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ABSTRACT 

 Smart home and Internet of Things (IoT) devices have become ubiquitous in 

homes over the past decade. The smart speaker itself is often the device that interfaces all 

these devices together. Because of this, the smart speaker can become a point of attack 

for someone trying to exploit or hack into the smart home devices. In the past few years, 

it was discovered that smart speakers with microwave electromechanical system (MEMS) 

microphones are susceptible to intentional electromagnetic interference (I-EMI) attacks 

by modulating an audio command to a high-frequency carrier signal. This attack allows 

for command recognition for long-distances and smart speakers behind walls.  

 First, a method for modeling and understanding the smart speaker I-EMI attack is 

shown. This includes a method for finding the ideal attack angle, locating the region 

sensitive to the coupled EMI, and modeling the attack. Finally, using all these methods, a 

long distance (6-meter) attack is demonstrated using 6.3 Watts of power at the aggressor 

antenna. 

 Next, the effectiveness of using machine learning (ML) synthesized voice 

samples to control smart speaker devices through radiated intentional electromagnetic 

interference (I-EMI) in presented. Devices that are trained to only recognize a single 

person’s voice or only execute certain commands from that person will not be as 

susceptible to the I-EMI attack. By training a neural network using samples of the 

target’s voice, this security feature can be bypassed, increasing the feasibility of the 

attack. 
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SECTION 

1. INTRODUCTION 

1.1. BACKGROUND 

A smart speaker is a device that executes commands based on a user’s voice. 

These devices started as simply allowing for basic conversational skills, but later full-

function smart home devices began allowing the smart speakers to control functions like 

electric plugs, locks, or thermostats. Eventually, this same technology made its way to 

most smart phones and computers. 

These devices utilize a different type of microphone from that which is 

conventionally seen, which is known as a Microelectromechanical systems (MEMS) 

microphone. This microphone contains an analog to digital (ADC) converter, amplifier, 

and lowpass filter all within the package of the microphone. Recently, it was discovered 

that this microphone is susceptible to an attack that allows for commands to be sent 

inaudibly through intentional electromagnetic interference (I-EMI). Understanding this 

attack is important for both mitigation, and consideration of its threat profile. 
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PAPER 

I. PREDICTION AND ROOT-CAUSE ANALYSIS FOR SMART SPEAKER 
INTENTIONAL ELECTROMAGNETIC INTERFERENCE ATTACKS 

Tanner Fokkens, Shengxuan Xia, Aaron Harmon, Chulsoon Hwang 

ABSTRACT 

This paper shows a method for modeling and understanding an inaudible 

intentional electromagnetic interference (IEMI) attack on smart speaker devices. This 

includes a method for finding the ideal attack angle, locating the region sensitive to the 

coupled EMI, and modeling the attack. In previous works, it was shown to be possible to 

send RF commands to a smart speaker and have these commands be interpreted as voice 

commands by the microphone. However, the attack still had some limited understanding 

in terms of the coupling path location and long-distance attack potential. Using the 

behavioral modeling methods shown in this paper, a longer attack distance is achieved (6 

meters) with only 6.5 Watts of power. 

1. INTRODUCTION 

A smart speaker is a device that executes commands based on a user’s voice. 

These devices started as simply allowing for basic conversational skills, but later full-

function smart home devices began allowing the smart speakers to control functions like 
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electric plugs, locks, or thermostats. Eventually, this same technology made its way to 

most smart phones and computers. 

In these smart-speaker devices, most utilize microphones with micro-

electromechanical system (MEMS) technology [1]. MEMS microphones work like 

acoustic microphones, but they are active microphones that often have self-contained 

analog to digital converters and amplifiers. The primary benefit of these microphones is 

that they have lower power consumption and reduced footprints. These microphones 

receive an analog voltage signal from the vibrated membrane, which is then amplified 

and digitized all within the microphone. 

This new type of microphone, while having marked benefits, also introduced 

unintended security implications. Ultrasounds attacks were the first to be discovered [2], 

followed by laser-based attacks [7]. These worked through having an ultrasound or laser 

signal carry a modulated audio command, which is then coupled onto the MEMS 

microphone circuit of the smart speaker. These two attack methods were not effective for 

the reason because these types of attacks worked through a line-of-sight attack 

mechanism.  

Recently, it was discovered that these commands can be sent through IEMI [1]. 

This attack is notably more effective than the ultrasound-based attacks in that the attack 

can be performed through walls. The study of Buzz noise proved that an audio coupling 

path exists through EMI from the nearby Wi-Fi antenna to the microphone [6]. Based on 

the understanding of Buzz noise mechanism, the IEMI was firstly demonstrated in [1]. 

This attack was shown to be possible by modulating the audio range attack signal with a 
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much higher (6 to 18 GHz) carrier signal that was radiated using a highly directional horn 

antenna. 

Additionally, it was shown that this attack used in conjunction with machine 

learning techniques can be used to circumvent a common feature in smart speakers and 

phones that allows for the device to learn the voice of the speaker and only wake up to 

that person’s voice [10]. In the work shown in [1], a suspected coupling path was 

proposed, but there was no experimental verification for the suspected most sensitive 

point. Additionally, the attack range was more limited due to less understanding about 

ideal attack angles and antenna polarization relative to the smart speaker. 

 In this work, the previous understanding of the point on the smart speaker that is 

sensitive to the IEMI attack is re-evaluated and revised in Section 3. After the correct 

identification of the sensitive point, the sensitive point was validated by creating a 

simulated model with this sensitive point chosen as the driven port in Section 4. Through 

simulation and measurement, the most sensitive attack angles to the attack were correctly 

identified, validating the simulation model. Next, a method for predicting if the IEMI 

attack occurs for any combination of attack angle, input power at the aggressor antenna, 

and attack distance was shown and validated using this model in Section 5. These 

methods were used to greatly increase the attack distance, further showing the necessity 

for mitigation against this attack. Finally, in Section 6, some potential mitigation 

strategies against the attack are proposed based on the findings in this paper. These 

discoveries advance the understanding of the IEMI attack and the ability to model and 

predict the attack feasibility for any smart speaker. IEMI attack in this paper is described 
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as the unintended ability (by the designer) to activate a smart speaker’s command 

recognition function through IEMI.  

 

 

(a) 

 

(b) 

Figure 1. (a) The experimental test setup for the finding the most sensitive carrier 
frequency for the attack (b) Block diagram representation of the test setup. 

2. IEMI ATTACK DESCRIPTION AND SIGNAL PROCESSING 

The test setup for the IEMI attack is shown in Figure 1a and represented as a 

block diagram in Figure 1b. An arbitrary waveform generator was used to output the 
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audio range signal (an audio-range voice command), and a high frequency signal 

generator outputs the carrier that the audio signal was modulated with. 

The audio commands were modulated to the high-frequency carrier by the mixer 

and then radiated from the attacking antenna to the microphone. The effectiveness of the 

attack is related to the carrier frequency. The optimal carrier signal was found by 

sweeping the modulating (carrier) frequency using the test setup shown in Figure 1a with 

everything else held constant (including the modulated audio). Then, the recorded attack 

audio amplitude was retrieved from the given device online cloud and compared to the 

modulating frequency to find the most effective frequency for the attack. The attack 

carrier frequency itself was found as a transfer function of the sent attack audio amplitude 

versus the received command amplitude (in the device’s cloud service) in [1]. 

The modulated signal radiates out from the aggressor antenna and then the EM 

wave is received at the MEMS microphone. From here, the signal is coupled back to the 

internal amplifier in the MEMS microphone where the non-linearity is present that causes 

the signal to be demodulated back to the audible range, and then converted to digital in 

the analog-digital converter (ADC) of the microphone where it can be processed by the 

microprocessor.  

Audio range amplifiers have linear amplification in the audible range when not 

driven to distortion. However, strong non-linearity can be observed in the non-audible 

range [15]. The mechanism of the non-linearity for the IEMI attack was found to be 

associated with the pre-amplifier that is self-contained in the MEMS microphone [4][7]. 

The output signal that results from amplifier nonlinearity Vis below (1):  

         𝑆!"# = 𝐴𝑆$% + 𝐵𝑆&$% +⋯𝐷𝑆'$% +𝑚𝑆%$%.                           (1) 
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Where 𝑆!"# is the signal that results from the non-linearity effect, 𝑆$%	is the input 

signal in the IEMI attack, and the alphabetical coefficients A, B, and D represent the 

amplitude of the resulting coefficients, with each subsequent one decreasing in 

magnitude. Coefficients m and n represent infinite order coefficients for this series. 

Previous work has shown that each subsequent Sn term decreases in magnitude strongly 

with each iteration [3][6], so only the 𝑆& term from (1) needs to be considered for this 

attack.  The 𝑆& term produces both a high and low frequency component. The lower 

frequency component is less than the cutoff frequency of the low-pass filter of the MEMS 

microphone after the nonlinearity occurs within the microphone, so only the audio range 

signal is maintained. 

The square term of (1) necessarily produces harmonic distortion, which degrades 

the quality of voice injected into the system. To minimize the harmonic distortion 

associated with the demodulation process for the IEMI attack, effective processing 

method is proposed in (2) as below [1]: 

 

                  𝑆$% = *𝐴𝑓(𝑡) + 𝐴.                            (2) 

 

A DC offset equal to the maximum amplitude A of the audio waveform is added 

under the square-root to avoid imaginary part created by the square root function. This 

DC offset is not an issue as the internal coupling of the mixer removes this component. 

A poor power supply rejection ratio (PSRR) of the internal amplifier at the attack 

frequencies is most likely the cause of the IEMI coupling from the outside of the 

microphone into the amplifier. The PSRR of an amplifier indicates how much of the 
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change in voltage on the power rail of an amplifier will be translated onto the output. It is 

well known that the PSRR of an amplifier degrades with frequency [16]. Thus, if a 

voltage is developing on the microphone can, which is the ground reference for the 

amplifier within the MEMS microphone, this variation caused by the IEMI attack will 

induce a voltage at the output of the internal amplifier through this poor PSRR. From 

here, the harmonic distortion of the internal amplifier will cause the demodulation 

described by equation (1). The anticipated coupling mechanism that results from the poor 

PSRR is shown in Figure 3. 

 

 

Figure 2. Microphone can and PCB return plane connections for the direct injection of 
the IEMI attack waveform on smart speaker 1. 

3. IDENTIFICATION OF THE MOST SENSITIVE POINT 

Previously in [1], the sensitive point of a smart speaker (which is referred to as 

smart speaker 1) was identified using near field scanning. Specifically, the measurement 

indicated that the capacitive volume sensor was sensitive at the same frequency at which 



 9 

the attack was most effective. This speaker has large nearby metal structures close to the 

microphone in the enclosure that are thought to enhance the coupling. 

 

 

Figure 3. Anticipated coupling mechanism and block diagram for the smart speaker IEMI 
attack. 

 

To verify this finding in this work, a coaxial cable with an SMA connector was 

directly soldered to the capacitive switch on the PCB. After this coax-SMA was soldered 

to the PCB, the setup shown in Figure 1b was used to directly inject the command known 

to wake the device into the smart speaker. The command was the simply the ‘wake word’ 

for the device with the processing described in (2). When injecting audio to the point that 

was predicted to be susceptible at the 5 GHz sensitive frequency, however, no audio was 

heard, and the device would not interpret any direct-injected commands.  

Given that the physical injection of the command should be equivalent to 

receiving the waveform through a radiated mechanism, this indicates that the previous 

understanding of the most sensitive point for the microphone could be incorrect. Thus, 

alternative techniques were used to find the true most sensitive point. 
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To start, copper tape was added to various potential coupling points on the smart 

speaker. The rational for this was that the added copper tape could serve as a more 

effective coupling structure to increase the coupling interference from the antenna to the 

microphone. It was observed that the audio amplitude would increase when the copper 

tape was added to the top of the microphone can structure, but not when it was added to 

the previously determined sensitive point. Thus, the direct command injection was  

performed once again onto the top of the microphone can as shown in Figure 2. 

After the modification, the played back audio had much higher amplitude during 

initial testing for a 5 GHz carrier signal that the injected audio was far louder than the 

received amplitude purely from the normal microphone operation. This result indicated 

that the true sensitive point was between the top can of the microphone and the PCB 

return plane of the smart speaker. However, this result only showed that the sensitive 

point was located on the top of the microphone for this smart speaker specifically.  

To see if this sensitive point is the same for other speakers, a second smart 

speaker was found by a separate manufacturer that does not have any obvious 

vulnerability to the IEMI attack. Additionally, the original smart speaker (smart speaker 

1) also had monopoles added to the microphone can structure, while removing any 

nearby metal structures that enhance coupling. From here, monopoles were cut to a 

quarter-wavelength of the carrier frequency so that they resonate at 5 GHz (which was 

identified as a sensitive carrier frequency on other speakers). These monopoles were 

soldered to the top of the microphone can as shown in Figure 4. 
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Figure 4. Adding monopole structures to the top of the two smart speaker’s microphone 
can to try and cause the IEMI attack on a non-susceptible device. 

 

 

Figure 5. Result of adding monopoles to the previously unsusceptible device. 

 

While these devices previously showed no recognition at all (indicated by 

diamonds in Figure 5), the structure with four monopoles added has command 

recognition out to 1 meter for the second smart speaker (indicated by circles), and 40 

centimeters for the first smart speaker (indicated by squares). The videos relating to this 
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experiment are available in [8]. From this experiment of adding monopole structures to 

the previously unsusceptible smart speakers, it was clear to see that the microphone can 

structure itself is the point of sensitivity for the IEMI attack. Additionally, this 

experiment and the observations seen by adding copper tape show that coupling is 

enhanced in the smart speaker by metal structures that are nearby to the microphone can. 

4. IDEAL ATTACK ANGLE ANALYSIS 

4.1. REASONING AND EXPLANATION FOR ATTACK ANGLE PREDICTION 

During testing of the smart speaker IEMI attack, it was observed experimentally 

that certain ‘attack angles’, meaning where the aggressor antenna was pointing in relation 

to the smart speaker, were more effective at causing the smart speaker IEMI attack. If 

these optimal angles for attacking could be determined through simulation techniques, it 

would save considerable time. The smart speaker has two microphones, so there are two 

susceptible points on the smart speaker based on the analysis in part III. To reduce 

complexity, one MEMS microphone was removed so the radiation pattern of one 

microphone can be measured. 

The experimental setup for measuring the radiation pattern of this unintentional 

antenna is not straight-forward, as any augmentation of the most sensitive point, located 

on the can of the microphone, would change the radiation pattern of unintentional 

antenna. The chosen solution was to send the attack waveform with a single audio-range 

tone modulated to the sensitive frequency for this device, while sweeping the attack 

angles for this device. After radiating this attack waveform, the received audio amplitude 
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at the smart speaker can be plotted as a function of the attack angle to determine the most 

effective attack angles. 

4.2. MEASURING SMART SPEAKER UNINTENTIONAL ANTENNA 
RADIATION PATTERN 

The smart speaker was placed in an over the air (OTA) chamber that can sweep 

both theta and phi angles 360 degrees. In this measurement, the turntable on the floor of 

the OTA chamber was chosen as the theta coordinate, while the part that spins the DUT 

itself was chosen as the phi coordinate.  

The coordinate system was developed in relation to the electric field vector 

position of attack antenna (polarization). For this setup, the E-field vector of the horn 

antenna was aligned with the theta axis. Figure 6a shows the visual representation of this 

coordinate system with the arrow direction showing theta/phi spin directions for full 360-

degree angle sweeping. In Figure 6b, a diagram representing the setup is shown for 

improved clarity. In Figure 6c, the coordinate system is drawn with reference to the smart 

speaker itself. 

As in the simulation case, angle cuts for theta = 0° and 30° were measured. Data 

was recorded using an automated script that outputs a 1 kHz tone through the headphone 

connector of the computer. A 1 kHz tone was chosen because this tone is within the 

human speaking voice range, and command recognition was not the focus of the sensitive 

angle finding. The smart speaker is setup to continuously record audio during this test.  
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(a) 

 

(b) 

 

(c) 

Figure 6. (a) Coordinate system for this radiation pattern measurement test (b) System 
diagram for the measurement of the smart speaker radiation pattern for the unintentional 

antenna within the smart speaker allowing for the IEMI attack (c) Coordinate system 
relative to the smart speaker itself. 
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4.3. MODELING SMART SPEAKER IN FULL-WAVE SIMULATION 

The structure was first modeled in a full-wave simulation tool. Given that the 

internal stack-up of the smart speaker PCB is not known, only the large metal features of 

the smart speaker are modeled. This includes the metal shield that is placed over the 

microphone, the PCB ground, and PCB dielectric. Additionally, the Z11 of the loading 

for the sensitive point was included. This Z11 was measured using the same port 

connection shown in Figure 2. In Figure 7, the resulting model can be seen. 

To get proper comparison results between the simulation and measurement, the 

coordinate systems between the measurement and simulation should be matched. 

Additionally, the polarization of the electric field vector in the simulation was chosen so 

it was aligned with the theta direction, as it was in the measurement case.   

 

 

Figure 7.  CST Model of the internal structure of the smart speaker.  
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Figure 8. Directivity of the modeled smart speaker for electric field vector oriented in the 
theta direction (polarization). 

 

As seen in Figure 7, the driven port for the simulation was placed between the 

driving port and PCB return plane. Ideally, this Z11 should represent the imperfect 

connection between the microphone can and PCB return plane at higher frequencies that 

causes a noise voltage. This Z11 was measured at the sensitive point shown in Figure 2 

and inserted into the model as a lumped element to add more physicality to the model. 

The port impedance for the driving port is selected as 50 ohms. Choosing 50-ohms as the 

port impedance will affect the unintentional antenna efficiency due to reflections, but not 

the pattern itself, which is the focus for the attack angle finding.  

When examining the directivity pattern in Figure 8 (swept across theta and phi), 

areas of higher directivity are observed. At these combinations of theta/phi, the highest 

amplitude should be observed. The hotspots of high directivity are located where theta = 

180 degrees/phi = 90 degrees, and theta = 30/ phi = 270 degrees. 
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4.4. COMPARISON BETWEEN SIMULATION AND MEASUREMENT  

In this part, the directivity results between the measurement case and the 

simulation case are directly compared. The measured data was normalized to the 

simulation data because the only point of interest is where the amplitude was maximum, 

rather than the value of the amplitude itself.  

These results are seen in Figure 9. From Figure 9a, there is a clear alignment 

between the simulation results and the measured results. The results were not perfectly 

aligned for this angle cut, but some variation is expected with this test because the 

measurement is carried out by simply plotting the received audio amplitudes and then 

normalizing them to the level of the simulation results. 

 

 

        (a)                 (b) 

Figure 9 (a) Simulated versus Measured Directivity for the theta = 30 angle cut (in dB) 
(b) Simulated versus Measured Directivity for the theta = 0 angle cut (in dB) 

 



 18 

For Figure 9b, there is better alignment. At phi=90 and phi=-90 degrees, the 

simulation and measurement results are relatively well aligned. These two results further 

support the finding that the sensitive point is located at the microphone can structure, and 

that the directivity for the unintentional antenna can be obtained without knowing 

anything about the PCB of the smart speaker itself. 

5. PREDICTING IEMI ATTACK RECOGNITION AND LONG DISTANCE 
ATTACKING 

In this Section, an example and procedure for predicting the success of the IEMI 

attack for any combination of attack angle, power, carrier frequency, or distance is 

described and tested. The end goal is to predict whether the IEMI attack successfully 

triggers command recognition for any smart speaker and attack situation without doing 

the IEMI attack for that scenario.  

5.1. SIMULATION OF ELECTRIC FIELD FOR FIXED DISTANCE, POWER, 
AND ANGLE 

For the simulation part, the model from Section 4 was reused. This simulation 

was instead used in-conjunction with a field probe placed at a distance/angle 

configuration that corresponded to an actual test with the IEMI attack with these same 

parameters for comparison and verification purposes. From here, the received electric 

field magnitude at the field probe in the simulation was plotted as a function of 

frequency. These results are seen in Figure 10. 
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Figure 10. Simulated electric field intensity versus frequency for phi= 10 degrees, radius 
= 20 feet. 

5.2. DERIVATION OF COUPLED VOLTAGE AT SENSITIVE POINT 

Since the point that is sensitive to the IEMI attack was directly driven in the CST 

simulation, the reciprocity theorem can be utilized to get the coupled voltage at the 

sensitive point of the smart speaker.  

The derivation starts with the definition for radiation intensity (U) in terms of 

theta angle (𝜃), phi angle (𝜙), the distance from the speaker to the aggressor antenna (r), 

impedance of free space (η), and the electric field values found in Figure 10 for the 𝜃, 𝜙 

and r (𝐸()*+,*-) in (3) [14]. 

 

𝑈(𝜃, 𝜙) = 𝑟&x .!"#$%#&
'

&/
 (0
1
)       (3) 
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The gain of an antenna is the basis for the next part of the derivation [12]. The 

radiation intensity (3) is substituted in for U in the equation below, where 𝑃$%,($3 is the 

total input power to the antenna in the simulation, and  𝐺()*+,*- is the gain of the smart 

speaker structure (unitless): 

 

 𝐺()*+,*- = 4𝜋	𝑥	 4(6,7)
9(),!(+

= 
':	<	-'<

,!"#$%#&
'

'-

9(),!(+
 (unitless)             (4) 

 

For the next part, the antenna factor equation [18] in terms of gain, where 𝑍$%,($3 

is the impedance of the driving port of the antenna structure in simulation, and 𝜆 is the 

wavelength of the aggressor carrier signal (across frequency) was used. 𝐴𝐹()*+,*- 

represents the antenna factor of the smart speaker’s unintentional antenna, so the 𝐺()*+,*- 

is used for this antenna factor: 

 

𝐴𝐹()*+,*- =
.=>$*?@
A!?#

= >
'	<	:	<	/

B'	<	C!"#$%#&	<	D(),!(+
   (𝑚=E)                 (5) 

 

Then, (4) was substituted into equation (5) for the 𝐺()*+,*- variable, and 

𝐴𝐹()*+,*- is simplified: 

 

𝐴𝐹()*+,*- = >
&	<	/'	<	9(),!(+

B'	<	-'	<	D(),!(+	<	.!"#$%#&'
			(𝑚=E)              (6) 
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From here, the equation for the E-field strength as a result of the aggressor horn 

antenna that sends the IEMI attack signal (in the physical test setup) is shown, where 

𝑉F!-% is the voltage at the horn antenna port, 𝐴𝐹F!-% is the known antenna factor of the 

horn antenna at the same distance as radius r, and 𝐸F!-% is the electric field as a result of 

the aggressor antenna at radius r [13]:  

 

𝐸F!-% = 𝑉F!-%	𝑥	𝐴𝐹F!-%  (A
3

)                               (7) 

 

Finally, the coupled voltage at the sensitive point of the smart speaker is derived 

using the calculated electric field strength at the smart speaker (𝑉G!")?*@	): 

 

    𝑉G!")?*@	(𝑟) = 𝐸F!-%	𝑥	
E

HI!"#$%#&
	   (V)                                       (8) 

5.3. MINIMUM NEEDED VOLTAGE FOR COMMAND RECOGNITION  

Measuring the minimum needed voltage for command recognition versus 

frequency relationship for a smart speaker requires two connections onto the sensitive 

point: One for direct injection at the most sensitive point of the smart speaker, and 

another for measuring the resulting magnitude. For this measurement, at each carrier 

frequency, the IEMI attack waveform was injected at the sensitive point at an amplitude 

at the minimum required amplitude to cause the attack to occur. Then, at the 

measurement connection (connected to an oscilloscope), the voltage at this most sensitive 

point can be recorded and marked as a point for the minimum needed voltage for 

command recognition versus frequency relationship. 
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To find the minimum needed voltage for command recognition, a variable 

attenuator was adjusted, started at maximum attenuation, and lowered until the smart 

speaker wakes 100% of the time while the command known to wake the device was 

constantly sent. This setup is shown in Figure 11. To calculate the minimum voltage 

relation, the carrier frequency on the LO of the mixer in this setup was swept from 4.5 

GHz to 8.5 GHz.  

 After measuring the minimum required voltage relation using the setup in Figure 

11, the calculated voltage at most sensitive point of the smart speaker for a 6.5W input 

into a parabolic dish (aggressor antenna) with a known antenna factor, where the angles 

are theta=90 degrees, phi=10 degrees, and the distance was 20 feet was found using the 

equation in (8). The result of plotting both the minimum required voltage and predicted 

voltage at the most sensitive point at the same time is shown in Figure 12. 

 

 

Figure 11. Setup for measuring the minimum voltage needed to cause the IEMI attack for 
a smart speaker. 
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Figure 12. Minimum required voltage for command recognition versus predicted voltage 
at the sensitive point based on a given theta, phi, distance, and input power for a 

parabolic dish aggressor 

 

In Figure 12, the calculated predicted voltage at the sensitive point exceeds the 

minimum voltage required for command recognition between 5 GHz and 5.5 GHz, 

meaning that the sensitivity to the attack is highest at these frequencies. The smart 

speaker was observed to wake at these frequencies previously when sweeping the attack 

waveform carrier frequency manually for the radiated attack.  

For a clearer view for what frequency causes the IEMI attack to happen, the 

simulated voltage at the antenna was divided by the susceptibility curve and plotted 

again. For the plot in Figure 13, any carrier frequency of the curve that exceeds 1 will 

cause the IEMI attack. From this plot, it is clearer to see those frequencies between 5 and 

5.5 GHz are the most sensitive frequencies predicted by this calculation. 
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Figure 13. Predicted voltage at the sensitive point divided by minimum required voltage 
for command recognition. Values greater than 1 mean the IEMI attack is possible at the 

frequency. 

 

This alignment with the expected most sensitive frequencies provides supporting 

evidence for this technique. However, the method can be further scrutinized by attacking 

with a ‘real world’ IEMI attack with the same parameters that were used for the CST 

simulation. 

5.4. LONG DISTANCE ATTACKING 

The IEMI attack was optimized to extend the range out to 6 meters by using the 

optimal attack angles shown in Section 4 of this work. Theta, in this case, was chosen to 

be 10 degrees. 30 degrees would be more optimal, but this was not possible with the 

available test space. This results in an angle that points towards the top of the smart 
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speaker. This choice was based on the observation that increasing theta from 0 to 30 

degrees resulted in increased directivity of the attack for a phi angle equal to 90 degrees. 

Subsequently, 90 degrees (for the shown coordinate system) was chosen for phi. This 90-

degree attack angle means physically that the E-field vector of the parabolic dish must be 

perpendicular to the smart speaker. 

 The parameters for the test are the same as the simulated CST scenario for finding 

the predicted voltage at the sensitive point in part C. 6.5 Watts was the input power to the 

parabolic dish, same angle positioning, and the smart speaker placed 6 meters away from 

the parabolic dish. This diagram is shown in Figure 14. 

 

 

Figure 14. Distance diagram for the 20-foot attack verification 

 

To help verify the results of the prediction shown in Figure 13, the carrier 

frequency was swept from 4.5 GHz to 8.5 GHz (measured every 500 MHz) for the setup 

shown in Figure 14. In Figure 15, the results of this prediction are shown, where the 

probability of successful attack recognition is indicated by the red bars.  
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This test shows the feasibility of the attack at ranges that exceed the distances 

(~1.5 meters) shown in the previous work [1]. Additionally, the smart speaker wakes at 

most sensitive frequency predicted by the calculation, and unsuccessful or probabilistic 

for the other frequencies in this tested range. Based on this validation, this method can 

predict whether the attack successfully causes command execution at this distance, angle, 

and power combination. A video was taken of the IEMI attack for the ~5 GHz carrier 

frequency case. The video of this test can be viewed at [9]. 

 

 

Figure 15. Predicted voltage at the sensitive point divided by minimum required voltage 
for command recognition. Command recognition rate for the equivalent test is super-

imposed onto this ease of coupling ratio to validate the prediction. 

6. CONCLUSION AND MITIGATION DISCUSSION 

  In this work, the methods for understanding the behavior of the smart speaker 

IEMI attack were presented and tested. A method for determining the sensitive point on 
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the smart speaker was shown after the previously found most sensitive point was found to 

be insensitive to the IEMI attack. After the correct sensitive point was identified, the most 

effective attack angle was determined through simulation methods and subsequently 

compared with the measured most sensitive angles for alignment. Next, by calculating the 

voltage at the most sensitive point, the effectiveness of the smart speaker IEMI attack 

was shown to be possible for a set distance, attack angle, and input power relative to the 

aggressor antenna. Finally, a non-simulation experiment was used for a long-distance 

attack to not only show the feasibility of longer-distance attacks, but also to verify the 

calculation and simulation correctly predicted that the smart speaker would be vulnerable 

to the IEMI attack for the attack parameters.  

 A test like IEC 61000-4-3 could be devised in the future to evaluate a smart 

speaker’s immunity to the IEMI attack. In 61000-4-3, radiated immunity is evaluated by 

using sweeping the frequency at a broadband antenna that is pointed at the device under 

test (DUT). Using the antenna factor and input power to the device, the electric field 

strength at the DUT can be found, or through field probe measurements. In the test plan, 

an electric field value is targeted as a baseline for what the DUT should be able to pass 

61000-4-3. To create test plan for smart speakers from the framework of IEC 61000-4-3, 

the measurement of the minimum voltage for command recognition shown in Section 5 

part C of this work could be used. By measuring and averaging this minimum voltage 

across many smart speakers and converting to the equivalent electric field, a threshold for 

strong immunity to the IEMI attack could be established. From here, the 61000-4-3 test 

could be carried out for smart speakers by sweeping frequency into the antenna at this 

electric field and modulating the wake command with the swept frequency. 
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In the future, efforts should be made to mitigate this attack to prevent any security 

concerns associated with it. Based on the findings in Section 3, nearby metal structures 

located on or nearby the microphone structure can significantly enhance the effectiveness 

of the IEMI attack. To reduce this coupling, large floating metal structures, if they must 

be used, should be placed far away from the MEMS microphone to avoid direct 

capacitive coupling to the microphone.  

Additionally, the high frequency connection from the microphone can structure to 

the PCB return plane of the smart speaker should be improved. Based on the prior 

measurement of the Z11 from the smart speaker to PCB return plane, the most sensitive 

frequencies were observed to happen where the impedance from the PCB return plane to 

microphone can structure was elevated. By improving this high frequency connection, the 

attack can be mitigated. 

Finally, due the role of the internal amplifier’s non-linearities in the attack, efforts 

should be taken to improve the PSRR of this internal amplifier within the microphone to 

reduce the amount of noise that is coupled onto the microphone can structure that ends up 

in the output of the amplifier. This would entail characterizing how much power rail 

noise is coupled onto the output of this internal amplifier during the design process. 
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II. MACHINE LEARNING VOICE SYNTHESIS FOR INTENTION 
ELECTROMAGNETIC INTERFERENCE INJECTION IN SMART SPEAKER 

DEVICES  

Tanner Fokkens, Zhifei Xu, Omid Hoseini Izadi, Chulsoon Hwang 

ABSTRACT 

This work presents the effectiveness of using machine learning (ML) synthesized 

voice samples to control smart speaker devices through radiated intentional 

electromagnetic interference (I-EMI). In previous works, the feasibility of using I- EMI 

to control smart speaker devices was shown. However, devices that are trained to only 

recognize a single person’s voice or only execute certain commands from that person will 

not be as susceptible to this attack. By training a generative adversarial network (GAN) 

using samples of the target’s voice, this security feature can be bypassed directly, 

increasing the feasibility of the attack.  

1. INTRODUCTION  

Smart speakers are Internet of things (IoT) devices that can actively listen for 

spoken word commands and then execute these commands by processing the voice 

information on a cloud server. This same technology is also utilized in cell phones, 

tablets, and most other internet connected devices.  

Due to size and power constraints, micro-electromechanical system (MEMS) 

microphones are utilized in these devices [1]. In a conventional condenser microphone, 

the audio signal is generated by vibrating the diaphragm of the microphone to create a 
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time varying analog voltage. MEMS microphones work through similar principles; 

however, the analog voltage signal is internally amplified and converted to a digital 

signal using an analog to digital converter (ADC). From this point, the digital signal is 

sent to the microprocessor so the voice signal can be interpreted.  

This microphone technology has provided convenience for new designs, but it has 

also left smart speakers and phones vulnerable to potential susceptibilities. The first of 

these susceptibilities allows for an attack that utilizes ultrasound to inject inaudible 

commands into these devices [2]-[8]. An ultrasound signal sent to the microphone can be 

demodulated internally in the MEMS microphone through an observed non- linearity. 

This attack has drawbacks, however. Since the attack works through ultrasound, the 

feasibility of through-wall attacks is limited due to sound dampening associated with 

building construction. This limits the ultrasound attack almost purely to short-range line 

of sight cases.  

Given the possibility of the ultrasound attack, an intentional electromagnetic 

interference (I-EMI) attack using the non- linearity of microphones also showed promise 

[1]. One of the primary advantages of this I-EMI attack versus the ultrasound attack is 

that through-walls attacks are feasible due to the properties of the electromagnetic (EM) 

wave. This new method expands the use case of the known non-linearity in the MEMS 

microphone, increasing the attack feasibility. However, despite the improvements in 

feasibility that the I-EMI attack method makes possible, many of these smart speaker 

devices have a feature that will only recognize the owner’s voice or only execute limited 

commands, rendering the attack useless for an attacker other than the owner themselves. 
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This was an issue that was brought up as a potential point of investigation in the 

previous work [1]. Previous papers related to the ultrasound attack also investigated 

possible circumvention methods for voice personalization, but they were only 

investigated from the standpoint of a smart speaker trained on the voice of a synthesizer, 

and then using this synthesizer to circumvent the voice personalization feature [8]. This 

work also differs from [14], which utilized the headphone wire connected to a smart 

phone to carry out the I-EMI attack. This method does not rely on the headphone cable or 

wiring since its primary coupling mechanism is the MEMS microphone. Because of this 

new method, the coupling can be carried out on devices that do not have headphone input 

connections. 

This paper investigates circumventing the voice personalization feature in smart 

speakers trained on a human voice to expand the attack to a wider range of devices. The 

I- EMI method was used for execution of the attack. Machine learning methods were 

utilized to generate the wake commands for controlling the smart speakers by training the 

model with the owner’s vocal samples. The recognition rate between the natural voice 

and artificial voice was compared to determine the effectiveness of the machine learning 

methods.  

2. I-EMI ATTACK MECHANISM AND SET-UP  

The I-EMI attack was motivated by audio interference from Wi-Fi transmissions 

called Buzz noise [13]. [13] proved that an audio coupling path exists through EMI to the 

microphone, and the I-EMI attack was firstly demonstrated in [1]. This attack was shown 
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to be possible by modulating the audio range attack signal with a much higher (6 to 18 

GHz) carrier signal that was radiated using a highly directional horn antenna [1].  

The carrier signal was found by sweeping the modulating (carrier) frequency 

using the test setup shown in Figure 5 with everything else held constant (including the 

modulated audio). Then, the recorded attack audio amplitude was retrieved from the 

given device online cloud and compared to the modulating frequency to find the most 

effective frequency for the attack. This carrier frequency transfer function is shown in 

Figure 1.  

 

 

Figure 1. Carrier signal Frequency sweep for finding the highest susceptibility for smart 
speaker 1.  

 

The modulated voice command is received by the traces of the system. From here, 

the signal is coupled back to the microphone where the non-linearity is present that 

causes the signal to be demodulated back to the audible range, and then converted to 

digital where it can be processed by the microprocessor. The anticipated coupling path 

for the I-EMI attack is shown in Figure 2.  
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Figure 2. Diagram of anticipated coupling method reinterpreted from [1].  

 

The mechanism of the non-linearity was found to be associated with the internal 

amplifier of the microphone [8][12]. The demodulated audio-range signal that results 

from the non-linearity is described by (1):  

 

SJKL = ASMN + BS&MN +⋯dS'MN +mSNMN,             (1) 

 

Previous work has shown that each subsequent Sn term decreases in magnitude 

strongly with each iteration [3], so only the s2 term from (1) needs to be considered for 

this attack. The s2 term produces both a high and low frequency component. The lower 

frequency component is less than the cutoff frequency of the low-pass filter (LPF) of the 

MEMS microphone, so only the audio range signal is maintained as shown in Figure 3.  
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Figure 3. The demodulation of an audio range signal with a high frequency carrier. Re-
interpreted from [1].  

 

The square term necessarily produces harmonic distortion, which in result 

degrades the quality of voice injected into the system. To minimize the harmonic 

distortion associated with the demodulation process, effective processing method is 

proposed in (2) as below:  

 

𝑆$% = *𝐴𝑓(𝑡) + 𝐴,                                  (2) 

 

Since the square root function will result in an imaginary component, a DC offset 

equal to the maximum amplitude A of the audio waveform is added under the square-

root. This DC offset will not be an issue as the internal inductive coupling of the mixer 

will remove this component.  



 37 

 

Figure 4. The experimental test setup for the artificial versus natural voice tests. The 
smart speaker was placed in front of the antenna. 

 

 

Figure 5. Block diagram representation of the test setup shown in Figure 4. 

 

The test setup for this experiment is shown in Figure 4 and represented as a block 

diagram in Figure 5. For clarity, in this paper the input voice command will be generally 

called the “transmitted voice”, and the received command will be referred to as the 

“attack voice”. To observe a measurable difference in effectiveness for the artificially 

synthesized voice compared to the naturally recorded voice signal, the smart speaker was 

placed far enough away so that the recognition rate is less than 100%. This distance 

varied depending on the DUT. An arbitrary waveform generator was used to output the 
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audio range signal, while a high frequency signal generator outputs the carrier that the 

audio signal will be modulated with.  

The transmitted voice was modulated with the carrier frequency that the smart 

speaker was determined to be most susceptible to using a mixer. In a mixer, there is a 

feedthrough component that will cause a portion of the carrier amplitude to be present in 

the output (RF) signal. The distortion will be further amplified by the RF amplifier 

connected to the RF port of the mixer, which will cause distortion in the demodulated 

waveform. This issue can be mitigated by finding a balance between the intermediate 

frequency (IF) and local oscillator (LO) that result in minimal distortion.  

3. VOICE SYNTHESIS AND EXPERIMENTAL SETUP  

To generate the vocal samples, an existing open-source synthesis method called 

Speaker voice to multi-speaker Text-to- Speech Synthesis (SV2TTS) was implemented 

[9]. The basic flow of the SV2TTS synthesis is described in Figure 6. This synthesis 

method is useful for the application of the EMI attack as can generate reasonably similar 

speech from only 5 seconds of audio.  

 

 

Figure 6. Diagram of SV2TTS method, reinterpreted from [9].  
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However, this circumstance is not ideal as greater voice samples will still result in 

greater audio similarity to the speaker that is being cloned. As such, the SV2TTS method 

was used with 50 different voice samples with a variety of text. Resemble.ai is an 

implementation of SV2TTS that allows for faster training of the model for this purpose 

[12]. This website was used for generating the voice samples.  

Two voice samples are generated using the software. The samples for each 

include the ‘wake phrase’ for the device, and then the command “What time is it?”. It is 

known from released machine learning research that only the wake word is checked for 

ensuring a match to the user’s voice [10]. However, the generated command that results 

from SV2TTS is audibly the same to the human voice, so the entire phrase was generated 

at once.  

 

 

Figure 7. The voice spectra (a) artificial voice (b) natural voice (FFT Squared).  

 

The artificial and natural voice samples for the sound “-wh” in “what” are 

examined in the frequency domain using the single-sided spectrum in Figure 7 (a) and 

(b). For ease of viewing, the FFT is squared as this is proportional to PSD (Power 
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spectral density). From pure observation, the highest amount of frequency content at 

approximately ~550 Hz appears in both the natural and artificial voice spectra. However, 

the ~390 Hz peak is not a similar amplitude when comparing the natural and artificial 

voice spectrums. This observation is significant since the personalized voice feature relies 

on the pronunciation of word beginnings and endings for recognition [8]. Initially, it 

seems that the frequency content of the artificially generated voice is a decent match to 

the voice the neutral network was trained to mimic.  

The voice command itself is retrieved using one of two methods, depending on 

the device: Either a phone called is placed using VOIP (Voice over IP) and the audio is 

recorded form the call for further processing, or the recorded audio is directly extracted 

from the cloud service of the smart speaker device. Many smart speakers include a 

feature that record the input command for playback at a later date on a computer, so this 

feature can be used to hear the audio that was interpreted on the device’s server. This is 

the idealized method because the audio that is sent to the cloud is what is processed for 

command interpretation.  

The experiment itself was conducted on two different devices which will be 

identified as “Smart Speaker 1” and “Smart Speaker 2”. These two devices originate from 

different manufacturers. The purpose of using two different smart speakers for this 

experiment was to see if there was a change in recognition when the personalized voice 

feature was used across different devices.  
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4. COMMAND RECOGNITION RESULTS  

Smart speaker 1 was tested using a carrier frequency of 18 GHz (LO of the 

mixer). The audio waveforms are processed using the processing method shown in (2). 

The transmitted voice that was sent for this test was the wake word followed by ‘what 

time is it’. The artificial voice yielded a recognition rate of 60% for the EMI attack, while 

the natural voice had a recognition rate of 70% for the received attack voice. As 

mentioned in the earlier in the paper, this lesser recognition rate for the natural voice was 

purposefully chosen so that there would potentially be greater variance between the 

artificial and natural voice results. In order to reduce the recognition rate of the test, the 

distance between the horn antenna. Both tests consisted of 20 command send attempts. 

Recognition of the command was defined as the smart speaker waking up, and then 

executing the given command. If the smart speaker only woke up, but does not interpret 

the command, this was designated as a failure. This result is shown in Figure 8.  

speaker 1 test. Smart speaker 2 required a different type of attack message to test the 

ability to circumvent the personalization feature. Since this smart speaker does not 

completely stop the user from sending commands to the device, but rather limits so- 

called ‘personalized results’, such as sending an email, the command can be changed to 

something that warrants a personalized result. In the case of this test, the commands that 

were sent using both the artificial and natural voice were ‘Send an email’, with the wake 

word proceeding the command. The results of this test are shown in Figure 9.  
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5. DISCUSSION  

The results of this experiment show the use of artificially synthesized voice in the 

attack is not only feasible, but with a nearly identical or sometimes even better 

recognition rate compared to the natural voice. A possible explanation as to why the 

voice synthesis method was so effective at bypassing the personalized audio feature is 

that the synthesized audio was replicating the same vocal signatures that the smart 

speaker learns when learning the user’s voice. Personalized voice systems work by using 

feature extraction to convert the incoming voice single into a “speaker vector” [10], 

which is then compared to the given model and scored based on its similarity. Since this 

speaker vector has a limited size of 442 parameters for each voice signal, it would make 

sense that the SV2TTS vocal synthesis overlaps with most of these parameters, which 

resulted in the command being recognized.  

Although this method of circumvention is primarily relevant to smart speakers, it 

can be applied to any device susceptible to an I-EMI through the MEMS microphone. 

Given that the requirement for this I-EMI attack is a structure that couples the incoming 

EM wave to the MEMS microphone, nearly almost every telecommunication device that 

relies on the tonal qualities of the voice for identification is susceptible to this attack.  

Additionally, the discovery of this additional attack method can have several 

potential consequences since it can be performed completely inaudibly. For example, in 

Android versions 5.0 through 7.1.2, it is possible to unlock the phone solely using a voice 

command, making it possible to send commands that send text messages and email. In 

conventional smart speaker devices that are connected to devices like smart plugs, it 
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would be possible to use artificial voice methods described in this paper to circumvent 

the personalized voice security features.  

To protect against this sort of attack, existing machine learning models can be 

used to accurately identify fake speech compared to natural (real) speech. An example of 

this type of model is Resemblyzer, which is a voice encoder that provides a high-level 

representation of a vocal samples that can be subsequently analyzed with a pre-trained 

model. A similar idea could be implemented into the existing models of the smart speaker 

voice recognition to ignore voices that are predicted to be fake by the fake speech 

detection model.  

Some downsides of implementing this sort of model into existing smart speakers 

is that there may be added issues involving misinterpreting real speech as fake speech, 

causing overall recognition rate to decrease. Additionally, since smart speakers only 

listen for the wake word when trained for voice personalization, this sample may be too 

short to determine if a voice is fake or not. A future work could examine the feasibility of 

protecting against this problem.  

 

 

Figure 8. The recognition rate comparison between the natural voice and artificial voice 
for the first smart speaker.  
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Figure 9. The recognition rate comparison between the natural voice and artificial voice 
for the second smart speaker.  

 

Smart speaker 2 was tested with a carrier frequency of 8.5 GHz. The audio 

processing method was the same as the smart overall recognition rate to decrease. 

Additionally, since smart speakers only listen for the wake word when trained for voice 

personalization, this sample may be too short to determine if a voice is fake or not. A 

future work could examine the feasibility of protecting against this problem.  

6. CONCLUSION  

Artificial voice synthesis can circumvent personalized voice learning in smart 

speakers. Because the inaudible RF smart speaker attack would not be effective on 

devices with this personalization feature, this paper has shown the feasibility of cloning 

someone’s voice by using arbitrary voice samples and open-source voice synthesis 

methods. Recognition of behalf of the device for the artificially generated samples 

appears to show minimal difference compared to samples containing the person’s natural 
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voice. As a result, it can be concluded that this is an effective method for circumventing 

the voice personalization feature for the I-EMI attack for the devices that were tested.  
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SECTION 

2. CONCLUSIONS 

The first paper showed a method for modeling and understanding the smart speaker 

I-EMI attack. This included a method for finding the ideal attack angle, locating the 

region sensitive to the coupled EMI, and modeling the attack. Finally, using all these 

methods, a long distance (6-meter) attack was demonstrated using 6.3 Watts of power at 

the aggressor antenna. 

The second paper presented the effectiveness of using machine learning (ML) 

synthesized voice samples to control smart speaker devices through radiated intentional 

electromagnetic interference (I-EMI). Devices that are trained to only recognize a single 

person’s voice or only execute certain commands from that person will not be as 

susceptible to the I-EMI attack. By training a neural network using samples of the 

target’s voice, this security feature was bypassed, increasing the feasibility of the attack. 
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