
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2023

Flight Software Development for a University-Class Microsatellite Flight Software Development for a University-Class Microsatellite

Mission Mission

Yumeka Nagano
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Aerospace Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Nagano, Yumeka, "Flight Software Development for a University-Class Microsatellite Mission" (2023).
Masters Theses. 8151.
https://scholarsmine.mst.edu/masters_theses/8151

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/8151?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

FLIGHT SOFTWARE DEVELOPMENT FOR A UNIVERSITY-CLASS

MICROSATELLITE MISSION

by

YUMEKA NAGANO

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

AEROSPACE ENGINEERING

2023

Approved by:

Henry Pernicka, Advisor
Serhat Hosder

Daoru Han

iii

ABSTRACT

The purpose of this research is to present the software development process used by

the Command and Data Handling (C&DH) subsystem as a part of a microsatellite mission

underway at the Missouri University of Science and Technology. The mission’s objective

is to evaluate the performance of an innovative cold gas propulsion system for use in

formation flying applications and the incorporation of a stereoscopic imaging sensor used

to measure the satellite pair’s relative position and velocity vectors in real time. C&DH

uses a Raspberry Pi 3 Model B as the flight computer running a Linux environment, and

the flight code is written in C++. A State Machine controls all the actions and operations

during the mission. C&DH is also responsible for handling sensor data and communicating

with various systems. In this study, the communication method is established, and the

interface codes are being created at the time of publication. There are various tests required

for the C&DH software: unit testing, command execution testing (CET), and day-in-the-life

(DITL) testing. The first is the unit testing used to validate the flight code’s function. Next,

CET tests all possible commands from the ground station to the integrated system. Finally,

DITL is conducted to validate all functionality of the integrated system when simulating

all possible scenarios expected on-orbit. This work is to establish a reference for software

development of the C&DH subsystem and to provide an example that can be used to assist

similar satellite programs.

iv

ACKNOWLEDGMENTS

First and foremost, I am extremely grateful to my adviser, Dr. Pernicka, for his in-

valuable advice and continuous support during my master’s study. His immense knowledge

and plentiful experience have encouraged me in all the time of my academic research.

I thank the members of my advisory committee, Dr. Hosder and Dr. Han, for their

valuable time and advice in the review of this thesis.

I am grateful to the members of the M-SAT Research Team for their constructive

suggestions and guidance. I would like to thank a Chief Engineer of MR & MRS SAT, Jake

Anderson, for his support and advice on my research.

I would also like to thank Ms. Wood for her technical editing support on my thesis.

Finally, I would like to thank my parents for their support throughout my Master’s

degree.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xi

SECTION

1. INTRODUCTION. 1

1.1. MISSOURI ROLLA SATELLITE AND MISSOURI ROLLA SECOND
SATELLITE . 1

1.2. SOFTWARE DEVELOPMENT FOR UNIVERSITY SATELLITE TEAM . 2

2. LITERATURE REVIEW . 4

2.1. COMMAND AND DATA HANDLING. 4

2.2. FLIGHT COMPUTER SELECTION . 4

2.3. FLIGHT SOFTWARE . 5

2.3.1. Operating System . 5

2.3.2. Programming Language . 6

2.3.3. Version Control Tool . 6

2.4. CODING GUIDELINES FOR SPACECRAFT . 6

2.5. SOFTWARE STRUCTURE . 8

2.6. MISSION CONTROL . 8

2.7. INTEGRATION OF SOFTWARE AND HARDWARE . 9

2.7.1. Inter-Integrated Circuit . 9

2.7.2. Serial Peripheral Interface . 10

2.7.3. Universal Asynchronous Receiver/ Transmitter . 11

vi

2.7.4. 1-Wire . 11

2.7.5. Universal Serial Bus . 12

2.7.6. Transmission Control Protocol. 12

2.8. VERIFICATION AND VALIDATION . 12

2.8.1. Unit Testing . 13

2.8.2. Command Execution Testing . 13

2.8.3. Day-in-the-Life Testing. 14

3. CONCEPTUAL DESIGN OF COMMAND AND DATA HANDLING SYSTEM . 15

3.1. HARDWARE AND SOFTWARE SELECTION FOR MR SAT 15

3.2. HARDWARE AND SOFTWARE SELECTION FOR MRS SAT. 16

3.3. CODING GUIDELINES . 16

3.4. DEVELOPMENT PROCESS . 17

3.5. MISSION MODES . 18

3.5.1. Cyclops Deployment . 20

3.5.2. Initialization . 20

3.5.3. Detumble. 20

3.5.4. Checkout . 22

3.5.5. Separation . 22

3.5.6. Mission Mode 1: Trailing Formation. 23

3.5.7. Mission Mode 2: Circumnavigation . 24

3.5.8. Downlink Mode . 25

3.5.9. End of Life . 27

3.5.10. Safe Mode. 28

4. SOFTWARE DESIGN . 30

4.1. SOFTWARE STRUCTURE . 30

4.2. STATE MACHINE . 30

vii

4.2.1. Initialization . 35

4.2.2. Detumble. 35

4.2.3. Checkout . 35

4.2.4. Separation . 35

4.2.5. Trailing Formation. 39

4.2.6. Circumnavigation . 39

4.2.7. Downlink. 40

4.2.8. End of Life . 41

4.2.9. Flight Exception Handler . 42

4.2.10. Safe Mode Check . 42

4.2.11. Subsystem Health Check . 43

4.3. DATA MANAGER. 45

4.4. INTERFACE SUBTHREADS . 46

4.5. STATE INFO CLASS . 46

4.6. THREAD BUFFERS . 47

4.7. HARDWARE INTERFACES. 47

5. DATA HANDLING AND INTERFACE CONTROL . 48

5.1. COMMUNICATION PROTOCOL . 48

5.2. COMMUNICATING WITH GNC . 50

5.3. UPLINKING AND DOWNLINKING . 50

6. VERIFICATION AND VALIDATION . 54

6.1. UNIT TESTING . 54

6.2. COMMAND EXECUTION TESTING . 54

6.3. DAY-IN-THE-LIFE TESTING . 57

7. CONCLUSION AND FUTURE WORKS. 60

viii

APPENDIX . 62

REFERENCES . 63

VITA . 66

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1. I2C communication protocol. 9

2.2. SPI communication protocol . 10

2.3. UART communication protocol . 11

2.4. Software development lifecycle, verification and validation . 13

3.1. Git workflow with features and develop branch . 18

3.2. MR & MRS SAT mission flow . 19

3.3. Initialization block diagram. 21

3.4. Detumble block diagram . 22

3.5. Checkout block diagram . 23

3.6. Separation block diagram . 24

3.7. Trailing Formation block diagram. 25

3.8. Circumnavigation block diagram . 26

3.9. Circumnavigation orbit . 26

3.10. Downlink block diagram . 27

3.11. End of Life block diagram . 28

3.12. Safe Mode block diagram . 29

4.1. Flight code structure . 31

4.2. State Machine flowchart 1 . 32

4.3. State Machine flowchart 2 . 33

4.4. State Machine flowchart 3 . 34

4.5. Initialization flow. 36

4.6. Detumble flow . 37

4.7. Checkout flow . 37

4.8. Separation flow . 38

x

4.9. Trailing Formation flow . 39

4.10. Circumnavigation flow . 40

4.11. Downlink flow . 41

4.12. End of Life flow . 42

4.13. Flight Exception Handler flow. 43

4.14. Safe Mode Check flow . 44

4.15. Subsystem Health Check flow . 45

5.1. Communication protocol . 49

xi

LIST OF TABLES

Table Page

5.1. Health data. 52

5.2. Engineering data . 53

6.1. Command list . 55

6.2. Configuration list . 59

1. INTRODUCTION

The rate of small satellite launches continues to increase dramatically for a variety

of mission purposes, including Earth observation, remote sensing, and communications

[1]. According to the BryceTech report [2], small satellites (“SmallSats”) usually include

satellites with a mass less than 600 kilograms and represented 94% of spacecraft launched in

2021 (compared to 82% of spacecraft launched 2012 – 2021). Satellites continue to shrink

in size; however, as technology advances, their capabilities are becoming more impactful.

This trend has increased launch opportunities, not only for the space industry but also for

universities, by reducing cost and size of satellites without compromising function. One

advantage of small satellites is that they give college students early access to space, allowing

them to gain practical experience in space science and engineering before working in the

aerospace industry. One example of this is the Air Force Research Laboratory’s (AFRL)

University Nanosatellite Program (UNP). This program is designed to assist U.S. university

students with designing, building, launching, and operating small satellites. According

to the program, “UNP’s objective is to train the next generation of space professionals

by providing a rigorous concept-to-flight-ready spacecraft development process centered

on systems engineering principles and practices.”[3] The research team at the Missouri

University of Science and Technology has had the privilege of participating in the UNP

program since 2007.

1.1. MISSOURI ROLLA SATELLITE AND MISSOURI ROLLA SECOND SATEL-
LITE

The Missouri S&T Satellite Research Team (M-SAT) was established by Dr. Henry

Pernicka in 2001 at the Missouri University of Science and Technology. The team’s first pair

of microsatellites, Missouri-Rolla Satellite (MR SAT) and Missouri-Rolla Second Satellite

(MRS SAT), are nearing the end of their development phase. The MR & MRS SAT project’s

2

objectives are to test cutting-edge technologies applicable to SmallSats. These tests include

the investigation of an innovative cold gas propulsion system for use in formation flying

applications and the incorporation of a stereoscopic imaging sensor used to measure the

satellite pair’s relative position and velocity vectors in real time. The M-SAT team was

accepted into AFRL’s UNP Nanosatellite-8 (NS-8) student competition in December 2012

with an official start date of January 2013. NS-8 was sponsored by AFRL and the protoflight

spacecraft was completed by January 2015 for a final competition review with nine other

universities. As of the publication date of this thesis, M-SAT continues to work with AFRL

until all subsequent reviews are passed and the satellite is launched.

1.2. SOFTWARE DEVELOPMENT FOR UNIVERSITY SATELLITE TEAM

The author has been involved in developing the flight software for the MR &

MRS SAT mission as a member of the Command and Data Handling (C&DH) subsystem.

C&DH controls all autonomous actions made by the satellite and all uplinked or downlinked

communications between the spacecraft and the ground station. In addition, C&DH handles

all sensor data for the spacecraft, including those from the inertial measurement unit (IMU)

and thermal sensor. For a mission to be successful, flawless command and data handling are

essential. Flight code programming is the primary project of C&DH. For university students,

there is a number of factors that make software development challenging, for example: (1)

Team members are frequently replaced when they graduate. Due to the frequent turnover

rates, students require a longer period of time to learn good coding practices. (2) There are

often no consistent standards for writing code within the team. As a result, flight codes can

lack adequate descriptions and are not always well-organized.

3

The general software development process using the M-SAT’s satellite program as

an example and the author’s involvement are described in this paper. The primary objectives

are to assist future students in the following ways: (1) Describe the current code structure

and how it works. (2) Provide an organized instructional resource for developing flight

codes.

4

2. LITERATURE REVIEW

2.1. COMMAND AND DATA HANDLING

All electronic subsystems, parts, instruments, and functional elements are referred

to as Small Spacecraft Avionics (SSA), which are used with the flight subsystems Command

and Data Handling (C&DH), Flight Software (FSW), and other critical flight subsystems

[4]. The core integrated avionics system for controlling the spacecraft is C&DH, which in-

cludes command and telemetry processing, real-time control systems that use sensor inputs

to determine the status of the spacecraft, network management, and data storage systems

[5].

2.2. FLIGHT COMPUTER SELECTION

The selection of the flight computer greatly influences the avionics architecture

design, hence the selection is critical for the C&DH subsystem. Several open-source

hardware platforms show potential for small spacecraft systems [4]. According to the Open

Source Hardware Association [6], “Open source hardware is hardware whose design is

made publicly available so that anyone can study, modify, distribute, make, and sell the

design or hardware based on that design.” Small satellite researchers usually require low-

cost solutions to achieve their missions. The rise of open-source and low-cost technologies,

such as microcontrollers, 3D printers, sensors, and actuators, has led to an increase in the

use of open-source hardware [7].

The Raspberry Pi is a high-performance, open-source, low-cost hardware platform,

and its effectiveness has been demonstrated as a processor for satellites [8], [9]. The Ar-

duino microcontroller is another open-source electronics platform, which has user-friendly

hardware and software attributes [10]. The Arduino software is especially easy-to-use for

beginners, yet flexible enough for advanced applications. One application using Arduino is

5

Ardusat, which contains a set of Arduino boards and sensors. With the full Arduino sensor

suite on board, Ardusat provides the user the chance to design their own satellite exper-

iments and obtain actual space data using the Arduino open-source prototyping platform

[11].

2.3. FLIGHT SOFTWARE

According to [4], fundamentally, the FSW controls the spacecraft and sends com-

mands to all systems to handle all tasks required for the mission. These tasks include

all science objectives as commands to keep the spacecraft’s functionality and ensure data

storage and communication of the data. The FSW should contain all software operating on

the various subsystems and payloads in addition to the C&DH avionics systems.

Primary considerations for FSW are the following:

1. Operating system (OS): controls computer hardware and software resources and offers

standard services for programming [4]

2. Software language: creates a common format of instructions that can be translated

from what humans can understand to a code recognized by a machine, which is written

in binary [12]

3. Version control tool: coordinates work among programmers, a version control system

is used to track changes [13]

2.3.1. Operating System. Linux is a general-purpose operating system used in

embedded devices. Linux is widely used because of its abundant hardware support, imple-

mentation of communication protocols and application programming interfaces, availability

of development tools, attractive license terms, vendor independence, and affordability [14].

Linux has been used in various spacecraft, including many by Planet (Dove satellites) and

SpaceX (Falcon 9 and Dragon) [15].

6

FreeRTOS is another example of a satellite OS. A real-time operating system (RTOS)

is an OS that manages data and events with strictly defined time restrictions for real-time

computing applications. FreeRTOS is open source and released under the Massachusetts

Institute of Technology (MIT) license and is built with an emphasis on reliability and ease

of use [16]. FreeRTOS is used in many satellite missions because of its core real-time

functionalities [17], [18].

2.3.2. Programming Language. The major programming languages in the space-

flight field are C, C++, Python, and Matlab. NASA has provided various open-source codes

with these languages, including simulation tools and flight software [19]. Many space

companies and administrations, such as SpaceX and NASA, have adopted C++ in Linux

environments in order to access the sizeable Linux developer community [15].

2.3.3. Version Control Tool. Git is one of the most common version control tools

for software development. It allows programmers to track all changes, and the code is

mirrored on every programmer’s computer [13]. GitHub and GitLab are common Internet

hosting services, which allow programmers to serve content or host services connected to

the Internet, using Git.

2.4. CODING GUIDELINES FOR SPACECRAFT

Flight code programming is the primary purpose of C&DH, and there are many

considerations that researchers have to take into account to establish coding best practices.

Therefore, most critical software development projects, such as spacecraft flight codes,

have coding guidelines. These rules are intended to outline the basic rules for writing the

program, including how it should be organized and which language features should and

should not be used. According to [20], there are ten rules for developing safety-critical

code:

1. Control flow constructs must be simple. Simple code flow is beneficial for verification

and often results in improving code clarity for readers.

7

2. All loops must have a fixed upper bound. A loop must not continue forever and needs

to have a maximum number of iterations or a time condition to end the loop.

3. Dynamic memory allocation must not be used. When a variable is declared, pro-

grammers must define a specific size of memory for the data. While some languages

are able to handle data even if the size is not set, it will reduce runtime if the size of

the data is defined beforehand.

4. No function should be unnecessarily long. Typically, one function should be less than

60 lines of code. The rule suggests that a function is doing too much if it runs beyond

the screen. By breaking up the code into several small segments, it becomes simpler

to read, comprehend, and debug.

5. Functions should have at least two assertions. Assertions are used to check if pre-

and post-conditions of functions, parameter values, function return values, and loop

invariants are valid states and not null. If it is not a valid state, error messages should

be returned.

6. Data objects must be declared with the smallest possible scope. This minimizes the

opportunity for other code to corrupt or misuse the data objects.

7. Incoming parameters and return values of functions must be checked to ensure they

are in a valid state that is expected.

8. Only header files and simple macro definitions can be included as the preprocessor.

Preprocessors are used before the main code executes, and this rule discourages

large macro development to avoid developers spending additional time tracing and

understanding the code.

9. The use of pointers should be limited. Pointers are essentially used to store the

memory address of variables. Instead of passing actual data structures and objects,

pointers are passed around in functions, which uses less memory. However, pointers

can easily be misused, making it difficult to follow and analyze the flow of data in a

program.

8

10. All codes must be compiled without any warnings. This rule requires that the code

should be in a state that is ready to execute and deploy in a production environment.

The NASA Jet Propulsion Laboratory (JPL) used these rules for writing critical

mission programs and showed encouraging outcomes. In addition, these rules can simplify

the process for the developer and tester to establish the important elements of the programs.

2.5. SOFTWARE STRUCTURE

Flight software structure can often be illustrated by a layered architecture [21], [22].

The lowest layer has simple functions to access hardware interfaces. The next layer includes

functions to communicate with various subsystems. Managing various data is done in the

following layer. The processes, features, and drivers in the lower layers of the flight software

structure are compiled in the top layer. The functions in the lower layers are required for all

spacecraft, and the functions become mission-unique toward the upper layers.

2.6. MISSION CONTROL

A state machine is a mathematical model that transitions between states in response

to certain inputs [23], and it can be used to control mission flow for flight software. There

are several control approaches for the state machine. One is a centralized control that uses

a single control component to execute state machine functions [24]. This approach is well

suited for small spacecraft because the control simple logic can be easily understood and

maintained. Another approach, hierarchical control, uses multiple control components to

execute functions [24]. This approach is better suited for larger spacecraft because it can

avoid creating bottlenecks.

9

2.7. INTEGRATION OF SOFTWARE AND HARDWARE

In order to determine the next action that a spacecraft will take, the C&DH subsys-

tem must obtain data from various hardware systems, and the flight computer must send

commands to each interface. Communication protocols are used to communicate between

a flight computer and each interface. The protocols allow data to be sent from each sensor

to the flight computer and commands to be sent from a flight computer to each system. The

main communication protocols that can be used are described in the following sections.

2.7.1. Inter-Integrated Circuit. Inter-Integrated Circuit (I2C) is a simple commu-

nication protocol used to transfer data between a controller and peripherals and is a duplex

two-wire serial bus using serial clock (SCK) and serial data (SDA) wires to send and man-

age data as shown in Figure 2.1. Each peripheral has an address so that the controller can

send commands to a specific peripheral and identify from where the data originated. When

multiple devices are added to the same bus, I2C can reduce the complexity of the circuit

[25].

Figure 2.1. I2C communication protocol [26]

10

2.7.2. Serial Peripheral Interface. The Serial Peripheral Interface (SPI) is used for

high-speed data exchanges between devices on the bus. A serial clock (SCK), a peripheral

in/controller out (PICO), a peripheral out/controller in (POCI), and a chip select (CS) signal

form the minimum set of signals required. All devices on the bus share the SCK, PICO, and

POCI signals. The controller device generates the SCK signal for synchronization, while the

PICO and POCI lines are employed for data communication. Each peripheral device that is

added to the bus also has its own CS line. The structure of the SPI communication protocol

is shown in Figure 2.2. The protocol allows faster communication than I2C; however, it

requires at least four lines, which can make the system complicated [27].

Figure 2.2. SPI communication protocol [26]

11

2.7.3. Universal Asynchronous Receiver/ Transmitter. A universal asynchronous

receiver/transmitter (UART) uses only two wires to transmit and receive serial data. A trans-

mitter (Tx) pin is used to send data, and a receiver (Rx) is used to receive the data as shown

in Figure 2.3. The UART protocol allows faster transmission than SPI, although it is not

possible to communicate with multiple peripherals [28].

Figure 2.3. UART communication protocol; Source: [26]

2.7.4. 1-Wire. The 1-Wire bus is similar in concept to I2C. According to [29],

1-Wire is the only voltage-based digital system capable of half-duplex bidirectional com-

munication using data and ground connections. A 1-Wire system consists of a single

controller and one or more peripherals. In a 1-Wire connection, a controller device ini-

tializes digital communication as well as self-timing peripherals that synchronize to the

controller’s signal.

12

2.7.5. Universal Serial Bus. A universal serial bus (USB) is a common interface

that allows communication between different peripheral devices. The communication

protocol is well-known and simple, but the functionality is limited [30].

2.7.6. Transmission Control Protocol. The Transmission Control Protocol (TCP)

is designed to be used as a highly reliable host-to-host protocol to transmit packets by using

Internet Protocol (IP). TCP has taken over as the Internet’s primary connection-oriented,

stream-based transport protocol. It is commonly utilized by common applications and

frequently implemented by endpoints [31].

2.8. VERIFICATION AND VALIDATION

According to [32], software verification is testing to check that the code performs as

desired, and validation is testing to prove that the verified code meets all requirements for the

mission. The V-shaped software life cycle diagram in Figure 2.4 is often used to represent

software verification and validation. The software development process starts at the top

left corner, indicating that the development of the software requirements is the first phase.

The functional requirements for the program are broken down into a software architecture,

which is where the detailed software design and code are ultimately created. Software

verification demonstrates the accuracy of the requirements progressive decomposition into

the software code. The blue arrows represent the verification testing, and the red arrows

represent the validation testing at each step. At the lowest validation level, each software

unit is tested (unit testing), and the tests are continually performed until all the software

units have been successfully tested. The code is then integrated into the full code and tested

(integration testing). The final step of software testing is validation testing to check that the

software functions correctly on the target platform.

13

Figure 2.4. Software development lifecycle, verification and validation; Source: [32]

2.8.1. Unit Testing. Unit testing is the first step for software validation, as men-

tioned. This is a function-level test to check if each separate unit of the software meets its

requirements. The unit test should be modified when a discrepancy or bug in the program

is fixed, and a record of all the tests should be kept for reference [4].

2.8.2. Command Execution Testing. Command execution testing (CET) is per-

formed to validate every command that may be uplinked from the ground station to the

spacecraft. The FSW will be operating on the integrated satellite during the test, and the

hardware will be reacting to uplinked commands. The CET tests all of the software and

electrical interactions between all of the integrated satellite’s components, in addition to

finding any bugs or flaws in the flight software [22].

14

2.8.3. Day-in-the-Life Testing. Day-in-the-life (DITL) testing validates that satel-

lite software is nominally functional, and that the full integration of hardware and software

can perform all possible scenarios during the mission [33]. As stated in [34], mission

scenarios are simulated, and commands are generated in the planning software. Those

commands are uplinked from the ground station to the satellite and executed automatically

with the satellite in a similar state as expected on-orbit. The results, including sensor data,

are downlinked at the end of the scenario.

15

3. CONCEPTUAL DESIGN OF COMMAND AND DATA HANDLING SYSTEM

The C&DH subsystem is analogous to the central brain of the MR SAT spacecraft

and is responsible for handling data and issuing commands to different subsystems. All

data for functions are processed through the C&DH subsystem. C&DH controls all mission

flows and the decision-making capabilities of the spacecraft.

3.1. HARDWARE AND SOFTWARE SELECTION FOR MR SAT

Software code and programs are thoroughly integrated with the hardware, requiring

careful selection and implementation. Primary considerations for the C&DH subsystem are

the flight computer, operating system (OS), and software language.

MR SAT’s flight computer must satisfy the following general requirements [35]:

• Ability to execute complex calculations quickly

• Provide large data storage

• Ability to communicate over multiple data buses

• Affordable

• Small

• Minimal power draw

Open-source hardware platforms show potential for small spacecraft systems as

mentioned in Section 2.2. Therefore, the Raspberry Pi 3 Model B was chosen to serve as

the flight computer for MR SAT. This model can store large amounts of data on a micro SD

card. Another attractive feature of the Pi 3 is the abundance of readily available pinouts

and data connectors. These connectors allow the Pi 3 to take advantage of different data

communication protocols at the same time. Considering its benefits and record of success as

mentioned in Section 2.3, Linux was chosen for the MR SAT OS. Most of MR SAT’s flight

software for C&DH was created using C++ that supports object-oriented programming,

with the exception of the microcontrollers (MCUs), which were written in C.

16

3.2. HARDWARE AND SOFTWARE SELECTION FOR MRS SAT

The MRS SAT spacecraft is a non-cooperative RSO with no control over its orbital or

attitude motion. MRS SAT utilizes an ATMega644A MCU as the primary flight computer.

This MCU was selected for its simplicity and interface options, as well as the familiarity

that the team has with the hardware. The MRS SAT MCU flight code was written in C.

3.3. CODING GUIDELINES

Coding guidelines outline the basic rules for writing the flight code, including how

it should be organized and which C++ language features should and should not be used.

The following are the guidelines for MR SAT’s flight code:

1. Functions should be used to organize the code. It is possible for the flight code to be

written with only one large main function; however, in this case, it is then difficult for

developers to track, debug, and test such code. Therefore, individual functions should

be created for repeated tasks, and each function’s lines of code should not exceed one

screen page (at a standard font size).

2. The main control flow should be simple. The State Machine controlling the mission

flow only has one switch case statement to transition to the eight different mission

modes.

3. All loop statements must have a time limit or maximum iteration number to avoid an

infinite loop.

4. Appropriate data object type and size should be defined. Using more data memory

than necessary increases code run-time. Also, memory is limited, particularly for

uplinking and downlinking, so choosing proper data types and sizes is important.

5. “Namespaces” must be used to differentiate similar variables in different libraries.

For example, the IMU variables are declared in the health and power namespaces.

HEALTH::IMU is used for the health status of IMU, and POWER::IMU is used for

the power status of IMU.

17

6. A “class” or “struct” should be used to structure different data and functions. For

example, multiple data on multiple thermal sensors are needed to be stored, such

as thermal sensor ID, temperature reading, and thermal sensor location. In class or

struct, each datum must be declared as a private object to prevent accessing the object

from outside of the structure, and functions should be declared as public to access the

object member in the structure.

7. “Const” should be used for data that are not changed in the entire code, such as the

number of thermal sensors used and the temperature tolerance range. A const variable

must be notated in all uppercase to distinguish it from normal variables.

8. “Static” should be used for data that can exist only one at a time and for functions

that only need to access static variables. Using static member variables can prevent

having existing several statuses for one object. For example, only one current mission

mode can exist at a time.

9. The code must contain thorough comments. For each function, the function, input,

and output description should be commented on before the function declaration.

Within each function should be a description of each line and the to-do list for future

work must be clearly given. These comments can help team members understand the

code.

3.4. DEVELOPMENT PROCESS

The M-SAT team uses GitLab to track all changes made in the software and workflow,

as shown in Figure 3.1. In this workflow, the master branch always reflects a ready state.

Whenever a member is assigned a task in the GitLab issue list, they will create a new branch

corresponding to the issue to work on the task. Once the task is completed and tested, the

subsystem lead will review the code and, if required, make suggestions for changes. Then,

the lead will merge the respective branch into the development branch of the project. The

18

development branch will then be tested with a prior merge. Once the development branch’s

code is determined as stable by the lead, the development branch will be merged into the

master branch.

Figure 3.1. Git workflow with features and develop branch; Source: [36]

3.5. MISSION MODES

The MR & MRS SAT mission will simulate an inspector satellite performing prox-

imity operations about a non-cooperative RSO. During the mission, the MR SAT spacecraft

will serve as the inspector spacecraft, and MRS SAT will serve as the non-cooperative RSO.

Image data analyzed and stored during the main mission modes will be used to estimate the

position of MRS SAT relative to MR SAT. These images will also be used to generate a 3-D

reconstruction of MRS SAT, providing the means to characterize the RSO. The minimum

success criterion of the mission is defined as “The stereoscopic imager must acquire and

store an image pair after separation of MRS SAT as confirmed through boolean verification

19

in beacon data.”[37] The necessary high-level mission operations during the MR & MRS

SAT mission are shown in Figure 3.2. In brief, MR SAT and MRS SAT will launch together

to the International Space Station (ISS). The satellite pair will initialize in a low power mode

after separation from the ISS and “detumble” their attitude. The satellites will initialize to

a fully operational condition and carry out the necessary health checks once the nominal

attitude has been attained. MRS SAT will undock from MR SAT, and the assigned mission

modes will start, contingent on the successful system checkouts of each subsystem and

the uplinking of a separation command. Each mission mode is defined in the following

subsections [37].

Figure 3.2. MR & MRS SAT mission flow; Source: [37]

20

3.5.1. Cyclops Deployment. The mated satellites are deployed from the ISS during

the Cyclops Deployment Mode, which lasts from the time the satellites are integrated into

the Cyclops deployment mechanism to the time the mated satellites are separated from

the ISS. The mated satellites will be entirely powered down when in launch mode, and

inhibitors will be in place to prevent any electrical current from the launch vehicle or other

payloads from reaching the MR & MRS SAT spacecraft.

3.5.2. Initialization. The operations performed during the Initialization Mode are

shown in Figure 3.3. The MR SAT spacecraft’s inhibits are actuated once it separates from

the ISS, and the solar arrays will then begin charging the batteries. At this point, the MR

SAT’s Electric Power System (EPS) will power up, enabling charging of its secondary bat-

teries. The onboard Raspberry PI flight computer will automatically turn on once the EPS

is powered and start a 45-minute timer that enforces radio silence. After the 45-minute

silence, the MR SAT radio will power on and attempt to establish a link with the ground

station while the flight software will begin powering on subsystems and executing com-

mands. The MRS SAT spacecraft will power on and begin transmitting position data to the

Iridium network via its Global Positioning System (GPS) antenna and Eyestar radio. After

MR and MRS SAT are enabled, the flight computer will power on systems in the following

order: GPS MCU, GPS antenna, GPS receiver, IMU, analog board, magnetometer, and Sun

sensor boards. With the MR SAT sensors and Guidance Navigation and Control (GNC)

system powered, the navigation filter can be initialized, and position and attitude can be

determined. A systems health check will then be performed, and MR & MRS SAT will

enter into the Detumble Mode. If MR SAT is unable to resolve any anomalies during the

health check, the Checkout Mode will be activated.

3.5.3. Detumble. The operations performed during Detumble Mode are shown in

Figure 3.4. Once the spacecraft pair enters Detumble Mode, the GNC system will execute

detumble maneuvers. The GNC system will use three torque coils on MR SAT to control

the satellite’s attitude. The torque coils will be actuated for a brief period, followed by a

21

Figure 3.3. Initialization block diagram; Source: adapted from [37]

shutoff period during which the magnetometer readings and Sun sensor data will update

MR SAT’s attitude. This process is repeated until the nominal attitude is achieved. If the

nominal attitude is not achieved within seven days, the satellite will enter Checkout Mode.

22

Figure 3.4. Detumble block diagram; Source: [37]

3.5.4. Checkout. The operations performed during the Checkout Mode are shown

in Figure 3.5. Checkout Mode is intended to allow M-SAT engineers time to debug systems

as needed. In this mode, MR SAT will maintain its attitude to preserve the alignment of the

stereoscopic imager plane normal to the velocity direction. The spacecraft will wait for a

command from the ground station to enter Separation Mode.

3.5.5. Separation. The operations performed during the Separation Mode are

shown in Figure 3.6. The Separation Mode prepares the satellite for the proximity op-

erations portion of the mission and performs one final health check. This mode is critical

because there can be no more attempts at proximity operations once separation occurs, as

it places the satellite in a power-negative state. It will systematically power on the final

required systems (digital board, imaging computer, and stereoscopic cameras), perform

a health check, begin physical separation, and then enter into Mission Mode 1. If the

separation mechanism does not function correctly, the imaging system and digital board

will be turned off, and the spacecraft will thereafter reenter Checkout Mode. If the Digital

board fails a health check or connection to the imaging computer, the paired satellites will

23

Figure 3.5. Checkout block diagram; Source: [37]

autonomously return to the Checkout Mode to allow ground station engineers to assess the

anomaly. Once the diagnosis is complete and any error corrections are made, the M-SAT

engineers will wait again for an ideal pass to reenter Separation Mode.

3.5.6. Mission Mode 1: Trailing Formation. The operations performed during

Trailing Formation Mode are shown in Figure 3.7. MR SAT’s primary mission is the

proximity operation, which is executed by using the stereoscopic imaging system to estimate

MRS SAT’s relative position. MR SAT will nominally be positioned approximately 10 m

behind MRS SAT in a trailing formation using MR SAT’s propulsion system. The spacecraft

will enter Mission Mode 2 if MR and MRS SAT maintain the appropriate trailing formation

distance of 10 m +/- 2 m for at least five minutes. If a continuous five-minute period of

proper trailing formation distance is not maintained, MR SAT will autonomously switch to

Mission Mode 2 after 45 minutes. The spacecraft will autonomously switch to Downlink

Mode if the battery charge or propellant reaches a critical value before 45 minutes. The

position of MRS SAT will be determined by the GPS receiver on board MRS SAT. MRS

SAT’s Novatel GPS will beacon GPS data (with an error of approximately 2.5 m) and the

supplementary uncertainty for future post-flight processing on the ground. The Iridium

24

Figure 3.6. Separation block diagram; Source: [37]

network will receive and downlink these data, which will then be used to analyze and verify

the relative position data estimated by the stereoscopic imaging system. This information

will also be used to estimate the ballistic coefficient of MRS SAT.

3.5.7. Mission Mode 2: Circumnavigation. The operations performed during

the Circumnavigation Mode are shown in Figure 3.8. MR SAT will continue to perform

proximity operations by circumnavigating MRS SAT using stereoscopic imaging data and

the cold-gas propulsion system (Figure 3.9). The circumnavigation orbit around MRS SAT

will be maintained until all of the propellant has been consumed. Once all of the propellant

has been consumed, MR SAT will enter Downlink Mode, and MRS SAT will enter End

25

Figure 3.7. Trailing Formation block diagram; Source: [37]

of Life Mode. If MR SAT’s power drops below a critical level, Mission Mode Two will

be terminated, and the satellite will enter Downlink Mode. Images will be stored on board

for downlinking to the M-SAT ground station. Three-dimensional image reconstruction

of MRS SAT will be performed on the Missouri S&T campus using the images and data

collected.

3.5.8. Downlink Mode. The operations performed during Downlink Mode are

shown in Figure 3.10. In Downlink Mode, MR SAT will no longer have orbit control, but

will still be able to maintain attitude via the torque coils. This mode is similar to Checkout

Mode, except that the torque coils will now orient MR SAT into a near nadir-pointing attitude

to enhance ground station communications. As MR SAT continues to orbit, mission data

will be downlinked in order of priority: image pairs, engineering data, then log files. Once

all data have been successfully received by the ground station, MR SAT will enter the End

of Life Mode.

26

Figure 3.8. Circumnavigation block diagram; Source: [37]

Figure 3.9. Circumnavigation orbit; Source: [38]

27

Figure 3.10. Downlink block diagram; Source: [37]

3.5.9. End of Life. The operations performed during End of Life Mode are shown

in Figure 3.11. During End of Life, MRS SAT will drift away from MR SAT. The batteries

on board MRS SAT will only operate for approximately four orbits after being deployed from

MR SAT. MRS SAT will continue to beacon over the Iridium network during this period.

Once the power is depleted, MRS SAT will then continue to orbit until the natural orbit

decay results in atmospheric reentry. This reentry is expected to occur one to three years

after deployment, which is well within the requisite 25-year timeframe (and even within

the Federal Communications Commission (FCC) recently proposed five-year limit). When

entering End of Life, MR SAT will power down all systems except sensors related to the

GNC, Communication (COM), and C&DH systems. MR SAT will maintain communication

with the ground station and will operate as a beaconing device while maintaining the ability

to downlink engineering data. MR SAT’s reentry is expected to occur four to twelve months

after deployment from the ISS.

28

Figure 3.11. End of Life block diagram; Source: [37]

3.5.10. Safe Mode. The operations performed during Safe Mode are shown in

Figure 3.12. Safe Mode only activates if MR SAT’s batteries drop below the critical

threshold, which is defined as 115% of the minimum allowed depth of discharge, or if the

temperature rises beyond the safe operating limit. When entering this mode, a system health

check will be performed and logged to determine if a system is operating abnormally, which

would trigger Safe Mode. After the health check, all non-critical systems will be powered

down. Only the Power (PWR), C&DH, COM, GPS, and IMU will be operational in this

mode. GNC will only utilize the GPS receiver and antenna to provide CDH position data,

while CDH will generate data packages for COM. Beaconing and uplinking capabilities

will be available on COM. In this mode, the batteries can be allowed to fully charge in the

most power-positive mode for quick recharging to the battery capacity. Once the batteries

are fully charged, the analog MCU will be powered on. If this mode is entered before

Separation Mode, the spacecraft will return to Checkout Mode. If this mode is entered

after MR SAT and MRS SAT have separated, the imaging computer will restart, and the

spacecraft will enter Downlink Mode.

29

Figure 3.12. Safe Mode block diagram; Source: [37]

30

4. SOFTWARE DESIGN

4.1. SOFTWARE STRUCTURE

The software structure is shown in Figure 4.1. The flight code is split into five major

components: (1) the State Machine, (2) the Data Manager, (3) the Interface Subthreads, (4)

the State Info Class, and (5) the Hardware Interfaces. There are also two smaller components

to the flight code: the SI Manager and the Comm Interface. The flight Pi will communicate

with the SI Pi over an Ethernet line with TCP connection. A centralized control model was

chosen such that only the State Machine is responsible for controlling the execution of the

other components. This choice maintains and helps understand the control system more

easily. All subprograms of the flight code run on their own thread to allow for simultaneous

execution of MR SAT’s flight code functions. The State Info Class and Thread Buffers are

used to communicate between the various threads. The State Info Class is used to keep

track of the state of MR SAT. The Thread Buffers are used to send commands and sensor

data to the various threads.

4.2. STATE MACHINE

The State Machine will control the mission flow of the satellite and will be respon-

sible for initializing the various subsystems of the satellite. The State Machine is created

in the main function of the flight code. The private members of the State Machine include

thread objects for COM, UART, I2C0, I2C1, 1-Wire, SPI, and the Data Manager. Vectors

of command buffers for the interface subthreads are also included. The private members

of the State Machine also include two more Thread Buffers: one for commands and one

for sensor data sent to the Data Manager. Once the State Machine is created, StateMa-

chine::start() is called in the main code to begin running the flight code. The State Info

Class will be read to determine the current mission mode, and a switch case statement will

31

Figure 4.1. Flight code structure; Source: [39]

call the respective mission mode. Each mission mode has its own function that follows the

MR SAT Mission Sequence outlined in Section 3.1. The flowchart of the State Machine

is shown in Figures 4.2–4.4. Once each mission mode function completes, it will set the

current mission mode to the next mode and return the switch and case statement that will

call the next mission mode function. Commands will be sent over the Pluto radio from the

ground station to the flight Pi and stored in the command list during the mission. A fligh-

tExceptionHandler function will be continually called whenever it is awaiting an external

event to process the commands and monitor temperatures and battery voltage to determine

whether entering the Safe Mode is necessary.

32

Functions (Input/Output)

Functions (Input/Output)

Functions (Input/Output)

Functions (Input/Output)

State Machine

Initialization

- Start I2C1 threads (power interface and thermal sensors)

- Wait for radio silence & battery charge

- Turn on radio (Radio pin become high)

- Turn on MRS sat (Add data [POWER, MRS_ON, MRS, SETUP] to data buffer)

- Wait MRS to be charged

- Start spi, I2C0, data manager and com threads

- Initialize GNC

- Give time to initialize sensors (sleep(30))

- Health check

- Set next mission mode (detumble)

Mission Modes

startI2C_1Thread

Input: commandList[DATA_BUFFER::I2C_1],
dataList[DATA_BUFFER::I2C_1])

Output: Turn on I2C1 thread

powerSubsystem

Input: STATE_STATUS::POWER::RADIO

 Output: Turn on radio

Detumble

- Run detumble until successful or time limit exceeded

- Set next mission mode (checkout)

powerSubsystem

Input: STATE_STATUS::POWER::MRS

 Output: Turn on MRS SAT

Checkout

- Enters a kind of debugging mode for working out bugs in the system if entered after detumble

- Exits without checkout if entered after trailingFormation or circumnavigation

- Set next mission mode (separation)

Separation

- Turn on Digital, Cams and SI

- Start UART thread

- Wait SI to be ready

- Run primary separation

- Set next mission mode (trailingFormation) if the primary separation success

- Run secondary separation if the primary separation failed

- Set next mission mode (trailingFormation) if the secondary separation success

- Shut down subsystems (Digital, CAMS and SI) and set mission mode as checkout if

separations failed

startSPIThread

Input: commandList[DATA_BUFFER::SPI],
dataList[DATA_BUFFER::SPI]

Output: Turn on SPI thread

startI2C_0Thread

Input: commandList[DATA_BUFFER:: I2C_0],
dataList[DATA_BUFFER:: I2C_0]

Output: Turn on I2C_0 thread

startDataManager

Input: dmCommandBuffer, dmDataBuffer commandList,
dataList

Output: Turn on data manager thread

 CdhComInterface

Input: Nothing

Output: Turn on com thread

dmCommandBuffer.push

Input: newCommandData(COMMANDS::DATA_MAN::SPAWN_GNC)

 Output: Initialize GNC

 subsystemHealthCheck

(Digital mcu, SI, GPS, IMU, Analog mcu, sun sensor and hardware)

- If the subsystem is on, it will push commands to the data buffer and save ping info.

- The health check loop will delay 2000 milliseconds before checking the health of the subsystem.

- If health status is not healthy, it will reset the subsystem. If it is healthy, it will move ahead.

setMissionMode

Input: MissionMode::detumble

 Output: Set mission mode as detumble

setGNCDetumbleSuccess

Input: True

 Output: Set GNC detumble success status

setRanDetumble

Input: True

 Output: Set detumble status

setMissionMode

Input: MissionMode::checkout

 Output: Set mission mode as checkout

setMissionMode

Input: MissionMode::separation

 Output: Set mission mode as separation

powerSubsystem

Input: STATE_STATUS::POWER::DIGITAL

 Output: Turn on digital mcu

powerSubsystem

Input: STATE_STATUS::POWER::CAMS

 Output: Turn on CAMS system

powerSubsystem

Input: STATE_STATUS::POWER::SI

 Output: Turn on SI system

startUartThread

Input: commandList[DATA_BUFFER::UART],
dataList[DATA_BUFFER::UART]

Output: Turn on UART thread

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

firePrimarySeparation

(Tells power to fire the primary separation)

setMissionMode

Input: MissionMode::trailingFormation

 Output: Set mission mode as trailingFormation

fireSecondarySeparation

(Tells power to fire the secondary separation)

shutDownSubsystems

Input: STATE_STATUS::POWER::DIGITAL

 Output: Turn off digital mcu

uartThread.join

Input: Nothing

 Output: Block UART threads until the first thread
execution process is completed

Attempt
successful

Attempt failed

setHealth

Input: STATE_STATUS::HEALTH::SI,
HealthStatus::warning

 Output: Set SI health status to warning

Attempt
successful

Attempt failed

shutDownSubsystems

Input: STATE_STATUS::POWER::CAMS

 Output: Turn off CAMS system

shutDownSubsystems

Input: STATE_STATUS::POWER::SI

 Output: Turn off SI system

setMissionMode

Input: MissionMode::checkout

 Output: Set mission mode as checkout

setMissionMode

Input: MissionMode::trailingFormation

 Output: Set mission mode as trailingFormation

Figure 4.2. State Machine flowchart 1

33

Functions (Input/Output) Functions (Input/Output)

Functions (Input/Output)

Functions (Input/Output)

State Machine

Mission Modes

MissonModeOne - Trailing Formation

- Trailing success is determined via data obtained from GNC module

- If GNC module is not enabled, the loop will run until GNC module gets enabled with successful

trailing

- If mission mode is other than trailingFormation, loop will be exited automatically

- Set next mission mode (circumnavigation)

MissonModeTwo - Circumnavigation

- If GNC module is not enabled, the loop will run until GNC module gets enabled with successful

circumnav

- If mission mode is other than circumnavigation, loop will be exited automatically

- Timer was observed for Mission mode two for terminating loop

- Set next mission mode (downlink)

Downlink

- The new command data (stopping the algorithm) and images & logs data is pushed to

commandList.

- Power to Cams and Digital is shut down.

- While downlinking of images and log files is not finished/going on, continuous subsystem

health checks are performed.

- If mission mode is other than downlink, loop will be exited automatically.

- Set next mission mode (end)

setGNCTrailingSuccess

Input: True

 Output: Set GNC trailing success status

setMissionMode

Input: MissionMode::circumnavigation

 Output: Set mission mode as circumnavigation

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

setCompleteCircumnav

Input: True

 Output: Set GNC circumvation complete status

setMissionMode

Input: MissionMode::downlink

 Output: Set mission mode as downlink

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

shutDownSubsystems

Input: STATE_STATUS::POWER::CAMS

 Output: Turn off CAMS system

shutDownSubsystems

Input: STATE_STATUS::POWER::DIGITAL

 Output: Turn off digital mcu

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

setMissionMode

Input: MissionMode::end

 Output: Set mission mode as end

End of life

- The new command data of shutdown is pushed to commandList.

- CommandList is terminated by making uartThread non-joinable.

- Shut down SI subsystem.

(flightExceptianHandler is run and it contains safeMode() function.)

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

uartThread.join

Input: Nothing

 Output: Block UART threads until the first thread
execution process is completed

shutDownSubsystems

Input: STATE_STATUS::POWER::SI

 Output: Turn off SI system

Figure 4.3. State Machine flowchart 2

34

Functions (Input/Output)

Functions (Input/Output)

Functions (Input/Output)

Function Definition Function Definition Function Definition

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

processComCommand

(Checks if we have a command from com and executes that command)

- Return: Returns the mission mode the state machine is in after applying commands

- Ex. Returns the current mission mode if no change, and a different mission mode if it is changed

- Process the following command by COM command

- Reset subsystem (Digital mcu, Analog mcu, GPS, Sun Sensors, IMU and SI)

- Set mission mode (Detumble, checkout, separation, downlink and end)

- Ignore thermal bounds

- Ignore power bounds

safeModeCheck

(Checks the thermal sensors and batteries)

Exit the flightExceptionalHandler
safeMode

(Waits for batteries to charge before turning on subsystems)

Thermal sensors
and batteries are in

normal range

Thermal
sensors are out of
bounds or batteries

are too low

safeModeCheck

(Checks the thermal sensors and batteries)

shutDownSubsystems

Input: STATE_STATUS::POWER::DIGITAL

 Output: Turn off digital mcu

shutDownSubsystems

Input: STATE_STATUS::POWER::ANALOG

 Output: Turn off analog mcu

shutDownSubsystems

Input: STATE_STATUS::POWER::CAMS

 Output: Turn off CAMS system

shutDownSubsystems

Input: STATE_STATUS::POWER::SI

 Output: Turn off SI system

shutDownSubsystems

Input: STATE_STATUS::POWER::SUN

 Output: Turn off sun sensors

shutDownSubsystems

Input: STATE_STATUS::POWER::MRS

 Output: Turn off MRS

(Pre separation only)

flightExceptionHandler

(Performs a health check on the satellite subsystems)

- Parameters: Will not ping MRS SAT post separation.

- Return: True if all components respond correctly.

powerSubsystem

Input: STATE_STATUS::POWER::ANALOG

 Output: Turn on analog mcu

powerSubsystem

Input: STATE_STATUS::POWER::DIGITAL

 Output: Turn on digital mcu

powerSubsystem

Input: STATE_STATUS::POWER::SI

 Output: Turn on SI system

powerSubsystem

Input: STATE_STATUS::POWER::SUN

 Output: Turn on sun sensors

powerSubsystem

Input: STATE_STATUS::POWER::MRS

 Output: Turn on MRS

Pre separation Post separation

setMissionMode

Input: MissionMode::checkout

 Output: Set mission mode as checkout

setMissionMode

Input: MissionMode::downlink

 Output: Set mission mode as downlink

 subsystemHealthCheck

(Digital mcu, SI, GPS, IMU, Analog mcu, sun sensor and hardware)

- If the subsystem is on, it will push commands to the data buffer and save ping info.

- The health check loop will delay 2000 milliseconds before checking the health of the subsystem.

- If health status is not healthy, it will reset the subsystem. If it is healthy, it will move ahead.

delay

Input: HEALTH_CHECK_DELAY

 Output: Wait 2000 miliseconds

getHealth

Input: STATE_STATUS::HEALTH::DIGITAL,
STATE_STATUS::HEALTH::SI,

STATE_STATUS::HEALTH::GPS,
STATE_STATUS::HEALTH::IMU,

STATE_STATUS::HEALTH::ANALOG,
STATE_STATUS::HEALTH::SUN or
STATE_STATUS::HEALTH::POWER

 Output: Get health status of each subsystem

resetSubsystem

Input: STATE_STATUS::POWER::DIGITAL,
STATE_STATUS::POWER::SI,

STATE_STATUS::POWER::GPS,
STATE_STATUS::POWER::IMU,

STATE_STATUS::POWER::ANALOG or
STATE_STATUS::POWER::SUN

 Output: Reset subsystem
(Only if the subsystem is not healthy)

Figure 4.4. State Machine flowchart 3

35

4.2.1. Initialization. The Initialization flow is shown in Figure 4.5. First, the

startI2C 1Thread function is called to start the I2C1 thread that manages the Sun sensors,

magnetometer, and pressure transducer data with the analog board, digital board, and flight

computer. Once the 45-minute radio silence timer has expired, the powerSubsystem function

is called to turn on the radio and MRS SAT. Once MRS SAT’s batteries are charged, the

remaining threads (SPI, I2C0, Data Manager, and COM) are started. The GNC subsystem is

then initialized. A subsystem health check is performed, and the setMissionMode function

is called to move to Detumble Mode if the health status is healthy.

4.2.2. Detumble. The detumble flow is shown in Figure 4.6. Once the GNC

algorithm for detumbling is started, C&DH will wait for the detumble success status, or

until the time limit has expired. During Detumble Mode, C&DH will continually check

for commands, power, and temperature. If detumble is a success, the detumble status will

be set as true. Once the nominal attitude is obtained or the time limit has expired, the

setMissionMode function will be called to move to Checkout Mode.

4.2.3. Checkout. The Checkout flow is shown in Figure 4.7. During Checkout

Mode, power and temperature status will be checked, and C&DH will process the command

in the command data list. Once the command to move to Separation Mode is received and

processed, the setMissionMode function will be called to move to Separation Mode.

4.2.4. Separation. The Separation flow is shown in Figure 4.8. Once Separation

Mode is entered, the digital MCU, SI camera, and SI Pi will be powered on with the

powerSubsystem function. The UART thread will then be turned on to manage imaging

data, and a command to start the SI algorithm will be sent to the UART thread’s command

list. The spacecraft will then attempt the primary separation by commanding the power

subsystem to fire the primary separation. If the primary separation fails, the secondary

separation command will be executed. If the secondary separation fails, the digital MCU

will be powered off, and the UART thread will be blocked until the first execution process

is completed. In this case, the SI subsystem health status will be set to “warning.” The SI

36

Figure 4.5. Initialization flow

37

Figure 4.6. Detumble flow

Figure 4.7. Checkout flow

camera, and SI Pi will then be turned off. The setMissionMode function will be called to

move to Checkout Mode to wait for ground station commands. If either separation succeeds,

the setMissionMode function will be called to move to Trailing Formation Mode.

38

Figure 4.8. Separation flow

39

4.2.5. Trailing Formation. The Trailing Formation flow is shown in Figure 4.9.

This mission mode program within the State Machine is similar to Detumble Mode. Once

the GNC algorithm for Trailing Formation is started, C&DH will wait for “success” status.

During Trailing Formation Mode, C&DH will continually check for commands, power,

and temperature. If the mission is successful, the setMissionMode function will be called

to move to Circumnavigation Mode. Unlike the Detumble Mode, the current Trailing

Formation code does not yet have a time limit to exit this mode, but the 45-minute limit

described in Section 3.5.6 will be added.

Figure 4.9. Trailing Formation flow

4.2.6. Circumnavigation. The Circumnavigation flow is shown in Figure 4.10.

This mission mode program within the State Machine is similar to the Trailing Formation

Mode. Once the GNC algorithm for Circumnavigation is started, C&DH will wait for

“complete” status. During Circumnavigation Mode, C&DH will continually check for

40

commands, power, and temperature. A timer will be observed for this mission mode to

terminate the loop. Once the timer has expired or the propellant is fully expended, the

setMissionMode function will be called to move to Downlink Mode.

Figure 4.10. Circumnavigation flow

4.2.7. Downlink. The Downlink flow is shown in Figure 4.11. Once new command

data for terminating the SI algorithm is pushed to the command list, the camera, and digital

MCU will be powered off (because MRS SAT will have now drifted away from MR SAT).

New command data for sending images and logging data from the SI Pi to the flight Pi will

then be pushed to the command list of SI. While the downlinking of images and engineering

data is ongoing, continuous power and temperature checks will be performed, and C&DH

will process commands in the command data list. Once all data are successfully downlinked,

the setMissionMode function will be called to move to End of Life Mode. All logs and

41

engineering data will be stored and formatted in each buffer for respective data types as

queue styles. As of the time of writing this thesis, coding to format and packetize all the

data remains to be completed.

Figure 4.11. Downlink flow

4.2.8. End of Life. The End of Life flow is shown in Figure 4.12. First, new

command data for thread shutdown will be pushed to the command list. The UART

thread will then be blocked until the first thread execution process is completed and can

be destroyed safely. Once the SI subsystem is powered off, the flightExceptionHandler

function will process commands and check the power and temperature.

42

Figure 4.12. End of Life flow

4.2.9. Flight Exception Handler. The Flight Exception Handler flow is shown in

Figure 4.13. This function may be called during the Detumble, Checkout, Trailing Forma-

tion, Circumnavigation, Downlink, and End of Life Modes. This function consists of two

main functions: (1) processComCommand, and (2) safeModeCheck. The processCom-

Command function will check if a command from the COM subsystem is pending and, if

so, execute the command that will have been previously uplinked from the ground station.

Essentially, there are three types of commands that can be processed during this mission

mode, including (1) to reset subsystems (digital MCU, analog MCU, GPS, Sun sensors,

IMU, and SI Pi), (2) set mission mode (Detumble, Checkout, Separation, Downlink, and

End of Life), and (3) ignore thermal and power bounds. The safeModeCheck function will

check if the thermal sensors and the batteries are in bounds.

4.2.10. Safe Mode Check. The Safe Mode Check flow is shown in Figure 4.14.

This function will be called from the flightExceptionHandler function. Once this function

is called, it will check the thermal sensors and batteries. If they are in the normal range,

it will exit the flightExceptionHandler. Otherwise, the safeMode function will be called

to wait for the batteries to recharge by powering off non-essential subsystems. First, the

43

Figure 4.13. Flight Exception Handler flow

analog MCU, digital MCU, CAMS, SI Pi, Sun sensors, and, if pre-separation, MRS SAT

will be powered off. The flightExceptionHandler function will be called repeatedly until

the batteries are sufficiently charged or a command has changed the mission mode. Once

the batteries are fully charged, the analog MCU, digital MCU, SI Pi, and Sun sensors will

be powered. If the Safe Mode is called before the separation, MRS SAT will be turned on,

and the setMissionMode function will be called to move to Checkout Mode. If the safe

mode is called after the separation, the setMissionMode function will be called to move to

Downlink Mode.

4.2.11. Subsystem Health Check. The Subsystem Health Check flow is shown in

Figure 4.15. The subsystemHealthCheck function will be called from Initialization Mode to

check the subsystem health status. First, it will check if each subsystem (digital MCU, SI Pi,

GPS, IMU, analog MCU, Sun sensors, and hardware) is in the on-state. If the subsystem is

on, it will push commands to the data buffer and save the ping data. Next, each subsystem’s

health state will be checked. The subsystem will be reset if it is not healthy (i.e., warning,

critical, or failure).

44

Figure 4.14. Safe Mode Check flow

45

Figure 4.15. Subsystem Health Check flow

4.3. DATA MANAGER

The primary purpose of the Data Manager is to communicate with the GNC algo-

rithm over a C socket. The Data Manager is a separate thread from the State Machine. Once

the Data Manager thread is successfully created, the State Machine will send the command

to spawn GNC to start the GNC algorithm. Then, the sensor data buffers will be cleared as

the Interface Subthreads are started before the Data Manager. The Data Manager’s primary

loop will then gather sensor data, format it for GNC, check to see if any thermal sensors

are out of boundaries, transmit data to GNC, receive data from GNC, update the State

Info Class with data from GNC, and, if required, send commands to the torque coils or

thrusters. The startDataManager function will be passed in the command and sensor data

46

buffer vectors for the Interface Subthreads, and in separate command and sensor data buffers

for communication with the State Machine. Before the Data Manager thread is terminated,

the command to terminate GNC will be sent to avoid unnecessary resource usage.

4.4. INTERFACE SUBTHREADS

The Interface Subthreads are what the State Machine and Data Manager use to

communicate with the hardware subsystems. Each Interface Subthread lives in its own

thread, and there is a thread for each hardware communication bus, 1-Wire, UART, I2C0,

I2C1, and SPI. Each thread has essentially the same structure: (1) connection to the hardware

will be established, (2) a loop will be entered where a command from the command buffer is

processed if there is one, (3) sensor data will be read when enough time has passed and sent

to the Data Manager, and (4) the thread will sleep for 20 ms to ensure that the subthreads

will not use all of the CPU’s processing power.

4.5. STATE INFO CLASS

The State Info Class is designed to serve as the inter-thread communication of the

state of C&DH, including the mission mode and each subsystem’s health status. All the

class members are static, so only one instance will be stored for each state, and an instance

will be created before the main function is called. After the configuration file is read, all

the mutexes needed will be created. The class’s constructor is set to private, preventing the

creation of additional class instances. Each member includes a corresponding getter and

setter function, and the State Info Class only has these two functions. A mutex is assigned

to each member and is locked and unlocked in the corresponding getter and setter functions.

Therefore, only one thread can access a member at a time. If two threads access the same

member, one that accesses the member earlier will lock the state, and the other thread will

47

be blocked until the member is unlocked. Each function’s parameters and variables are set

to const. For maximum memory efficiency and user safety, the State Info Class utilizes

mutexes and makes as many variables const as possible.

4.6. THREAD BUFFERS

The Thread Buffers are designed for inter-thread communication of command and

sensor data. The Thread Buffer class uses a template so that any data types can be passed as

input for the functions in the class. The type of Thread Buffers are queues where new data

can be inserted into one end of the queue, and only data on the other side can be extracted.

Therefore, the command and sensor data order will not change inside the buffer.

4.7. HARDWARE INTERFACES

The Hardware Interfaces have actual codes corresponding to each command from

each subthread. The interfaces include the analog board, digital board, IMU, power, SI Pi,

Sun sensors, thermal sensors, GPS, and COM. These interface programs have functions to

control or read data from each subsystem. A detailed description of the commands and how

to communicate each interface is discussed in Section 5.

48

5. DATA HANDLING AND INTERFACE CONTROL

The C&DH subsystem is responsible for handling sensor data and communicating

with the other subsystems. The C&DH subsystem uses multiple data buses to communicate

with all of the various systems on MR & MRS SAT. On MRS SAT, the flight computer uses

I2C to communicate with a thermal sensor and two UART lines for the Eyestar Radio and

GPS. On MR SAT, the flight computer conducts communication through I2C, SPI, UART,

1-Wire, TCP, and USB.

5.1. COMMUNICATION PROTOCOL

MR SAT needs to be able to communicate with multiple systems simultaneously,

which requires an appropriate method of communication. All communication protocols

used between the flight Pi and different systems are shown in Figure 5.1. Some sensors

have predefined communication protocols that cannot be altered. The IMU sensor, Sun

sensor, thermal sensor, and Pluto radio require an SPI bus, an I2C bus, a 1-Wire bus, and a

USB bus, respectively. A TCP connection is the simplest way to communicate with the two

Raspberry Pis, so TCP is used as a communication protocol between the flight computer

and the SI computer. For the rest of the systems, the selected data bus must be able to

transmit data and commands. I2C, UART, and SPI are possible bus solutions for MR SAT’s

main communication protocol to maximize communication effectiveness.

Considering these options, UART is the least appealing for complicated systems.

Although UART can transfer data faster than SPI and I2C, each board would require at

least two individual data lines, requiring many UART lines to and from the flight computer.

UART would require each system to have a hard-coded baud rate, and thus would prove to

be too complicated and disorganized to communicate with the many systems on the satellite.

49

Figure 5.1. Communication protocol

SPI is a strong alternative to UART, but it still has disadvantages. Connecting all

systems to the flight computer via an SPI bus would require fewer lines to and from the

flight computer than UART, but more lines going into each board. This is because three

lines are shared between each system with an SPI: a clock line, a transmit line, and a receive

line. In addition to those three, each system would also have a select line running to it. This

method of communicating would be better than UART, but the SPI is not ideal either.

The simplest and “cleanest” solution is the I2C data bus. An I2C bus allows the

flight computer to communicate with every system with just two lines: a data line and a

clock line. I2C is also useful because it supplies the data sampling speed to every system

by communicating over the clock line. This method of communication requires each board

and sensor to have an address hard-coded onto it to allow the flight computer to select which

board to communicate with. Although I2C has a distance limitation, the problem can be

solved by combining all C&DH functions on a single board. For these reasons, I2C was

chosen as the default communication protocol for MR SAT. I2C is used for the following

systems: the digital board that controls the thrusters and isolation valves, the analog board

that controls the magnetometer, pressure transducer, and torque coils, and the Sun sensors.

50

5.2. COMMUNICATING WITH GNC

The GNC program runs in Simulink and is a different executable file from C&DH

on the same Raspberry Pi, hence a different method is required to communicate with it.

A function was written to allow GNC and C&DH to communicate with each other. The

communication is handled over a C socket to allow the fast and rapid transmission of data

between GNC and C&DH.

5.3. UPLINKING AND DOWNLINKING

Communication between the flight computer and the ground station is over the Pluto

SDR radio. The flight computer is required to use USB to connect the device. Commands

are sent from the ground station to the flight Pi, called “uplinking,” and various data are

sent from the flight Pi to the ground station, called “downlinking.”

There are several types of commands from the ground station: (1) reset a specific

subsystem, (2) enter a specific mission mode, (3) ignore any values from power or thermal

sensors, and (4) determine if the satellite is ready to communicate with the ground station.

Resetting the subsystem command can reset the digital MCU, analog controller, GPS, Sun

sensors, IMU, or SI. Mission modes that can be entered by commands are Detumble,

Checkout, Separation, Downlink, and End of Life Mode.

During each mission mode, GNC sensor data will be saved corresponding to the

current mission mode. Once the mission mode is ready to be completed, the file will

be compressed. During Detumble Mode or Checkout Mode, only the health and sensor

data will be downlinked. No data will be downlinked during Trailing Formation Mode

and Circumnavigation Mode because the nadir attitude needed for downlinking can not

be maintained while performing the required maneuvers. When the spacecraft enters

Downlink Mode, the data can be transmitted to the ground station by order of importance:

the SI images, engineering data, and log files, respectively.

51

The maximum transmission capacity for the health and sensor data after Detumble

or Checkout Modes is limited, and the data field within the frame structure will consist of

203 bytes of the frame. Therefore, two separate frames will be sent: health data (Table 5.1)

and sensor data (Table 5.2). The data of the first six thermal sensors are in the health

data frame, and the last nine thermal sensors are in the sensor data frame because of the

limitation.

During Downlink Mode, after sending the image data, the engineering data and

log data will be sent. The files for sensor data and event logs are separated by mission

mode to allow the downlinking of data from the higher-priority mission modes during

Downlink Mode. Before being downlinked, each log file will be compressed with 7-zip to

accommodate the downlink budget. The engineering data include all IMU, GPS, Sun sensor,

magnetometer, and SI data, along with any control data that needs to be sent, including

thruster and torque coil data. Each sensor has a separate CSV file that stores its readings.

The sensor readings will be added to its CSV whenever the sensor is read, with the exception

of the IMU, where every tenth reading is saved to conserve space. C&DH will instruct the

radio what file to downlink. Any action by the satellite which is not often repeated, such as

reading sensors, is recorded in the log file. For example, a transition between mission mode

or pinging a sensor would be logged. Events are logged at different levels depending on the

seriousness of the event: (1) “debug 1” is for major actions (e.g., mission mode transit or

starting a subsystem); (2) “debug 2” is for minor mission actions (e.g., waiting for the radio

silence to be over or pinging a subsystem); (3) “error” is for an event where a minor action

has failed (e.g., not detumbling in the allotted time or sensor not responding to a ping);

(4) “critical” is for an event where a major anomaly has occurred (e.g., failing a separation

attempt or a sensor not responding to multiple pings); and (5) “fatal” is for an event that

cannot be recovered from (e.g., completely failing to separate or a sensor being declared as

“dead”).

52

Table 5.1. Health data; Source: adapted from [40]

Field Name Description Value Type Number of Entries Total Byte Size Starting Index

gps time The most up to date GPS time uin32 t 2 8 0

gnc filter health Has GNC Converged bool 1 1 8

mrsat position Mr Sat Position double 3 24 9

mrsat vel Mr Sat Velocity float 3 12 33

mrsat quat Mr Sat Quaternion float 4 16 45

mrsat pos Mrs Sat Relative Position float 3 12 61

mrssat vel Mrs Sat Relative Velocity float 3 12 73

mrsat imu bias Mr Sat IMU Bias double 3 24 85

gps clock bias GPS Clock Bias double 1 8 109

mission mode The Current Mission Mode uint8 t 1 1 117

health bool Are we healthy bool 1 1 118

ran detumble bool Have we ran detumble bool 1 1 119

battery bool Are the batteries charged bool 1 1 120

detumbled bool Are we detumbled bool 1 1 121

link bool Do we have ground link bool 1 1 122

sep command bool Do we have separation command bool 1 1 123

separated bool Are we separated bool 1 1 124

trail bool Have we trailed successfully bool 1 1 125

circumnav bool Have we completed circumnav bool 1 1 126

downlinked bool Have we downlinked everything bool 1 1 127

all image data bool Has all image data been sent bool 1 1 128

battery min bool Battery above min threshold bool 1 1 129

ignore thermal bool Are we ignoring thermal bool 1 1 130

ignore power bool Are we ignoring power bool 1 1 131

battery voltage Battery Voltage float 1 4 132

battery current Battery Current float 1 4 136

sensor health status IMU Health uint8 t 1 1 140

GPS Health uint8 t 1 1 141

Sun Sensor Health uint8 t 2 2 142

Alalog Health uint8 t 1 1 144

Digital Health uint8 t 1 1 145

SI Health uint8 t 1 1 146

torque coil data Torque Coil Direction Bitfield uint8 t 1 1 147

Torque Coil Fire Percentage uint8 t 3 3 148

thruster data Thruster Fire Percentage uint8 t 12 12 151

thermal data id Single byte identifying what uint8 t 15 15 163

thermal sensor is read

thermal data First 6 thermal sensors data float 6 24 178

53

Table 5.2. Engineering data; Source: adapted from [40]

Name Description Value Type Quantity Byte Length Total Field Length Starting Index

imu data IMU Data 32 0

XYZ Rotational Velocity float 3 12

XYZ Acceleration float 3 12

GPS Time uint32 t 2 8

gps data GPS Data 56 32

XYZ Position double 3 24

XYZ Velocity double 3 24

GPS Time uint32 t 2 8

sun data Sun Sensor Data 24 88

Alpha Angle 1 float 1 4

Beta Angle 1 float 1 4

Alpha Angle 2 float 1 4

Beta Angle 2 float 1 4

GPS Time uint32 t 2 8

mag data Magnetometer Data 20 112

XYZ Magnetic Reading float 3 12

GPS Time uint32 t 2 8

pressure trans Pressure Transducer 4 132

Pressure 1 uint16 t 1 2

Pressure 2 uint16 t 1 2

si data SI Data 24 136

Alpha Angle 1 float 1 4

Beta Angle 1 float 1 4

Alpha Angle 2 float 1 4

Beta Angle 2 float 1 4

GPS Time uint32 t 2 8

thermal data Final 9 thermal sensors data float 9 36 36 160

As of the time of writing this thesis, the downlink code has not yet been written, so

it is currently a high priority in the software development effort. Still to be determined and

programmed are the order of sensor data to be downlinked, the method of formatting and

packetizing the sensor data, and how to transmit and receive the data over the Pluto radio.

54

6. VERIFICATION AND VALIDATION

6.1. UNIT TESTING

The first type of testing for the C&DH software is unit testing, the objective of which

is to check if each function performs as expected. Once proper functionality is confirmed,

the command execution testing (CET) will then be performed.

6.2. COMMAND EXECUTION TESTING

The objective of the CET test is to verify that all possible commands to the integrated

satellite are executed correctly. The software will be tested with actual devices to ensure

both the hardware and software can communicate and control each interface. First, the

connection between the hardware and the flight computer has to be established and ensure

the robustness of connection. All possible mission commands are then sent one at a time,

and the return from each command on the interface is used to determine if all commands

function as expected. Tests should be repeated, and “edge cases” should be considered and

retested.

Each interface testing code has essentially the same structure: (1) show a menu of

all commands on the screen, (2) read input typed from the computer corresponding to the

menu, (3) call the respective function by a switch case statement, (4) send command to each

interface, and (5) wait for a return from the interfaces. The menu must have an exit option

to exit from the switch case statement and finish the testing. Each function should have a

return message to indicate if the command succeeded. All commands that should be tested

are shown in Table 6.1.

55

Table 6.1. Command list [41]

System Command Description

Digital Board Turn On Power on the digital board

Turn Off Power off the digital board

Ping Check if the flight computer can currently communicate with the digital MCU

Update Thrusters Indicate how long each thruster should remain on

Open Iso Valves Open the three isolation valves

Close Iso Valves Close the three isolation valves

Test Thrusters Test all the thrusters individually

Run Thruster Sets Test all the thrusters simultaneously

Analog Board Turn On Power on the analog board

Turn Off Power off the analog board

Ping Check if the flight computer can currently communicate with the analog MCU

Read Mag Read the X, Y, and Z strength of the magnetic field from the magnetometer

Set Torque Coil Turn off the magnetometers, set the direction for each of the torque coils, and set the

burst timer for each of them

Read Pressure Read pressure from the pressure transducers

Power Mag Activate or deactivate the magnetometer

Power Ping Check if the flight computer can currently communicate with the power board

Get Status Get the power board status, battery current and voltage, and solar current and voltage

Parse Status Get an 11-byte array with data stored on the power board

Execute Command Run a user input command: activate or deactivate MRS SAT’s inhibits, enable

Separation Mode, or Activate Separation 1 or 2

Sun sensor Turn On Power on both Sun sensors

Turn Off Power off both Sun sensors

Ping Check if the flight computer can currently communicate with the Sun sensors

Serial Return the 6-byte serial number of the Sun sensors

Read Voltages Return the 3.3V, 5.0V, SRAM1, and SRAM2 current used by the Sun sensors

Read Angles Return the Alpha angle, Beta angle, and error codes

Read CAM Settings Return camera settings: the exposure, gain, blue gain, and red gain

Set CAM Settings Set camera settings: the exposure, gain, blue gain, and red gain

Set Auto Adjust Enable or disable the auto-adjust of the camera

Reset Reset communication interface, cameras, or MCU of the Sun sensor

IMU Turn On Power on the IMU

Turn Off Power off the IMU

Reset IMU Reset the IMU and go through power up and configuration

Product ID Return the IMU’s eight character (ASCII) product ID, which is G364PDC0

Firmware Version Return the IMU’s two-byte firmware version number, which is 2510

Serial Num Return the IMU’s four-byte serial number, which is 00000026

Read Vals Get the X, Y, and Z gyroscopic values and accelerometer values

Test GNC Read the IMU values and write them into CSV file until the test has completed

56

Table 6.1. Command list [41] (cont.)

Thermal Sensor Turn On Power on the thermal sensors

Turn Off Power off the thermal sensors

Detect All Detect all the thermal sensors and display the IDs

Display All Display all thermal sensors with their ID, name, and temperature reading

Name Allow user to assign a name to each thermal sensor

Radio Ping Check if the flight computer can currently communicate with GPS

Temperature Get the temperature value from the radio device

Transmit Transmit data from the radio device of MR SAT to the ground station radio device

Receive Receive data from the ground station over the radio device

SI Ping Check if the flight computer can currently communicate with the SI Pi

Start Algo Tell the SI Manager to create a new thread and start the SI Algorithm

Stop Algo Tell the SI Manager to stop the SI Algorithm and join the tread it was running on

Send Pics Tell the SI Manager to start sending pictures

Send Log Files Tell the SI manager to start sending log files from the manager and the SI Algorithm

Send Angles Send a reading of angles to the Flight Raspberry Pi 3

Si Die End execution of the SI manager

GPS Ping MCU Check if the flight computer can currently communicate with GPS

Power On Power on the GPS receiver

Power Off Power off the GPS receiver

Power Status Check if the GPS is on

Setup Connection Initialize the GPS file descriptor and test sending functionality for UART

Reset GPS Send a command to the GPS MCU to reset

Get Version Get the GPS hardware and software version

Get BESTXYZ Display the BESTXYZ values

Get RANGE Display the RANGE values

Get SATXYZ Display the SATXYZ values

Start BESTXYZ Logs Start the BESTXYZ recurring logs

Start RANGE Logs Start the RANGE recurring logs

Start SATXYZ Logs Start the SATXYZ recurring logs

Read Logs Read the RANGE and SATXYZ recurring logs

Settings Set the baud rate to 9600 or 57600, clear logs, or save the current configuration

57

6.3. DAY-IN-THE-LIFE TESTING

Day-in-the-life (DITL) testing is the next test performed on the integrated satellite

following the completion of the interface testing. The objective of this test is to verify

that the integrated system performs as expected in scenarios that closely resemble on-orbit

operations. The following lists all the possible scenarios in the actual run as:

• MR SAT fully nominal: a full run of mission from deployment to end of life

• MRS SAT fully nominal: a full run of MRS SAT’s operations from separation to the

sending of a kill command to MRS SAT’s radio

• Detumble failure: spacecraft fails to detumble within seven days

• Mission Mode 1 battery depletion: the spacecraft loses power partway through Mis-

sion Mode 1

• Mission Mode 2 battery depletion: the spacecraft loses power partway through Mis-

sion Mode 2

• Post-detumble battery depletion: batteries deplete while in Checkout Mode

• SI failure: SI system fails to find MRS SAT

• Battery overheating

• Battery too cold

• Mission Mode 1 propellant depletion: the spacecraft consumes all propellant partway

through Mission Mode 1

• Mission Mode 2 propellant depletion: the spacecraft consumes all propellant partway

through Mission Mode 2

• Kill command: MR SAT is sent a kill command from the ground station to shut it off

All settings for each scenario are defined in the configure file. The configure file is

read in the flight main code before the State Machine starts. The possible configurations are

shown in Table 6.2, and the default option will be used if it is not defined in the configuration

file. “Fake” data for GNC and COM are created because actual data will not be able to

58

be obtained during the testing, but the functionality must still be verified. The appropriate

settings for each scenario must be chosen. For example, the detumble timer has to be set

for a much shorter period than the actual mission value to reduce the testing time.

59

Table 6.2. Configuration list

Name Default Option

Mission Mode Initialization Flight Code Start, Initialization, Detumble, Checkout, Separation, Trailing Formation,

Circumnavigation, Downlink, End of Life, Safe, Navigation Only, and Reset Detumble

Start Time 0

Last Time 0

Digital Power false true or false

SI Power false true or false

GPS Power false true or false

IMU Power false true or false

Analog Power false true or false

Sun Sensor Power false true or false

MRS Power false true or false

First Run Status true true or false

Reboot Status true true or false

Separated Status false true or false

Detumble Status false true or false

Down Data Status false true or false

Down Logs Status false true or false

Down Pics Status false true or false

Display Status false true or false

CET Enable false true or false

GNC Enable true true or false

Fake GNC Enable true true or false

COM Enable true true or false

Fake COM Enable true true or false

IMU Enable true true or false

GPS Enable true true or false

Magnetometer Enable true true or false

Pressure Enable true true or false

Sun Sensor Enable true true or false

Thermal Enable true true or false

Power Enable true true or false

Radio Silence Timer 45 mins

MRS Charge Timer 5 mins

Detumble Timer 7 days

Circumnav Timer 180 mins

60

7. CONCLUSION AND FUTURE WORKS

This thesis presents the software development and current flight code description

of MR & MRS SAT by the M-SAT Team. The description is to establish a reference

for the software development of the C&DH subsystem and to serve as an example of a

case study that can assist similar satellite programs. The software is designed to use the

Raspberry Pi 3 Model B as the flight computer running a Linux environment written in

the C++ language. The State Machine is implemented to control all mission flow for the

spacecraft. Multithreading allows the concurrent execution of multiple threads: the State

Machine, Data Manager, and Subthreads. The State Info Class and Thread Buffers are

used to communicate between the separate threads. The communication method for each

interface has been chosen to optimize the communication between the flight computer and

various systems.

Because the radio device was recently changed and the communication protocol

for each interface was modified to maximize communication efficiency, the interface codes

have to be reconstructed, including the radio, SI, GPS, and analog interface. As the

downlink code has not yet been written, it is a high-priority project for C&DH. There are

also minor bugs to be fixed in the State Machine code. In order to complete these codes,

unit tests need to be repeated until all software units have been successfully tested. CET

will then be performed to validate all commands, and DITL will be conducted to validate

all functionality on the integrated system with all possible scenarios on orbit.

As a part of the DITL testing, should Linux crash, it must be verified that the code

execution can automatically restart from when it crashes. Furthermore, if the flight code’s

run time is found to be too long in the DITL testing, the flight code might have to be

optimized to reduce the time. At the time of writing this thesis, the flight code can be run

only when a user executes the file. However, the flight code must be executed automatically

once the flight Pi is powered on, and this can be done by creating a service file.

61

Triple modular redundancy (TMR) has to be implemented to increase the reliability

of the system. With the use of TMR, a process is carried out by three systems, and the

output is processed by a majority-voting system to generate one output. The two matching

systems can reveal any flaws in any one of the three systems.

Finally, proper software development documentation allows for more efficient and

reliable flight software and a higher likelihood of mission success. This is an ongoing

process and will continue through integration and test of the spacecraft.

62

APPENDIX

COMMAND AND DATA HANDLING SUBSYSTEM REQUIREMENTS

Table 1. C&DH requirements; Source: adapted from [42]

63

REFERENCES

[1] C. Williams, “Nano-Microsatellite Market Forecast 10th Edition 2020.” https://www.
spaceworks.aero/wp-content/uploads/Nano-Microsatellite-Market-Forecast-10th-E
dition-2020.pdf, 2020. Accessed: 2023-3-14.

[2] “Smallsats by the Numbers 2022.” https://brycetech.com/reports/report-documents
/Bryce Smallsats 2022.pdf, 2022. Accessed: 2023-3-14.

[3] “University Nanosatellite Program.” https://universitynanosat.org/. Accessed: 2022-
12-28.

[4] B. Yost, S. Weston, G. Benavides, F. Krage, J. Hines, S. Mauro, S. Etchey, K. O’Neill,
and B. Braun, “State-of-the-Art Small Spacecraft Technology,” 2021.

[5] D. Miranda, “2020 NASA Technology Taxonomy,” 2020.

[6] “Open Source Hardware Definition.” https://www.oshwa.org/definition/. Accessed:
2023-1-18.

[7] R. Heradio, J. Chacon, H. Vargas, D. Galan, J. Saenz, L. De La Torre, and S. Dormido,
“Open-Source Hardware in Education: A Systematic Mapping Study,” IEEE Access,
vol. 6, pp. 72094–72103, 2018.

[8] A. Cudmore, “Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission
System Test Platform,” in GSFC Fall IS&T Colloquium Series, no. GSFC-E-DAA-
TN27347, 2015.

[9] M. P. Del Rosso, A. Sebastianelli, D. Spiller, P. P. Mathieu, and S. L. Ullo, “On-Board
Volcanic Eruption Detection through CNNs and Satellite Multispectral Imagery,”
Remote Sensing, vol. 13, no. 17, 2021.

[10] “What is Arduino?.” https://www.arduino.cc/en/Guide/Introduction. Accessed:
2023-1-18.

[11] D. Geeroms, S. Bertho, M. De Roeve, R. Lempens, M. Ordies, and J. Prooth, “AR-
DUSAT, an Arduino-Based Cubesat Providing Students with the Opportunity to Create
their own Satellite Experiment and Collect Real-World Space Data,” ESA Publications
Division C/O ESTEC, 2015.

[12] “Programming Language.” https://www.techopedia.com/definition/24815/programm
ing-language. Accessed: 2023-2-1.

[13] “Getting Started – About Version Control.” https://git-scm.com/book/en/v2/Gettin
g-Started-About-Version-Control. Accessed: 2023-2-12.

64

[14] H. Leppinen, P. Niemelä, N. Silva, H. Sanmark, H. Forstén, A. Yanes, R. Modrzewski,
A. Kestilä, and J. Praks, “Developing a Linux-Based Nanosatellite On-Board Com-
puter: Flight Results from the Aalto-1 Mission,” IEEE Aerospace and Electronic
Systems Magazine, vol. 34, no. 1, pp. 4–14, 2019.

[15] H. Leppinen, “Current Use of Linux in Spacecraft Flight Software,” IEEE Aerospace
and Electronic Systems Magazine, vol. 32, no. 10, pp. 4–13, 2017.

[16] “FreeRTOS –Real-Time Operating System for Microcontrollers.” https://www.freert
os.org/. Accessed: 2023-2-12.

[17] M. Alam, A. Khamees, T. Aboelnaga, A. Amer, A. Harbi, M. Alamir, H. Alarwsh, and
O. A. Elsayed, “Design and Implementation of an Onboard Computer and payload for
Nano Satellite (CubeSat),” in The International Undergraduate Research Conference,
vol. 5, pp. 361–364, The Military Technical College, 2021.

[18] B. Rajulu, S. Dasiga, and N. R. Iyer, “Open Source RTOS Implementation for On-
Board Computer (OBC) in STUDSAT-2,” in 2014 IEEE Aerospace Conference, pp. 1–
13, IEEE, 2014.

[19] “CODE.NASA.GOV.” https://code.nasa.gov/. Accessed: 2023-2-12.

[20] G. Holzmann, “The Power of 10: Rules for Developing Safety-Critical Code,” Com-
puter, vol. 39, no. 6, pp. 95–99, 2006.

[21] G. Reeves and J. Snyder, “An Overview of the Mars Exploration Rovers’ Flight
Software,” in 2005 IEEE International Conference on Systems, Man and Cybernetics,
vol. 1, pp. 1–7 Vol. 1, 2005.

[22] S. A. Johl and E. G. Lightsey, “A Reusable Command and Data Handling System for
University CubeSats,” Journal of Small Satellites, vol. 4, no. 2, pp. 357–369, 2015.

[23] J. Wang, Formal Methods in Computer Science. Chapman and Hall/CRC, 2019.

[24] J. S. Fant, H. Gomaa, and R. G. Pettit, “Architectural Design Patterns for Flight Soft-
ware,” in 2011 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, pp. 97–101, 2011.

[25] “Basics of the I2C Communication Protocol.” https://www.circuitbasics.com/basics
-of-the-i2c-communication-protocol. Accessed: 2023-2-12.

[26] “Understanding I2C and SPI Communication Protocols.” https://www.totalphase.c
om/blog/2021/12/i2c-vs-spi-vs-uart-introduction-and-comparison-similarities-diffe
rences/\#:∼:text=Unlike\%20communication\%20protocols\%20like\%20I2C,sen
d\%20and\%20receive\%20the\%20data. Accessed: 2023-2-12.

[27] “Basics of the SPI Communication Protocol.” https://www.circuitbasics.com/basics
-of-the-spi-communication-protocol/. Accessed: 2023-2-12.

65

[28] “Basics of UART Communication.” https://www.circuitbasics.com/basics-uart-com
munication/. Accessed: 2023-2-12.

[29] “Reading and Writing 1-Wire Devices Through Serial Interfaces.” https://www.anal
og.com/en/app-notes/reading-and-writing-1wirereg-devices-through-serial-interface
s.html. Accessed: 2023-2-12.

[30] J. Mankar, C. Darode, K. Trivedi, M. Kanoje, and P. Shahare, “Review of I2C proto-
col,” International Journal of Research in Advent Technology, vol. 2, no. 1, 2014.

[31] G. Fairhurst, B. Trammell, and M. Kühlewind, “Services Provided by IETF Transport
Protocols and Congestion Control Mechanisms.” RFC 8095, Mar. 2017. https://ww
w.rfc-editor.org/info/rfc8095. Accessed: 2023-2-12.

[32] S. A. Jacklin, “Survey of Verification and Validation Techniques for Small Satellite
Software Development,” Space tech expo, 2015.

[33] “Day-in-the-Life Testing.” https://s3vi.ndc.nasa.gov/ssri-kb/topics/36/. Accessed:
2023-2-12.

[34] C. Venturini, B. Braun, D. Hinkley, and G. Berg, “Improving Mission Success of
CubeSats,” Proc. 32nd Annu. AIAA/USU Conf. Small Satell., pp. 1–11, 2018.

[35] Missouri S&T Satellite Research Team, “CDH101 - Conceptual Design Document.”
Internal Documentation, 2021.

[36] “5 Git Workflows and Branching Strategy you can Use to Improve your Development
Process.” https://rovitpm.com/5-git-workflows-to-improve-development/. Accessed:
2023-2-12.

[37] Missouri S&T Satellite Research Team, “SYS201 - Concept of Operations.” Internal
Documentation, 2020.

[38] Missouri S&T Satellite Research Team, “SYS203 - Mission Overview.” Internal Doc-
umentation, 2019.

[39] Missouri S&T Satellite Research Team, “CDH108 - Software Design.” Internal Doc-
umentation, 2019.

[40] Missouri S&T Satellite Research Team, “CDH107 - Communicatios Interface Con-
trol.” Internal Documentation, 2019.

[41] Missouri S&T Satellite Research Team, “CDH103 - Interface Control Document.”
Internal Documentation, 2019.

[42] Missouri S&T Satellite Research Team, “SYS206 - M-SAT Requirements Verification
Matrix.” Internal Documentation, 2019.

66

VITA

Yumeka Nagano was born in Chiba, Japan on February 7, 1999. She started

attending Saitama University in Japan in April 2017 and received a Bachelor’s degree in

Mechanical Engineering in September 2020. She entered Missouri University of Science

and Technology in August 2021 and became a Command and Data Handling subsystem

member of the Missouri S&T Satellite Research Team. She received a Master of Science

Degree in Aerospace Engineering from Missouri University of Science and Technology in

May 2023.

	Flight Software Development for a University-Class Microsatellite Mission
	Recommended Citation

	tmp.1706300453.pdf.axnqi

