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ABSTRACT 

Decoupling capacitors (decaps) are used in power distribution network (PDN) 

design to act as a low impedance return path for noise and act as a local source of charge 

when required by integrated circuits (IC). For placement of decaps, which can number 

even to the hundreds, many algorithms have been proposed including genetic algorithms 

(GA), iterative algorithm, and machine learning methods. 

One limitation of iterative decap placement algorithms (adding one decap at a 

time) is how the construction of the algorithm affects the form of the final solution. For 

example, if the reward function (used in GA and machine learning methods) for 

evaluating a solution was based on maximizing the number of points below the target 

impedance, then larger package size decaps may be placed first, as low impedance points 

are easier to bring below the target using fewer number of decaps. These decaps may also 

be placed in locations near the IC for the benefit of low loop inductance. The expectation, 

however, should be for small package decaps to be placed near the IC as they contribute 

less inductance due to their smaller geometry. In this work, we propose two GAs for 

minimizing the required number of decaps in PDN design, with the goal of minimizing 

the number of assumptions about the structure of the solution within the genetic 

operators.  

For the second topic, for capacitors mounted to a board, there is a mutual coupling 

between the capacitor and the return plane that is stack-up dependent and so cannot be 

captured in one measurement/model. We propose a physics-based curve fitting scheme to 

interpolate inductances over many stack-ups in just two measurements.  
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1. INTRODUCTION 

 

Decoupling capacitors (decaps) are used in printed circuit board (PCB) power 

distribution networks (PDN) to act as a low impedance return path for noise, as well as a 

local source of charge, on PCB power lines. For large designs, a very large number of 

decaps may be required to ensure the proper operation of all devices, which directly 

translates to higher costs. Many algorithms have been proposed to optimize the 

placement of decaps, which can number up to the hundreds in real design. Oftentimes 

algorithms make assumptions (though physics-based) on the form of the optimal solution, 

that is, the solution using the minimum number of decaps, that may not be universally 

true and results in missing critical solution characteristics and a narrowing of the search 

space. This may be done indirectly from the reward functions of a genetic algorithm 

(GA) or the training reward in a machine learning method, or directly such as when 

decaps are added one at a time and fixed in place. 

Regardless of algorithm though, for simulation verification of the PDN design, 

accurate capacitor models are required for correlation of simulation to real product 

performance. For example, a capacitor mounted to a board has a mutual coupling 

between it and the return plane, resulting in a stack-up dependence of the amount of 

inductance contributed by the capacitor to the full loop inductance, which cannot be 

captured in a single measurement or model. For the designer, the result is possible over or 

under designs leading to increased monetary or time cost. 

 In the first paper, a GA for placing decaps with the goal of minimizing the total 

number of decaps required to meet the target impedance is proposed. GA optimization in 
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this work is performed by controlling only the number of decaps present in the population 

solutions, starting the optimization with the max number of decaps and slowly reducing 

the number to find the global minimum solution. By focusing only on limiting the decap 

number, it is hoped that the GA can find good solutions independently, without being 

biased by the reward function or any other externalities in the GA design.  The proposed 

GA is compared against the results of other published algorithms, with the proposed GA 

finding comparable if not better solutions. Comparisons are also made between the decap 

types used and decap placement between algorithms to get a better idea of the effect of 

algorithm search method on the form of the solution found. 

In the second paper, an improved GA is proposed that considers the design’s 

target impedance and board parasitics as a factor in optimization. The effect of the target 

impedance, as well as board and decap parasitics, on the form of the optimal solution is 

studied to predict the what the optimal solution would look like. The form of the optimal 

solution for given inputs should be entirely independent of the algorithm used, and an 

accurate prediction of the solution form can be used to help direct the search of a GA, or 

any other optimization algorithm, in a way that would be globally correct. The initial 

population (solutions) of the GA will be generated with biased weights to immediately 

direct the GA search to promising search spaces. From the results, these weighted 

populations, along with new genetic operators, lead to solutions being found faster and 

improvements to occur faster. 

In the third paper, a physics-based curve fitting scheme for capacitor ESL is 

proposed. Typically, vendor provided capacitor models lack exact detail of the 

characterization method, such as fixture design, stack-up, etc., and typically only provide 
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a single model for a given capacitor. As the coupling between capacitor body and return 

plane results in a stack-up dependent ESL, it is unknown what use cases vendor provided 

models are best used for. A basic curve fitting scheme is proposed to interpolate ESL 

over many stack-ups using two measurements, so that the mutual coupling can be 

accounted for.  
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PAPER 

I. A MODIFIED GENETIC ALGORITHM FOR THE SELECTION OF 

DECOUPLING CAPACITORS IN PDN DESIGN 

ABSTRACT 

Decoupling capacitors are used to provide adequate and stable power for 

integrated circuits in printed circuit boards (PCB). For complicated and large designs, it 

is difficult to select capacitors to meet voltage ripple limits while also minimizing cost 

because the search space is too large. In this work, a new genetic algorithm (GA) is 

proposed for the selection and placement of capacitors to meet a target impedance using 

as few capacitors as possible. The GA is centered around controlling the number of 

unused port locations in the GA population solutions, with the result of smoothing out the 

GA convergence and speeding up the convergence rate. A result comparison is made of 

the proposed GA against other algorithms and found the GA competitive if not better for 

the select test cases. 

 

1. INTRODUCTION 

 

In power distribution networks (PDN) for printed circuit boards (PCBs), at higher 

frequencies, the inductances associated with the voltage regulator module (VRM) and 

current return paths becomes an increasing source of impedance. This presents significant 

power delivery issues on current switching events which greatly impacts the performance 
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of integrated circuits (ICs). A common method to ensure reliable power delivery is 

defining a target impedance, which is based on the maximum allowable voltage ripple 

that can be tolerated by devices on the power rail for continued functionality. With 

increasingly small, dense, and fast designs, meeting the ripple voltage tolerances becomes 

more difficult. 

To reduce the power issues associated with high frequencies, decoupling 

capacitors (decaps) are used to provide a local source of charge while also providing a 

lower inductance/impedance return path. The problem is, designs with large numbers of 

decap ports contain too many placement possibilities. Of all decap patterns, there exists 

an application-based ‘best solution(s).’ This may be the pattern that satisfies a target 

impedance using the minimum number of capacitors or the pattern that minimizes a bill 

of material cost. Very large search spaces make brute force methods impractical for 

finding the best solution.  

For this decap placement problem, different search methods have been proposed 

and implemented. Among those is a physics-based method for minimizing inductance 

[1], iterative methods [2] and machine learning methods to quickly determine the best 

solution for any input [3][4]. Different genetic algorithms (GA) have also been 

implemented. [5][6]. Nearly all search or iterative methods though, rely on specific 

objective functions and/or made assumptions about how the best solution is most easily 

found. As an example, adding decaps based on the distance to an IC would always use 

the same decap ports.  While these assumptions are based in physics and do make the 

search efficient by narrowing the search space, the tradeoff is that there is no way to 

verify that the reduced search space includes the best solution. 
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In this work, we propose a new GA to find the decap placement that minimizes 

the number of capacitors required to meet a target impedance. To accomplish this, a new 

search method of limiting the number of capacitors in GA solutions is introduced. 

Contrary to traditional GAs, we also use very general fitness functions to avoid directly 

narrowing the search space. For disambiguation, the proposed GA will also be referred to 

as the gene suppressed GA.   

 

2. PROPOSED GENETIC ALGORITHM OVERVIEW 

 

First introduced by Holland, genetic algorithms are a class of optimization 

functions based on the principles of survival of the fittest [7]. Mimicking the process of 

natural selection, a GA population experiences the familiar pressures of survival fitness 

(selection), reproduction, and mutation. Iteratively, a GA population goes through cycles, 

called generations, where the most fit individuals will reproduce.  The overall most fit 

individual, over all generations, is the best solution for the optimization problem. For the 

proposed algorithm, the code base for the GA is open-source, implemented in Python and 

freely available from [8]. Full documentation and the full code is available. The general 

structure for the proposed GA is described in Figure 1. The code for the genetic operators 

is unchanged.  
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Figure 1. Genetic Algorithm Flowchart 

 

2.1. GENETIC ALGORITHM STRUCTURE 

The first stage of the GA is initialization, where the initial population of the GA is 

generated. Each member of the GA is referred to as a chromosome made up of genes [7]. 

To fit the GA scheme, each decap placement pattern is encoded as a vector of real, non-

negative integers. A decap port location is represented by the vector index, with the 

length of the vector equal to the total number of ports. The specific capacitor placed at a 

port location is represented by the value at the corresponding index. An example solution 

is shown in Figure 2. The mapping of integer numbers to capacitor type is given in Table 
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1, with an integer value of ‘0’ representing no decap. For initialization, the population 

was filled by randomly generated solutions. 

 

2 1 10 5 3 4 0 10 

 

Figure 2. Example solution with 8 decaps. Decap number 5 is placed in port 4. 

 

Table 1. Decoupling Capacitor Library 

 

 

The next stage of the GA is evaluation, where the fitness of a solution is judged. 

In our case, the lower the fitness score given by a fitness function, the higher its fitness. 

Two different fitness functions are used for evaluating solutions; one for solutions 

satisfying the target impedance and one for those that don’t. For a solution satisfying the 

target impedance, the fitness function used is given by (1): 
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 𝑆𝑐𝑜𝑟𝑒 =  −(𝑇𝑜𝑡𝑎𝑙 #𝑜𝑓 𝑃𝑜𝑟𝑡𝑠 − #𝑈𝑠𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 + 1) (1) 

If the target impedance is not satisfied, the fitness score given is proportional to 

the largest difference between points of the target impedance, the target_z, and the 

solution_z, the impedance seen looking into an IC on the power rail. For the test cases in 

this paper, only the PDN AC impedance associated with the vertical vias and plane 

capacitance is considered and calculated using a BEM and node voltage method [9]; the 

horizontal routing was not considered. The effect of the thickness of the power and 

ground layers is assumed negligible on the vertical AC impedance. The algorithm still 

applies with inputs that consider DC resistance and horizontal routing.  The frequency 

range targeted is 10 kHz to 20 MHz.  The fitness score is given by the following fitness 

function (2): 

 𝑆𝑐𝑜𝑟𝑒 = max (
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑧(𝑓)−𝑡𝑎𝑟𝑔𝑒𝑡_𝑧(𝑓)

𝑡𝑎𝑟𝑔𝑒𝑡_𝑧(𝑓)
) (2) 

To create the next generation, first, selection occurs to choose the parents. A 

percentage of the current generation, set at 30%, is selected through the roulette wheel 

method [10] to join the next generation. Equivalently this means the crossover rate, the 

number of solutions created by crossover, is 70%. These solutions are the potential 

parents for new solutions. An elitism component [7] is included where a percentage of 

the highest fitness solutions are guaranteed to join the next generation. The elitism 

percent is set at 1% with a minimum of 1 solution joining the next generation. The 

remainder of the population is generated through uniform crossover [11] of randomly 

selected pairs of the potential parents. Finally, mutation occurs where every gene has a 

chance of being changed. In our case, the decap placed at a particular port may have its 

decap type changed or be removed altogether. The mutation rate is set at 10%. After 
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mutation, one generation is completed. The entire process repeats again with fitness 

evaluation, generation after generation, until a defined number of generations have 

passed. 

2.2. SOLUTION SIZE AND SIZE VARIATION 

A change is proposed here to the traditional GA scheme. A distinction is made 

between gene value 0 and genes 1 – 10; by our fitness function, more expressions of gene 

0 lead to a better score. The frequency of gene 0 appearing will be controlled by the GA 

to make the search more efficient. 

The solution size is defined as the number of decaps used in the current best-

known solution. The proposed change is to limit the number of decaps in all solutions 

around the solution size. With a solution size of 20, there is no need to consider solutions 

using > 20 decaps so solutions should be restricted to <= 20 decaps. Solutions with 20 

decaps are still considered as they may provide alternate search paths for the GA. This 

parameter is dynamically updated and initially set as the total number of decap locations. 

While the upper limit is defined by the solution size, a lower limit is defined by 

the size variation. Without a lower limit on the number of decaps, the search space may 

be too large for efficient search. If the size solution is 20 and the size variation is 5, then 

all solutions in the population are allowed only 20 – 15 decaps inclusively. It is more 

probable to find solutions nearer to the current solution size number than one with far 

fewer decaps. The size variation parameter was set at a rounded 10% of the total number 

of decap ports.  
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 Let S be the solution size and V the size variation. Figure 3 describes the changes 

made to a solution with N decaps. For adding and removing decaps, the decap ports are 

randomly chosen from the solution.  When adding, decaps are selected from the those 

already present in the solution. A solution that does not utilize decap number 8 will not 

have capacitor 8 as an option for adding. This is to avoid changing the overall behavior of 

the solution too much, such as by adding new resonances. Adjustments to the decap 

number occur after initialization and after mutation.  

 

 

Figure 3. Modifications to be made to a solution of N capacitors, with solution size S and 

size variation V 

 

3. GA VERIFICATION 

 

To verify the performance of the proposed GA, 3 test boards were generated using 

code from [12].  The shapes and decap port layouts are given in Figure 4. The stack-ups 

are given in Tables 2 – 4. The dielectric relative permittivity is 4.4. The thickness of 

PWR and GND layers is again assumed to have negligible effects on the total via 

inductances and capacitances compared to dielectric layer thickness. As such, PWR and 
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GND layers are modeled as having 0mm thickness. Through-vias connect the appropriate 

layers and are used as decap ports. 

 

 

Figure 4. Board Shape and Decap Port Layout, for test cases 1, 2, and 3 
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Table 2. Stack-up for Case 1 

 

 

Table 3. Stack-up for Case 2 
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Test board 1 (Case 1) has 20 capacitors ports. Test board 2 (Case 2) has 100 

decap ports and test board 3 (Case 3) has 50. The decap port locations were randomly 

selected and placed on both top and bottom layers. The VRM was modelled as a series 

RL circuit with R = 3 mOhms and L = 2.5 nH and placed at the port farthest from the IC, 

but on the top layer. To set the target impedances for each case, the gene suppressed GA 

was run repeatedly, and the target impedance varied, until a reasonable number of 

capacitors that could satisfy the target impedance was found. The impedances are of RL 

type and are given in Figure 5. Results of the gene suppressed GA are compared against 

the open-source GA without any modifications (same fitness function), against the 

method described in [6] in the ideal case, and against the reinforcement learning 

algorithm described in [3]. 

 

Table 4. Stack-up for Case 3 

 



 

 

15 

 

Figure 5. Impedance Targets in Each Case. The Slope is +20dB/decade. The frequency 

range is 10 kHz to 20 MHz 

 

The unmodified version of the open-source GA is near identical to that of the 

gene suppressed GA, the only difference is that the number of capacitors allowed is not 

enforced. To check for search potential and consistency, both GAs’ were ran 5 times, for 

each test case, with the population size and the number of generations = 50. They were 

rerun another 5 times, for each test case, with population size and the number of 

generations = 100. 

The method proposed in [6] is an iterative GA, but rather than risk a poor 

recreation, a full search was performed. Decaps were selected one by one, by considering 

every decap type and location, and fixing the one that best minimizes the cost function. 
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Decaps are placed until the target is met or until all ports are filled. The solution found 

then, is the best possible solution based on the cost function of [6]. 

The reinforcement learning method described in [3] involves training a machine 

learning model to find the minimal number of decaps needed to satisfy the target 

impedance. A port sequence is first calculated by [1] to determine the order of ports to be 

used. The good convergence of the model and its ability to generalize was not considered, 

only the best solution the that could be found. The algorithm was run three times, for 

each test case, and the best solution found was recorded. 

3.1. GENE SUPPRESSED AND OPEN SOURCE GA 

The minimum number of decaps found by the GAs for each case is given in Table 

5, along with the average time for each case. The GAs was run on a virtual Linux server 

with an Intel Xeon Gold 5118 processor. Better solutions are generally found with the 

gene suppressed GA, with large improvements as the number of decap ports increases. 

However, the time consumed increases considerably with the # of decap ports, population 

size, and generation number, making this method currently impractical for large industry 

design. It may take upwards of hours or more for large number of decap ports designs, 

depending also on GA parameters. One reason for improved results may be that genetic 

drift [13] is reduced with the introduction of the solution size and size variation 

parameters. Genetic drift describes the change in the frequency of genes in a population 

as the algorithm converges towards a local or global extrema. As better solutions are 

found, the frequency of gene 0 will increase in the population, especially with crossover 

considered. Solutions with too many empty ports are less likely to meet the target 
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impedance and the number of such solutions appearing in the population will only 

increase with crossover. By controlling the number of decaps that can exist in a solution, 

the effect of genetic drift is lessened and the convergence can be improved. The 

convergence curve for the number of decaps found for the gene suppressed GA and open-

source is shown in Figure 6 and for Case 2. Due to the elitism implementation, the plot is 

non-increasing. 

3.2. GENE SUPPRESSED GA AND OTHER METHODS 

The minimum number of decaps found by the proposed GA, the ideal solution of 

[6], and the reinforcement learning method are given in Table 6. The performance of the 

proposed GA varies from finding a better or equivalent solution to at worst a competitive 

one. The inherent randomness in the search of any GA means that the best solution may 

not always be found despite its potential performance. The performance of the gene 

suppressed GA is as good if not better than the ideal solution of [6]. The method in [6] is 

a GA though, and the randomness of a GA search may still result in finding the global 

minimum solution.  Compared to the reinforcement learning method, the proposed GA is 

competitive and sometimes better.  

One possible reason for the sometimes-better results of the proposed algorithm is 

because no assumptions are made by the GA about how to find the best solution. In the 

method of [6], one decap is added at a time, as best minimizes the cost function. Per its 

cost function, bigger decaps should be added first because a bigger decap can quickly 

bring down the impedance in the low and medium frequency range. Progressively, 

smaller decaps will be added. In addition, the port locations are indirectly selected so that 
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with a decap connected, the inductance associated with that location is just right to 

maximize the effect of that decap by shifting its resonance point. As a result, searches by 

[6] should be somewhat consistent in behavior and result. 

 

Table 5. Open Source vs Gene Suppressed GA Results 

Genetic Algorithm Number of Decaps 

Case 1 Case 2 Case 3 

Gene Suppressed GA 

Population and # Gen. = 50 

16 

~1 min 

41 

~70 min 

28 

~11 mins 

Open Source GA 

Population and # Gen. = 50 

16 

~1 min 

71 

~75 mins 

35 

~11 mins 

Gene Suppressed GA 

Population and # Gen. = 100 

15 

~5 mins 

23 

~4.3 hrs 

24 

~43 mins 

Open Source GA 

Population and # Gen. = 100 

15 

~5 min 

66 

~5 hrs 

32 

~45 mins 

 

 

Figure 6. Convergence of Gene Suppressed GA vs Open Source GA, Case 2 
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Table 6. Gene Suppressed vs Other Methods Results 

 

 

Algorithm 

Number of Decaps 

Case 1 Case 2 Case 3 

Gene Suppressed GA 

Population and # Gen. = 50 

16 41 28 

Gene Suppressed GA 

Population and # Gen. = 100 

15 23 24 

Ideal Solution of [6] No 

Solution 

23 33 

Reinforcement Learning 

Method 

17 21 27 

 

 

In the reinforcement learning case, the order in which the ports are filled was 

fixed. The capacitor selection was not fixed. Exploration was done in the search space so 

different placement patterns could be tested. This exploration offers the benefit of 

considering alternate search paths but all search paths are restricted to the calculated port 

fill order. For Case 2, using the calculated port sequence resulted in the best solution. In 

Case 3, the solution found by the proposed GA is better, but no full search was done to 

check if an equal or better solution exists using the port sequence. 

Without a full search, there is no way of confirming that any specific objective 

function, or any assumptions made about the global minimum solution, is always true. No 

direct assumption is made by the gene-suppressed GA about the best solution. The fitness 

function for solutions that satisfy the target impedance is proportional only to the number 

of unused ports. Solutions using fewer decaps will be favored by the GA, but not directly 

port locations or decap types. Characteristics of the same solutions however, may still be 
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passed on repeatedly, pushing the GA towards a local minimum. Regardless, the 

possibility that better solutions can exist using decap ports and decaps that is unique from 

the currently known best solution is not closed off by the GA fitness functions. The 

downside though, is that there is no basis to judge two solutions using the same number 

of decaps, but using different locations and decap types, because they’d be rated the same 

fitness. From the results, limiting the expression of gene 0 help lead towards good 

solutions despite a less focused search space. But in some cases, like Case 2, it may not 

be sufficient. 

The best decap placement pattern for Case 3, for each decap optimization method, 

is depicted in Figure 7, 8 and 9. Their impedance curves are given in Figure 10. Although 

there is no guarantee that the GA in [6] and the reinforcement learning method is unable 

to find an equal or better solution for Case 3, the port locations used by the proposed GA 

are ones that would not be considered by the ideal case of [6] and the port sequence of the 

reinforcement method. For instance, capacitor port 11 is unused in the ideal solution of 

[6] and for the reinforcement learning case, port 11 is not within the first 27 ports of the 

calculated port sequence (Best solution found by reinforcement learning method). 

 

4. CONCLUSION 

 

In this work, a new GA for the decoupling capacitor problem in power distribution 

networks of PCBs was presented. The gene suppressed GA can find the best known 

minimum capacitor number, or at least a comparable solution, to satisfy a user defined 

target impedance. This is verified by comparing against two other algorithms.  
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Figure 7. Gene Suppressed GA Capacitor Layout, Case 3                                                   

Ports Used: [ 4, 5, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 20, 24, 25, 26, 28, 29, 33, 36, 39, 

46, 47, 50] 

 

 

Figure 8. Ideal Solution of [6] Capacitor Layout, Case 3.                                                

Ports Used: [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 

29, 34, 36, 38, 39, 43, 46, 47, 49, 50] 
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Figure 9. Reinforcement Learning Capacitor Layout, Case 3                                          

Ports Used: [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 36, 39, 

43, 47, 49, 50] 

 

 

Figure 10. Resulting Impedance Curves of Best Solution for Each Algorithm 



 

 

23 

The convergence curve can also be smoothed out and the search made more efficient by 

limiting the number of capacitors in solutions. 

From our experimental results, there is a relationship between the solution found 

and the GA parameters. Larger population sizes and longer iterations result in finding 

better solutions, especially for PDN with large numbers of capacitor ports, but at the 

expense of much longer algorithm time due to increase in the number of calculations. 
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OPTIMIZATION IN PDN DESIGN THROUGH IMPROVED POPULATION 

GENERATION 
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ABSTRACT 

In power distribution network (PDN) designs, a large number of decoupling 

capacitors (decaps) may be needed to satisfy target impedance limits. Many algorithms 

have been proposed and implemented for finding the optimal decap placement, including 

genetic algorithms (GA), and machine learning methods. In this work, an improved GA is 

proposed for finding the decap placement pattern that can satisfy a target impedance 

using the minimum number of decaps. The distribution of capacitors expected to appear 

in the global minimum solution is first predicted by determining how effective each 

decap type is towards satisfying certain critical impedance points. This estimation is used 

to inform the generation of initial solutions in order to put the initial search space nearer 

the global minimum and ensure certain solution characteristics appear. GA search using 

this improved population generation is found to be an improvement over a canonical GA 

implementation, by finding solutions where the latter could not, or finding a solution 

using fewer decaps. 
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1. INTRODUCTION 

 

In power distribution networks (PDN), the major obstacles for consistent power 

delivery include, but are not limited to, inductance associated with intentionally designed 

current loop paths and non-ideal component behaviors such as the parasitics belonging to 

discrete components. These sources, coupled with faster rise times and larger power 

consumption, demand very careful designs to ensure the proper functionality of the active 

devices powered through the PDN. For integrated circuits (ICs) on a board, a common 

specification for their reliable operation is the target impedance. The target impedance is 

broadly defined using the maximum allowable voltage ripple divided by the total required 

current for all devices on a net, and is the maximum impedance limit that ICs must meet 

for consistent performance [1]-[3]. To reduce the PDN impedance to acceptable levels, 

decoupling capacitors (decaps) are often used. In this work, the objective is to find the 

decap placement pattern (the optimal pattern) that uses the minimum number of decaps in 

solving a given target impedance.  

For large designs, finding the optimal pattern is difficult. The potential number of 

ways to place decaps scales exponentially with the number of possible decap locations 

and decap library size, and includes solutions that do not meet the target impedance at all, 

and solutions that meet the target using a variable number of decaps. For this 

optimization problem, many algorithms and tools have been developed to quickly find 

the optimal placement. 

Of the many methods for decap optimization, there include machine learning 

methods [4]-[6], iterative selection [7]-[9], as well as numerous genetic algorithm (GA) 
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implementations [10]-[14]. For every algorithm however, the approach for finding the 

optimal solution can vary greatly, resulting in different outcomes as a result of the 

different search methodologies and judgment criteria. In the iterative algorithm of [7] for 

example, decaps are iteratively added by considering which decap type and required 

number of that type, when added, can keep anti-resonance points below the target and 

push the first impedance target violation point as high up in frequency as possible.  The 

consequence of this is the general order in which decaps are added. Decaps added for a 

validation case in [7] shows that, in general, large capacitance decaps are added first, and 

iteratively smaller and smaller capacitance decaps are added. This trend makes sense as 

the goal is to push the target impedance violation as high up in frequency as possible. The 

work of [7] also proposes first filling up the ports nearest IC so as to reduce the loop 

inductance. While physically sound, the consequence should be that the larger decap 

types always end up being placed nearer the IC, inadvertently pushing smaller package 

decaps further away which may be contrary to expectations.  

The GA implementation in [10] has a similar behavior over the course of its 

search, utilizing a cost function that rewards maximizing the number of points brought 

below the impedance target. The result is larger decaps being placed first, as many low 

frequency points can be immediately satisfied and done so with a fewer number of 

decaps. Higher frequency impedance points are harder to satisfy as the decaps effective in 

those ranges have a lower decrease in PDN impedance per decap, compared to decaps in 

the lower frequency region. Smaller package decaps as a result, are placed later in the 

optimization, after the low frequency points have already been met. An example 

progression curve of the input impedance in the work of [10] as decaps shows as such; 
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new self-resonance points appear in the direction of increasing frequency as decaps are 

iteratively added. In the works of [7] and [10], the form of the final solution, and also 

how that solution is constructed, is determined by how each algorithm seeks out the 

optimal solution. 

Similarly in the reinforcement learning method of [4], for calculation of reward 

and Q values, the target impedance is first split into multiple regions over the frequency 

range, with rewards given based on how many of regions of the target impedance is 

satisfied during each step of training. While there is no analysis in [4] about what kinds 

of decaps are chosen and in what order the decaps are chosen over the individual training 

epochs, it should be logical to say that, with the specific input parameters of the example 

and the reward function, that larger decaps would be chosen first. A quick reward would 

be provided in [4] with the early addition of large decaps, and for the same reason as the 

work in [10]. A port priority method based on inductance was also adopted, meaning for 

the same input board, the order in which ports are filled will always be the same. The 

algorithm determines the structure of the solution, always forcing the same sequence of 

ports to be filled.  

In the work of [11], the decap placement pattern found by [11] is compared with 

the placement of those found by [6] and [12] for a test case. The work of [6] is a 

reinforcement learning method that used the same port priority implementation as [4]. 

The work of [12] is a GA, but for the comparison in [11], decaps were placed, the type 

and location, by doing a full search, at each iterative step, to determine the solution that 

would most optimize the cost function of [12]. The best solutions found by each 

algorithm varied in the number of decaps needed, and generally chose similar, but not the 



 

 

29 

exact same port locations. The distribution of the types of decaps used and the port 

locations of the decap types relative to the IC location also differed between solutions, 

indicating that each algorithm is converging to similar, but different points in the search 

space. Ideally, the solution found by all algorithms should have similar, if not the exact 

same, port locations/decap types used as that of the most optimal solution. In reality, 

different algorithms may make different conclusions about the optimal solution as they 

converge. Irrespective of the optimization used however, the form of the optimal solution 

is entirely independent. If an estimation can be made at what this optimal solution looks 

like, optimization can be performed by steering for certain immutable solution 

characteristics, such as specific decap types, decap amounts, or port locations. By 

intentionally seeking and favoring these immutable characteristics, instead of letting the 

algorithm decide those characteristics over the course of its search, convergence could be 

made more consistent and more quickly by ensuring the necessary qualities of the 

optimal solution is captured.  

In this work, we present an augmented genetic algorithm (GA) for finding the 

placement pattern that minimizes the required number of decaps to meet a target 

impedance. As an extension of our previous work in [11], this work focuses on 

identifying what the optimal solution should look like before beginning optimization, 

using that information to improve solution generation and by extension the GA search. 

An estimation is made of the decap types that are likely to be used in the optimal solution 

and initial populations will be generated using information, quickly directing the GA 

towards a better and more promising initial search space. In addition, the crossover 

operator is removed in favor of more targeted mutation operators that can make more 
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effective changes, especially as the total number of decaps in a solution begins to 

decrease. For validation, results are compared against those found by [11] and a 

canonical GA [15] for several test cases and target impedances. 

 

2. TRENDS OF PREVIOUS WORK 

 

The goal of the work in [11] is the selection and placement of decaps with the 

goal of minimizing the required number of decaps. The objective function used to 

evaluate solutions that meet the target impedance was a function of only the number of 

capacitors used. In addition, the operators of GA [11] did not directly impose any 

restrictions on decap placement. No decaps were intentionally fixed to any locations, nor 

were particular port locations forced to be used. Due to the underlying physics and the 

mechanics of a GA however, similar conclusions and repeated trends may be seen over 

many algorithm runs.  

Solutions found by [11] tended to have ports closest to the IC of interest filled and 

filled with small capacitance/package size capacitors. One such solution is reprinted in 

Figure 1, with the numbers corresponding to specific decap types. The capacitor library 

used in [11] and this work is given in Table 1 and are in the form of publicly available 

measured S-Parameters [16]. From the same example, there are ports chosen and filled 

with capacitors that are further from the IC despite closer ports being available. The 

physical meaning of this could be that the effect of mutual inductance between ports 

becomes more significant as the number of filled ports decreases. 
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Figure 1. Example of an optimal solution, reprinted from [11]. 

 

Table 1. Capacitor Library 

Decap Type Capacitance (uF) ESL (nH) ESR (mΩ) 

1 0.1 0.19 34.7 

2 0.47 0.18 18.3 

3 1 0.22 15.2 

4 2.2 0.2 7.2 

5 4.7 0.28 7.1 

6 10 0.26 5.2 

7 22 0.27 4.0 

8 47 0.34 2.9 

9 220 0.41 1.9 

10 330 0.46 1.2 
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Another observation is on the distribution of the decap types used. For the 

solution in Figure 1, a disproportionate number of decaps used were of smaller package 

size/smaller capacitance value. For an input impedance profile increasing with frequency, 

as may be due to the parasitic inductance between power/ground plane pair and IC input 

port and/or the inductance introduced by a voltage regulator module (VRM) in the PDN 

design, it is reasonable to assume that higher frequency points are harder to satisfy. An 

example of such an increasing input impedance with an R-type target impedance is given 

in Figure 2. The impedance at higher frequency points will be higher due to inductive 

parasitics. The decaps effective in the higher frequency range will also tend to have 

higher ESR due to smaller package sizes. It is reasonable to assume then, for any 

increasing input impedance, a non-trivial R-type (constant impedance) or RL-type 

(constant impedance, transitioning to a +20 dB/decade slope) target impedance, that the 

distribution of capacitors in the global minimum solution will lean towards smaller decap 

types. In the work of [10], an uneven distribution in the types of decaps used can also be 

seen in the optimized solutions, and also for an example with increasing input impedance 

as seen by an IC. 

For verification, the algorithm of [11] was run for many different R and RL type 

target impedances, and for the same board example as in Figure 1. Figure 3 shows a heat 

map for the percentage of decaps in the best solution found that are of type #1, #2, and 

#3, and as a function of Zmax. Zmax is defined as the value of the target impedance at the 

final frequency point of interest. In this work, the frequency range of interest is 10 kHz to 

20 MHz, making Zmax the impedance of the target at 20 MHz. The darker the color 

(which follows increasing Zmax), the lower the percentage of decap type #1, #2, and #3 in 
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the best solution found. Decap #1, #2, and #3 were chosen as they are the ‘high’ 

frequency capacitors in the frequency range of interest, having self-resonance points in 

the same decade as 20 MHz.  

From Figure 3, the percentage of decaps in the best solution that is of type #1, #2, 

and #3 is inversely proportional to Zmax. This result should be reasonable because as the 

target impedance becomes more difficult to satisfy (low impedance targets), more decaps 

are required to meet the target and the relative difficulty of meeting high frequency points 

increases. Conversely, for generous (high impedance) targets, fewer high frequency 

decaps are needed, if needed at all. In general, if the input impedance is increasing, and 

the target impedance is of R or RL type and non-trivial to meet, then the distribution of 

decaps used is likely to skew towards smaller package sizes.  

 

 

Figure 2. Example of increasing input impedance and R-Type target.  
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Figure 3. Heat map for the % of decaps in best solution that are of decap type #1, #2, and 

#3. 

 

This assumption should typically be true of the optimal solution, for boards and 

impedance targets behaving under the given conditions, and be independent from the 

method used to find the optimal solution. In this work, the population initialization step 

of the GA will be augmented by generating solutions with decap distributions that are 

more consistent with the distribution of decaps expected in the optimal solution. 

In [11], comparisons of algorithm results were also made, comparing against a 

canonical GA [15] implementing the same fitness functions as [11], a reinforcement 

learning method [6], and the best solution found through a full search optimization of the 

fitness function of [12]. For the remainder of this work, the proposed GA will be referred 

to as ‘Augmented GA’, the work from [11] as ‘GA [11]’, and the canonical GA 

implementing the fitness functions of [11] as ‘Canonical GA’. While GA [11] could find 



 

 

35 

competitive or better results, the quality of the final solution heavily depended on the 

search time and search radius. Figure 4 and 5 shows convergence curves for the results of 

the different algorithms, performed on the same board as Figure 1. By optimizing the 

generation of the initial set of solutions, the aim is to find better solutions while cutting 

down on the needed search time. 

 

3. AUGMENTED GENETIC ALGORITHM 

 

3.1. BASIC STRUCTURE OF GENETIC ALGORITHM 

The GA is an optimization algorithm [17] revolving around the principles of 

natural selection. In nature, individuals who can survive and reproduce will pass down 

their genes to the next generation; genes that in theory, are conducive to future survival 

and future reproduction. The analog to optimization is the idea that the best solution can 

be found by repeatedly mixing good solutions to find better ones. The canonical 

flowchart of the genetic algorithm is given in Figure 6.  

In general, a GA follows the same basic steps: population initialization, 

evaluation, selection, crossover, and mutation. In population initialization, a set of 

solutions, called a population, is first generated. A solution to the optimization problem is 

first encoded into a form fit for manipulation. 
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Figure 4. Convergence curves for different algorithms, using searches with population 

sizes of 50 and 50 iterations of search. 

 

 

Figure 5. Convergence curves for different algorithms, using searches with population 

sizes of 100 and 100 iterations of search. 
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Figure 6. Canonical GA Flowchart. 

 

In this work, a solution is encoded as a vector of discrete numbers, where an index of the 

vector corresponds to a decap port location, and the value at that index corresponds to the 

type of decap placed there. An example of a solution using this encoding is given in 

Figure. 7. A decap type of ‘0’ indicates no decap is placed in the corresponding port 

location. For the initialization of the population, the classic approach is to generate a set 

of uniformly random solutions. Equivalently for this work, it would be a set of numerical 

vectors with uniformly random decaps generated at each port. 
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Figure 7. Example of an encoded solution for the decap placement problem.  

 

In the evaluation step, a solution is evaluated for its’ fitness; a measure of how 

likely an individual is to successfully reproduce. In this work, solutions satisfying the 

target impedance have fitness given by (1). For solutions that fail to satisfy the target 

impedance, they are evaluated by (2) [11]. For the variables, solution_z(f) is the 

frequency dependent input impedance as seen from the IC, for the evaluated decap 

placement pattern. target_z(f) is the frequency-dependent target impedance. The goal of 

(1) and (2) is to minimize the fitness functions.  

 Fitness =  −(Total # of Ports − # of Ports Used) +  1 (1) 

 Fitness = (
solution_z(f)−target_z(f)

target_z(f)
) (2) 

In the selection stage, solutions are selected as parents for reproduction based on 

their fitness. One standard technique is the roulette wheel method [17], used in GA [11], 

where the selection of potential parents is proportional to their fitness. Once a list of 

potential parents is selected, they are paired off to produce new solutions by mixing 

characteristics of the parents in a process known as crossover. Within context of the 

2 1 10 0 10

Decap 10 is placed 

in port 5

No decap (a 0 ) is 

placed in port 4 

(index 4) 
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decap solutions, new solutions are generated by mixing parts of the parent solution 

vectors.  

The final step is mutation, in which individual parts of a solution is changed. For 

this work, the decap placed at a port location is changed to a different decap type (or 

emptied) by changing the value at that index of the solution vector. The GA will loop 

from mutation back to evaluation, with each loop being termed a generation, until some 

exit condition for the algorithm is reached. The exit condition for this work is when the 

preselected number of generations is reached.  

3.2. MODIFIED IMPLEMENTATION OF GENETIC ALGORITHM 

In this work, several changes were made to the canonical GA implementation, 

with the modified flowchart given in Figure 8. Changes include controlling the number of 

decaps in each solution, the removal of the crossover operation, changes to how the initial 

population is generated, and finally changes to the mutation operators. 

For controlling the number of decaps in each solution, the number of decaps in all 

solutions of the GA is restricted to N –  1, where N is the currently known minimum 

number of decaps required to meet the target. If no solution that can satisfy the target is 

currently found, N is set equal to the total # of port locations. This means that (1) is only 

used to detect solutions where the total number of needed decaps decreases and (2) is 

used to incrementally improve and find the next solution that meets the target using fewer 

decaps.  
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Figure 8. Augmented GA Flowchart. 

 

In this modified implementation, the crossover operation has been removed. 

Based on observations of the results in [11], as the GA progressed, newer solutions 

seemed to be found mostly through mutation or through [11]’s version of the decap 

control step. In general, the closer a population reaches the optimum (solution using the 

fewest decaps), the effect of any single change to a solution is more significant. A change 

in the value of a single decap or of the location of a decap may significantly worsen a 

solution. Crossover operations, acting over entire solutions, may make too many changes 
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at once, and even incremental improvements may be hard to achieve. This is exacerbated 

with our encoding scheme, where a large of number of ‘0s’ will begin appearing in the 

solution vectors as the optimum is approached. For this reason, the crossover operator 

was removed in favor of more controlled mutation operators aimed at making smaller but 

hopefully more effective changes. Only the best solution in the current population is 

chosen for mutation; all new solutions in the next generation will come from the mutation 

of a single-parent solution. 

3.3. AUGMENTED POPULATION GENERATION 

For this decap placement problem, generating an uniformly random initial 

population may not be the best approach. If there is a specific distribution of decap types 

for the global minimum solution, then the GA algorithm, and all search algorithms in 

theory, should slowly converge to that same distribution over the course of their search. 

Premature convergence can occur if, during the search, the algorithm gets stuck in a local 

minimum while it is still searching for the distribution of the optimal solution. If the GA 

search can begin in a search area that includes or is close to the global minimum, then 

both the convergence and time required to find any valid solution should be made faster. 

To that end, the initial population should be generated in a way that considers the 

constraints imposed by the target impedance on the decap types used. Focusing on R and 

RL-type target impedances, and increasing input impedances as seen from an IC, this 

work identifies certain ‘critical’ frequency points. Decap weights for each decap type is 

generated based on how much ‘effort’ is required to satisfy each critical point, and these 

weights are used to inform the initial population generation. For RL and R-type target 
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impedances, the impedance of the target at the last frequency point is chosen as one such 

critical point. This is done with the assumption that the last impedance point will be the 

hardest to satisfy and would require more effort. For RL-type target impedances, another 

critical point is identified as the impedance of the target at the frequency in which the 

target transitions to +20 dB/decade. This additional point is chosen to consider the 

optimization of the constant and non-constant target impedance region separately. An 

example of an RL-type target is shown in Figure 9, with identification of the critical 

points. 

For generating the decap weights, each port in the board is filled with one specific 

decap type, one at a time, until the minimum number of that type required to satisfy the 

critical point is found. This is done for every decap in the library and for every critical 

point. If a decap type cannot a satisfy a given critical point, the required number of 

decaps for that point is set to M, where M is the total number of ports. As a 

simplification, the impedance of the critical point, after filling all ports with the same 

decap type, is calculated first, with the assumption that this would result in the lowest 

impedance for that point. If all ports are filled but the critical point is not satisfied, the 

required number is immediately set to M. This is a valid assumption to make only if all 

decaps in the library are acting wholly inductively around the frequency of the critical 

point, which may not necessarily be true. The impedance is calculated by connecting the 

decap Z-parameters to the board Z-parameters (board S-Parameters taken as input) 

through a segmentation method [4]. 
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Figure 9. RL type target with two critical points. 

 

For a 50-port board example with RL-type target impedance, Table 2 gives the 

number of decaps required for each critical point, using the target of Figure 9. The order 

in which the ports are filled is calculated based on a ‘port priority’ that will maximally 

reduce the equivalent inductance seen by an IC [8], calculated using the inductance seen 

from each port at 20 MHz, as extracted from Z-Parameters of the board. 

After computing the required number of each decap, the decap weights are 

determined. The weight for each decap type is directly proportional to how useful they 

are towards satisfying the critical points; if a fewer number of them is required to meet 

the critical points, their weight is higher. If for all critical points, no decap can be used to 

satisfy those points, then it is equivalent to every decap having the same weight, and 

leading to a uniformly generated initial solutions.  
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Table 2. Number of Decaps To Satisfy Critical Points Of Figure 8 

Decap Type 

# Required for 

last frequency 

# Required for transition 

frequency 

1 4 48 

2 21 12 

3 26 10 

4 27 2 

5 35 17 

6 33 29 

7 32 28 

8 33 31 

9 43 40 

10 43 36 

 

Equation (3) describes the process for generating weights for the R-Type target 

impedances. Ni is the number of required decaps of type i for the single critical point. 

Nmax is the largest number of required decaps among all types used. K is the total number 

of decaps in the library. Nj is the required number of the jth decap in the library. Finally 

Wi is the calculated weight for the ith decap. 

 𝑊𝑖 =  
|𝑁𝑖−𝑁𝑚𝑎𝑥|+1

∑ (|𝑁𝑖−𝑁𝑚𝑎𝑥|+1)𝐾
𝑗=1

 (3) 

Only a percentage of a solution is devoted toward solving the critical point for R-

Type targets; the remainder of the solution is uniformly generated to give some variety. 

The percentage of a solution dedicated to solving the R-Type critical point is given by 
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(4), where Ntotal is the total sum of the number of decaps, of all types, required to satisfy 

the critical point. 

% of Solution to Solve R-Type Critical Point=  

                                                100*
Ntotal

# of Ports*# of Decaps in Library
  (4) 

For RL-Type target impedances, the solution is split into two groups, each for 

satisfying a different critical point. Weights are generated for each group separately, 

using (3) for each critical point. Equations (5) and (6) are then used to determine the 

percentage of the solution dedicated to solving each critical point. f1 indicates the final 

frequency point and f2 the transition frequency point. Ntotal,f1  is the total number of all 

decaps required to satisfy critical point f1, and Ntotal,f2,  the same for f2. 

 % of Solution to Solve f1 =  
Ntotal,f1

Ntotal,f1+Ntotal,f2
∗ 100 (5) 

 % of Solution to Solve f2 = 100 − % to Solve f1 (6) 

For R-Type target impedances, for the percentage of the solutions dedicated to 

solving the critical frequency point, the decap port locations will be filled one at a time, 

based on the port priority. The chance of each decap being chosen at each port is the 

calculated weights. The remainder of the solution is uniformly generated. For RL-Type 

target impedances, the percentage of the solution devoted towards solving the critical 

frequency point f1 is filled first. Using the port priority, decaps are added based on the 

weights calculated from (3) for the critical point f1. The remainder of the solution will be 

filled using the weights calculated from (3), for critical point f2, again using the remainder 

of the port priority. 
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If for some critical point, 1 and only 1 decap type can be used to satisfy it, then in 

the initial solutions, only the required number of those decaps is forced into the initial 

solutions. The order of ports to fill will still be the port priority. The remainder of the 

solution is generated with uniform weights for all decaps.  

3.4. NEW MUTATION OPERATORS 

With the crossover operator removed, the algorithm will rely entirely on the 

mutation operators to generate new solutions. Careful changes need to be made to avoid 

drastically worsening a solution and at the same time, changes made must work towards 

finding better solutions. To that end, three new mutation operators have been created. The 

new mutation operators are the target mutation, interchange mutation, and shift mutation. 

The goal of these mutations is to mimic what a designer may do in practice. Two new 

solutions are produced for each set of mutation operator calls. 

The target mutation aims to mutate decaps to a type more suited to correcting a 

target violation. Before starting the GA search, the first self-resonance frequency point 

for each decap type is determined by connecting each decap to the first port of the port 

priority. The generated list of self-resonance frequencies states which decap is best suited 

for a given target impedance violation, based on the shortest distance from the offending 

point to a self-resonance point. When computing the PDN impedance during GA search, 

the first impedance violation point of the best solution in the population is recorded. For 

target mutation, decap types in a solution will mutate in the ‘direction’ of the best decap. 

To do this, the value at an index of the numerical solution vector will be incremented or 

decremented towards the best decap for the violating point. An example is given in 



 

 

47 

Figure 10. Every decap has a 10% chance of mutating in this way, with a fixed 

increment/decrement of 1. As an optional argument, if an empty port (a ‘0’) in the 

solution vector is selected for mutation, that port will automatically mutate to the best 

decap for the target violation. If the decap in a location is already the most suitable decap 

type, then its value will not change. Two solutions are generated from target mutation. 

The first solution will allow the empty ports to be mutated but the second solution will 

not.  

The second mutation operator, the interchange operation, is applied to the first 

solution generated by target mutation. This function will swap the locations of two 

different decap types in the solution vector. Each decap has a 10% chance of this 

mutation and is not applied to empty ports. Figure 11 gives an example of this mutation. 

The third mutation operator is a shift operation. It is applied to the second solution 

generated by target mutation. This operation will exchange the locations of two decaps 

based on a maximal ‘distance,’ with the ‘distance’ based on the port priority list. An 

example is given in Figure 12, with a max shift distance of 1 port. For this work, each 

decap has a 10% chance of shifting, with 5 ports maximums shift. 

With the new mutation operators, the solutions may all have different number of 

decaps. The number of decaps for each solution will be set to N-1, as described in Section 

III.B, and N representing the currently known minimum number of decaps required to 

meet the target impedance.  
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Figure 10. Example of target mutation. Decap #8 mutates to #7, decap #3 mutates into 

#4. The solution is mutating 'inwards' towards the best decap for a violating point.  

 

 

Figure 11. Example of shift mutation. The decaps in indices 2 and 4 swapped. 

 

 

Figure 12. Example of shift mutation. A port priority is given by the port sequence 

[4,1,2,5,3,6,7,8]. With a move max of 1, the decap in port 4 can only exchange places 

with port 1. The decap in port 6, can exchange places with the decap in port 3 or port 7. 

 

 

Figure 13. Example solution for a newly generated population. Solutions are created in 

the likeness of the best-known solution. 
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3.5. NEWLY IMPLEMENTED FUNCTIONS 

Two new functions were also added to help with GA convergence. The first 

function is a brute force check. When a solution that can meet the target impedance is 

found, decaps will be removed from the solution, one at a time, using the reverse of the 

port priority. One decap is removed first, and if the target impedance is still met after 

removing, that port will be kept empty and the procedure is repeated with the next port. 

If, after removing the next decap the target is still met, that port will be kept empty. If the 

target is not met, that port keeps its decap and the next port is checked. 

The second function added will generate a new population whenever a solution 

that meets the target is found, with the new population generated in the likeness of the 

improved solution. The new solutions will use similar decap types and similar decap 

distributions, with the goal of pointing towards a search space more likely to yield better 

solutions. The total number of decaps in the new solutions will then be decremented by 1. 

An example of a newly generated solution in this vein is given in Figure 13. In this work, 

the two functions can call each other. 

 

4. VALIDATION 

 

To validate the effectiveness of the GA modifications, comparisons are made 

between this work, the algorithm of [11], and a canonical GA [15] implementing (1) and 

(2) as the fitness functions. 9 test boards are generated using the method proposed in 

[19,20], with 3 boards of 25, 50, and 75 decap ports each. For each test board, 3 target 

impedances of R and RL types are generated. Each GA was run 5 times for each target 
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impedance. For all test cases, the frequency range of interest is 10 kHz – 20 MHz. All test 

cases were run with population sizes of 50 solutions and 50 generations of search.  

Two examples will be looked at in more detail; 1 example with 50 ports and R-

Type target and 1 example with 75 ports and RL-Type target. The results for the 

Augmented GA, GA [11] and the canonical GA, over all generated test cases, impedance 

targets, and algorithm runs, are given in Figure 14. Vertical lines in Figure 14 separate 

boards with 25, 50, and 75 decap port locations. The current implementation of the GA 

leads to better end results, finding better solutions or finding solutions where GA [11] 

and a canonical implementation could not.  

 

 

Figure 14. Overall result comparison of multiple GAs. 
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4.1. 50 PORT EXAMPLE WITH R-TYPE TARGET IMPEDANCE 

The first example to highlight is a 50-port case, where the final GA results are 

given in Table 3. ‘No Sol’ in Table 3 indicates that no solution satisfying the target 

impedance was found. The Augmented GA could find solutions where the other GAs 

could not, using only about half the total number of ports. Figure 15 gives the 

convergence curve for each of the runs of the Augmented GA. Rapid improvement in the 

convergence curve comes from the implemented functions of Section III.E, especially 

due to the brute force check. 

 

Table 3. Number of Decaps Found For 50 Port Case 

Decap 

Type 

Canonical 

GA [11] 
GA [10] 

Augmented GA 

(this work) 

1 No Sol No Sol 26 

2 No Sol No Sol 28 

3 No Sol No Sol 28 

4 No Sol No Sol 29 

5 No Sol No Sol 26 

 

 

Figure 15. Convergence curves for augmented GA, 50 port case. 
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The distribution of the decaps in one of the 26 decap solutions is given in Table 4. 

The dominant portion of decaps used is of type #1. Anecdotally, of the 5 solutions found 

by the Augmented GA, all 5 solutions had a minimum of 21 type #1 decaps in the 

solution, indicating that there may be some minimum number of a specific decap type 

needed to even meet the target impedance. In initial population generation, the 

Augmented GA had forced every solution to have at least 20 type #1 decaps in every 

initial solution; no other decap type could be used to satisfy the critical point of 20 MHz. 

The Augmented GA identified a more promising search space and quickly found better 

solutions.  

 

Table 4. Number of Decaps Found For 50 Port Case, Augmented GA 

 

Decap Type 

# of Each Decap in 

Solution 

1 21 

3 l 

4 2 

6 1 

8 1 
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4.2. 75 PORT CASE WITH RL-TYPE TARGET IMPEDANCE 

The second example to highlight is the 75-port case, where the convergence 

curves for GA [11] and the Augmented GA are given in Figure 16 and Figure 17 

respectively. In general, the Augmented GA performs better, but there is more variance in 

this case compared to the 50-port case. Part of this inconsistency may be due to the 

difficulty of optimizing in the +20 dB/decade region of the target impedance. Around self 

and anti-resonances, the impedance might have slopes larger/smaller than +/-20 

dB/decade, causing the impedance to cross the target at multiple points. Small changes to 

a solution could push some points over and some below the target.  

 

 

Figure 16. Convergence curves for 75 port case, using GA [10]. 
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Figure 17. Convergence curves for 75 port case, using proposed Augmented GA 

 

Table 5 gives the predicted distribution of decaps in the global minimum solution 

made by the Augmented GA vs. the actual distribution of decaps in one of the best 

solutions found (32 decaps). The ‘% of Expected Distribution’ is the expected 

percentage, Ei, of each decap type appearing in the global minimum solution, and is 

calculated, for the i’th decap, using (7). The variables in (7) are the same as in (3), (5), 

and (6). Ni,f1 is the number of required decaps of type i to satisfy critical point f1, and Ni,f2 

for critical point f2.  

 𝐸𝑖 =  
|𝑁𝑖,𝑓1− 𝑁𝑚𝑎𝑥,𝑓1|+1+ |𝑁𝑖,𝑓2− 𝑁𝑚𝑎𝑥,𝑓2|+1

∑ (|𝑁𝑖,𝑓1− 𝑁𝑚𝑎𝑥,𝑓1|+1+|𝑁𝑖,𝑓2− 𝑁𝑚𝑎𝑥,𝑓2|+1)𝐾
𝑗=1

 (7) 
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Table 5. Presence of Decaps In Best Solution Of Augmented GA vs Augmented GA 

Predicted Distribution 

Decap 

Type 

% of Each Decap 

Type in Best 

Solution 

% Predicted 

Distribution 

1 9.375 17.1 

2 53.125 18.3 

3 12.5 17.3 

4 9.375 17.1 

5 3.125 9.5 

6 3.125 6.4 

7 3.125 7.6 

8 3.125 5.8 

9 3.125 0.33 

10 0 0.33 

 

While a full search was not performed to confirm that the global minimum 

solution is one using 32 decaps, the predicted distribution also dsoes not match well with 

the distribution of a best-known solution. For further validation of biasing the initial GA 

population, the decap weights are adjusted to give a ‘% Predicted Distribution’ matching 

that of the solution in Table 5. Figure 18 gives the convergence curve of the Augmented 

GA with the adjusted weights. Due to the code implementation, no decap type has a 

weight of zero. The same percentage of the solution is devoted to solving each critical 

point as in the original algorithm runs. With the adjusted weights biasing a population’s 

decap types towards a known solution, better solutions are found sooner with faster 

improvement and more consistency.  
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Figure 18. Convergence Curve for Augmented GA, with adjusted decap weights so that 

the ‘% of Expected Distribution’ matches ‘% in Best Solution’ for the case in Table 5. 

 

5. CONCLUSION 

 

By considering board parasitics and the shape of the target impedance, predictions 

are made of what immutable characteristics the optimal solution should have, such as the 

types of decaps used, the amounts used, and the locations used. For R or RL type target 

impedances, with increasing input impedance such as the case of a power net with VRM, 

it is expected for there to be a disproportionate number of smaller package size 

decoupling capacitors in the minimum solution, with smaller decaps placed nearer to ICs. 

By considering these immutable characteristics in the initial population 

generation, it is assumed that the initial search space will be placed much closer to the 

space containing the optimal solution, than if the population was uniformly generated. 
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The result of the proposed augmented GA is compared with the algorithm of [11] as well 

as a canonical GA [15] implementation. It was found that the proposed GA could find 

better solutions or a solution that could meet the target impedance at all as compared to 

[11] and [15].  

The search space containing the optimal soluton can be estimated from the 

physics of the problem and from designer experience. By generating the initial population 

of solutions with characteristics of the optimal solution, the initial search space could be 

placed much nearer the optimum resulting in better and faster convergence. While the 

methodology proposed in this work is applied specifically to increasing input impedances 

as a function of frequency, and R or RL-type target impedances, the proposed strategy 

can be extended to different input impedances and arbitrary target impedance profiles.  
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ABSTRACT 

Decoupling capacitors are used in PCB power distribution networks to act as a 

low impedance return path for current and as a local source of charge. Achieving accurate 

board level simulations and measurement correlation require accurate capacitor models.  

For a capacitor mounted to a board, there is a mutual coupling between the 

capacitor body and the return current on the return plane. The result is a stack-up 

dependent variation in the inductance added to the loop by the capacitor, which cannot be 

captured in a single measurement. In this work, a curve fitting scheme is proposed to 

interpolate the inductance of a capacitor, while accounting for this mutual coupling, in 

two measurements. The curve fitting method, as well as the variation in extracted 

inductance due to stack-up, is verified through simulation and measurement validation.  

 

1. INTRODUCTION 

 

As designs increase in complexity and data speeds, the amount of noise generated, 

in both amplitude and spectra, is an ever-growing concern for power and signal integrity 

engineers. Noise generated by the switching inside integrated circuits (IC) can propagate 



 

 

61 

‘down the line,’ whether through conduction or radiation, resulting in the best case, an 

acceptable degree in the degradation of signals, or in the worst case, a total system 

collapse. Required IC voltages are also continuing to drop, resulting in any generated 

noise on power rails and traces becoming proportionally more significant. To better 

manage noise and ensure performance, improvements can be made by optimizing board 

layout, defining limits for what is an acceptable amount of noise for continued operation, 

and many other methods. One way to deal with the presence of noise, especially for 

power lines, is the careful design and implementation of the power distribution network 

(PDN). 

Broadly speaking, PDN design and power integrity are concerned with ensuring 

adequate power delivery to all onboard components, and that this power delivery is 

consistent over every component’s range of frequency operation. The flowchart for a 

generic PDN is given in Figure 1. 

 

 

Figure 1. Generic PDN Flowchart 

 

In the low frequency region, board power components including voltage regulator 

modules (VRM) and low dropout regulators (LDO) down convert and maintain the DC 



 

 

62 

voltages for components on the board. Bulk decoupling capacitors are used to smooth this 

supplied DC voltage by shunting noise through a low impedance return path. These 

capacitors also act as a source of charge when needed and reduce the impedance seen by 

ICs by counteracting VRM inductance. Smaller size capacitors are also placed locally on 

IC power lines for the same purpose. The effectiveness of a decoupling capacitor depends 

on the inductive parasitics that exist both internal to the capacitor and in the complete 

loop path.  Careful choice of capacitor capacitance and consideration of capacitor 

parasitics is required for effective PDN design. For correct simulation of the PDN design, 

however, accurate capacitor models are required. If the capacitor models used for 

simulation and measurement are missing information, are not fit for the use case, or fit 

for use only in certain solvers (SPICE vs EM solvers), this may lead to over or under 

designs and increased costs. 

Part of the inductance associated with a capacitor comes from a mutual coupling 

between the capacitor body and the current on the return plane, with this coupling a 

function of their separation. As this variation is stack-up dependent, this mutual coupling 

cannot be captured in a single model or measurement. From our measurement results and 

de-embedding method, we found the inductance of an 0201-package size capacitor to 

vary by about ~30 pH (~20%), when comparing extracted inductances at 0.2 mm, 2-layer 

board dielectric thickness to 1 mm, 2-layer board dielectric thickness. This difference, 

extracted at 200 MHz, translates also to a measured impedance difference of about 35 

mOhms at 200 MHz.  

In this work, we propose a simple method for inductance curve fitting to account 

for the variation in extracted inductance due to stack-up. The curve fit aims to interpolate 
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for the inductance of the points in between two characterized thicknesses, providing an 

estimation of capacitor inductance over a range of stack-ups.  

A natural logarithmic function and a simpler square root function will be used for 

curve fitting and will be verified through simulation and measurement. For simulation 

verification, the largest error between the curve fit interpolated inductances and a discrete 

simulated point is 3.1 pH (2.44%). For measurement validation, the largest error between 

the curve fit inductance and a single measured validation case was 3.3 pH (2.53%). 

 

2. CAPACITOR AND BOARD PARASITICS 

 

The parasitics of a capacitor can be characterized as an equivalent series 

resistance (ESR) and equivalent series inductance (ESL), which when combined with the 

capacitance, results in a series RLC description of the behavior of a capacitor. For larger 

capacitor package sizes, the path length through the capacitor is longer, resulting in an 

ESL that generally increases with package size.  

When mounting a capacitor to a board, the parasitic inductance of any via and 

trace connections will increase the total loop inductance. The additional inductance 

provided by a via or trace will in general be in a series connection with the RLC model of 

the capacitor, resulting in a decrease of the capacitor self-resonant frequency. The 

standard practice for minimizing this interconnect inductance is to keep the loop path as 

short as possible in order to reduce the overall loop inductance.  
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2.1. CAPACITOR BODY TO RETURN PLANE COUPLING 

For a capacitor mounted to a board, the total inductance of the current loop path 

can be decomposed into smaller segments, consisting of vias, plane, and trace 

inductances, calculated analytically through partial inductances [1]. The lowest 

impedance return path for such a loop would be to return directly below the capacitor 

body and traces but on the return plane below. Two very basic current loops are given in 

Figure 2, with one loop consisting of a rectangular loop of wire, and one loop path 

containing the same loop of wire, with the replacement of a capacitor on the top segment 

of the loop. Each segment of the loop can be decomposed into partial self-inductances 

and the interaction between segments as partial mutual inductances. 

 

Figure 2. Basic Current Rectangular Current Loops. In the second case, the top segment 

is replaced with an RLC model of the capacitor 

 

Replacing the top segment with a capacitor, there is still a complete loop path and 

still a mutual coupling between the capacitor and the bottom conductor segment. The 

partial self-inductance of the segment containing the capacitor would be different than the 

inductance of just a wire segment. As a result, the value of the capacitor body to the 
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bottom segment coupling is different compared to the coupling from wire to wire as the 

value of the mutual coupling is bounded by the self-inductances. The inductance added to 

the full loop is more than just the inductance associated with the physical structure of the 

capacitor, but also includes the mutual inductance. Replacing the bottom segment with a 

return plane and the vertical segments as vias, the result is a stack-up dependent variation 

in the inductance contributed by the addition of the capacitor to the full loop. There are 

several works describing this variation in inductance due to stack up with both simulation 

and measurement result [2,3]. The ESL in this case, could be extended to include the 

mutual coupling and be also stack-up dependent. 

As the strength of this coupling varies with separation, the next question would be 

how much the inductance varies as a function of separation. Taking the case of a 

rectangular loop of wire, the mutual inductance between two segments can be calculated 

through integration of the total magnetic flux density, for the total flux produced by one 

segment that links another segment, divided by the current through the flux generating 

segment [1]. It can also be determined, and sometimes more easily, through substitution 

of the magnetic potential vector into the integration. Fundamentally, however, flux is 

produced from the magnetic fields generated by current-carrying segments, with the 

strength of this magnetic field inversely proportional to separation ‘r’. Increasing the 

separation between two segments, the field strength decreases with 1/r, the number of 

linking magnetic field lines decreases, and the total flux linked decreases. By considering 

the separation as a variable, integration of a 1/r dependent magnetic flux density results in 

the natural logarithm ln(r). We expect the variation in extracted inductance, to vary in 

some way, with the natural logarithm, and as a function of separation/stack-up. 
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The expression for the partial mutual inductance between two parallel wires in 

space is given by Equation 1 [1], showing a natural logarithmic variation. The lengths of 

the parallel wires are given by l, the wire center-to-center separation by d, and the radius 

of the wires given by 𝑟𝑤. 

 𝑀 =  
𝜇0

2𝜋
𝑙 ∗ [ln (

𝑙

𝑑+ 𝑟𝑤
+ √(

𝑙

𝑑+ 𝑟𝑤
)

2

+ 1) −  √(
𝑑+ 𝑟𝑤

𝑙
)

2

+ 1 +
𝑑+ 𝑟𝑤

𝑙
] (1) 

Extending the case to either a single wire over a return plane or that of a three-

dimensional conductor over a return plane, if the dimensions of the conductors are held 

constant and only the separation of the conductors varies, there should be a natural 

logarithmic variation in the inductance as a function of the conductor separation. 

 

3. CAPACITOR MODELS FOR SIMULATION 

 

For design verification, ideally measurements could be performed for the exact 

design stack-up, layout, and geometry. While it may be ideal to always perform 

measurement validation, it is not time or cost practical. Simulations are performed ahead 

of time using commercial tools such as PowerSI, Ansys, ADS, or 3D solvers before 

validation. For simulation, capacitor models can be in the form of measured S-

parameters, SPICE models, or simple RLC circuits. Different models may be provided by 

vendors, though it may be possible that the measurement conditions are unknown, unfit 

for the use case, or even unknown if the models are fit for the use case [4]. 

Oftentimes vendor provided data is typically for only a single measurement, and 

while some information about the characterization method may be given, it may be that 
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not all measurement specifics are known. Specifically for this capacitor body-to-plane 

coupling, the stack-up information would need to be known in what cases the capacitor 

model is applicable for. If the designer does not have this information, they may run into 

issues of over or under design. In summary, knowing only the inductance associated with 

the physical structure of the capacitor is not enough to know how much inductance is 

contributed. Measured models including the capacitor body-to-plane coupling give more 

information, but as it is stack-up dependent, a single measurement/model is not enough. 

While it is not practical for the designer to characterize a prototype board for 

every design iteration, it would also be impractical for the vendor to measure and provide 

capacitor models for all potential stack-ups. However, for the test fixtures used for 

characterization, if only the stack-up is varied, then the variation in the de-embedded 

capacitor inductance should be predictable as it is related to the capacitor to return plane 

separation. In this work, a curve fitting scheme is proposed to capture the variation in the 

mutual coupling between the capacitor body and the return plane. The curve fit will be 

performed by characterizing capacitors at two different stack-ups, one point at a 

smaller/shorter stack-up, and another at a taller stack-up.  

 

4. CHARACTERIZATION METHOD IN SIMULATION AND MEASUREMENT 

 

For capacitor characterization, many methods have been published, including 

PCB waveguides with micro probing, PCB characterization fixtures, and others. For this 

work, the capacitor characterization method used is the same as in [5,6]. A 2-port 

measurement method using microprobes was employed for this work, extracting the 
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parasitics of the capacitor and parasitics of the test fixture from the S21 instead of S11 for 

more measurement accuracy [7]. Boards in which to mount capacitors and boards for de-

embedding are designed for validation of an ESL curve fitting scheme that accounts for 

the mutual coupling. 

4.1. BOARD DESIGN IN SIMULATION AND MEASUREMENT 

The designed boards are of 2.8 mm × 3.3 mm dimensions, and consist of two 

layers, top and bottom copper at 1oz thickness, and FR-4 dielectric in between. Two pads 

are located at the top with which to land microprobes for the 2-port measurement. 

Through-hole vias on the upper pad connect down to the bottom layer, where the current 

travels on the bottom plane, up the bottom via, through the capacitor, and returns to the 

ground point of the microprobe. For the de-embedding fixture, the via for the capacitor is 

instead shorted to the top plane.  

We can calculate the shunt impedance associated with the mounted capacitor and 

the fixture contribution, the Z21, using the measured S21 and Equation 2 [7]. 

 𝑍21 =  25 ∗
𝑆21

1−𝑆21
 (2) 

The extracted impedance of the capacitor mounted to the test fixture, using 

Equation 2, is given as Zcap+fixture and the extracted impedance associated with the de-

embedding fixture, is given as Zshort [5,6]. The impedance of the de-embedding fixture is 

subtracted from the impedance with a capacitor mounted using Equation 3. This removes 

the inductance contributed by the fixture such as the via inductance and the plane 

spreading inductance. 

 𝑍𝑐𝑎𝑝 =  𝑍𝑐𝑎𝑝+𝑓𝑖𝑥𝑡𝑢𝑟𝑒 − 𝑍𝑠ℎ𝑜𝑟𝑡  (3) 
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To capture the inductance of the capacitor in simulation, a conductive block is 

created as in [3]. In the work of [3], it was found that substituting a full 3D model of a 

capacitor with all its internal plates with a solid conductive block gives an acceptable 

inductance approximation, provided the external and internal dimensions of the capacitor 

are accurate. For capturing the variation in inductance due to stack-up, the difference in 

inductance from using a solid block versus discrete plates should not significantly matter. 

In this work, the capacitor used for characterization is of nominal 2.2uF capacitance and 

0201 package size. For the capacitor block in simulation, some dimensions were taken 

from the datasheet, and some dimensions were obtained by cross sectioning the capacitor 

and taking measurements under an optical microscope. Figure 3 gives the 3D models for 

the test fixture and de-embedding fixture used, with the same dimensions as the fixtures 

to be manufactured. 

 

Figure 3. Simulated and Manufactured Board Designs. On the left is test fixture with 

mounted capacitor. On the right is the fixture for de-embedding 
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5. SIMULATION VALIDATION AND CURVE FITTING SCHEME 

 

For verification of both a variation in extracted inductance as well as the 

feasibility of a curve fitting scheme, simulations were first performed on test fixtures 

simulated in CST. In the simulation, discrete ports are placed across the upper two 

rectangular pads, mirroring the placement of microprobes in measurement. The frequency 

range of interest used for the extraction is 100 kHz to 200 MHz, with the inductance 

extracted at 200 MHz. The inductance per vendor provided data, for their measurement 

setup, fixture design, and de-embedding method, is about 150.54 pH at 200 MHz . The 

simulation setup used in this work is given in Figure 4, for both the capacitor mounted 

board and the de-embedding test fixture. 

 

Figure 4. Simulation Setup with Capacitor mounted fixture and de-embedding fixture 
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5.1. SIMULATION VERIFICATION OF EXTRACTED ESL 

Two port simulations are performed for both the capacitor mounted fixture and 

the de-embedding fixture, for various dielectric thicknesses, to capture the variation in 

extracted capacitor inductance. The inductance of the capacitor was extracted by 

subtracting the contribution of the fixture from the fixture with capacitor mounted and is 

calculated using the imaginary part of the simulated Z21s. The results of the extracted 

inductances are given in Table 1, for various dielectric thicknesses. From 0.1mm to 1 mm 

dielectric thickness, for the de-embedding method and board design in this work, the 

inductance varies by about 40pH, or 28% variation.  

 

Table 1. Simulated Extracted Results for Various Dielectric Thicknesses 

 

5.2. CURVE FITTING SCHEME 

From simulated results, it is found that the extracted inductance of the capacitor 

increases with plane separation. The rate of increase of the extracted inductance also 

Dielectric 

Thickness (mm) 

Fixture Mounted 

with Capacitor 

Inductance (pH) 

De-embedding 

Fixture Inductance 

(pH) 

Extracted Capacitor 

ESL (pH) 

0.1 171.24 69.88 101.36 

0.2 268.83 150.21 118.62 

0.3 366.53 239.47 127.06 

0.4 466.84 334.81 132.03 

0.5 569.41 434.43 134.98 

0.6 673.67 536.33 137.34 

0.7 779.14 640.29 138.85 

0.8 885.46 745.36 140.10 

0.9 992.38 851.26 141.12 

1.0 1099.80 957.92 141.88 
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decreases as the separation increases meaning that the coupling weakens as the separation 

between the planes increases.  

Taking the thickness of the dielectric to be infinity, the extracted inductance then 

is the inductance of the capacitor associated only with the physical structure of the 

capacitor, any horizontal coupling or coupling related only to the capacitor body, and any 

part of the characterization fixture that was not de-embedded. Any coupling from the 

capacitor body to the bottom plane should be decayed to zero. Taking the dielectric 

thickness to be zero, the extracted inductance for the capacitor should be zero as the 

planes are shorted together. These two points together form limits, starting at 0 H 

inductance for the capacitor at a dielectric thickness of 0 m, to some limit value as the 

dielectric thickness approaches infinity. These two limits alone are not enough for curve 

fitting as no information can be extracted regarding the exact rate of decay of the mutual 

inductance. At a minimum, information from two finite data points between thicknesses 

of 0 m and infinity to describe the rate of mutual inductance change. 

For verification of curve fitting, the simulated, de-embedded inductances at 0.1 

mm and 1 mm will be used. Dielectric thicknesses in between will then be interpolated 

from the curve fit and checked against the discrete simulated points of Table 1. The 

critical point for curve fitting is the identification of appropriate fitting functions, which 

was to some extent determined through trial and error. Two functions are proposed and 

used for curve fit, one using the natural logarithmic function, and one using the square 

root. The curve fitting was performed using MATLAB’s inbuilt Curve Fitter app. 
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5.3. NATURAL LOG CURVE FITTING WITH SIMULATED RESULTS 

A proposed curve fitting function using the natural log is given in Equation 4, 

where x is the dielectric thickness: 

 𝐿 = 𝑎 + 𝑏 ∗
ln(𝑥+𝑐)

𝑥+1
 (4) 

To relate the function to physical properties, the a term would describe the limit 

value that is approached by the de-embedded inductance as the dielectric thickness 

increases, with units of inductance, and b and c to some extent, describing the variation in 

mutual coupling as related to the physical dimensions of the capacitor and the fixture. At 

this point, it is unknown what physical properties they are related to, or how to determine 

them analytically. The natural log in the second term describes the weakening of the 

coupling between the capacitor and the return plane.  The additional x+1 term was added 

as it yielded a slightly better fit, though the fit is still adequate without. With 3 unknown 

constants in a, b, and c, a minimum of 3 points is required for curve fitting. In this case, 

the points used will be the simulated, extracted inductances at a thickness of 0.1 mm and 

1 mm, and the assumption that, for a dielectric thickness of 0 mm, the inductance 

extracted is 0 H. One caveat to mention is the curve fit value of c for this case. The value 

fit for c is much smaller than 1, so the sign of the logarithmic term is negative and 

increasing for dielectric thicknesses between 0 mm and 1 mm. 

The result of the curve using the three points is given in Figure 5, with a 

maximum error between a discrete simulated point and curve fit point of 3.1 pH (2.44%) 

at 0.3 mm dielectric thickness. For this fit, the value of a was 141.9, b, 19.41, and c, 

0.0006685.   
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Figure 5. Simulation Curve Fitting Using Natural Log Function 

 

While the fit is good, there is an issue with using this fitting function. The natural 

logarithmic function ln(x) approaches negative infinity as x approaches 0 and changes 

sign at x = 1. The curve fit value of c is very small, but allows the curve fit function to be 

defined at x = 0 and allows the logarithmic term to be negative for x < 1. For x > 1, the 

value of the curve fit function will initially increase, hit a peak value, then decrease, 

approaching the value of a. In the range of 0 mm to 1 mm this behavior is no issue as the 

extracted inductance is monotonic. The curve fit function, however, indicates that the 

mutual inductance is not continually decreasing with increased separation which does not 

align with the physics. 

5.4. SQUARE ROOT CURVE FITTING WITH SIMULATION RESULTS 

A separate curve fitting function using the square root is proposed, and is given in 

Equation 5, where x is the dielectric thickness.  
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 𝐿 = 𝑎 ∗ √
𝑥

𝑥+𝑏
 (5) 

In Equation 5, a again describes the limit that is being approached in the de-

embedded inductance as the thickness approaches infinity. The square root term describes 

the decay in the mutual coupling, which in this case is monotonically decreasing for b > 

0. Only a single constant b is left to describe the decay in coupling due to the geometries 

of the capacitor and fixture. The function is also defined for an extracted inductance of 0 

H for a dielectric thickness of 0 mm. 

The curve fit using the square root function is given in Figure 6, with absolute 

errors of less than 1 pH (0.223%), between the simulated points and the curve fit points. 

The value of a is 150.1, and b, is 0.1193. An interesting note is that the limit value a 

approached by the two fitting functions are different, though it may be a mathematical 

consequence related to the rate of change of the natural logarithm and square root. 

 

 

Figure 6. Simulation Curve Fitting Using Square Root Function 
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6. MEASUREMENT VALIDATION OF CURVE FITTING SCHEME 

 

For measurement validation, three sets of the characterization fixtures were made, 

one at a dielectric thickness of 0.2 mm, one at 0.4 mm, and one at 1 mm. The curve 

fitting will be performed using the de-embedded capacitor inductance of the 0.2 mm and 

1mm dielectric thickness boards. The curve fit expression will then be used to predict the 

de-embedded inductance of the 0.4 mm board, which will be verified through 

measurement. A 0.4 mm board was chosen for verification as the mutual coupling 

weakens with separation; it would be clearer to see the variation in extracted inductance 

if a thinner board is chosen for validation. Real designs may have stack-ups thinner than 

0.2 mm or even 0.1 mm, which may result in a more significant variation in the 

inductance contributed by the capacitor to the loop than is demonstrated in this work. The 

manufactured PCBs are pictured in Figure 7. 

 

 

Figure 7. Manufactured PCBs for Characterization. From left to right, 0.2 mm, 0.4 mm, 

and 1 mm dielectric thicknesses 
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6.1. MEASUREMENT SETUP 

The measurement setup is given in Figure 8. The VNA is the Agilent E5071C 100 

kHz – 8.5 GHz VNA. Cables are connected to each of the two available ports, and 

connected at the other end to PacketMicro’s RP-GR-121505 microprobes. Calibration of 

the setup is performed up to the tips of the microprobes using PacketMicro’s TCS50 

calibration substrate. Two port measurements were performed by landing the probes on 

the rectangular pads across the top of the manufactured PCBs. The distance between the 

probes when probing the fixtures, however, is different from the distance between probes 

when performing the thru-calibration and could lead to differences in probe-to-probe 

coupling. When probing, we tried to keep the probe separation the same between all 

fixtures, but it was based only on an eye test. Inductance from soldering was not 

calculated or de-embedded, though we tried to push the capacitors as flat as possible to 

the board when soldering. Current chokes were not used to account for the internal VNA 

ground loop. The measured S-parameters were exported for post-processing in 

MATLAB. Measurement was performed from 100 kHz to 200 MHz, with the inductance 

extracted at 200 MHz. 

6.2. MEASUREMENT RESULTS AND CURVE FITTING 

On each fixture, 4 capacitors were soldered and their parasitics extracted. Figure 9 

plots the extracted impedance for one sample at each fixture thickness. When the 

inductance dominates the behavior of the capacitor, the extracted impedance at 200 MHz 

is seen to vary. The extracted capacitor inductance for every sample and for each of 

stack-up is given in Table 2. 
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Figure 8. Measurement Setup 

 

 

Figure 9. Extracted Impedance at 200 MHz for Various Dielectric Thicknesses 
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Table 2. Measured, Extracted Inductances for Various Dielectric Thicknesses 

Inductance at 0.2 

mm thickness (pH) 

Inductance at 0.4 

mm thickness (pH) 

Inductance at 1 mm 

thickness (pH) 

115.37 127.02 145.53 

127.64 127.14 120.74 

113.44 127.83 143.35 

121.22 126.59 143.22 

 

From results, the extracted inductance can have variation in the absolute value, for 

the same stack-up, which may be related to the orientation of the capacitor plates relative 

to the PCB plane [9,10]. For curve fitting, extracted inductances that appear to be from 

the same plate orientation (progressive increase in extracted inductance as thickness 

increases) is used and their values averaged. The samples not used in the averaging are 

bolded in Table 2. The averaged values, used for curve fit, are given in Table 3, along 

with the simulated extracted inductances at their respective dielectric thickness. 

 

Table 3. Averaged Measured Extracted Inductances 

Dielectric 

Thickness (mm) 

Averaged ESL for 

Curve Fitting (pH) 

Simulated 

Extracted ESL (pH) 

0.2 114.40 118.62 

0.4 127.15 132.03 

1 144.04 141.88 

 

For the average measured ESL, compared to simulated results, the difference for 

the validation thicknesses was about 4.88 pH, with a percent difference of 3.7%. Though 

there is a close correlation between measured and simulated extracted inductance, it may  

be a coincidence due to measurement and calibration setups. For both measured and 

simulated data though, the extracted inductances is seen to vary with stack-up. Curve 
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fitting is performed using both the natural log and square root functions and is pictured in 

Figure 10 and Figure 11 respectively.  

 

 

Figure 10. Measurement Curve Fitting Using Natural Log Function. Max error between 

measured and curve fit is about 2.4 pH 

 

 

Figure 11. Measurement Curve Fitting Using Square Root. Function. Max error between 

measured and curve fit is about 3.3 pH 
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For the validation case, the largest error between the curve fit inductances and the 

measured inductances is 3.3 pH, or about 2.53% error.  

 

7. CONCLUSIONS 

 

In this work, we propose a scheme for curve fitting capacitor inductances over a 

range of dielectric thicknesses (plane separations). The extracted capacitor inductance 

will vary as a function of dielectric thickness because of the change in mutual coupling 

between the capacitor body and the return plane. Provided the same characterization 

fixture, with only a change in stack-up thicknesses, the variation in extracted inductance 

should be predictable as only this coupling is varying. With a minimum of one 

characterization measurement made at a thinner dielectric thickness (0.2 mm in this 

work) and one at a thick dielectric thickness (1 mm in this work), inductances in between 

can be interpolated.  

Curve fitting is proposed using the natural log and square root functions. 

Simulation of capacitor inductances at discrete thicknesses has been performed and curve 

fitting has been applied. An absolute error of at most 3 pH, or 2.54%, occurred between 

discrete simulated inductances and simulated curve fit inductances. Measurements were 

performed for validation, using test fixtures of 0.2 mm dielectric thickness and 1 mm 

dielectric thickness for curve fitting, and one of 0.4 mm thickness for validation. Curve 

fitting for the measured values, there is a max absolute error of about 3.3 pH, or 2.53%, 

between the curve fit inductance value and the measured validation case. 
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SECTION 

2. CONCLUSIONS 

 

Two genetic algorithms were proposed for the selection and placement of 

decoupling capacitors in PDN design. Comparing to the results of other published 

algorithms, the proposed algorithms could find competitive or better solutions. Further 

analysis was performed looking at the structure of the best decap placement solution by 

considering input target impedance and board parasitics as inputs. It was found that the 

distribution of the best solution could be reasonably predicted from those inputs, a 

distribution that is in theory globally true and entirely independent of the method of 

optimization. By biasing the initial search space with such a distribution, solutions can be 

found quickly, and improvements can be made quickly.  

A physics-based curve fitting method has also been proposed for interpolation of 

capacitor ESL. When mounted to a board, the inductance that a capacitor contributes to 

the full loop is dependent also on the coupling between the capacitor body and the return 

plane, with this coupling being a function of separation between the two. As such, it is 

not possible to capture this variation in just a single measurement or model. We propose 

curve fitting models based on the natural logarithm and the square root, and through 

measurement validation, we find an error of about ~3.3 pH, or 2.54%, between the 

interpolated curve fit inductance and the measurement validation case.
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