

study area ranges from sea level to 4,500 m across the island, presenting a challenging 

environment for InSAR measurements.  

The interferograms obtained were impacted by the unpredictable weather 

conditions prevalent on the island. These weather patterns are characterized by a 

complicated blend of turbulent mixing and local climate, because of the diverse distribution 

of humidity in troposphere in Hawaii. Additionally, the wind patterns around the towering 

volcanoes on the island are intense and fluctuate rapidly, further contributing to the 

variability of the delay. These factors pose challenges due to the high variability in water 

vapor content in the air, making it difficult to accurately correct for tropospheric delays. 

Despite these challenges, no eruptions were recorded during the study period, allowing the 

team to focus solely on the effects of the island's atmospheric conditions on InSAR 

measurements. For weather model coverage it has 5 x 8 grid points with about 25 points 

overlapping with our study area (Figure 4.23b). 

 

Figure 4.23. Topography of study area Pennsylvania and Hawaii. 
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4.6.2. Implementation. Figures 4.24 and 4.25 provide a comparison between eight 

examples in Pennsylvania and seven examples in Hawaii of the estimated tropospheric 

delays from the Global Neural Network model prediction and the RAiDER (Traditional 

Method) prediction. The original interferograms were converted from phase delay (π) to 

meters (m). Since an interferogram is a measurement of relative change, a pixel was 

selected as a reference point to reflect the surrounding pixel change with respect to that 

pixel. To ensure more representative results, the selected interferograms for the application 

had an average coherence value of 0.8 or above. For each example, the date is shown from 

left to right, with the first row displaying the raw interferogram where the tropospheric 

noise are partly correlated with the change in topography. The second and third rows show 

the predicted tropospheric delay from the Global Neural Network model and RAiDER 

(weather model), respectively. The last two rows display the corrected interferogram from 

the two methods that are dereferenced from the common pixel and converted to the line of 

sight with the equation mentioned in Section 1.4. 

Both the Global Neural Network and RAiDER predictions (Traditional Method) 

were able to estimate the delays and have similar magnitude as reflect in the original 

interferogram, although not always in the correct location in Pennsylvania. While similar 

magnitudes and spatial patterns of the delay were achieved, there are different results 

observed when compared. 
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Figure 4.24. Tropo-correction for interferogram in Pennsylvania with NN model and 
RAiDER. 

While both the neural network model and RAiDER were effective in correcting 

most of the noise from the troposphere, there appears to be a limitation to the extent of 

correction that can be achieved. By examining each interferogram in Figure 4.24, we can 

observe the correction made by the proposed method. Although some data may suggest 

that the Global neural network model outperformed the RAiDER prediction, it is still 

challenging to compare the two methods visually. To measure the improvement of the 

interferogram after correction, a metric was utilized that calculated the change in standard 

deviation from the original interferogram to the corrected ones. Both RAiDER and the 

neural network were able to minimize the standard deviation by 30-60%. 
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Table 4.3. Compare of RMSE with different methods by date (Pennsylvania). 

Date pair 

Original IFG 

std (m) 

NN corrected 

IFG std (m) 

WM corrected 

IFG std (m) 

20200212_20200131 0.03148  0.01173 0.01133 

20200307_20200224 0.01450 0.00958 0.00979 

20200319_20200307 0.03778 0.01378 0.01773 

20200331_20200319 0.03168 0.01334 0.01662 

20200412_20200331 0.02324 0.01362 0.01258 

20200424_20200412 0.01976 0.01312 0.01362 

20200506_20200424 0.01865 0.01777 0.01553 

20201126_20201114 0.02263 0.01017 0.01161 

 

From the date pairs of 20203019_20200307, 20200331_20200319, 

20200412_20200331 in Figure 4.24, we can observe that these interferograms were 

strongly affected by the tropospheric delay signal with added noise between ± 5 - 10 cm, 

especially at the northeastern and southwestern part of the interferogram. However, two 

out of three days show that the Neural network model outperformed the traditional method 

in the reduction of noise by ~20%. In five out of eight (~60%) interferograms, Neural 

network model was able to achieve a lower reduction in noise by a minimum of ~ 10%. 

Detail metrics of each interferogram std and percentage change are in Table 4.3 and 

Table 4.4. 
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Table 4.4. Percentage improvement from original std (Pennsylvania) 

Date pair 

Slave_Master 

NN corrected 

[%] 

WM corrected 

[%] 

20200212_20200131 -62.73 -64.02 

20200307_20200224 -33.91 -32.49 

20200319_20200307 -63.51 -53.08 

20200331_20200319 -57.90 -47.54 

20200412_20200331 -41.38 -45.87 

20200424_20200412 -33.61 -31.06 

20200506_20200424 -4.70 -16.76 

20201126_20201114 -55.04 -48.69 

 

As far as in the testing region in Pennsylvania, we did not observe any reverse effect 

from the correction method, which means it did not add more noise to the original 

interferogram. The absence of any reverse effect from the correction method in the testing 

region is an important observation. The ability to correct for tropospheric delays is crucial 

for obtaining accurate measurements in interferometry. The presence of noise in 

interferograms can significantly affect the accuracy of measurements, leading to incorrect 

results. The use of correction methods such as the Global Neural Network model and 

RAiDER is therefore essential in ensuring the accuracy of the measurements. The absence 

of any added noise from the correction method in the testing region suggests that the 

methods used in this study were effective in minimizing noise and correcting for 

tropospheric delays.  
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Figure 4.25. Tropospheric correction for interferogram in Hawaii with NN model and 
RAiDER. 

The same correction methods were applied to Hawaii, although it was a challenging 

task due to its unique characteristics as a tropical island and its unpredictable weather 

patterns, especially from the nearby volcanoes. Despite these challenges, both the Global 

Neural Network and RAiDER methods were able to achieve approximately 30% noise 

reduction. However, there were only two out of the seven dates where the Global Neural 

Network method outperformed the RAiDER correction. It is important to note that on one 

date pair (20190930_20190918), both methods were unable to reduce noise but instead 

introduced more noise to the original interferogram. Nevertheless, the Global Neural 

Network model introduced only about 1% of noise compared to the approximately 20% 

increase from the RAiDER method. 

The observations from Figure 4.25 showed that most of the tropospheric delay 

occurs around the coastal regions and nearby mountains where rain shadow effects might 
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occur. The example of Hawaii demonstrated that turbulent mixing and local weather 

patterns are difficult to predict and are greatly limited by the coverage of weather model 

grid points. There is so much variation and alteration within each node in Hawaii, and the 

spatial resolution of the weather model is unable to provide enough detail of change 

between the nodes. Therefore, the noise reduction in Hawaii was not able to achieve a 

similar correction as in Pennsylvania. In other words, the prediction is limited by the spatial 

resolution of the input from weather model parameters. These challenges highlight the need 

for further research and development of correction methods for areas with unique weather 

patterns and topographies such as Hawaii.  

Detail metrics of each interferogram std and percentage change are in Table 4.5 and 

Table 4.6. In summary, these finding provides confidence in the use of these correction 

methods in future studies. 

Table 4.5. Compare of RMSE with different methods by date (Hawaii). 

Date pair 

Slave_Master 

Original IFG 

std (m) 

NN corrected 

IFG std (m) 

WM corrected 

IFG std (m) 

20190708_20190702 0.03538  0.02218 0.02328 

20190726_20190720 0.04080 0.03094 0.03094 

20190825_20190819 0.03355 0.01803 0.01497 

20190912_20190906 0.05401 0.03243 0.03331 

20190930_20190918 0.02866 0.02891 0.03431 

20191018_20191012 0.04085 0.03096 0.02875 

20191111_20191105 0.03065 0.02290 0.02170 
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Table 4.6. Percentage improvement from original std (Hawaii) 

Date pair 

NN corrected 

[%] 

WM corrected 

[%] 

20190708_20190702 -37.32 -34.20 

20190726_20190720 -24.17 -24.17 

20190825_20190819 -46.28 -55.37 

20190912_20190906 -39.95 -38.32 

20190930_20190918 0.86 19.70 

20191018_20191012 -24.23 -29.62 

20191111_20191105 -25.27 -29.18 
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5. DISCUSSION 

5.1. GNSS BIAS 

The ZTD measurement provided by GNSS stations is highly accurate and not 

constrained by areas with crustal deformation. However, the distribution of GNSS stations 

is not uniform, especially in Asia and Africa continents. This non-uniformity could lead to 

bias in the prediction of the machine learning model, as it relies on the ZTD data of GNSS 

stations from all around the world for training. Figure 5.1 depicts the count of GNSS 

stations by latitude, which shows a significant difference in the number of GNSS stations 

in the northern hemisphere compared to the southern hemisphere. This variation is mainly 

due to the concentration of GNSS stations in three primary regions, i.e., the USA, Europe, 

and Japan. Two-thirds of the global GNSS stations are located in the northern hemisphere, 

which may result in the model predicting better in this region. Moreover, the distribution 

of GNSS stations is heavily skewed towards these regions, which can cause bias in the 

machine learning model, making it perform better in these areas. Therefore, the lack of 

GNSS stations in some regions, especially Asia and Africa, can potentially impact the 

accuracy of the machine learning model. 

The non-uniform distribution of GNSS stations can pose challenges for machine 

learning models, particularly in regions with limited data. In some areas, the lack of GNSS 

data can result in larger errors in ZTD prediction. For instance, in tropical regions where 

convective processes significantly affect precipitation formation, the scarcity of GNSS data 

can limit our understanding of GNSS ZTD and NWP parameters, leading to incorrect 

forecasts of rainfall intensity and distribution. Similarly, coastal areas with complex 
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atmospheric conditions require more precise ZTD measurements, increasing the need for 

GNSS data. Although increasing the density of GNSS stations in underrepresented regions 

may not be feasible, weighted sampling of GNSS stations by region can minimize location 

bias and improve the model's accuracy. 

 

Figure 5.1. Distribution of GNSS station by latitude. 

5.2. WEATHER MODEL TIME DEPENDENCY 

The temporal resolution of ERA-5 is hourly, which can limit the accuracy of 

estimation when InSAR acquisitions occur between hours. The application of InSAR for 

the Hawaii region is an example of such cases. As weather patterns can shift and clouds 

can form or dissipate within an hour, obtaining an accurate tropospheric delay for 

correction can be challenging. Moreover, turbulent components are time-sensitive, and 

while their prediction may be correct, their location can be inaccurate. As a result, the 

accuracy of correction can be affected. 
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To demonstrate this issue, the Global neural network model was used to predict 

tropospheric delay over Hawaii from 4:00:00 UTC to 5:00:00 UTC, with a 10-minute 

increment, as shown in the Figure 5.2 below. The increments were obtained through linear 

interpolation of parameters from two weather models since they were not available in the 

original weather model. The figure shows a red phase change on the western side of the 

island starting at 0 minutes, and with each increment, the red phase change disappears to 

the west, along with other noticeable features. Although this may not be a significant issue 

in predicting the tropospheric effect in most cases, the actual weather pattern change in the 

area remains highly uncertain because there is not a way to validate such weather pattern 

change. An animated version of this plot is available on the GitHub repository to observe 

the transition of weather patterns within an hour. 

 

Figure 5.2. Tropospheric delay changes in the increment of 10 mins. 

A test was conducted to compare the results obtained by getting the weather model 

for the closest hour (04:00:00 UTC) and getting the exact minute that matches the SAR 

acquisition time through linear interpolation (04:30:00 UTC). From Table 5.1, close to 90 

% of the interferograms tested show an increase in standard deviation by at least 0.42% 

and up to 6.31%. Interestingly, for a date pair (20190912_20190906), the standard 

deviation decreased by 2% from the original result. Although these changes are not 

significant, it is important to note that weather models have limitations in obtaining the 

most accurate parameters to match with the SAR acquisition time. Hence, the resolution of 
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the weather model will be key to providing high-accuracy tropospheric prediction for 

InSAR correction. 

ERA-5 provides high-resolution atmospheric data for InSAR correction; however, 

its hourly temporal resolution can limit its accuracy for both machine learning and 

traditional methods. Weather patterns and turbulent components can change rapidly within 

an hour, particularly in tropical areas such as Hawaii. Hence, getting an accurate 

tropospheric delay for correction can be challenging. The figure and table presented in this 

section demonstrate the impact of obtaining the correct interpolate weather model through 

time, which can result in increased standard deviation. Therefore, it is crucial to consider 

the limitations of the weather model in obtaining the most accurate parameters to match 

the SAR acquisition time, and the resolution of the weather model should be considered to 

ensure high-accuracy tropospheric prediction for InSAR correction. 

Table 5.1. Compare correction without interpolation in time in Hawaii. 

Date pair 

Original IFG 

std (m) 

NN corrected 

by interp hour 

std (m) 

NN corrected 

by closest hour 

std (m) 

Percentage 

change 

[%] 

20190708_20190702 0.03538  0.02218 0.02358 +6.31 

20190726_20190720 0.04080 0.03094 0.03107 +0.42 

20190825_20190819 0.03355 0.01803 0.01850 +2.61 

20190912_20190906 0.05401 0.03243 0.03177 -2.04 

20190930_20190918 0.02866 0.02896 0.03058 +5.60 

20191018_20191012 0.04085 0.03096 0.03169 +2.36 

20191111_20191105 0.03065 0.02290 0.02304 +0.61 
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5.3. FUTURE SCOPE 

There are so much needed to be done and to add on to this research in tropospheric 

correction. Machine learning have shown some promising result from the usage of weather 

model outputs (Pressure, Temperature, and water vapor) to predict tropospheric correction 

and comparable to traditional methods. Here are some ideas would be great for future work.  

5.3.1. A Different Machine Learning Approach. This study has shown that 

machine learning can effectively utilize weather model output to predict tropospheric 

effect. However, it should be noted that fully connected neural networks may not be able 

to account for surrounding pixels. This is because, in this study, each pixel is treated as an 

individual setting, and there is no mechanism to consider the neighboring pixels. To 

address this issue, future work could focus on using a convolutional neural network (CNN) 

style of filter-based machine learning architecture. This approach can account for the three-

dimensional data structure from the weather model and directly train with the 

interferograms' target. However, one of the main challenges of using a CNN is the 

resolution mismatch between the weather model and interferogram since the weather 

model is coarser. Nevertheless, this approach can offer better results by capturing spatial 

dependencies and providing a more accurate prediction of the tropospheric effect. 

Furthermore, the use of transfer learning could also be explored in future studies to further 

improve the performance of the CNN by leveraging pre-trained models on large datasets. 

Another possible architecture that is similar to transfer learning involves utilizing a 

stacking model. This includes obtaining multiple individual machine learning outputs and 

using them to create another hierarchical neural network model to learn the relationship 
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with the actual ZTD. This approach can take advantage of all the different models and 

consolidate them into a larger, stacked machine learning model. 

5.3.2. Using Weather Model with Higher Spatial Resolution. The current ERA5 

weather model has limitations due to its spatial resolution of 25-30 km. This can be 

problematic in areas with high variability in local weather patterns, such as Hawaii, as it 

can limit the model's ability to capture changes within its grid points. To address this, it is 

suggested to test a higher resolution weather model for its performance and application in 

InSAR tropospheric correction. For instance, the HRES climate analysis model from 

ECMWF provides atmospheric and climate variables every 6 hours with a spatial 

resolution of approximately 10 km. By using a higher resolution weather model, it may be 

possible to improve the accuracy ZTD prediction hence improve InSAR tropospheric 

correction in areas with complex local climate conditions. 

5.3.3. Implement of GOES Data. Yu et al. (2021) and Bekaert et al. (2015) have 

demonstrated that spectrometry can provide highly accurate predictions of wet delay, 

which in turn can improve predictions of interferometric delay. The Geostationary 

Operational Environmental Satellite (GOES) system is a valuable resource for weather 

forecasting, meteorological research, and environmental analysis by the National Oceanic 

and Atmospheric Administration (NOAA). GOES-16 and 17 provide coverage of the 

Western Hemisphere with a high temporal resolution of 5-10 minutes depending on the 

mode of data collection, and spatial resolution ranging from 0.5 km to 2 km depending on 

the wavelength. The satellite uses an Advanced Baseline Imager (ABI) with 16 different 

spectral bands, including two visible channels, four near-infrared channels, and ten infrared 

channels. The satellite is particularly useful in bands 8, 9, and 10, which monitor water 
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vapor/moisture in the troposphere at low, mid, and upper levels, respectively. The data are 

collected using an infrared band, and the product is a Brightness Temperature that indicates 

higher water vapor content with lower temperatures due to absorption of energy by water 

vapor. While the data are not available globally, they can be used as supplementary data to 

overcome the low spatial resolution in weather models. Figure 5.3 is an example of the 

band 10 (low troposphere moisture) from GOES-17 imager through the NOAA GOES 

image viewer, which captures changes in moisture content in Hawaii at 02:50 UTC, 03:20 

UTC, and 03:50 UTC. The figure shows the transition of moisture across the island with 

high spatial and temporal resolution. A gif image for better visualization is available on the 

GitHub repository. 

 

Figure 5.3. GOES-17 band 10 imager showing water vapor content. 
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6. CONCLUSION 

The study employs machine learning models based on numerical weather 

prediction (NWP) parameters to forecast zenith total delay. The first model, trained on US 

GNSS stations, yields accurate predictions with a low root mean square error (RMSE) of 

0.008734 m, demonstrating its potential for global applications. The second model, a global 

model trained on a more extensive area with diverse latitudes and elevations, shows normal 

distribution with precise predictions. However, the neural network model outperforms both 

models with an overall RMSE of 1.39 cm, which is less than the target of 2 cm. The 

prediction accuracy of the neural network model correlates with height and latitude, which 

may be due to the distribution of moisture at different altitudes and latitudes. Additionally, 

there is a dependence of prediction error on the time of year, which could be attributed to 

the amount of water vapor in the troposphere during the season. 

Notably, both random forest and neural network predictions exhibit significantly 

lower errors than the traditional method approach. The RMSE, originally 2 cm, was 

reduced to 1.39 cm, indicating a reduction of approximately 30%. The traditional method 

approach has a bias in the delay estimation, with an approximate overprediction of delay 

by 0.5 to 1 cm. The cause of such bias remains unclear. Monthly comparison of RMSE 

demonstrates that both machine learning predictions outperform the traditional method, 

suggesting that machine learning may handle wet delay more effectively. While random 

forest could perform similarly to the neural network approach, building many individual 

trees from training data leads to large files when storing trained weights for future use. 

Regarding the InSAR application, the neural network model effectively corrects 

tropospheric noise (reduction of ~30-60%) in most interferograms. However, the model 
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faces challenges in making predictions in areas with high variability in local climate and 

weather patterns. This is likely due to the limitation of the spatial resolution of weather 

model output, as the model depends on the input data resolution. 

In conclusion, the results indicate that the machine learning models accurately 

predict GNSS station data and may have practical applications. However, it is important to 

note that the model's performance may vary depending on the context and dataset used. 

Further testing and optimization may be necessary before deploying the model in real-

world scenarios. Additionally, the bias in the traditional method approach requires further 

investigation to improve its performance. Finally, the limitations of the model in areas with 

high variability in local climate and weather patterns suggest the need for future research 

to overcome these challenges. 
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APPENDIX 

Feature Importance for model 

 

Figure A.1.  SHAP Feature importance for model. 
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