
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Spring 2023 

A Hybrid Framework for Critical Infrastructures Interdependency A Hybrid Framework for Critical Infrastructures Interdependency 

Modeling, Simulation, and Analysis Modeling, Simulation, and Analysis 

David Corder Hinton 
Missouri University of Science and Technology 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Computer Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Hinton, David Corder, "A Hybrid Framework for Critical Infrastructures Interdependency Modeling, 
Simulation, and Analysis" (2023). Masters Theses. 8150. 
https://scholarsmine.mst.edu/masters_theses/8150 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/8150?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


A HYBRID FRAMEWORK FOR CRITICAL INFRASTRUCTURES

INTERDEPENDENCY MODELING, SIMULATION, AND ANALYSIS

by

DAVID CORDER HINTON

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

2023

Approved by:

Jonathan Kimball, Advisor
Cihan Dagli

Bruce McMillin



Copyright 2023

DAVID CORDER HINTON

All Rights Reserved



iii

ABSTRACT

Flow system models, also known as flow network models, encompass vastly com-

plex, ever-expanding problem sets which comprise the foundation for maintenance, opera-

tion, and improvement of critical infrastructures around the world. The stable operation of

these vast critical infrastructures is fundamental to the continued advancement of modern

society. These infrastructures are tightly interdependent and vulnerable to interruption by

both natural circumstance and malicious targeting. This necessitates representation of such

critical infrastructures and their multi-domain interdependencies in defense focused con-

structive and virtual simulation environments as a matter of national interest and security.

By breadth exploration of the problem space, this work body captures the essence of many

existing solutions - addressing respective deficiencies - and simultaneously draws inspira-

tion from their strengths to define a novel framework with which modeling, simulation, and

analyses in this vast problem space may be revolutionized.



iv

ACKNOWLEDGMENTS

I extend my thanks and appreciation to Dr. Kimball, Dr. Dagli, and Dr. McMillin.

It has been my great pleasure learning from you all, working with each of you through

my master’s studies here at S&T, and taking on this great challenge with your support and

guidance. I sincerely believe that each of you has impacted me significantly such that the

knowledge and lessons you’ve imparted are evident throughout this body of work. My

thanks to my wife and family. Without your patience and support I would never have been

able to complete this endeavour. Finally, my thanks to my colleagues and industry partners

who have pushed me and helped me to build all of the knowledge of practice which was

necessary to bring this effort to fruition.



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. ELECTRICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. FLUIDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2. Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3. Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4. Flow Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. TRAFFIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4. THERMAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. DOMAIN GENERALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. RESISTANCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3. FLOW.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. EXISTING MODEL FRAMEWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1. BOND GRAPH THEORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2. PORT-HAMILTONIAN SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



vi

5. FLOW AGENT-SYSTEM HYBRID (FLASH) FRAMEWORK . . . . . . . . . . . . . . . . . 42

5.1. FOUNDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1. Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2. Flow System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3. Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.4. Simulation Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.5. Elemental Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.6. Script Interface and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2. APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2. Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3. SYNTHESIS INTO IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1. Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2. Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3. Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.4. Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.5. Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.6. Transformer and Gyrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.7. Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6. INDUSTRY SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1. DOMAIN-CENTRIC SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1. PowerWorld Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2. PipeFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2. GENERALIZED MODELING AND SIMULATION SOLUTIONS . . . . . . . . . 68

6.2.1. Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.2. Matlab and Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



vii

6.3. OBSERVED PATTERNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1. CAPTURE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2. IMPACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



viii

LIST OF ILLUSTRATIONS

Figure Page

4.1. Translation from (Electrical) Domain Notation to Bond Graph Notation . . . . . . . . . 27

4.2. Simple Bond for Inertial, Compliant, and Resistive Element . . . . . . . . . . . . . . . . . . . . . . 28

4.3. Bond Graph Source Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4. Bond Graph of Parallel RLC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5. Bond Graph of Series RLC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6. Identical Directed Bond Graph for an Electrical Circuit and a Kinetic Machine . 32

4.7. Bond Graph of Electrical Transformer and Kinetic Lever . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8. Ideal Gyrator with Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9. Structure of a Port-Hamiltonian System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1. Agent Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2. Agent/Sub-Agent Architecture UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3. System Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4. High-Level Agent-System Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5. Agent-System Multi-Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6. Simple Agent-System Turn Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7. Referential Agent Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8. General Script Context Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.9. Scenario Setup and System/Agent Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.10. Multi-Domain Power Plant Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.11. Multi-Domain Natural Gas Site Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.12. Define Systems within Energy/Resource Domain Boundary . . . . . . . . . . . . . . . . . . . . . . 51

5.13. Simulation Initialization Behavior (T = 0) - Calculate Nominal System State . . . . 52

5.14. Agent Updates - Read Inputs (Sinks), adjust Outputs (Sources) Accordingly . . . . . 53

5.15. Abstract System UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



ix

5.16. Example Implementations of the System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.17. Abstract System Element UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.18. Edge Class UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



1. INTRODUCTION

Flow systems are at the heart of critical infrastructures and are thus the focus of

this investigation and greater work body. In simplest form, a flow system model is a mono-

domain representation of infrastructure which transports resources or energy. Such a model

is most simply characterized by a set of nodes linked by edges. In such resource/energy flow

system (REFS) models, edges unite nodes to describe the character of transfer over a finite

time sample (flow). Many REFS models facilitate transfer of a sum of energy, whether in

the form of raw energy (electrical, thermal), or in the form of a material phase (solid, liquid,

gas). Thereby, flow systems may be united across domains by a relation of energy transfer

over time, i.e., power. While this generalized description may be useful for conventionally

understood systems of flow, applications of the same general principles are applied across

emerging and established disciplines alike.

A well understood domain-specific flow problem is that of potable water distribution

throughout a municipality. Similarly well understood is the problem of electrical power

flow to an equally complex consumer set. Consumers across developed nations enjoy high

quality, high reliability flow of electrical power and clean potable water to their outlets

and faucets, respectively, without much consideration for how those resources reach their

domestic points of interface. While these two domains are among the most appreciable,

they represent a fraction of the total flow system problem space. Additional closed systems

representable by conventional flows include natural gas, petroleum (crude, refined), and

sewage waste. Although not universally considered in the problem space, recent inves-

tigations have additionally included systems of information/data/packet transfer (cellular

networks, satellite constellations), motor vehicle traffic[1], economics[2], neurology[3],

epidemiology[4], ecology[5], and chemistry[6]. Generalizing further, batch flow systems

may also be considered in the problem space. Examples include logistical systems of



2

freight, spanning multiple spatial domains (land, water, air), and may reasonably include

batches of critical resources such as household goods (bread, meat, etc.) or critical energy

solids (coal, lumber).

REFS model application diversity lends itself to specialization and use of conven-

tions and techniques which vary in name and character by domain. Over time, domain-

specific solutions have become ingrained in respective industries and are thus trusted as

the standard by which particular REFS models are solved. Despite domain partitions,

commonalities shared across domains have led to more advanced frameworks for unified

modeling of energy/power systems (FUMES). Despite the growing need for such utilities,

the complexity of such FUMES limits adoption particularly where fiscal considerations and

limited timelines guide decision making [7]. However, FUMES are central in motivating

the nomenclature and architecture of abstract software interfaces described by the novel

framework defined here.

Numerous viable software solutions are available to model and simulate nearly ev-

ery flow problem within its respective domain and industry, but most solutions entirely

fail to consider the interdependencies among them. The labyrinthine nature of these inter-

dependencies severely impedes traversal of the problem space. Even in the rare cases of

traversal, proposed solutions are deeply complex and alien in comparison to the techniques

used in industry. This thesis investigates and highlights the mounting deficiency posed

by the absence of critical infrastructure interdependency modeling and the nth order effect

propagation inherent to them. Then, a flow agent-system hybrid (FLASH) modeling and

simulation framework extension — or more simply, a FLASH framework — is presented

to enable such models, including a proposed software architecture. Inspired by industry

standard solutions such as PowerWorld and PipeFlow, and unified solutions defined by es-

tablished FUMES such as Bond-Graph Theory and Port-Hamiltonian Systems, the FLASH

framework is proposed to leverage elements of each in hybrid composition.



3

By using accepted flow solutions in combination with agent-based architecture

paradigms that allow energy domain interdependency containerization and abstraction, the

FLASH framework achieves approachability and scalability in multi-domain flow system

modeling. Under the FLASH framework, flow networks are defined and partitioned by

domain such that domain terminology and character are preserved for a particular system

model implementation. In this way, a particular system is solvable using conventional

domain-specific techniques, making the solution procedure immediately recognizable to

relevant domain experts. This increases their confidence in the results and removes barriers

to adoption. Leveraging agent-based architecture, node-referential agents manage and link

system element states. In doing so, agents facilitate multi-domain transformative/gyrative

energy and resource dependency linkage through user-defined script behaviors. This pattern

avoids the burden of multi-domain mastery inherent to — and required for — the use of

FUMES.

Implementation of the FLASH framework requires an agent-based framework for

simulation and modeling (AFSM). An AFSM is a general-purpose scenario and simula-

tion infrastructure of which the complete description is beyond the scope of this work.

However, descriptions of interfaces between the FLASH framework and the general AFSM

are defined in Chapter 5, and existing candidates are later considered in Chapter 6. The

proposed framework is described in terms of modern object-oriented software patterns.

Successful implementation of the FLASH framework onto a compatible AFSM affords

end-users a means by which any particular flow network may be migrated from industry

domain simulation tools into the AFSM while remaining in a form consistent with domain

conventions. The FLASH framework facilitates a workflow in which the user’s scenario

files are processed to define REFS models along with known initial steady-state values. For

each agent, FLASH also extends the scenario space to support agent-defined associations

between flow system elements through scripted behaviors, constraints, and relational in-



4

terdependencies. These features and workflows form the AFSM basis and thus enable a

general software-oriented description of the FLASH infrastructure as an extension to said

AFSM.

This discussion includes review of flow system examples spanning several primary

domains and remarks on the tools which support/enable flow-based analyses within each.

With context established for non-trivial flow systems from several domains, a generaliza-

tion is presented, and initial terminology defined. Following this, several FUMES patterns

are leveraged to capture and discretize terminology and relationships for elements of the

FLASH framework presented here. The purpose of this generalization and abstraction is

not to redefine or unify the means, laws, and/or limiting constraints which yield solutions

for each domain specifically, but rather to provide a common set of interfaces within which

the discrete elements of a given domain system may be accessed from an agent’s script

context. The FLASH framework combines the domain-specific, system-centric conven-

tions of industry, with the domain-unifying, component-centric conventions of FUMES

to yield a pattern which enables scalable, portable, complex, multi-domain flow system

interdependency modeling and simulation.



5

2. DOMAINS

Though the problem space spans a multitude of scientific domains, the discussion

presented here selects a subset of domains in which flow analysis processes are recognized

as the primary means to represent non-trivial flow systems. Particular domains are ac-

knowledged and described to the extent required for abstraction into a common interface

within the FLASH framework.

2.1. ELECTRICITY

Electrical power transmission involves the supply of electrical energy en masse to a

consumer market, including households and businesses which create an electrical load —

or demand, on the system [8]. This demand is met by generation of electrical energy at

generation sites — collectively a fleet — which operates on an economic dispatch schedule,

and which is regulated and operated directly by large energy cooperatives and/or conglomer-

ates [9]. Energy transformations, through electrical transformers, occur at substations where

electrical transmission grids meet distribution networks. This permits energy transfer over

long distances with minimal 𝐼2𝑅 losses in alternating current (AC) three-phase sinusoidal

systems [10]. By this transmission and distribution infrastructure, high-reliability electrical

voltage is made available to consumers at appropriate magnitudes and frequency based on

locality.

Demand is then created and met when electrical devices (loads) interface with the re-

spective consumer endpoint, drawing electrical current, and thereby causing power to flow,

based on the character of the load and under the constraint of Ohm’s Law. Electrical loads

may be grouped into a summative perceived load for the purposes of macro scale models as

described here. All implementations of electrical circuits include an observable property

of impedance. In pure direct current (DC) systems, electrical impedance is degenerative —

represented by electrical resistance alone — while pure AC systems exhibit pure electrical



6

reactance [11]. This work body focuses on modeling flow system interdependencies; thus,

REFS models describing electrical power generation, transmission, distribution, and dissi-

pation are of interest. In such models, both active (resistive) and reactive components of

impedance are present in implementation and accounted for in industry models [12]. Elec-

trical junctions, or busses are frequently present within and throughout power transmission

networks. For an arbitrary pair of directly connected busses, the direction of power flow is

not necessarily regulated. Transmission networks are most often characterized by a number

of busses and the lines which connect any two busses. Further, electrical transformers are

described by a voltage-current relationship and include connections between busses and

electrical generation sources such as fossil and hydro-electric power plants, solar farms,

wind farms, etc. Such sources include a bus interface as well as generation characteristics

and constraints such as absolute generation limits, economic dispatch equations, and ramp

rates, among others [13]. While high-fidelity models of electrical systems account for the

inherent variability of electrical generation in renewable sources, domain focused models

of conventional power generation sites, such as a coal-fired power plant or natural gas plant,

assume abundant availability of all required resources through an abstraction layer governed

by models of economic operational efficiency based on purchase price of calorific fuel and

cost of operation and maintenance (economic dispatch modeling).

Of particular interest in the greater conversation of flow system interdependencies is

the operational nature of a coal-fired power plant which functions in an electrical system as

a generation source, but functions in a coal batching transportation and logistics system as

a consumer. Additionally, and of more immediate relevance, is a coal power-plant’s role as

a major consumer in a distilled water flow network. Pure water is required for sustainable

production of super-heated steam to prevent buildup of deposits in steam piping. A purpose

of this body of work is to describe a FLASH in which these various dependencies can be

modeled, simulated, and analyzed.



7

Electrical busses are particularly important as a relative constant in an electrical

network. While generation and load will vary based on a number of constraints, the

connectivity of an electrical network itself remains unchanged under nominal conditions.

This enables calculation of a bus impedance matrix — or the multiplicative matrix inverse

there-of, a bus admittance matrix — which is used directly as an exhaustive set of impedance-

based constraints on the system when used to solve system power flow by iterative techniques

such as Gauss-Seidel and Newton-Raphson [14, 15]. In models with particular focus

on electrical transmission, inductance and resistance are described to account for line

impedance while capacitance and conductance account for shunt admittance, each being

represented within the admittance matrix.

In order to solve flow about such system models, each electrical bus includes four

flow variables wherein for a given bus at least two of the four variables are known. For

unknown values, approximations are provided for an initial iteration, and a single iteration of

power flow yields a set of variable results which is provided as input with known values and a

constant bus admittance matrix into the next iteration of power flow. Within a small number

of iterations for typical systems, the iterative output converges on a value set which describes

a system steady-state [14]. In electrical systems models, elements required to solve power

flow include Real Power (P), Reactive Power (Q), Electrical Voltage Magnitude (V), and

Electrical Voltage Phase Angle (𝛿), with respect to a reference phase angle, usually given by

a singular slack bus. AC sinusoidal electrical power poses a unique compatibility challenge

in the context of a FLASH description due to the phasor representation of power and flow

elements throughout the system and is thus addressed specifically in Chapter 5. Various

tools are available throughout industry to solve flow in this domain, such as PowerWorld

Simulator as discussed in Chapter 6.

Notably, these power flow determinative techniques are prerequisites to further sys-

tem analyses such as fault analysis, fault recovery, and economic dispatch. Thus, abandoning

such domain-specific conventions in favor of multi-energy-domain models inhibits further



8

domain analyses and may be additionally prohibitive due to the requirement for system

re-translation if electrical-domain analyses are required. Because the FLASH framework

compartmentalizes each system to be solved by domain convention, this barrier does not

arise.

2.2. FLUIDS

2.2.1. Water. Water distribution systems with various purpose and scale are simi-

larly integrated seamlessly into nearly all modern construction, whether domestic or com-

mercial. A societal expectation holds that safe for human consumption (drinking) water is

available, and with limited exclusions, that indoor plumbing is integrated for sanitary waste

disposal into a sewage waste flow system on demand. Particularly in the case of drinking

water, high quality and purity standards are enforced on water treatment companies at every

step from collection, to treatment, to distribution[16], without-which severe negative conse-

quences arise [17]. This includes requirements for compliance with respect the ecological

impacts of collection[18]. Distributors design and maintain drinking-water flow systems

to provide high-reliability (uninterrupted) water to customers on-demand. Drinking water

is distributed from treatment plants to consumers (household, commercial) via pressurized

mains in conjunction with use of relatively high elevation water storage tanks, to supply sys-

tem end-points [18, 19]. A single water treatment facility may be responsible for supplying

the variable needs of consumers throughout a municipality, but when compared to electrical

transmission networks, interconnection with otherwise independent service regions is less

prolific.

While electrical transmission systems include complex (active and reactive) resistive

terms, drinking water systems observe physical constraints based on pipe dimensions and

material, which contribute to a set of frictional coefficients. These are typically known

for any implementation and may be recalculated throughout the lifetime of the system as

needed [16]. Water systems are subject to summative abstraction depending on the needs of



9

the model, and often constitute fully contained systems-of-systems. In the case of a water

flow system model which focuses on neighborhood water consumption and includes supply

to a residential apartment building, accounting may be necessary for the presence of an

on-site pumping station which increases water pressure to ensure water reaches endpoints

on upper floors within regulation. Alternatively, a macroscopic model may simply account

for the site pump as a system end-point in and of itself, with a summative consumption

based on statistical or time-dependent average consumption for the building [20]. In either

case, a critical consideration in a model of interdependent flow systems is that regardless

of model fidelity between pump and endpoints, the pump itself must be considered as

both a consumer of electrical power and a consumer (lower fidelity) or transformer (high-

fidelity) of water pressure. The depth of flow inter-dependency present in drinking water

regulatory infrastructure — the monitoring devices and communications which safeguard

quality throughout such systems — when modeled as a flow system, may dramatically

expand the interdependency mesh for near-endpoint fidelity analysis [21]

As described briefly in the previous section, high-purity, high-reliability water

flow systems are also critical for operation of a particularly cross-domain element of flow

systems — the coal-fired power plant. Additional water systems in such a plant include

high-volume river-water primary and secondary cooling systems which regulate thermal

state throughout the super-heated turbine steam system and constitute a complex system-

of-systems interdependency, as discussed in [22]. Within the lens of inter-dependent flow

systems, a model of a power plant built directly adjacent to a large river may reasonably

assume that river-water is an infinitely available resource, but may alternatively account for

the fact that the power plant also functions as a source of river water in which the volume of

water leaving the plant system is both cleaner and thermally warmer than when introduced to

the system. This is a case in which a single entity, a power plant, may function as a generation

source across multiple domains — here electrical power, and volumetric river water, with

the latter holding significance in a simulation of ecological impact on wildlife in and around



10

the object river [23]. Further, some river water is filtered throughout internal plant systems

and employed in a slag wastewater system which cools the burned residual carbon from the

coal furnace and carries the slag to local site retaining ponds[24], while light-ash is routed

to a filtration system and smokestack[24]. Though most atmospheric dissipation is steam,

the limited particulate emission as well as the significant thermal dissipation may give rise

to additional ecological considerations and amount to representation as additional domain

sources for such models, in some cases even including integrated renewables [25].

2.2.2. Natural Gas. The natural gas life cycle is described by an intricate system of

pipes commonly referred to as the natural gas transportation system. Contained within the

greater system are a few primary pipeline categories, with each group of pipelines serving a

role in the transportation of natural gas to end-point consumers [26]. The system entry point

is the gathering network. Each wellhead — drilling collection site — routes pressurized

natural gas into small diameter collection points in the gathering network. These gathering

pipes then junction into larger pipelines before reaching a processing facility [26]. The

degree of inter-dependency with other macroscopic flow systems of a natural gas processing

facility varies significantly by the means used to separate the target methane from impurities.

Under any purification method, an electrical domain flow inter-dependency is present as

pumps and electrical equipment throughout the site produce to a significant electrical load.

This electrical load is multiplied in facilities where traditional cryogenic distillation methods

are used [27, 28]. A less electrically demanding method may include use of chemically

engineered nanometer membranes with geometrically designed pores which are permeable

to undesired hydrocarbons. Emerging technologies in nanometer filtration demonstrate the

economic viability of filtration of less energy-dense impurities such as diatomic nitrogen

and carbon dioxide, but the manufacture of such nanometer films is necessarily completed

on site due to the sensitivity of the membrane [29]. Particular models may demand further

consideration of flow interdependencies whether through continuous rate flow calculations

or batch supply and demand based on prerequisite on-site manufacturing steps.



11

In many respects a natural gas processing facility model may require a similar fidelity

of flow interdependency as that described for the electrical power plant. Under nominal

conditions, a treatment facility will function as a pressure source of methane gas and may

function as a pressure or flow source of other natural gas liquids such as ethane, propane,

and propane accessories [30]. Focusing on its primary function, the facility supplies high

pressure methane into the high connection density interstate pipeline system. This collective

system is comprised of several dozen separate networks which transport natural gas over

hundreds and/or thousands of miles across the continental United States and Alaska [31].

Natural Gas utility companies (utilities) are the primary consumers of the supply

made available by the interstate pipeline system. Utilities — often present in economic

flow models and typically owned privately or by local government — regulate and supply

natural gas to end-point consumers including industrial facilities, commercial businesses,

and households. Larger customers, such as natural gas power plants commonly have a

direct connection into the interstate pipeline system and purchase natural gas directly from

respective owners or energy cooperatives. This fact may lead to a simplification or edge case

depending on model requirements but is handled under the FLASH framework regardless

of the particular analytical scope or domain focus calling for such infrastructure.

2.2.3. Petroleum. Complex in form and function, naturally occurring, primarily

liquid, hydrocarbons comprise a complex energy flow domain set with similarities in pro-

duction to natural gas, but with derivative production output that couples heavily in both

pressure and flow sourcing and batch flow with global transportation and logistics [32].

Generally, crude oil is acquired by drilling into the Earth’s crust and there tapping into

subterranean deposits. Multiple pumping methods are used in practice today. Exhibiting a

higher calorific value than coal, and being markedly easier to transport than hydrocarbon

gasses, oil has historically been positioned as a critical energy commodity and infrastruc-

ture target [33]. A modern method of production, fracking, involves pumping high pressure

fluids(water/acids) deep into disjoint oil deposit fields to crack the rock that separates them,



12

joining the deposits and making them accessible [34]. This technique is tightly coupled

with a flow system of treated water, requiring a significant power of water (in both pressure

and volumetric flow rate) to achieve desired results and subsequent production.

While limited flow system interdependencies as described above may be present

at the site of production, the complex utility of crude is revealed during processing. In

a petroleum refinery, crude oil is heated and distilled at high temperatures to separate

hydrocarbons into distinct subsets with diverse utility. Liquefied petroleum gasses (LPGs)

are distilled at approximately 20 ◦C and collected for use in household applications such as

lighters. Between 30 ◦C and 105 ◦C, conventional gasoline used in automobiles is distilled.

At temperatures up to 160 ◦C, naphtha — a primary component in plastics, pharmacology,

textiles, and makeup — is produced. Further hydrocarbon separation occurs at higher

temperatures up to 230 ◦C yielding kerosene — the primary fuel of global aviation. Higher

temperature distillation up to 425 ◦C produces diesel for use in automobiles. Finally,

high temperature distillation produces heavy fuel used in ocean-faring cargo ships as well

as bitumen, a primary component of modern roofing and asphalt — a key material in

construction of modern roads [35]. These various hydrocarbon groups encompass and

motivate vast flow networks specific to each group. Of particular interest are flow networks

for gasoline, kerosene, and diesel which are represented both as continuous flow networks

and discrete batch networks with tight coupling into logistics and transportation.

2.2.4. Flow Calculation. Regardless of the purpose or fluid subdomain, this do-

main of flow systems is governed by a set of observable constraints such as frictional

coefficients due to pipe material and/or sediments/contaminants in the fluid of a particular

system, and fluid density, as well as state-based measures of potential (head) across junction

points throughout the system. For a closed system in this domain — summation of volu-

metric flow into and out of the system is said to be equal to zero. The linear flow method

may be applied to derive equations based on a zero headloss loop rule and nodal continuity

with advantages in solution convergence for inaccurate initial approximations at the cost of



13

iteration. Alternatively, the Hardy Cross method may be employed for each junction in the

system to assume an initial flow volume and direction through each pipe in the system [36].

By conservation, Kirchoff’s Junction Rule dictates that for any point in a system the sum

of all flows into and away from the point sums to zero. This rule must hold for all initial

assumptions of flow throughout the subject pipe network as well as for flows into and out

of the system holistically. With an assumption made for each flow through each pipe in the

system, A correction factor (𝛿) based on summative frictional constraints and assumed flow

is then applied to each pipe in the system. This corrected set of flows is then used as input

to the system for further iteration. As values of 𝛿 approach zero, the determined values of

flow for each pipe converge on a solution with increasing precision for each iteration [36].

With flow calculated, relative headloss (reduction in pressure) may be calculated across

junction points throughout the system using a preferred headloss correlation method such

as Darcy-Weisbach[37] or Hazen-Williams [38]. Though iterative solutions in the domain

of fluid flow are achievable with linear systems of equations, the computational burden

grows exponentially with the size and connectivity of the network, making the non-trivial

problem space approachable only through the use of computer software. Domain specific

software considered in this body includes PipeFlow in Chapter 6.

2.3. TRAFFIC

Traffic flow models and typical interest problems center around methods to alleviate

congestion in urban environments. In this context, terms like density, flow, and velocity,

are present, and take on unique meaning as compared to previously discussed flow systems.

Even so, models of traffic networks and logistics systems are governed by similar constraints.

Macroscopic or network-level traffic models, are those which describe how flow and density

in a road change dynamically as constraints and conditions throughout the system change

(i.e., at a traffic signal in transition, and the resultant shock wave occurring in a high-

density urban street) [39]. Small scale information is ignored, and descriptions of emergent



14

congestion trends throughout urban sectors are gathered and aggregated into a macroscopic

fundamental diagram [40]. With advancements in real-time monitoring, municipalities

are building high-fidelity repositories of diverse traffic data, derived from traditional load-

based (pressure) sensors, and increasingly optical cameras, and GPS by way of particular

GPS enabled devices [41]. These datasets afford insights into relevant spatial and temporal

relations to allow meaningful analysis into congestion propagation. This analysis is usable in

smart transportation systems to optimize flow by identifying critical bottlenecks occurring

under conventional solutions (predefined signal timing), and queuing vehicles to move in

patterns which mitigate them — maximizing throughput [42].

This is achieved by partitioning urban streets into homogeneous zones and con-

trolling inter-transfers (flows) among them, a technique known as perimeter control [43].

Several models exist in this space currently. Greenshield’s model of traffic flow includes

multiple equations which may be employed toward a generic, low-to-medium fidelity frame-

work. The first for Greenshield’s equations defines a simple inverse linear proportion be-

tween velocity and density. A negative parabolic then describes the relationship between

flow (vehicles/unit time) and roadway density. Whether considering traffic flow as a regional

aggregation or as individual flows among specific streets, a set of parameters define a given

flow problem, and a shared set of rules may be used to solve them. A traffic flow problem

assumes that for an observed network, a number of vehicles entering the network is equal

to the number of vehicles leaving the network. Further, for a given intersection within the

network, the vehicles entering equal the vehicles leaving [44]. Based on these rules alone,

some or all unknown flows throughout a traffic network may calculated via a system of

linear equations derived on said rule basis. In many cases this is sufficient for this domain

in particular because flow rate information is abundant or may otherwise be gathered by

observation. This is compatible with the FLASH framework to be proposed. However, this



15

method builds only a partial representation of the system. Particularly, it lacks the detail

necessary to predict conditions at other times; thus, a more complete description follows

for more complex/temporally sensitive models.

Building on the above method and rule set, a coefficient of resistance may be de-

termined for a given road, in a given direction, by analysis of known data. Said coefficient

relates to physical attributes of a roadway under known constraints on flow and potential.

In many cases, potentials are not initially defined under the flow method described above.

In this case, a lowest relative reference potential can be assigned to a particular intersec-

tion. This reference is one in which internal flows enter and which external flows leave

the intersection. Vehicles can then be said to travel high potential intersections to low

potential intersections as a function of road resistance. Resistive factors include number

of lanes, active construction work, as well as age and maintenance conditions of the road

such as debris, potholes, etc [45]. With calculated representations of temporally static re-

sistive coefficients and temporally dynamic intersection potentials, an additional constraint

may be applied to closed paths throughout the system stating that the potential around a

closed loop does not change. This additional constraint parameter set allows otherwise free

(unknowable unknown) flow values remaining from the flow-only approach to be approxi-

mated throughout the model along with unknown intersection potentials — as long as the

number of unknown values of flow and potential are summatively less than or equal to the

number of linearly independent equations created by the constraints — by a linear iterative

approach in which unknown intersection potentials and road flow rates are approximated

within constraint boundaries. Iterations then converge on a constraint bounded solution,

where the output of each iteration is a delta to be added to the previous iteration input, and

deltas across iterations converge on zero [44].

This approach provides complete intuition not only into where and when bottlenecks

occur throughout the network, but also why they occur, and is useful at a macroscopic level to

aid decision makers in respective resource prioritization between creation and maintenance



16

of new and existing infrastructures. This intuition is immediately applicable to microscopic

systems flow such as logistics networks which are embedded into greater traffic systems-

of-systems spanning commercial spatial domains (air, land, surface/sea) and in which

individual units throughout each system depend directly on multiple processed petroleum

systems and increasingly, particularly in the case of land vehicles, electrical transmission

and distribution systems [46]. A particular case of interest is the direct circular dependency

between the final batch flow component of gasoline distribution, wherein gasoline tanker

trucks transport batches of gasoline from processing facilities to gas stations by way of

traffic systems, while simultaneously depending on gasoline to function. A similar inter-

dependency holds for kerosene transportation via aircraft. First order failures of such a

system propagate in short order into mass transportation and logistics systems at second

order. Depending on the extent of interruption, second order impacts may bear globally

measurable consequences at the nth order and have particular relevance to aerospace-based

defense vehicles and infrastructures[47], this criticality is transparently evident so much

so that any campaign level simulation may reasonably be considered incomplete if such

critical resources are assumed to be abundant.

2.4. THERMAL

Thermal flow systems may be unified across domains by relation of power and

energy. As is the case with the domains described above, thermal energy flow modeling is

constrained into a set of known physical principals which bring about a set of finite systems

of equations in a given model. The domain of thermal energy is recognizably more complex

in many regards; however, any non-trivial model of an implementation in the problem space

implies rules analogous to many of the flow system rules described above, in addition to

rules derived by the Second and Third Laws of Thermodynamics [48]. These may not be

required for lower fidelity thermal models which are not the primary domain focus in a

multi-domain model. In such case, point heat sources with perfect free-space insulation



17

and well-defined thermal conductors may permit degeneration such that a solution by the

First Law of Thermodynamics in isolation is achievable [48]. It is recognized here that the

complexity in a non-ideal model requires use of advanced methods in thermal dynamics

modeling. It is not; however, the purpose of this work body to describe such processes.

Rather, the FLASH infrastructure simply guarantees an abstract interface wherein such

heat transfer analyses may be captured in a hybrid system-nodal form. In this way, system

composition enables computation of flow about the system while nodal composition enables

simultaneous cross-domain interdependency linkage.



18

3. DOMAIN GENERALIZATION

While each domain is bounded by vastly different physical constraints, an emergent

pattern spans throughout and allows each system, across every flow domain, to be gener-

alized. With generalization comes loss of particular focus, thus while for some domains,

relevant generalizations of a particular variable set may come in high-fidelity and/or high

availability, other domains may require that assumptions are made to derive generalized

values from component factors. Similarly, while generalized results and calculations of a

particular value set may be immediately valuable for a given domain, other domains may

have little to no use for them directly or may require definition of domain-specific constraints

for more complete analyses. A requirement for cross-domain uniformity/compatibility de-

mands that the generalizations defined in this section are expanded upon in the FLASH

framework, primarily where cross-domain energy transformation/gyration is relevant.

3.1. POTENTIAL

Potential, a referential property which compares two points in a network, is the first

domain independent property generalization observed for all flow systems described in the

previous section. While in some cases potential is provided as an explicit differential, more

often a single value is specified, with an implicit comparison assumed between reference

points.

In electrical systems. Potential is measured in units of electrical voltage V, and in

most cases, when provided as a single value, is compared against a known reference —

typically electrical ground, represented as a zero voltage for all models. A difference in

potential is referred to as a voltage drop (Δ𝑉) and is typically measured across a singular

electrical component or across an aggregated multi-component representation.



19

Potential in fluid systems is captured by pressure. Units of pressure vary by appli-

cation and locale (PSI, BAR, etc.) as well as unit reference itself. Invariably, the formal

measure of potential in a fluid system is pressure. However, pressure itself is often referred

to as head, while pressure differential across junctions in a pipe network is commonly re-

ferred to as headloss [37]. In many closed systems, a referential pipe junction or endpoint is

specified for comparison throughout the system, while in open systems, atmospheric pres-

sure serves as reference at points of absolute outlet. Fluid systems are additionally governed

by transitions in material state which constitute an inter-dependency in flow systems as a

result of changes in physical characteristics, such as the property of a gas to expand and

compress with respective increases and decreases in temperature and respective decreases

and increases in pressure; where a combination of these conditions may result in a material

phase shift as a given gas liquefies when below its two-dimensional boiling point. An

example of both systems-of-systems and interdependent systems is the state transition of

purified water in power plants (nuclear, coal) into super-heated steam. This steam, which

spins a differential turbine, is connected roto-mechanically to an electrical generator. This

constitutes multiple cross domain energy transformations/gyrations and depending on the

focus of a particular model may warrant explicit definition [14]. Where this is the case, the

proposed FLASH framework facilitates such a definition for use in simulation.

Measurement of potential in a traffic network is less critical for analysis of traffic

congestion in many typical models due to the abundance of measured flow information, but is

no less present in principle. By its relative nature, potential in a traffic network is associated

with individual road intersections as well as regional aggregations of homogeneous urban

zones, in each case always in comparison to an applicable reference potential.



20

3.2. RESISTANCE

A generalized description of the property of flow systems to inhibit flow itself

is resistance. Characterized by the same name in DC electrical circuits, resistance is

measured in unit ohms (Ω) and is a quantitatively measurable property inherent to all

electrically conductive materials. While most consumer electronics employ resistors as

discrete components, the electrical domain becomes uniquely complex at the scale of

electrical power transmission and distribution — and generally in the case of all AC electrical

circuits. While DC electrical system resistance is described completely by simple ohmic

resistance, AC system resistance is captured via a combined representation of both electrical

resistance — the tendency of an electrical component to inhibit direct charge flow — and

electrical reactance, unit ohms (Ω) — the tendency of an electrical component to inhibit

the change in electrical charge flow. These components are then represented as a complex

number wherein resistance is the real component and reactance is imaginary. This combined

representation is termed electrical impedance, unit ohms (Ω). This body of work focuses

on interdependencies between and among flow systems. Therefore, AC power transmission

systems are of primary relevance; and so a naming conflict is present which must be

disambiguated. Thus, for an abstract/generalized representation of an AC electrical system,

the general term/property of resistance captures the complex term/property of electrical

impedance.

Fluid systems are simpler with respect to resistance. For an arbitrary network of

pipes, resistance describes the domain property of friction. As a kinetic system property,

friction inhibits the movement of a material across a surface (and similarly, through a

medium). For this discussion, applications of interest include fluid resource transfer through

complex pipe networks. As pressure and friction are critical to the fundamental analysis of

pipe networks, coefficients of friction are provided by pipe manufacturers for a given material

and pipe diameter [49]. This infrastructure ages over time, resulting in changes (usually



21

increases) in the resistivity of a particular pipe material. However, changes are slow and

may be recalculated for a given implementation. In many cases manufacturers additionally

provide time dependent frictional approximations derived from existing data [49].

Measure of resistance in a traffic network is more difficult to quantify, and established

units are not observed widely throughout the domain. However, as is the case with potential,

resistance is present in traffic networks and particularly for individual roads is positively

correlated to the age and surface conditions of the road (bumps, potholes, loose rock/asphalt,

debris). A primary negative resistive correlation then is the number of regular motor vehicle

lanes which make up the road. A regular posted speed-limit may affect overall resistance

dynamically when compared to the likely velocity that drivers would otherwise observe

based on other road and environmental conditions. The results of maintenance correlate

negatively with resistance once complete, but while in progress, dramatically increase

resistance as drivers slow their vehicles per reduced speed limit signage and enforcement to

lower the risk/consequence of hitting construction workers. Construction doubly inhibits

traffic where lane closures reduce the parallel capacity on a given road and where reduced

speed limits are enforced [45].

3.3. FLOW

Flow describes the movement and/or transfer of an object, entity, or quantity from

one spatial point of reference to another across a defined medium, over a unit time. Ex-

amples are extensive and in many cases are not conducive to complex systems models nor

interdependencies. Interesting and relevant cases are similarly extensive; however, but not

described completely in this body of work. Some cases of potential interest and application

for use in a FLASH implementation include those described here as well as models of flow

of communications and information over a digital or analog network[50], propagation of a

virus through a population and/or across aggregated populations[4], and ecological models

of carbon transfer networks among forest ecosystems[5].



22

Flow in electrical systems may describe one of multiple related properties, those

being electrical current and electrical power, which each vary depending on the circuit

context, being either DC or AC. In direct current systems, the singularly directed movement

of electrons (electrical charge) across a conductive medium, usually a metal such as copper,

measured over a unit time is captured and represented as direct electrical current or DC,

and is measured in unit Amperes, or simply Amps (A). This describes charge flow in a DC

system. In such a system, delivery of electrical current through/across a compatible electri-

cal load is useful from the perspective of the device interface, which will specify a constant

operational voltage, rated current limit and often the approximate current drawn for static

loads. Limitations on current through a given interface (circuit) serve to protect connected

devices and delivery infrastructure alike [51]. Observably, when current limits in a given

circuit are exceeded, the result is that a protective circuit element such as a circuit breaker or

fuse will trip or melt respectively, opening the circuit and immediately halting supply to the

set of devices which have collectively exceeded the rated current. This is the function and

behavior of an electrical breaker box, often present in residences and commercial businesses

as a point of interface between higher voltage/current capacity electrical distribution infras-

tructure external to the building. From the perspective of electrical devices however, most

applications of electrical energy transfer rely on the determination/calculation/knowledge

of real electrical power — a linear product of voltage and direct electrical current — as a

primary operational specification for electrical devices/loads. Knowledge of the electrical

power absorbed by a load is directly relevant to the operational character of the load, and

additionally offers insights into the economic operational cost there-from.

Flow of electrical power and current in the context of an alternating current, AC,

system is similar in many respects to DC flows, but includes additional complexities which

affect each of the properties described in this section. Alternating electrical current, AC,

is an operational specification on electrical systems. In an AC system, electrical charge

moves through a medium — again usually a metal such as copper — over time in a



23

periodic sinusoidal pattern. If a singular free electron in such a system were observed

during regular operation, an observer would note that the physical spatial movement of said

electron follows both the positive and negative curvature of a sinusoid when measured over

time. The electron itself moves a forward distance through the medium before eventually

slowing, and ultimately reversing direction, repeating this pattern continuously throughout

regular system operation at a usually constant frequency, with modern systems operating at

either 50 or 60 Hertz (Hz). This measurably results in a zero average charge flow across

an electrical endpoint. However, this is where flow of electrical power becomes relevant.

Although a net zero charge is delivered across the load, electrical power is in fact delivered

and thus motivates a significant focus on power dissipation (power flow) as the primary

flow of interest about electrical applications in critical infrastructure. Noted previously is

the added complexity inherent to the operation of AC electrical systems. An exhaustive

description of the underlying physics which govern these complexities is well-established

and significantly exceeds the scope of this discussion. Notably, AC systems are subject to

complex representations of power and resistance as well as phasor representations of voltage

and electrical current. As noted previously, these complexities derive from the tendency of

a conductive medium not only to resist direct charge flow, but also to inhibit the change in

charge flow as a result of the opposing magnetic field created by the movement of electrical

charge [14].

Acknowledgment of these physical laws complicates electrical domain flow system

properties, relationships, and analyses. Similar impacts on voltage and resistance represen-

tations (phasor voltage, electrical impedance) are discussed previously in this chapter. As

with voltage, alternating electrical current is conducive to a phasor representation wherein

the angular component of current is referential to that of voltage and for a given system is

said to lead (capacitive) or lag (inductive) the voltage phasor. The magnitude of both phasor

voltage and current may be calculated to reflect a root mean (average) squared, RMS, or

effective value over the period of the sinusoid as a DC circuit equivalence constrained by



24

electrical power dissipation across a load. Intuitively, with complex electrical impedance,

and phasor representations of both voltage and current, an AC system then gives rise to a

complex and/or phasor representation of electrical power. As with a DC circuit, instanta-

neous complex power is the product of phasor voltage and complex conjugate of current

— equal in magnitude, but with a negative angular component. This results in a complex

power which is composed of real and reactive components which are represented as a phasor

and/or complex pair depending on the required analysis. In phasor form, the magnitude of

complex power is known as the apparent power and is represented in units of Volt-Amperes,

while the phasor component is termed the power factor angle and provides insight into the

operational efficiency of the system. The orthogonal components then are described by load

characteristics. The real component of power measures power dissipation across a load and

depends directly on the resistance of the load. The imaginary component, termed reactive

or quadrature power, measured in unit VAR, measures reactive power dissipation across the

load and depends on the reactance thereof. This complex representation of electrical power,

which is fundamentally conducive to electrical flow system analyses, is of particular impor-

tance in consideration of practical applications of interdependent flow systems in modern

critical infrastructure. This power flow is the governing character of electrical transmission

systems that electrify virtually all consumer and industrial loads, referred to holistically as,

’the grid.’

While charge flow (current) is of component importance to power flow in electrical

transmission and distribution systems, the fluid domain analog — direct resource and

material transfer — is the fundamental focus in fluid system flow analyses. While further

analogs may be drawn from AC electrical systems in principle into fluid flow systems —

parallels exist between electrical reactance and fluid inertia/momentum — applications of

such implemented systems are not prolific in fluid flow systems and thus while acknowledged

and compatible with the FLASH architecture are not described here in detail. In fluid

systems, flow involves the physical spatial movement of matter (usually gas or liquid) from



25

areas of high potential (pressure) to areas of low potential. Volumetric fluid flow is measured

as the quantity of fluid, assuming uniform or calculated average density where applicable,

passing through a cross sectional area of a container — typically a pipe or channel — over

a unit time. The quantity of fluid leaving the system from an endpoint over the duration

is then measured for a variety of reasons, one of the most prolific being the translation of

a delivered fluid quantity as both a purchase of a resource and service. This is a typical

interaction for residences and commercial buildings consuming water and natural gas, each

motivated by a variety of reasons, with fluid quantity being assigned a currency-specific

economic value. In this way, a volume, such as liquid gallons or cubic meters of uniformly

pressurized gas, can be purchased by the end user and billed by the provider over a period

of time, often monthly. A similarly common and relevant interaction is the unit transfer

of gasoline from a gas station pump into a motor vehicle. The measured volume of liquid

leaving the station flow system is determined by measuring the flow rate over a duration.

This volumetric quantity is purchased, typically in unit gallons at a market driven price

per gallon. In similar form to the requirements for availability of electrical power, these

resources are critical to the regular function of modern society. Customers expect a safe,

clean stream of drinking water to be available at the tap whenever desired and expect a

consistent flow of natural gas to be available on demand for residential heating and a variety

of culinary applications. Fluid flow observes a simple numerical representation like other

properties throughout the domain, leading to robust methods in arbitrarily complex network

analysis based on systems of independent linear equations.

Traffic flow bears similar importance to that of fluid flow. In a traffic network,

flow is an average measure of vehicles passing a given point on a roadway over a certain

unit time, typically hours or minutes, depending on the application. This rate is then

comparable with other flow rates throughout the system to offer insights into existing

bottlenecks and allows models to be built based on existing conditions to then be modified

and simulated to understand likely results of changes. Efficient and high-quality proposals



26

for new infrastructure and maintenance may then be provisioned to stakeholders to fund

construction projects to reduce bottlenecks and otherwise benefit, improve, and optimize

flow throughout the object traffic network. While vehicle flow rates are in reality derived

from whole numbers, average measures over intervals result in floating point representations

of traffic flow, including negative rates where a single bi-directional road is observed over an

interval with a reference direction opposite that of the overall summative flow between the

two directions. Traffic flow as a flow system property is, in many models, central to reaching

a solution, in large part because and data is abundantly available by observation. As noted

previously, this leads to many analyses which require partial flow data alone to determine

flow throughout the system, reducing or entirely removing the need for representations

of resistance and potential throughout the system as a requisite to derive a meaningful

solution. In such case, suffice to assume trivial or uniform values of resistance throughout

the system such that underlying methods of calculation, while potentially degenerative,

remain functional.



27

4. EXISTING MODEL FRAMEWORKS

A number of models have been proposed with the goal of bridging cross-domain

systems interactions. The cases considered do so by considering the fundamentally shared

property of energy, unit joule (J), and its temporal derivative — power, unit watt (W)

— empirically measurable across all energy domains. These model frameworks provide

means for establishing the governing equations about unified dynamical systems. Elements

and terminology defined by these frameworks are captured here as underlying motivation,

principal, and for consistency in terminology used in the FLASH framework to be described.

4.1. BOND GRAPH THEORY

Originally proposed in 1961 by Paynter[52], bond graph theory has been contin-

uously developed internationally and proposes that through means of dynamical system

analysis, determination and resolution of differential equations to describe and predict the

character of complex, multi-domain energy systems is possible [52]. However, typically the

non-trivial task of determining the differential equations is a human responsibility, where

the calculation of a numerical solution when provided those differential equations is del-

egated to a computer system for evaluation. Bond graph theory is a proposed method by

which the job of deriving the differential equations for dynamical systems themselves is

made possible by a pre-defined algorithmic procedure.

Figure 4.1. Translation from (Electrical) Domain Notation to Bond Graph Notation



28

In order to do so, the essential characteristics and constraints of the system must be

conveyed as input unambiguously to the processing engine, thus a language must be defined

to allow system characteristics to be translated for computer processing, equation derivation,

and evaluation [53]. An initial example of such translation is provided in Figure 4.1.

Figure 4.2. Simple Bond for Inertial, Compliant, and Resistive Element

The essential idea is that any system is composed of a set of fundamental basic el-

ements. Though these vary in implementation by energy domain, they may be generalized

and unified across energy domains by their behavioral character therein. These elements

are then composed in series and parallel combination to produce a given system represen-

tation. Interactions across system elements are then united on the understanding that the

fundamental exchange/transfer of power governs all. Power is composed then of the product

of two variables — an effort variable and a flow variable, as described in chapter 3. The

effort variable in an electrical system is the electromotive force, EMF, or voltage, while

the flow variable is electrical current — the movement of electrical charge. Similarly, in a

translational mechanical system, the effort variable is the force, while the flow variable is

velocity. For rotational mechanical systems, effort corresponds to torque, while rotational

velocity maps to flow. Relating further to magnetism, the magneto-motive force, MMF,

or magnetic potential is the effort variable, while the variable corresponding to flow is

the rate of magnetic flux. Bond graph theory proposes that for every dynamic domain

there is always an effort variable and a flow variable and categorizes each in a group of

information variables. Paynter suggests then that if the character of these three variables

can be communicated to a computer for within and throughout the elements of a given

dynamical system, this is sufficient for the computer to derive the governing differential



29

equations about the system. Further, he suggests that this information can be communicated

pictorially by means of a bond graph which represents only the exchange of information

and power between system elements [52].

A single bond is sufficient to represent the relation between an isolated system

element and the rest of the system, of which the singular element does not have knowledge

— depicted in Figure 4.1. In principle, this notion motivates the nodal/elemental component

of the FLASH architecture proposed in Chapter 5.

Discernible by review of the domain relation of inertial elements — such as the

inductor in electrical circuits — flow is shown to be the integral of effort multiplied by a

function which may in some cases (linear inertial elements) degenerate to a constant. This

is captured symbolically in Equation (4.1).

effort = 𝑓
d flow

d𝑡
flow = 𝑓

∫ 𝑡

−∞
effort d𝑡 (4.1)

This relationship, shown in Figure 4.2, describes the bond or character of the inertial

element in relation to the rest of the system. A similar relationship is evident in a number of

energy systems and described in general terms in bond graph theory for compliant elements

of a system (shown in Figure 4.2). This relationship is characterized in opposing form

to that of the inductive element, where effort is described as the integral of flow and the

product of some function which may in some cases (linear compliant elements) degenerate

to a constant. Equation (4.2) captures this element character.

flow = 𝑓
d effort

d𝑡
effort = 𝑓

∫ 𝑡

−∞
flow d𝑡 (4.2)



30

This relation describes the character or bond of the inertial element in relation to

the system. Finally, a depiction of the resistive element bond is shown in Figure 4.2 and

captured symbolically in Equation (4.3). The character of the resistive element is such that

the effort is equal to a function, which may degenerate to a constant, multiplied by the flow.

This can be inversely described such that the flow is equal to the product of an inverse

resistive function/constant and the effort [52].

effort = 𝑓 · flow flow =
1
𝑓
· effort (4.3)

Bond graphs also include a description of source-type elements. Notation is provided

in Figure 4.3. The first source-type element is the effort source, a system element which

independently controls the character of the effort in a connected bond, but in this way, the

effort source does not determine the value of the flow variable.

Figure 4.3. Bond Graph Source Elements

Rather the character of the flow variable is decided by the rest of the system as a

whole. Based on the fact that the flow information is not decided by the effort source element

and by the power relation to effort and flow that power also cannot be determined by the

source of effort alone. An additional source-type element is the flow source (Figure 4.3). An

element of this type independently controls/determines the character of the flow information

in a connected bond. However, in this way, the flow source does not determine the value

of the effort variable. Rather the effort and, in turn, the overall power is determined in

combination with the rest of the system [52, 53]. Importantly, for each source element type,



31

determination of the respective characteristic allows the source the flexibility to set a value

dynamically, such as by a function of other arbitrary measures of input character. This

flexibility lends itself to energy cross-domain interdependencies.

This set of elements allows for the assembled representation of simple systems with

only the addition of unifying junctions. Bond graphs include two forms of junction. The

zero (or p, in alternative representations) junction unifies/equalizes the effort information

across all bonded elements. In other words, a zero junction receives effort information

from one and only one connected bond and applies that effort to all other connected bonds.

Illustrated in Figure 4.4, this principle relates to parallel flow system elements and is

summative on flow about the junction.

Figure 4.4. Bond Graph of Parallel RLC Circuit

The one (or s) junction unifies/equalizes the flow information across all bonded

elements. In other words, a one junction receives flow information from one and only one

connected bond and applies that flow to all other connected bonds. Presented in Figure 4.5,

this principle relates to series flow system elements and is summative on effort about the

junction.

The causal stroke, discussed below, must then appear, in relation to a given zero

junction, on the junction side of only one bond, that of the effort causing element. Said

bond is termed the strong bond for such a junction. Similarly, in relation to a given one

junction, the causal stroke must appear on the junction side of all but one bond, that of the

flow causing element. For such junction, said bond is termed the strong bond [52].



32

Figure 4.5. Bond Graph of Series RLC Circuit

In order for the construction of differential equations which govern such a system

an additional concept of the origination and propagation of information throughout the

system is needed. In effect, directionality must be defined for bonds throughout the graph.

For disambiguation, this additionally requires numeric assignment to each of the bonds.

Because each bond does not singularly represent either effort or flow, but rather power, the

directionality of bonds in a bond graph is decided by the known or expected positivity.

Figure 4.6. Identical Directed Bond Graph for an Electrical Circuit and a Kinetic Machine

Illustrated in Figure 4.6, positivity is generally known to be away from source

elements, denoting that sources generate power. Similarly, that resistive elements are

understood generally to be those which absorb or dissipate power from the system for a

given domain. In the case of inertial and compliant elements; however, the direction of

power flow is less clear, as for each element type, the element instance is at some point

absorbing power from the system and at another point returning power to the system. The

international convention for power directionality then is understood to be that which is



33

absorbed by the element. Power directionality between bonds is arbitrary for computation

and evaluation of system dynamics, but must be referred to post-evaluation to derive domain

meaning for a particular time and element [52, 53].

The element set described and bond character about said elements is sufficient

to describe many simple systems. Specifically, systems which include only single bond

elements, or elements in which a single bond is sufficient to describe and characterize both

flow and effort information about said elements. More complex systems; however, include

elements which are not fully characterized by a single bond.

Figure 4.7. Bond Graph of Electrical Transformer and Kinetic Lever

One such element (shown in Figure 4.7) is the electrical transformer, that is, an

electrical component in which inductive coils are electrically isolated, but magnetically

linked such that voltage across the driving coil is transformed across the magnetic boundary

to induce a secondary, and in some cased tertiary, voltage at an implementation specific

transformation ratio corresponding to the number of physical coil turns in the electrical

conductors on either side of the transformer. Assuming a nominal closed-circuit context, a

flow applied to the driving electrical transformer (either AC or DC) induces a transformed

flow in the secondary coil. This transformation is such that, for an ideal/lossless transformer,

power injection into the driving/primary coil is equal to power in the secondary coil.

𝑒2 = (1/𝜇)𝑒1, 𝑓1 = 𝜇 𝑓2 (4.4)



34

Described symbolically in Equation (4.4), the secondary flow (or effort) is the

product of the primary flow (or effort) and the, usually constant, transformation ratio

𝜇. Similarly, the secondary effort (or flow) is equal to the product of the multiplicative

inverse of the transformation ratio and the primary effort (or flow). In this way, the

product of the primary information variables is shown to be equal to the product of the

secondary information variables. Although both information relational forms are described,

convention is such that the transformer relation in primary form (not the multiplicative

inverse) links the flow variables. In the domain of rotational kinetics, a gear (or gearbox)

is a transformer of torque and rotational velocity, while in translational kinetics, a lever

(shown in Figure 4.7) or pulley system functions as a transformer of force and linear

velocity [53]. For any transformer element, the bond graph representation includes two

bonds about the element, each carrying primary and secondary effort and flow information

respectively, and an indicating arrow carrying the transformation ratio about the element.

This domain internal relation is directly captured in Chapter 5 within description of the

general transformer element interface for use within the FLASH framework.

It is shown that the function of a transformer is to convert flow into flow, and

effort into effort each in relation to a ratio 𝜇. Bond graph theory additionally includes a

description of the gyrator, as depicted in Figure 4.8 — an element of energy transformation

which converts flow into effort and effort into flow.

𝑒2 = 𝑔 𝑓1, 𝑓2 = (1/𝑔)𝑒1 (4.5)

Following convention, Equation (4.5) symbolically describes gyrator operation. A

gyrator is characterized such that the secondary effort is the product of the gyration ratio

(𝑔) and the primary flow. Similarly, the secondary flow is the product of the multiplicative

inverse of the gyration ratio and the primary effort. Observable then, the product of the



35

primary effort and flow is equal to that of the secondary effort and flow. More concisely,

for a lossless/ideal gyrator, the primary power is equal to the secondary power. Practical

examples of gyration cross energy domain boundaries; thus, providing the means to describe

systems of systems interdependencies in a form which can be conveyed to a computer.

Figure 4.8. Ideal Gyrator with Causality

One such example is the arbitrary (ideal/lossless) DC electro-roto-mechanical ma-

chine — a machine which crosses the energy domain boundaries of electricity and rotational

kinetics. In such a machine — a brush DC motor for example — output torque is a function

of the product of a gyration ratio and an electrical current, while the back EMF in the

electrical domain is a function of the product of the armature rotational velocity and the

same gyration ratio. For any gyrator element, the bond graph representation includes two

bonds about the element, each carrying primary and secondary effort and flow information

respectively and an indicating symbol carrying the transformation ratio about the element.

The issue of causality, alluded to above as a consideration in power directionality,

is now considered directly and illustrated in Figure 4.8. In bond graph theory, causality

captures the essence of information responsibility throughout a system. Each element in a

system is responsible for the determination of either the flow or the effort information about

itself — i.e., the effect. Further, the information for which the element is not responsible



36

— i.e., the cause, is determined by the rest of the system. A cause-and-effect relationship

must be defined for every system element and such relationship/character is captured by a

single bond.

Referring back to the inertial element. Described above, the flow-effort character

is such that flow is the effect (a function) of the complete history of the effort information

— the cause — about the element. Thus, the inertial element is responsible for the flow

about the bond and that effort, applied to an inertial element, causes the effect of flow

about the same element. Similar causality holds for the compliance element. Namely, for

a compliant element, effort is caused by (is a function of) the product of a function (or

constant) and the history of flow applied to the element. Given this, the compliant element

is responsible for the effort about the bond and that flow applied to a compliant element

causes the effect of effort about the same element. By convention, this causality is denoted

by an orthogonal stroke, a causal stroke, located at the edge of the bond in which effort is

causal [52, 53]. For the inertial element, the causal stroke appears at the inertial element

side of the bond, indicating that system effort applied to the inertial element is the cause of

flow about the inertial element. Similarly, the causal stroke of a compliant element bond

appears away from the compliant element side of the bond, indicating that effort about the

compliant element and applied to the system is the effect of flow applied to the compliant

element caused by the system. By the same reasoning, the causal stroke appears on the

system side of the effort source, and the element side of the flow source. A resistive element

bond has the character such that the bond may cause one of either the flow or the effort,

but never simultaneously both. The bond applies control to the system dynamically based

on its connectivity to the system [52]. Where flow information is the cause applied to the

resistive element, effort information will be the effect about it. Conversely, where effort

information is the cause applied to the resistive element, flow information will be the effect

about it.



37

Causality must be established for each bond of the of the multi-bond elements,

Following the reasoning established above, where the causal stroke of a transformer element

primary bond appears on the system side, the causal stroke of the secondary bond appears on

the transformer side, and vice-versa. In other words, where a primary system applies effort

to a transformer, the transformer applies causes effort about a secondary system, having the

effect of flow from the secondary system about the transformer which in turn has the effect

of flow about the primary system, and vice-versa. Similarly, where the causal stroke of a

gyrator element appears on the system side, the causal stroke of the secondary bond appears

on the system side and vice-versa. In other words, where a primary system applies effort

across a gyrator, the gyrator will induce flow about a secondary system; which, in effect,

will apply effort back into the gyrator, in-turn effecting the flow about the primary system,

and vice-versa. This is shown in Figure 4.8.

The advantage of the bond graph language and notation is that translation of a dy-

namical energy system into a bond graph model, including a multi-domain energy system

model — i.e. that which constitutes a flow system inter-dependency — is algorithmic.

Reason follows that derivation of the differential equations which constrain the system

are similarly algorithmic and thus conducive to delegation to a computer system. Intu-

itively, such system may then also serve to evaluate said differential equations as a critical

computation in evaluation of the model overall.

4.2. PORT-HAMILTONIAN SYSTEMS

Port-Hamiltonian systems theory is a multi-physics framework intended to provide

a means of system control. The theory is based on considering energy and power as

the common language across physical domains and combines principals of Hamiltonian

dynamics with network architecture. By identification of underlying physical structures in

mathematical models, powerful insights are made available for simulation, analysis, and

control [54].



38

Figure 4.9. Structure of a Port-Hamiltonian System

This framework proposes that any physical system can be modeled in the form

of storage elements and dissipation elements linked by paired variables/properties termed

effort and flow. Effort-Flow pairs are additionally considered as power conjugates, such that

the product of a paired set of effort and flow is equal to power — energy over a unit time.

These power conjugates link the power of storage elements to that of dissipation elements

by means of a Dirac structure which additionally functions to link power conjugates from

external sources [54]. Port-based modeling considers a physical system as a set of ideal

basic elements interconnected or linked by energy flow. Linking is established by conjugate

vector pairs of flow and effort with a product of power. This character forms the foundational

structure of the general Port-Hamiltonian System, as shown in Figure 4.9.

Hamiltonian dynamics motivate Port-Hamiltonian representations of energy ele-

ments.

¤𝑥 = − 𝑓 𝑒 =
𝜕𝐻

𝜕𝑥
(𝑥) d

d𝑡
𝐻 = 𝑒𝑇 𝑓 (4.6)



39

In the most complex case — that of energy storing elements — effort is proposed

as a function of the partial derivative of the Hamiltonian (the energy function — 𝐻) with

respect to a state vector (𝑥). For energy storing elements, flow is said to be the negative

of the first order derivative of the state vector. Hence, the derivative of the Hamilton, with

respect to time is the vector product of effort (transpose) and flow, or simply power.

𝑅( 𝑓 , 𝑒) = 0 𝑒𝑇 𝑓 ≤ 0

Similarly, energy-dissipating elements are described by a linear relation of the power

conjugates such that the vector product of flows and efforts (transpose) is less than or equal

to zero. Energy routing elements describe a vector pair of power conjugate pairs.

𝑓 =


𝑓1

𝑓2

 𝑒 =


𝑒1

𝑒2

 (4.7)

𝑓1 = 𝑀 𝑓2 𝑒2 = −𝑀𝑇𝑒1 (4.8)

𝑓 = 𝐽𝑒 𝐽 = −𝐽𝑇 (4.9)

The generalized transformative element, or simply transformer, links primary and

secondary flow by a transformation matrix, and the secondary and primary effort by the

negative transformation matrix transpose. Generalized gyrators map efforts to flows such

that a flow vector is equal to the product of a gyration matrix (𝐽) and an effort vector where

the gyration vector is skew symmetric — equal to the negative of its transpose.



40

𝑒1 = 𝑒2 = ... = 𝑒𝑘 𝑓 = 𝑓1 + 𝑓2 + ... + 𝑓𝑘 = 0 (4.10)

or

𝑓1 = 𝑓2 = ... = 𝑓𝑘 𝑒 = 𝑒1 + 𝑒2 + ... + 𝑒𝑘 = 0 (4.11)

Finally, a set of ideal interconnection and constraint functions state that either, for a

given interconnection, all efforts are equal and flows summative, or all flows are equal and

efforts summative [54].

𝑒𝑇 𝑓 = 𝑒1 𝑓1 + 𝑒2 𝑓2 + ... + 𝑒𝑘 𝑓𝑘 = 0 (4.12)

The rules on energy routing elements and interconnections and constraints are such

that power conservation holds for the power conjugate pair vector space and that a number

of (independent) linear equations can be produced equal the power conjugate vectors’

shared dimension. This set of elements, interconnections, and constraints is grouped into a

geometric object, termed a Dirac structure.

This element-based architecture and language offers powerful tools to synthesize

the behavior of physical systems[54] in similar form to that of bond graph theory. Sim-

ilarities are evident between the two frameworks from terminology to rule sets. While

Port-Hamiltonian approaches group the behavior of energy storing elements such as iner-

tial and compliant elements and represent resistive elements as energy dissipative, these

representations are functionally similar in that singular effort-flow port pairs unite energy

storage and dissipation into routing. Both frameworks include multi-port/multi-bond repre-

sentations of inter/intra-domain energy transformation elements — the transformer/gyrator,



41

respectively. Across these frameworks, the shared terminology and structure motivates

much of the terminology used to describe the FLASH interfaces in Chapter 5 which must

be captured by an implementing software engineer.



42

5. FLOW AGENT-SYSTEM HYBRID (FLASH) FRAMEWORK

The governing constraints and behaviors observable about a given flow system from

the lens of a single domain (i.e. energy, transportation, batch commodity, generally any

resource), is well-established. Several such flow systems are described in previous sections.

The objective of the FLASH framework is to unite these intra-domain systems through

common points of interface such that singular flow system models remain functional in

isolation, while additionally describing the means by which large, complex, and interde-

pendent systems may be additionally modeled in a scalable form with the primary objective

of advancing the standards of quality in flow system modeling across industries. As dis-

cussed, industry conventions include domain-specific models which are high-fidelity, but

which assume the driving input of sources to always be readily available such that nominal

efforts/flows are given.

Provision of a uniform interface through-which flow systems of any domain may

be defined will allow software engineers to support analysts across industries to employ

flow system specific knowledge to efficiently reproduce domain models. In doing so,

software engineers will become familiar with the requirements to deploy a system of similar

complexity in the AFSM simulation space on which the FLASH is necessarily built. This

will reduce the need among analysts to use multiple software tools to produce any singular

domain flow system. Instead, a single tool suite with a uniform and script-accessible state

interface not only yields recognizable domain results, but also allows for interaction across

domain boundaries at simulation run-time. Building such a unified space requires a limited

number of utilities which are partially available through use of particular industry tools

to be described in later sections. The AFSM requisites needed to support this FLASH

framework and derived types, though presently fragmented across tools across industries,

are implemented in large part already and so highlighted ins such cases, but are not described

to the level of implementation in this body of work.



43

5.1. FOUNDATION

The FLASH framework bears a set of underlying requirements. These requirements

may be met by a tool or set of tools such as computer software already written or to be

written and are referred to here as AFSMs. To support flow unity, the AFSM must support

scenario definition. A scenario describes objects and systems, and the user-specified rules

which govern such objects (entities and agents) in the context of AFSM simulation space.

To improve scalability, the underlying AFSM should support scenario definition within a

geo-spatial context such that agents maintain some spatial position within the relative frame

of a celestial body such as Earth, including a latitude, longitude, and elevation/altitude.

Alternatively, for space-based/orbital agents, an AFSM should support scenario-based orbit

definition. Pairing a spatial context (i.e., location) with each agent in the scenario space then

serves as a boon to iterative design and analysis when combined with spatial visualization.

While not strictly required, this significantly aids in the extension of existing flow systems

and is in some form supported for each industry tool considered in Chapter 6.

5.1.1. Agent Architecture. A core AFSM requirement is support for scenario

definition of agents which are, at run-time, functionally autonomous — behaving based on

a set of scripts which the user defines. Such agents may recursively encapsulate sub-agents

such as (components, parts, etc.) which behave similarly within the boundaries of their

scope. At the scenario/global scope, agents are named unambiguously and must support

the ability to temporally ‘update’ at an agent defined interval such that at every simulation

run-time update the agent is able to execute a pre-defined set of behaviors which consider

scope-bounded simulation state and use particular state information to alter internal agent

state. In the case of sub-agent containerization, agents then invoke updates on attached

components with compartmentalized responsibility and scope. Update completion must

return control to the simulation environment to maintain run-time scheduling constraints,

maintaining that all simulation entities are provisioned computational assets to complete



44

scheduled updates. Agents must support run-time invocation of script interface methods

via script contexts. Said requisites are summarized in Figure 5.1. A sub-agent UML

architecture is then presented in Figure 5.2

Figure 5.1. Agent Requirements

Figure 5.2. Agent/Sub-Agent Architecture UML

5.1.2. Flow System Architecture. The flow system aspect of the FLASH archi-

tecture includes two distinct parts — system scenario definition and system simulation

architecture. The following section describes a duality about the individual elements of a

particular flow system. The system must function as both a sum of parts and as a whole.

Therefore, a template of the pattern of ownership and management between systems and

agents is needed.



45

5.1.3. Scenario Definition. Even single domain flow systems are often complex

and constrained by holistic physical dynamics, Therefore to achieve scalability, the AFSM

must support definition of a single localized and unified system definition within the sce-

nario. Mono-domain REFS systems are defined discretely and are therefore containerized.

This containerization directly enables portability across frameworks. Within a single sys-

tem definition, all intra-domain system elements are to be defined. Fundamental element

types are described to follow, but for the purposes of system definition, suffice to state

that the system encapsulates (and owns) the individual definitions of each of its discrete

elements. Included in the system definition is the operational/energy domain in which the

system operates as well as a system-level update trigger such as an interval or event. Such

triggers affect run-time behavior, and are described in detail to follow. For compatibil-

ity with an agent-based element-referential architecture, a unique identification pattern is

necessary to support unambiguous references to system element definitions from particular

managing agents/sub-agents. Fundamental responsibilities of the system are denoted below

in Figure 5.3.

Figure 5.3. System Specifications

By scenario-defined reference (and depicted in Figure 5.4), a given agent may claim

management of zero or more elements of: a single system, multiple discrete systems sharing

a common domain, and/or multiple systems spanning multiple domains. A generalized

form of this relation is shown in Figure 5.5. This claim of state responsibility by an agent

unifies defined elements under one controlling manager (agent/sub-agent).In combination



46

with scripting, this affords end users the power to define arbitrary flow-system element

interactions and interdependencies. This lends itself to multi-resolution modeling, an oft

desired feature which is notably inaccessible under strict FUMES patterns.

Figure 5.4. High-Level Agent-System Interaction

Figure 5.5. Agent-System Multi-Interaction

5.1.4. Simulation Architecture. An AFSM must support agent updates at an

agent-defined interval. Notably this behavior will hold in principle as well for a sys-

tem, which must be definable at the scenario level (global), but may also be definable at an

agent level as a component/sub-agent attachment to a particular agent. In either case, the

system must be named unambiguously within its scope. In the latter case, a user provision

and/or default definition of update triggers is not strictly necessary, If no trigger is defined,

the simulation must minimally invoke a system run-time update at initialization. For any

simulation of non-trivial duration, a default trigger is additionally necessary. Depicted in



47

Figure 5.6, guaranteed triggers function such that changes in system structure (new and

removed connections), in addition to state changes in particular elements. may be used as

input for iterative recalculation of system dynamics/simulated state.

Figure 5.6. Simple Agent-System Turn Cycle

Regarding non-periodic triggers, some implementations — particularly in such

AFSMs where a high parallel processing bandwidth and safe threading architecture is in

effect — may accept that a system defined update interval is not necessary, but rather the

individual updates — particularly changes in state — for any given system element, may

signal a system-level update. However, such an implementation lends itself to run-time

thrashing where proper safeguards (such as cooldowns) are not in place to prevent (or

properly limit) cyclic update triggers between a system and its elements through agent

managers.

5.1.5. Elemental Reference. Within the simulation space, each system is consid-

ered jointly both as an operational whole and as a discrete set of elements managed by

agents and/or sub-agents — i.e., components/parts. To rectify this duality, a scenario must

define system elements within the scope of a system block. Each element must be named

unambiguously within the scope of the containing system. Unique naming then allows for

a particular system-defined element to be referenced within the definition of an element

manager. A given element manager (agent) behavior is defined within the scope of a single

agent which may include a variety of a system-defined elements.

Thus, the proposed referential structure, depicted in Figure 5.7, combines the en-

capsulation benefits of a self-contained scenario definition of a system, lending itself to

use in describing large domain systems. Combining this modularity with the advantages

of trigger-based, agent-defined interactions and behaviors, multi-resolution cross-domain

interdependencies may be modeled.



48

Figure 5.7. Referential Agent Management

5.1.6. Script Interface and Context. The script interface is provided by the AFSM

and extended by the FLASH framework implementation. System elements, captured as the

responsibility of a managing agent, must provide a uniform, domain independent, interface

which is accessible within a script context. Both interval and signal-based behavior of a

given agent (and its sub-agents/components/parts) are support invocation of a script context.

Figure 5.8. General Script Context Specifications

This context — usually programmatic in nature — must support extension for

automatic inclusion, access, and in some cases mutation, of referenced element data/state

within owning parent systems. With this requirement met, domain interdependencies may

be described for a given scenario to support emergence in cross-domain interaction at

simulation run-time. Figure 5.8 enumerates the fundamental minimum specifications of a

script contact. Such specifications are generally applicable to system, agent, and out-of-

scope interactions of script-enabled-capabilities.



49

5.2. APPLICATION

To solidify understanding a simple, but non-trivial example is presented which

highlights the necessity of modeling multi-domain critical infrastructure inter-dependencies.

Simultaneously, the example demonstrates the required scenario architecture and simulation

run-time behavior of the implemented FLASH Framework.

Figure 5.9. Scenario Setup and System/Agent Definition

5.2.1. Example. In this simple example, a direct circular interdependency is de-

fined between two components of modern critical infrastructure: A natural gas combus-

tion turbine power plant and a high capacity natural gas treatment and distribution facility

(NGTF). As depicted in Figure 5.9, the power plant functions as a sink/consumer of methane

gas, which directly fuels the kinetic rotation of a turbine and mechanically connected

electro-magnetic generator. Said generator, when operational, energizes the electrical grid,

as described in Figure 5.10.

Similarly, Figure 5.11 describes the function of the NGTF.



50

Figure 5.10. Multi-Domain Power Plant Agent

Figure 5.11. Multi-Domain Natural Gas Site Agent

In this case, all gas is supplied exclusively by the NGTF, while all electrical power

on the grid is provided by the functioning power plant. The NGTF consumes electrical

power as accessed via supporting grid infrastructure. This power is consumed at the NGTF

site, powering control and monitoring electronics, facilities, communications, distillation

boilers, and other related sub-infrastructures.



51

A clear interdependency is evident. That is to say, for this well defined universe,

if one of these becomes non-operational (arbitrary cause) it should be evident based on

the tight scope of the scenario description that the other agent should should also become

non-operational within a short time frame (seconds to minutes). This lends itself to a host of

questions. The first: If they require each other to function, how did either one start working

in the first place? The answer is clear given consideration of Figure 5.12.

Figure 5.12. Define Systems within Energy/Resource Domain Boundary

Figure 5.12 highlights the scenario-defined architecture which permits these systems

to start - and continue to function - without one another. It is clear from the illustration that

neither system is directly dependent on the other. Therefore, each system must define it’s

initial nominal state. This is achieved by flow calculation. In each domain, standard flow

analysis techniques are recognized by professionals within the domain. As discussed in

Chapter 2, Newton-Raphson is an industry standard for the calculation of electrical power

flow about a system. Similarly, Chapter 2 identifies Hardy Cross as the preferred flow

analysis technique across the fluid domain space. These algorithms are those which must

be used to calculate the initial flow about each system in order for an implementation of the

FLASH framework to be complete. This requirement includes an underlying requirement



52

that each system must provide a minimally viable amount of data with which the complete

system state may be calculated. Such problems are abundant for every domain of interest.

Each system in this case is trivially simple (each having a single source and a single sink only

per the specification in Figure 5.9), thus such algorithms are not strictly necessary in this

trivial case, but must be executed none-the-less. Therefore, for every discrete system to be

simulated, a nominal state is calculated once at the time of simulation initialization without

a requirement to consider interdependencies. This operation is the focal of Figure 5.13.

Figure 5.13. Simulation Initialization Behavior (T = 0) - Calculate Nominal System State

Following initialization, on agent-defined update triggers (usually time-interval

based), agents may observe and mutate particular values of particular system elements

based on the scenario defined management designations. In this case. The power plant is a

read manager of the sink element of the natural gas system, and is a read/write manager of

the source element of the electrical system. In this way, the power plant agent may, at any

time following initialization, read the values of each managed node and execute conditional

logic and flow control (in a user defined script context) based on those values. Such con-

ditional logic is likely — but not strictly required — to include possible write operations



53

against read/write managed nodes, and may additionally affect other arbitrary (out of scope)

agent and agent managed properties per the values read. This event/frame/interval triggered

agent update enables run-time inter-dependency coupling and is the focus of Figure 5.14.

Figure 5.14. Agent Updates - Read Inputs (Sinks), adjust Outputs (Sources) Accordingly

Following agent updates, system triggers may yield system-level updates to include

the re-calculation of system state. In the case that managing agents have modified indepen-

dent flow variables such as increasing load values, modifying transformer values — having

the most acute impact — reducing a source output to 0. In this case effect propagation is

exponential, having the possibility to negatively impact the operation of any and all inter-

connected infrastructures. In the universe described by this example, the effect propagation

is already known. Thus, the process follows to reach the known outcome.

5.2.2. Execution. Assume nominal, stable, inter-dependency coupled operation

between the power plant and NGTF, up through time 𝑡 − 1. At 𝑡, assume that a malicious

cyber attack renders the NGTF non-operational because a virus infects the control software

and closes all valves connecting NGTF outflow to the natural gas mains described previously,

while simultaneously opening emergency valves resulting in rapid de-pressurization of the

mains. Thus, the agent writes a new value to the managed source element within the natural

gas flow system instance. To explore the full problem space, the power plant agent also

updates at 𝑡. Although the attack is in effect at the NGTF, the effects will not propagate

until a system recalculate until a system recalculation occurs.



54

It follows then, at 𝑡 + 1, the natural gas flow system updates. Given the source

head (pressure) value is rapidly decreasing (if not already zero), pressure at the sink side

(power plant side) of the natural gas system decreases (assume negligible friction/distance).

Assuming multi-threaded support, the system will issue a mutual exclusion lock over all

owned elements prior to solving flow with Hardy Cross. In this case, and in the case of a

single-threaded simulation, no simultaneous updates to the natural gas system are possible

at 𝑡 + 1. When system state calculation resolves, the natural gas system releases locks on

owned elements’ data. Rapid depressurization leaves the natural gas system at a uniform

zero relative pressure (1 ATM) at 𝑡. Thus, Hardy Cross yield’s a zero flow about every pipe

in the network on system state recalculation at 𝑡 + 1. Assume the NGTF agent includes

cyber-security mechanisms, and that an emergency reboot will clear any ongoing attack

effect at

The rapid propagation of this attack will foil recovery as well. To understand this,

it is necessary now to follow the effect chain on an order of magnitude to highlight the

severity and possible attack impact in a less-trivial system:

• 𝑂𝑡ℎ order - 𝑡 + 0 - Cyber attack occurs at NGTF. Pipe mains depressurized.

• 1𝑠𝑡 order - 𝑡 + 1 - Natural Gas system state recalculated. All pressure is relative zero.

It follows that all flow is zero.

• 2𝑛𝑑 order - 𝑡 + 2 - Power Plant Agent update trigger - Scripts invoked, natural gas

sink element power = pressure * flow = 0. Scripted logic includes interdependency

linkage. (i.e. If natural gas input power is less than min power required, force

generator outage and disconnect from grid at switch yard).

• 3𝑟𝑑 order - 𝑡 + 3 - electrical system instance update triggers - source voltage =

ground (zero). Without proper protective infrastructure (none defined here), severe

back transience from the NGTF propagates through the grid. - Higher complexity

than is conducive to this example - Instead, assume protective breakers, fuses, surge



55

protectors, activate ideally and all grid node voltages are immediately equal to ground.

With zero potential about all nodes in the system, Newton-Raphson necessarily yields

0 flow across all reference points - A 100% grid blackout.

• 4𝑡ℎ order - 𝑡 + 4 - NGTF update triggered. Interdependency script logic executes.

NGTF read managed electrical system sink values read power = voltage * current =

0. Primary electrical system failure at NGTF at 𝑡 + 4. No backup electrical sources

are defined. All electrical systems immediately loose power. NGTF agent ceases

operation. Power plant agent also updates at 𝑡 + 4. No grid power. No reserve power

defined. Power plant agent ceases operation.

The effect chain above shows catastrophic critical infrastructure systems-of-systems

failure in only 4 time steps. This effect chain is relatively linear due to the highly restricted

scope of the scenario. In practice however, no such simplicity is found. Instead, it is

apparent even here that exponential effect chains may propagate about a highly inter-

dependent simulated system-of-systems space (O(𝑛𝑚)). Thus, it is conceivable that such

devastating propagation may emerge in real world critical infrastructures. Not only is it

conceivable, instances of the same occur at high frequency [4, 11, 17].

The science and technology which has enabled rapid societal advancement and

growth must be adaptable, scalable, and portable in order to enable the analysis, control,

and design of the ever-more inter-dependent systems they yield. The FLASH Framework

is one such adaptation. The FLASH framework is designed to simplify and modularize the

problem space to enable mass adoption. It is extensible into the general flow system space

to enable adaption at relatively low cost into any future emergent flow system problem set.



56

5.3. SYNTHESIS INTO IMPLEMENTATION

The extensibility and scalability of the FLASH framework declared previously. In

support of this declaration, a detailed, software-centric, description of the framework and

it’s prerequisites follows.

The principles and patterns inspired by FUMES are present within the FLASH

framework exclusively from the perspective an implementing software engineer. Imple-

mented as defined here, FLASH code is unified and supports arbitrary future extension.

Importantly, this FUMES inspired generalization is necessarily hidden — except at the

script interface layer — to enable portability and industry adoption. Thus, the required

abstract system representation is such that derivative (end-user facing) implementations

inherit a declared, but undefined, set of methods (interfaces). The patterns which follow

adhere to modern principles of object-oriented software architecture and design. Detailed

descriptions and accompanying UML are presented such that the adept software engineer

may translate discussion and theory into programmatics. The proposed architecture, while

decomposed into individual class-based UML structures here is presented as a complete

extension structure with relational linkage in 8.

5.3.1. Systems. Generalization prohibits direct system instantiation. Instead, in-

direct instantiation is supported through means of derivative system types which define

inherited system interfaces. The abstract system type will declare and define an interface

by which a particular system instance may be unambiguously identified in the containing

(usually global) scope, as well as an interface by which a periodic update interval and

other update triggers may be specified. System instances maintain complete knowledge and

ownership over all owned elements and the interconnections among them (edges). This

pattern is captured by Figure 5.15.

The system type will declare, but not define, interfaces which provide reference — or

reference information necessary — in order for agent-based managers to access and mutate

individual elements within a set of element-defined constraints. The type must declare,



57

Figure 5.15. Abstract System UML

but not define, interfaces by which the domain of a system instance may be determined, by

which the system-wide power and power conjugates are to be calculated, and by which the

unit type associated with effort, flow, and power are respectively measured. The scenario

system definition is responsible for the specification of: the domain of operation, the

domain-specific names of owned elements, the static and initial dynamic characteristics

(nominal system/element behaviors), and finally the edges which link element pairs.

Declaration of domain support, is an assurance that a system model sub-framework

(derivative type) is implemented and minimally defines all inherited abstract interfaces

such that a system of the target domain may be instantiated in simulation. Illustrated in

Figure 5.16, the system instance then invokes its particular implementation to solve power

and flow at simulation initialization. State resolution algorithms may then be optionally

invoked for system state recalculation via system defined triggers and/or by means of

slotting power and flow recalculation against linked signals (events) occurring at simulation

run-time.



58

Figure 5.16. Example Implementations of the System Interface

5.3.2. Elements. The FLASH framework abstracts all system elements into a

graphical representation. For any domain, any given node which maintains discrete state

within a system is defined as an element . Importantly though, an element is itself abstract

and cannot, without the constraints and boundaries (i.e., character) of a domain, be invoked.

Rather, an element is a foundation on which to build an element of a particular domain.

This foundation is reflected in Figure 5.17. In conjunction with element derivatives, which

for a domain may be invoked, elements are inter-linked for a particular domain by edges,

detailed to follow, to form systems. An element will declare — but not define — interfaces

into element derivatives, which must define the behavior of said interfaces in order to be

invoked in a simulation. Such element interfaces to be declared, but not defined, are those

which describe the state of relative potential (effort) at, and flow about said element. Effort

is referential with respect to a system defined potential of reference. An element may (for

convenience only) declare or declare and define a method by which power is characterized

by the power conjugate product.



59

Figure 5.17. Abstract System Element UML

The element must additionally declare and may optionally (preferably) define a

means of unambiguous identification within its containing scope. The initial state of the

element is to be described by the system either by an end-user interface into the scenario

or by default behavior specific to the derivative domain. The element must declare (or

support a script-based) interface into an unambiguous description of nodal function, where-

in definition is the responsibility of the derivative. An element must be polymorphic. In

other words, the general element must support type derivation into support of arbitrary

data types. Element derivatives, typically with data types varying by domain, will morph

the element to the desired/necessary form as a requisite to invocation/instantiation. The

initial power state of an element is to be described by a containing system. Varying by

derivative type, this responsibility includes declaration, but not definition, of constraint

and requirement interfaces on, target, and/or initial power conjugate value/state and power

itself (henceforth, power or state information). Additional constraints may apply to power

information derivatives (rates of change) of order N. For an abstract domain derivative



60

to be further derived into an invokable type, power information value and derived value

constraints may be declared or declared and defined, but such structure is not implemented

within this work body. An element during instantiation/construction will provide reference

by unambiguous identification or direct memory addressing, to the owning system. An

element cannot exist without nor outside of a valid parent system, and element interfaces

described here must be publicly accessible within the program space.

With all abstract interfaces defined, the truth of the element state is observably

the responsibility of the element derivative type instance. An element, by name and with

the use of supporting scenario/simulation infrastructure, is referable by agent components,

which may pre-declare power information data types and domain to enforce programmatic

compatibility in the scenario space or inherit typing and component domain by a valid

link. A flow system nodal reference component (i.e. flow component) may exist in the

scenario space without reference to a valid component, but must make a valid reference

to a system element definition prior to simulation run-time, else having no operable effect

on the simulation and requiring guards when component script interface methods would

otherwise be invoked, minimally warranting a warning (more often an error) at simulation

initialization/startup. An element must, declare an interface into the referencing agent flow

component(s) in (preferably) in consistent form to the interface provided for parent system

reference. The system element must provide (minimally) value (constant state) access to

a serial container of N references to directly connected, system-defined edges. An agent

flow component is expected to declare or declare and define a complete script API to

facilitate access and mutation of nodal power state information. Element derivatives then

limit or propagate control into appropriate interfaces by deletion or (override) definition

of abstract element interfaces — i.e., effort sources provide an effort information mutator

and accessor, but only flow information accessor. Element interfaces intended to provide

data access will provide such access by return of value or constant reference and in either



61

case declare, usually by keyword, the constant nature of the interface on the containing

type. This constraint will additionally propagate through a script provided by an agent flow

component.

A whole number N many agent power/energy components/sub-agents may be man-

aged by a particular agent and update at independent and/or uniform intervals, defaulting

to the top-level agent update interval. Race conditions on shared overlap times in multi-

threaded and single-threaded simulation environments are to be handled deterministically

(consistent ordering) as implemented by supporting AFSM infrastructure to guarantee re-

producible results. Within the agent and component scope update interval and script context

that cross-domain power inter-dependencies may be defined.

For example, in the case of a simple agent model of an electrical power plant, an

external water system sink may be linked as a flow component in addition to a component

which links to an electrical generation source. In the simplest inter-dependency represen-

tation, a script interface may condition electrical effort production on the provision of a

certain minimum flow of water as described by the power state of the water sink agent

component. This is a lowest fidelity representation of cross-domain gyration. Building on

this, subsections to follow describe domain-independent descriptions of power elements.

5.3.3. Source. A source is a fundamental element derivative. Sources are the

stimulation, points-of-origin, and driving components that provide domain input into the

flow system. A flow system absent of sources has no flow, nor effort. Sources observe two

forms: The effort source and the flow source, with some domains (namely that of electrical

energy) and model representations requiring additional variations. The source highlights

the fundamental problem of flow analysis. That is, for a given element, if one constraint

on power (power conjugate) is independent and known (by value or function), the other

is dependent and unknown. System level analysis, which by various methods (differing

across domains), lends itself to iterative convergence on a system state based on sufficient

knowledge of state of independent variables and an initial guess or approximation of the



62

values of unknowns. The source will handle (implement/define) all abstract interfaces

inherited from the parent element type. An effort source will privatize direct flow mutation

and publicly implement direct effort mutation. Similarly, a flow source will privatize direct

effort mutation while publicly implementing direct flow mutation. The source is a single

edge element, meaning one and only one edge connects a given source into the rest of a flow

system. Power information mutation should emit signals indicating the affected element

such that observing objects (and slotted handlers) across the simulation may timely react to

meaningful changes.

Sources have the potential for constraint in both power information magnitude and

derivative values, such derivative limitations are observable in ramp-rate limits on electrical

generators in power plants. In order for a generator to produce less power the physical roto-

kinetic armature must slow down (decrease flow), but this desired slow is constrained by

the resistive influence of momentum. Further, even at the moment a decision is made to

reduce generator output, many fuel systems to the generator turbines require time to change

energetic state, such as in the case of a coal furnace. Reduced coal may be injected into

the furnace, but the consequences of such an operational change take time to propagate

through the chain of system energy domain interdependencies. A simplification of such

system-of-systems interconnection is upper and lower ramp-rate limit specification at the

electrical generator source definition within the electrical system. Accurate definition of

such constraints has the effect of emergent top-level cross-domain load without the need for

discretely modeled internals.

5.3.4. Sink. The sink compliments the source and derives similarly from the el-

ement. Although not exclusively, sinks often specify power as the primary operational

constraint with nominal underlying specifications on effort, allowing for the linear deter-

mination of a flow. Alternatively, where output flow is specified, an element voltage may

be calculated, and power derived. A sink implements all abstract element interfaces and

functions as an endpoint for a particular flow system in a given domain. In the nominal



63

case, the power load/demand on a system is less than that of the present generation ca-

pacity. However, in cases where demand is greater in magnitude than supply, endpoints

may be partially/completely starved for the required resource, resulting in cascading system

failures. An effort sink will privatize all direct flow mutation interfaces (mutators) and

publicly implement effort mutators. Conversely a flow sink will privatize all direct effort

mutators and publicly implement flow mutators. Like the source, the sink is a single edge

element, meaning one and only one edge connects a given sink into the rest of a flow

system. Power information mutation should emit signals indicating the affected element

such that observing objects (and slotted handlers) across the simulation may timely react to

meaningful changes.

5.3.5. Junction. The junction is a power routing element which operates under a

simple rule set. Though attribution of junction rule formulation varies by domain, and in

some cases is not attributed or formally named at all, the electrical domain attribution will

suffice for the general description. That is, in an electrical circuit, Kirchoff’s current law

(or more generally, Kirchoff’s Junction Rule) states that the current (flow) about a junction

is summatively zero. This fundamental rule, in combination with the complementary effort

rule, described in the edges section to follow, motivates the composition/derivation of linear

systems of equations which are sufficient for analysis across all linearly constrained systems.

Most simply, a junction is a multiple-input, multiple-output element derivative of a flow

system. The junction will privately implement both flow and effort mutators inherited from

the parent element type. Because junctions are singularly responsible for the exponentially

of system complexity, they are also the primary means of flow analysis in some systems,

such as that of an electrical power system. Conventionally, in such a system complex power

flow is solved with reference to busses (junctions) and requires composition of an admittance

matrix which is derived from the inertial, compliant, and dissipative characteristics of the

power lines (edges) or per-unitized transformers which directly connect two busses.



64

5.3.6. Transformer and Gyrator. The transformer is an element derivative which

accepts a single input (primary connection) and single output (secondary connection).

Although in practice a single transformer may support multiple secondary connections,

modeling which captures such complexity as the composition of simple transformers and

junctions is enabled. In principle, a transformer routes power by amplifying one power

conjugate and suppressing the other such that power is conserved and such that the power

conjugate dependency relation is preserved across the transformation boundary. This

relation holds across energy domains; thus, a multi-domain transformer can exist under

other frameworks as multi-domain dynamical system element. However, for the purposes

of this unified model, singular systems are bounded by the energy/resource domain in

which they operate, meaning that cross-domain power conversion is not modeled by a

transformer element, but rather by a user defined behavior executed in a run-time script

interface which follows same principled logic. In such form, the primary side of the

transformer is represented as a sink in a particular domain while the secondary side,

functioning in a new energy/resource domain and system, is represented as a source. The

component sides are then linked in script to bridge the domain boundary in accordance

with the user specification. Under the FLASH framework, the gyrator may be modeled

similarly. Gyration within domain boundaries is representable by the single-input, single-

output gyrator element, while cross-domain gyration is captured via the combination of

a primary domain sink and secondary domain source and scripted behavior defines the

inversion of the power-conjugate dependency relation across the gyration.

5.3.7. Edges. Captured generally in Figure 5.18, the edge is a base with respect to

the FLASH framework. An edge provides the means of information transfer and linkage

between two connected elements. An edge cannot exist outside of the scope of a system

and cannot exist without specifying exactly two connected elements. If for any reason an



65

element ceases to exist at simulation run-time, any and all edges which directly link to that

element must also cease to exist. In this way, any edge is jointly owned by the linking

elements, or alternatively is singularly owned by the system containing all three elements.

Figure 5.18. Edge Class UML

An edge explicitly links and carries the effort and flow information between con-

nected elements and thus implicitly carries the power information. Thus, the edge is a

non-abstract type which must declare and define interfaces to access element links. The

edge must provide interfaces which facilitate calculation of effort and flow information

across the edge. The effort interface describes the effort differential between linked el-

ements while the flow interface describes the character of flow through the edge itself.

A given edge may not be referenced directly by individual agents, but may be accessible

indirectly by the agent’s nodal/elemental reference.



66

6. INDUSTRY SOLUTIONS

6.1. DOMAIN-CENTRIC SOLUTIONS

6.1.1. PowerWorld Simulator. PowerWorld is an interactive electrical power sys-

tem simulation software suite designed to simulate high voltage power system operation

and control over a variable and end-user mutable time range spanning from seconds to days,

claiming high effectiveness in power flow analysis with the capability to efficiently solve

electrical system power flow models with up to 250,000 busses [55].

A scenario (termed case), is defined by the user through graphical representations

of circuit elements, including active, passive, and protective, which are linked by ports

into busses in representative series and/or parallel combinations. Selection of a particular

element allows manipulation of on-screen character state representations as well as data

mutation for calculation of nominal flow conditions at simulation initialization. The two-

dimensional graphical case context lends itself to reasonable scalability representations, only

becoming cumbersome, but not necessarily prohibitive, in cases containing high numbers

of busses.

At simulation run-time, the graphical scenario representation of the system includes

animation, the variable speed movement (per current) of dynamically sized (per voltage)

green arrows across graphical edges; thus, depicting the flow of power from electrical

generators to electrical loads about the system. By selecting particular elements at run-

time, system state is mutable by the end-user, allowing protective breakers to be opened and

generation sources to increase or decrease supply. Further, the calculated admittance matrix

may be updated directly, such that a user may apply multiple faults simultaneously, a useful

analysis technique for determination of voltage collapses [56]. Further a multi-command

script interface supports the run-time execution of script commands or execution of auxiliary



67

files containing scripts at simulation, allowing the user to repeatably and programmatically

introduce system changes such as faults and loads. No post-run-time record of sequential

state is described, limiting guarantees on run repeatability for a particular OITL case.

6.1.2. PipeFlow. Stated as being used by organizations in over one-hundred coun-

tries [57], PipeFlow Expert is an industry leading software application designed for the

purpose of modeling, designing, analyzing, and solving nominal rate of flow and headloss

about pipe systems. The tool includes support for open and closed loop system represen-

tations, multi-pump cases (series and parallel) and control elements such as valves. Other

elements include junctions such as tees, bends, and other fittings, as well as supply sources

and discharge points. PipeFlow is designed to models systems with large numbers of flow

and discharge points and includes support to account for pumping requirements and variable

elevation. Built in support is included for a variety of fluid models.

Like PowerWorld, PipeFlow supports scenario definition in a graphical scenario

space. However, due to the relative spatial importance the scenario space supports pseudo-

three-dimensional (isometric) representations of systems to reflect characteristics such as

pipe length, diameter, and elevation — each being a fundamental character on overall fluid

system behavior. Selection of a system element in the scenario space includes a description

of the element properties, allowing for the user to mutate certain operational properties

to affect nominal flow calculation. Edges are themselves pipes and include a full set of

characteristics.

Systems are solved via internal software calculation per industry standard methods

[57], described previously, allowing end-users to view the nominal conditions of operation

under the specified constraints including calculated values of flow, velocity, and entry/exit

pressure as well as flow type and Reynolds numbers. Compared to electrical power trans-

mission systems, typical fluid systems are less prone to drastic acute changes (faults) due

to robust design and construction as well as leakage tolerance for many chemically and

ecologically stable/inert fluids, thus Operator-In-The-Loop (OITL) interaction in such a



68

fluid system simulation — in isolation — is not of particular relevance for this domain,

as changes in system character, such as opening and closing a particular valve, leads to a

new nominal system state with relatively low concern for transience. Therefore, PipeFlow

adequately meets the combined need for dynamic system control and system post-time data

analysis by the same function for the purposes of fluid flow, and by similar reasoning does

not require a script interface for run-time dynamical state change.

While PipeFlow meets the needs of industry with respect to fluid system assembly,

mutation, and analysis, the implementation does not lend itself to other dynamical energy

domains such as electrical or thermal system flow analysis in which fault consequences

are realized acutely and in many cases amount to significant danger to human life as well

as financial implications and, particularly in the case of electrical transmission, cascading

failure as a result of overwhelming transience. This domain solution format remains com-

patible with the proposed extension in that calculations and terminology remain unchanged,

to facilitate translation for the extensions part in compatibility, while the underlying frame-

work requirement — agent based, time and/or event interval simulation run-time intervals

— facilitates state dynamic modeling over time by design. Thus, identical state calculation

in the fluid domain when implemented in an AFSM with the proposed FLASH framework

must execute identically to that of PipeFlow by definition.

6.2. GENERALIZED MODELING AND SIMULATION SOLUTIONS

6.2.1. Anylogic. Anylogic at its core is a versatile tool in generalized simulation

and modeling which includes proprietary and community extensions to facilitate design

and analysis of spatially accurate and constrained models by way of 2D and/or 3D scenario

definition. Anylogic is a leading simulation modeling software, utilized worldwide by over

40 percent of Fortune 100 companies [58]. In this way, models of the physical kinetic

state of matter (resources, batches) as well as that of continuous flow system initial states

may be visualized intuitively with direct parity to real-world counterparts. This intuitive



69

visualization lends itself to adoption in particular markets as reflected by the measure of in-

dustry penetration by Anylogic into fields such as supply chain management, transportation

and logistics, manufacturing, mining, and warehouse operations [58]. Additionally, partial

native support is provided for modeling and simulation of fluid resource systems [59].

Anylogic simulation run-time conditions are dynamic — supporting Monte Carlo,

virtual, and real-time (wall-clock) simulation an analysis of system models, agent-based

models, or simultaneous combinations of both for a particular scenario with spatial vi-

sualization, run time script execution support, and OITL direct interface control. This

combination of utility lends itself to powerful capability and verifiable high-fidelity models

as a result of spatial constraints and observable material kinetics. Anylogic further sup-

ports powerful behavioral scripting through direct functionally scoped blocks which directly

accept object-oriented Java from the end-user.

This level of control and utility, while powerful, is in many ways unapproachable

in comparison to domain-centric flow system analysis tools which for a particular do-

main suffice and are recognized as industry standards. To bridge that divide, Anylogic

offers proprietary software extension packages to accompany the baseline software suite

which incorporate pre-built utilities for convenient spatial modeling of dynamical systems

such as road traffic networks, port, and terminal operations, building and street foot-traffic

congestion and more. These optional pay-to-access feature sets include related model im-

plementations which allow users to see the features in action quickly. Given the exponential

nature in complexity inherent to interdependent system modeling, this is level of work is

required for mass adoption and is notable as a leading strategy for multi-industry applica-

tion and appeal. The nature of logistical and materially discrete kinetic systems which lend

themselves optimally to the visualization utilities provided by Anylogic are however much

less relevant in the case of continuous flow systems.



70

Some applicability holds for fluid energy flow systems models, while such utilities

are much less relevant — and in some sense cumbersome/inflated — for the purposes of

energy flow modeling for energy domains in which the transfer itself is not observable to

the human eye. Such is the case with most real-world, large scale electrical and thermal

energy transfer systems. This is reflected in the relative lack of adoption in various fluid flow

industries and correlates with the relative incompleteness of functionality native to Anylogic

with respect to modeling such systems. This cyclical pattern of direct interdependency and

circularity holds for electrical systems modeling and industry adoption — Anylogic does

not provide native support for electrical systems modeling, nor is there significant adoption

of Anylogic into the industry. A notable deficit in the Anylogic base feature set is a native

run-time event sequence capture, meaning that observable behaviors for a given OITL

simulation run may not be fully available for post-time analysis, a relative point of need

for completion of the design-test-analyze-improve M&S life cycle. Reason holds; however,

that an extensible and script compatible framework such as Anylogic remains, in principle,

a candidate AFSM for implementation of the FLASH framework based on meeting most

all AFSM requirements per Chapter 5.1.

6.2.2. Matlab and Simulink. Matlab, much like the baseline Anylogic core frame-

work, is a mathematical computational engine based on a proprietary script language bearing

syntactic similarities to other more general purpose script languages such as Python, but

with the additional provision of a fully integrated MathWorks proprietary development

environment — the Matlab software application suite [60]. Simulink, a multi-domain mod-

eling and simulation environment, also designed, released, and maintained by MathWorks,

extends native Matlab functionality primarily through support of recursive block system

architecture and port linkage as a form of programmatic input to the Matlab engine [61].

By its nature as a script-based language and utility, Matlab lends itself to this

generalized flow system framework extension. Simulink further introduces native visual

and spatial scenario design to facilitate scalable models through behavioral containerization



71

of scripts written in the Matlab script language — a syntax familiar to a vast number

of professionals across scientific and engineering industries. Required OITL support is

then native, but complex domain system model translation from domain tools into Matlab

remains non-trivial given baseline capabilities. As with Anylogic, Matlab is limited in

comparison to the extensive native analysis capability provided by domain-centric tools

such as PowerWorld when compared as a means of composing and analyzing electrical

power systems. Again, a fundamental justification for the adoption of a unified abstract flow

system framework is thus apparent.

6.3. OBSERVED PATTERNS

Software adoption and implementation of a common language paradigm is not the

natural tendency of industry [62]. Rather, as evidenced by the mass adoption of AGILE

software development methodologies, the nature of intelligent life is to solve problems

specifically as they present themselves, then quickly move on having alleviated apparent

pains [63, 64]. In the context of complex problem spaces best suited to algorithmic

resolution, this tendency lends itself to organic software implementations [65]. As with

many organic phenomena, when studied after iterative and collaborative composition — the

analog of long term growth for software — patterns emerge [66]. This emergence gives rise

to software refactoring — the decomposition and reassembly of software into an evolved

form — to optimize, simplify, and unify shared character.

Reiterating again through the lens of existing industry solutions, organic patterns

now emerge, presenting themselves in the realm of complex flow domain systems architec-

tures and solution spaces such that meaningful interdependency modeling is prohibitive.

Instead, assumptions are made to suggest that requisite resource and energy dependency

demand is always met for generation of energy and resources in other domains. In other



72

words, meaningful representations of energy transformations and gyrations degenerate to

assumption — ironically as a direct result of dependencies and constraints on both time

(manpower) and money.

Consider again the tools described previously. PowerWorld perceived to be an

optimal tool for electrical power systems analysis. This is so because PowerWorld is

expressly designed to support modeling, design, and control of complex electrical power

transmission and distribution networks [67]. The software serves that function well enough

to reasonably claim a title as a standard of industry, but never the less makes assumptions

about the means of electrical power generation rather expecting power engineers to describe

the energy transformations and gyrations by which such electrical power is generated.

This is understandable as complete analysis of the power system itself does not require

those dependency descriptions. This exact pattern holds for other energy flow domains

and their solutions — PipeFlow for fluid systems analyses — and permits depth focused

progress about the particular domain [68]. within monetary and temporal constraints.

Meanwhile as the field of systems engineering grows from necessity (particularly systems-

of-systems engineering) systems engineers and academics alike recognize the common

patterns, and propose abstractions which are sound in principle, but unapproachable in

industry. Thus, abstract modeling frameworks are not dominant in industries of singular

energy focus because adequate computational tools and solutions already exist and are

prolifically adopted throughout the particular problem space.

Thus, systems engineers implement abstract frameworks in software and even, in a

few cases, bridge the abstraction layer for particular solution spaces, such as that of Anylogic

in its adoption throughout observable material kinetics and dynamics as an industry tool of

choice [58], including designing native capabilities to support fluid flow system dynamics.

However, through direct use of such capability in comparison to analogous capabilities in

PipeFlow, Anylogic is vastly inferior to PipeFlow in that respect. A particular limitation of

note in Anylogic pipe networks is a limited, element-centric, control scheme wherein flow is



73

not determined by holistic fluid system analysis because the data required for such analysis

is not required as input for pipe network construction and no governing system is necessarily

defined. For example, pipes do not require a diameter or coefficient of friction to operate.

Rather, sources define flow rates and flow control is then determined by simplistic methods

such as explicitly definable percentages through particular outlets at junction points, or the

default behavior of routing all flow into the first connected pipe until capacity is reached,

at which point flow spills over into additional connections, repeating the overflow behavior

as each connected pipe reaches flow capacity if such a limit is provided [69]. This attempt

to bridge the gap may only be sufficient for the purposes of a multi-domain modeler using

Anylogic where only a degenerative/basic fluid system behavior is required in comparison to

the real-world fluid network the model attempts to describe [69]. In this case, a dependency

is modeled, but not an interdependency — a key difference. For an interdependency to be

modeled meaningfully, not only must the logistical network model depend on the state of

the fluid flow model, but also the fluid flow model must depend on the state of the logistical

model at relevant/applicable points of interface. The shortcoming is clear and motivates

the lack of mass adoption of tools such as Anylogic in fluid flow system analysis spaces.

Simply, the interface by which the fluid engineer defines systems in high-fidelity using

PipeFlow is not easily translatable into Anylogic, inhibiting adoption.

The FLASH paradigm described is effective as a platform for industry adoption only

if derived types inheriting from the abstract interface adhere to two primary requirements.

First, the model definition form/scenario definition must have near parity in the way in which

the user defines the system when using the domain specific tools of the particular industry.

Second, the computational technique/method by which the system flow is solved must

explicitly, unambiguously, overtly be that which is recognized as an industry standard within

that particular domain (i.e., Hardy Cross for fluid system flow analysis, Newton-Raphson

or Gauss-Sidel for electrical systems, etc.). Only then are derived types inheriting from the

abstract framework extension sufficiently approachable to highly domain focused subject



74

matter experts. Assuming that barrier is overcome, system-centric model implementations

are then highly portable as they employ the language, structure, and methods of the domain

from which they are motivated. Only through deliberate framework evolution in this form is

meaningful, scalable interdependency modeling accessible by means of agent-based script

behaviors.



75

7. CONCLUSIONS

7.1. CAPTURE

This work body highlights a mounting challenge in simulation and modeling — the

ever increasing complexity and interdependency of critical infrastructure systems which

support and define modern society are represented in modeling and simulation by flow

systems models in combination with a domain knowledge barrier which makes current

unified energy system modeling (FUMES) techniques unapproachable in industry in the

face of practical (often fiscal) operational constraints. Mono-domain models — the de

facto industry standard — are supported by domain particular methods/techniques which

generally pursue simplistic (often linear) solutions through real-time gathered data and

analyses or through simplified node and loop character analyses based on potential (ef-

fort) and spatial resource transfer over time (flow). Such methods constitute the simplest

form of flow system model frameworks. Therefore, mono-domain frameworks are heav-

ily adopted by industry, leading to many successful domain-specific proprietary software

solutions. Industry experts are then trained, in a terminological sense, in system M&S at

the level of implementation, making transition into multi-domain frameworks for higher

complexity inter-dependent system analyses duly out of reach in the sense that currently

accepted and industry standard software products such as those considered first in Chapter 6

do not provide the means to model such interdependencies and even if they did the stan-

dardized terminological abstraction used in academically reputable multi-energy-domain

analysis frameworks (FUMES) would be the assumed interface language of system model

composition. Further, such domain-spanning solutions (FUMES) require element-wise

decomposition and re-assembly making translation for non-trivial systems into new soft-

ware environments/scenario formats similarly prohibitive based on the risk of human error

inherent to and time commitment required by such translation. A similar case is made



76

to highlight barriers which impede industry adoption of multi-domain dynamical system

analysis by means of more abstract M&S tool suites such as those considered later in Chap-

ter 6. These abstract M&S frameworks; however, are examples of the baseline frameworks

(AFSMs) with-which the proposed FLASH framework extension may be implemented.

To overcome this multifaceted challenge, a new hybrid framework extension —

FLASH — is proposed in Chapter 5. The FLASH framework leverages advantages of

system architecture — primarily portability without requiring translation and natural data

availability and management in simulation — in combination with independent and con-

tainerized operational behavior inherent via agent-based architecture. These otherwise

disjoint architectures are unified through a nodal/elemental reference pattern which grants

state ownership (but not instance ownership) of zero or more individual system elements,

each of which may belong to one of many systems within a singular, particular energy or

resource domain. This mono-domain characterization of individual systems is optimized

in implementation and compatibility based on abstract interface requirements described in

the underlying framework description. Such interfaces allow implementers (i.e. software

engineers in collaboration with domain experts) to translate requirements into particular

domain(s); subsequently allowing users of said implementation to define domain systems

models (in scenario) terminologically in identical or near identical form to that of current

domain-specific industry solutions. Thus, no matter the medium by which a particular

system type is defined under the framework extension, any derivative system model may

be ported near trivially across any AFSM which implements the same FLASH architecture

while existing models (particularly highly complex, interconnected, and trusted models

of real-world critical infrastructures) may be migrated 1-to-1 (without translation) into a

simulation space which includes a complete implementation of the FLASH framework in

the relevant, fully-supported domain.



77

With a palatable method in reach by which a complex mono-domain flow system

model may be ported across scenario spaces (i.e., across disjoint software suites), the

extension then facilitates cross-domain system interdependency modeling with flexibility,

compartmentalization, and user-defined fidelity, through use of a run-time executable script

interface. Such an interface is to be defined and supported by the underlying AFSM but

extended with direct data access and mutation script interfaces into abstract and derivative

system type definitions in software. Through this propagation of data accessibility into

the scenario space a singular agent, which defines and owns system element referential

components may execute scenario defined behaviors in a simulation run-time script context.

Such behaviors define logic and flow control functionality as provided by the end user

which, having access and mutation rights to component referenced system element data,

define the character of energy and resource transformations and gyrations between and

among energy domain boundaries. Resultant state changes in a particular system element

signal the simulated system instance to recalculate power and flow state at a system-defined

interval. This hybrid delegation of responsibility between multi-domain agents and mono-

domain systems for state and dependency resolution at simulation run-time lends itself to

portability, scalability, and adoption by compartmentalizing interdependency interactions

in end-user defined scripts and allowing end users to define and analyze particular systems

using industry standardized terminology and flow analyses techniques.

7.2. IMPACT

This novel framework fundamentally differs from other proposed solutions. A

successful implementation of the FLASH framework constrains systems models within

rigid, familiar domain boundaries, only enabling dependency coupling at run-time. A

primary implication of the boundary is realized in the necessarily simplified description of

the transformer and gyrator (5.3.6). Uniquely simple and intuitive in comparison to FUMES

counterparts, these element representations are significantly more approachable from an



78

arbitrary domain entry point. The FLASH framework’s discrete boundary scopes each

system such that the conventional (often linear) means of mono-domain system analyses are

directly accessible in comparison to more complex multi-domain analyses — which often

require iterative calculation of partial differential equations.

As stated previously, a rigid domain boundary guarantees that any given system-type

is portable to and from it’s origin domain simulation and modeling space (i.e. between

current industry tools and AFSMs implementing FLASH). Enforcement of the domain

boundary allows transportation of a system discretely into a new simulation space with

immediate validity. Only at simulation run-time do power and energy interdependencies

manifest through script. By this model decoupling, initial steady-state may be achieved

even where interdependencies are mapped when nominal defaults are provided at boundary

points (i.e. source/sink and transformation/gyration points) — a direct reflection of nominal

operation in a mono-domain simulation space. These patterns are fundamental to the

viability of the framework.

FLASH architecture is designed with the acknowledgment that interested and qual-

ified end users may only be assumed to be familiar with the analysis techniques that govern

their primary domain of focus. Therefore, the assumption is made that users will rarely

claim comparable familiarity with system structures and behaviors in multiple required

domains. To overcome this, portability via domain-boundary enforcement in the scenario

space paired with inter-dependency coupling in the simulation space yields an approach-

able, intuitive, and — critically — familiar pattern. FLASH adoption may revolutionize

and catalyze large scale simulation and modeling of resource, energy, and power systems

by building on existing software solutions. There-by, measurable progress into this deeply

complex and vast problem space may yield insights, critical to the national interest, into the

constitution and survivability of existing and proposed critical infrastructures.



79

APPENDIX

Figure A.1. FLASH System UML Complete



80

Figure A.2. FLASH Element UML Complete



81

Figure A.3. FLASH Agent UML Complete

Figure A.4. FLASH Script UML Complete



82

REFERENCES

[1] Lin Zikui and Guo Xuan. The regulation model of pharmaceutical logistics based
on the supervision of flow. In 2010 International Conference on Logistics Systems
and Intelligent Management (ICLSIM), volume 2, pages 1055–1059, 2010. doi:
10.1109/ICLSIM.2010.5461117.

[2] A. D. Bain. Surveys in Applied Economics: Flow of Funds Analysis. The Economic
Journal, 83(332):1055–1093, 12 1973. ISSN 0013-0133. doi: 10.2307/2230842.
URL https://doi.org/10.2307/2230842.

[3] Christian Federau, Max Wintermark, Soren Christensen, Michael Mlynash, David G.
Marcellus, Guangming Zhu, Blake W. Martin, Maarten G. Lansberg, Gregory W.
Albers, and Jeremy J. Heit. Collateral blood flow measurement with intravoxel in-
coherent motion perfusion imaging in hyperacute brain stroke. Neurology, 92(21):
e2462–e2471, 2019. ISSN 0028-3878. doi: 10.1212/WNL.0000000000007538. URL
https://n.neurology.org/content/92/21/e2462.

[4] Jacobs, Riannea, Teunis, and Kassteele. Tracing the origin of food-borne disease
outbreaks: A network model approach. Epidemiology, 31(3):327–333, 2020. doi:
10.1097/EDE.0000000000001169.

[5] Carmel Farage, Daniel Edler, Anna Eklöf, Martin Rosvall, and Shai Pilosof. Identi-
fying flow modules in ecological networks using infomap. Methods in Ecology and
Evolution, 12(5):778–786, 2021. doi: https://doi.org/10.1111/2041-210X.13569.

[6] T. Jacobs, A. Gomide, M. Kaspereit, K.-P. Zeyer, A. Kienle, and P. Hauptmann. In-line
analysis of chemical reactions in micro reactors using thermal mass flow sensors. In
EUROCON 2007 - The International Conference on ”Computer as a Tool”, pages
571–574, 2007. doi: 10.1109/EURCON.2007.4400302.

[7] IEEE. Ieee recommended practice for the adoption of computer-aided soft-
ware engineering (case) tools. IEEE Std 1348-1995, pages 1–44, 1996. doi:
10.1109/IEEESTD.1996.80818.

[8] W. Mielczarski and G. Michalik. Voltage regulation and energy consump-
tion in electricity markets. In IEEE Power Engineering Society. 1999 Win-
ter Meeting (Cat. No.99CH36233), volume 2, pages 879–883 vol.2, 1999. doi:
10.1109/PESW.1999.747282.

[9] Abbas Ehsanfar and Babak Heydari. An incentive-compatible scheme for electricity
cooperatives: An axiomatic approach. IEEE Transactions on Smart Grid, 9(2):1416–
1424, 2018. doi: 10.1109/TSG.2016.2591507.

[10] Reynerio E. Vasquez. Selection of power transmission systems based on power losses
analysis and reliability analysis for interconnection of electrical grids. In 2015 IEEE
Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), pages
1–5, 2015. doi: 10.1109/CONCAPAN.2015.7428484.



83

[11] R. Wolfson. ”electricity” in energy, environment, and climate, 2nd ed. In ”Electricity”
in Energy, Environment, and Climate, 2nd ed., number 11 in 1, 2012.

[12] Sérgio F. Santos, Matthew Gough, Desta Z. Fitiwi, André F. P. Silva, Miadreza Shafie-
Khah, and João P. S. Catalão. Influence of battery energy storage systems on trans-
mission grid operation with a significant share of variable renewable energy sources.
IEEE Systems Journal, pages 1–12, 2021. doi: 10.1109/JSYST.2021.3055118.

[13] Ahmed Yousuf Saber and Ganesh Kumar Venayagamoorthy. Efficient utilization of
renewable energy sources by gridable vehicles in cyber-physical energy systems. IEEE
Systems Journal, 4(3):285–294, 2010. doi: 10.1109/JSYST.2010.2059212.

[14] J. Duncan Glover, Mulukutla S. Sarma, and Thomas Overbye. Power system analysis
and design. In Power System Analysis and Design, volume 6, 2016. ISBN 1305632133.

[15] Wanjun Zhang, Feng Zhang, Jingxuan Zhang, Jingyi Zhang, and Jingyan Zhang. Study
on system recognition method for newton-raphson iterations. In 2018 International
Computers, Signals and Systems Conference (ICOMSSC), pages 737–742, 2018. doi:
10.1109/ICOMSSC45026.2018.8941745.

[16] Shihu Shu, Suiqing Liu, Xuefeng Wang, Liang Yu, Shihu Shu, Dong Zhang, and
Mingqun Meng. Determination and applications of water age in distribution system.
In 2010 International Conference on Mechanic Automation and Control Engineering,
pages 1918–1921, 2010. doi: 10.1109/MACE.2010.5536510.

[17] Jijun Gao, Huaidong Zhou, Gaofeng Zhao, and Xiaoru Liu. The concentra-
tion and distribution of copper(cu), arsenic(as), cadmium(cd) and mercury(hg) in
drinking water of beijing city. In 2011 International Symposium on Water Re-
source and Environmental Protection, volume 2, pages 1241–1243, 2011. doi:
10.1109/ISWREP.2011.5893241.

[18] Xiaohong Yan, Song Li, and Chunchun Hu. Design and implementation of the
changjiang water resource commission’s water intake remote monitoring and control-
ling system. In 2012 International Symposium on Geomatics for Integrated Water
Resource Management, pages 1–5, 2012. doi: 10.1109/GIWRM.2012.6349540.

[19] Shihu Shu, Suiqing Liu, and Dong Zhang. Investigation and control strategies of
lead concentration in drinking water distribution systems. In 2010 International
Conference on Mechanic Automation and Control Engineering, pages 4151–4154,
2010. doi: 10.1109/MACE.2010.5535660.

[20] Zhai Chengwu, Huang Qiang, Chang Jianxia, and Gao Fan. The study of water
resources reasonable allocation of baoji area in wei river with considering the ecology
base flow. In 2011 International Symposium on Water Resource and Environmental
Protection, volume 1, pages 816–818, 2011. doi: 10.1109/ISWREP.2011.5893132.

[21] D. Trinchero, R. Stefanelli, A. Galardini, and B. Fiorelli. Wireless sensors for a
wire-independent analysis of fluid networks. In 2009 IEEE Sensors Applications
Symposium, pages 105–108, 2009. doi: 10.1109/SAS.2009.4801787.



84

[22] Sherin A Kochummen, N E Jaffar, and Nasar A. Model reference adaptive controller
designs of steam turbine speed based on mit rule. In 2015 International Conference
on Control Communication & Computing India (ICCC), pages 7–11, 2015. doi:
10.1109/ICCC.2015.7432861.

[23] Muhammad Umar Afzaal, Muhammad Hammad Khan, and Arshad Elahi. Water flow
patterns generation model for grid connected run-of-river hydro power plant. In 2022
IEEE International Conference on Environment and Electrical Engineering and 2022
IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe),
pages 1–6, 2022. doi: 10.1109/EEEIC/ICPSEurope54979.2022.9854662.

[24] Cynthia Juwita Ismail, Anna Reani, Novelita Wahyu Mondamina, and Vini Charloth.
Rehabilitation at 2×400mw indonesia coal-fired power plant: Emission reduction and
cost-effectiveness. In 2017 IEEE 7th International Conference on Power and Energy
Systems (ICPES), pages 117–120, 2017. doi: 10.1109/ICPESYS.2017.8215932.

[25] Vivek Patel, Balaram Saha, and Kalyan Chatterjee. Fuel saving in coal-fired
power plant with augmentation of solar energy. In 2014 International Confer-
ence on Power, Control and Embedded Systems (ICPCES), pages 1–5, 2014. doi:
10.1109/ICPCES.2014.7062811.

[26] Ion Pană, Florinel Dinu, and Gabriela Bucur. Analysis of a filter used in the natural gas
gathering system: Recommendations on the measuring of the pressure drop. In 2016
8th International Conference on Electronics, Computers and Artificial Intelligence
(ECAI), pages 1–6, 2016. doi: 10.1109/ECAI.2016.7861071.

[27] A. Cioloca and R. Both. Modelling versions and simulations of the cryogenic air
distillation column. In 2014 IEEE International Conference on Automation, Quality
and Testing, Robotics, pages 1–6, 2014. doi: 10.1109/AQTR.2014.6857925.

[28] Yu Zhu, Xinggao Liu, and Zhiyong Zhou. Optimization of cryogenic air separation dis-
tillation columns. In 2006 6th World Congress on Intelligent Control and Automation,
volume 2, pages 7702–7705, 2006. doi: 10.1109/WCICA.2006.1713466.

[29] Elsevier. 2.05 - nanofiltration operations in nonaqueous systems. In Enrico Dri-
oli and Lidietta Giorno, editors, Comprehensive Membrane Science and Engi-
neering, pages 91–113. Elsevier, Oxford, 2010. ISBN 978-0-08-093250-7. doi:
https://doi.org/10.1016/B978-0-08-093250-7.00036-0.

[30] Michael Judge and Greg Daniels. King of the hill. In King of the Hill, number 23 in
2, 2009.

[31] Edgar C. Portante, Stephen M. Folga, Gustav Wulfkuhle, Brian A. Craig, and Leah E.
Talaber. New madrid and wabash valley seismic study: Simulating the impacts
on natural gas transmission pipelines and downstream markets. In Proceedings
of the 2009 Winter Simulation Conference (WSC), pages 2867–2878, 2009. doi:
10.1109/WSC.2009.5429241.



85

[32] Xiaoqiang Zhao, Wei Li, and Yan Wan. Storage & transportation scheduling model
and algorithm of petroleum products based on network. In 2007 IEEE Interna-
tional Conference on Automation and Logistics, pages 2052–2055, 2007. doi:
10.1109/ICAL.2007.4338912.

[33] Xiaodao Chen, Yuchen Zhou, Hong Zhou, Chaowei Wan, Qi Zhu, Wenchao Li, and
Shiyan Hu. Analysis of production data manipulation attacks in petroleum cyber-
physical systems. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–7, 2016. doi: 10.1145/2966986.2980091.

[34] John Manfreda. The real history of fracking: Oil, bombs and civil war. In Editorial,
volume 1, 2019. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑜𝑖𝑙 𝑝𝑟𝑖𝑐𝑒.𝑐𝑜𝑚/𝐸𝑛𝑒𝑟𝑔𝑦/𝐶𝑟𝑢𝑑𝑒 −𝑂𝑖𝑙/𝑇ℎ𝑒 − 𝑅𝑒𝑎𝑙 −
𝐻𝑖𝑠𝑡𝑜𝑟𝑦 −𝑂 𝑓 − 𝐹𝑟𝑎𝑐𝑘𝑖𝑛𝑔.ℎ𝑡𝑚𝑙.

[35] Crude oil distillation and the definition of refinery capacity, 2022. URL
https://www.eia.gov/todayinenergy/detail.php?id=6970.

[36] Sundar and About SundarMechanical Engineer. Hardy cross method procedure for
pipe network analysis, Sep 2022. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑒𝑥𝑡𝑟𝑢𝑑𝑒𝑠𝑖𝑔𝑛.𝑐𝑜𝑚/ℎ𝑎𝑟𝑑𝑦 − 𝑐𝑟𝑜𝑠𝑠 −
𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 − 𝑓 𝑜𝑟 − 𝑝𝑖𝑝𝑒 − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 − 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠/.

[37] Nick Connor. What is darcy-weisbach equation - definition, Jun 2019. URL
ℎ𝑡𝑡 𝑝𝑠 : //𝑤𝑤𝑤.𝑡ℎ𝑒𝑟𝑚𝑎𝑙−𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔.𝑜𝑟𝑔/𝑤ℎ𝑎𝑡−𝑖𝑠𝑑𝑎𝑟𝑐𝑦−𝑤𝑒𝑖𝑠𝑏𝑎𝑐ℎ−𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛−
𝑑𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛/.

[38] Hazen-williams friction loss equation - calculating head loss in water pipes, 2022. URL
ℎ𝑡𝑡 𝑝𝑠 : //𝑤𝑤𝑤.𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔𝑡𝑜𝑜𝑙𝑏𝑜𝑥.𝑐𝑜𝑚/ℎ𝑎𝑧𝑒𝑛 − 𝑤𝑖𝑙𝑙𝑖𝑎𝑚𝑠 − 𝑤𝑎𝑡𝑒𝑟 − 𝑑797.ℎ𝑡𝑚𝑙.

[39] A. Hegyi, Bart De Schutter, and J. Hellendoorn. Optimal coordination of variable
speed limits to suppress shock waves. IEEE Transactions on Intelligent Transportation
Systems, 6(1):102–112, 2005. doi: 10.1109/TITS.2004.842408.

[40] Alessio Tesone, Angelo Coppola, Luca Di Costanzo, Luigi Pariota, and Gen-
naro Nicola Bifulco. Route guidance systems based on the macroscopic fundamental
diagram concept: a simulation-based case study in the city of portici. In 2021 IEEE
International Conference on Environment and Electrical Engineering and 2021 IEEE
Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pages
1–6, 2021. doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584783.

[41] Pu Wang, Jiyu Lai, Zhiren Huang, Qian Tan, and Tao Lin. Estimating traffic flow in
large road networks based on multi-source traffic data. IEEE Transactions on Intelligent
Transportation Systems, 22(9):5672–5683, 2021. doi: 10.1109/TITS.2020.2988801.

[42] Rajneesh Tanwar, Rana Majumdar, Gursewak Singh Sidhu, and Abhishek Srivastava.
Removing traffic congestion at traffic lights using gps technology. In 2016 6th Inter-
national Conference - Cloud System and Big Data Engineering (Confluence), pages
575–579, 2016. doi: 10.1109/CONFLUENCE.2016.7508185.



86

[43] Mohammad Hajiahmadi, Jack Haddad, Bart De Schutter, and Nikolas Gerolimi-
nis. Optimal hybrid perimeter and switching plans control for urban traffic net-
works. IEEE Transactions on Control Systems Technology, 23(2):464–478, 2015. doi:
10.1109/TCST.2014.2330997.

[44] Solving traffic flow problems, 2022. URL
https://origindesign.com/articles/traffic-modeling.

[45] Hang Shen and Huiyuan Jiang. Research on road construction’s impact upon
traffic flow. In 2011 IEEE 2nd International Conference on Computing,
Control and Industrial Engineering, volume 2, pages 429–432, 2011. doi:
10.1109/CCIENG.2011.6008156.

[46] V. Sreedhar. Plug-in hybrid electric vehicles with full performance. In 2006
IEEE Conference on Electric and Hybrid Vehicles, pages 1–2, 2006. doi:
10.1109/ICEHV.2006.352291.

[47] Piping and pipelines, 2022. URL ℎ𝑡𝑡 𝑝𝑠 :
//𝑤𝑤𝑤.𝑑𝑙𝑎.𝑚𝑖𝑙/𝐸𝑛𝑒𝑟𝑔𝑦/𝐴𝑏𝑜𝑢𝑡/𝐿𝑖𝑏𝑟𝑎𝑟𝑦/.

[48] Thermal engineering, Jun 2019. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑤𝑤𝑤.𝑡ℎ𝑒𝑟𝑚𝑎𝑙 − 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔.𝑜𝑟𝑔/.

[49] B31.3 - process piping, 2022. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑤𝑤𝑤.𝑎𝑠𝑚𝑒.𝑜𝑟𝑔/𝑐𝑜𝑑𝑒𝑠 −
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠/ 𝑓 𝑖𝑛𝑑−𝑐𝑜𝑑𝑒𝑠−𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠/𝑏31−3−𝑝𝑟𝑜𝑐𝑒𝑠𝑠−𝑝𝑖𝑝𝑖𝑛𝑔/2020/𝑝𝑟𝑖𝑛𝑡−𝑏𝑜𝑜𝑘 .

[50] M.P. Singh, N. Subramanian, and Rajamenakshi. Visualization of flow data based
on clustering technique for identifying network anomalies. In 2009 IEEE Symposium
on Industrial Electronics & Applications, volume 2, pages 973–978, 2009. doi:
10.1109/ISIEA.2009.5356304.

[51] Abolfazl Mosaddegh, Claudio A. Cañizares, and Kankar Bhattacharya. Optimal
demand response for distribution feeders with existing smart loads. IEEE Transactions
on Smart Grid, 9(5):5291–5300, 2018. doi: 10.1109/TSG.2017.2686801.

[52] Paynter. Analysis an design of engineering systems. In The M.I.T. Press., 1961. ISBN
0-262-16004-8.

[53] Peter J. Gawthrop and Geraint P. Bevan. Bond-graph modeling. IEEE Control Systems
Magazine, 27(2):24–45, 2007. doi: 10.1109/MCS.2007.338279.

[54] Arjan van der Schaft and Dimitri Jeltsema. Port-Hamiltonian Systems Theory: An
Introductory Overview. Now Publishers Inc, 2014.

[55] Powerworld simulator, 2022. URL ℎ𝑡𝑡 𝑝𝑠 :
//𝑤𝑤𝑤.𝑝𝑜𝑤𝑒𝑟𝑤𝑜𝑟𝑙𝑑.𝑐𝑜𝑚/𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟/𝑜𝑣𝑒𝑟𝑣𝑖𝑒𝑤.

[56] Y. Koyama, T. Sasaki, S. Ihara, and E.R. Pratico. Voltage collapse scenario search. In
Proceedings. International Conference on Power System Technology, volume 1, pages
344–348 vol.1, 2002. doi: 10.1109/ICPST.2002.1053562.



87

[57] Pipe flow software, 2022. URL https://www.pipeflow.com.

[58] Simulation modeling software tools & solutions for business, 2022. URL
https://www.anylogic.com/.

[59] Oil and gas simulation software, 2022. URL
https://www.anylogic.com/oil-and-gas/.

[60] Matlab, 2022. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑤𝑤𝑤.𝑚𝑎𝑡ℎ𝑤𝑜𝑟𝑘𝑠.𝑐𝑜𝑚/𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠/𝑚𝑎𝑡𝑙𝑎𝑏.ℎ𝑡𝑚𝑙

?𝑠𝑡𝑖𝑑 = ℎ𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑚𝑎𝑡𝑙𝑎𝑏.

[61] Simulink - simulation and model-based design, 2022. URL ℎ𝑡𝑡 𝑝𝑠 :
//𝑤𝑤𝑤.𝑚𝑎𝑡ℎ𝑤𝑜𝑟𝑘𝑠.𝑐𝑜𝑚/𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠/𝑠𝑖𝑚𝑢𝑙𝑖𝑛𝑘.ℎ𝑡𝑚𝑙?𝑠𝑡𝑖𝑑 = ℎ𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑠𝑖𝑚𝑢𝑙𝑖𝑛𝑘 .

[62] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. Bottom-up technologies for reuse: Automated extractive adoption of soft-
ware product lines. In 2017 IEEE/ACM 39th International Conference on Software En-
gineering Companion (ICSE-C), pages 67–70, 2017. doi: 10.1109/ICSE-C.2017.15.

[63] Parita Jain, Arun Sharma, and Laxmi Ahuja. The impact of agile software development
process on the quality of software product. In 2018 7th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO), pages 812–815, 2018. doi: 10.1109/ICRITO.2018.8748529.

[64] How do animals solve problems?, Jun 2022. URL ℎ𝑡𝑡 𝑝𝑠 :
//𝑤𝑤𝑤. 𝑗𝑐𝑢.𝑒𝑑𝑢.𝑎𝑢/𝑛𝑒𝑤𝑠/𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠/2021/𝑎𝑝𝑟𝑖𝑙/ℎ𝑜𝑤 − 𝑑𝑜 − 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 − 𝑠𝑜𝑙𝑣𝑒 −
𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠.

[65] T. Grechenig and W. Zuser. Creating organic software maturity attitudes (cosma)
selected principles and activities for software maturity in small and medium software
enterprises. In Fourth International Conference onQuality Software, 2004. QSIC
2004. Proceedings., pages 134–143, 2004. doi: 10.1109/QSIC.2004.1357954.

[66] Hongyu Pei Breivold, Muhammad Aufeef Chauhan, and Muhammad Ali Babar. A sys-
tematic review of studies of open source software evolution. In 2010 Asia Pacific Soft-
ware Engineering Conference, pages 356–365, 2010. doi: 10.1109/APSEC.2010.48.

[67] History, 2022. URL https://www.powerworld.com/company/history.

[68] Pipe flow software, 2022. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑤𝑤𝑤.𝑝𝑖𝑝𝑒 𝑓 𝑙𝑜𝑤.𝑐𝑜𝑚/𝑝𝑖𝑝𝑒 − 𝑓 𝑙𝑜𝑤 −
𝑒𝑥𝑝𝑒𝑟𝑡 − 𝑠𝑜 𝑓 𝑡𝑤𝑎𝑟𝑒.

[69] Fluid library, 2022. URL ℎ𝑡𝑡 𝑝𝑠 : //𝑎𝑛𝑦𝑙𝑜𝑔𝑖𝑐.ℎ𝑒𝑙 𝑝/𝑙𝑖𝑏𝑟𝑎𝑟𝑦 − 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 −
𝑔𝑢𝑖𝑑𝑒𝑠/ 𝑓 𝑙𝑢𝑖𝑑 − 𝑙𝑖𝑏𝑟𝑎𝑟𝑦/𝑖𝑛𝑑𝑒𝑥.ℎ𝑡𝑚𝑙# 𝑓 𝑙𝑢𝑖𝑑 − 𝑙𝑖𝑏𝑟𝑎𝑟𝑦.



88

VITA

David Corder Hinton studied with breadth focus in computer science, computer

engineering, and electrical engineering at Missouri University of Science & Technology.

David was awarded a Bachelor of Science in Computer Engineering with a minor in

Computer Science in May 2020. Between 2019 and 2023 he completed graduate studies at

Missouri S&T while employed as a simulations software engineer with various organizations

in support of the United States Department of Defense. David’s M.S. studies at Missouri

S&T emphasized simulation and modeling and culminated in this thesis and accompanying

work body. David received a Master of Science in Computer Engineering from Missouri

S&T in May 2023.


	A Hybrid Framework for Critical Infrastructures Interdependency Modeling, Simulation, and Analysis
	Recommended Citation

	tmp.1706300307.pdf.btH33

