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ABSTRACT 

Quantifying groundwater storage loss is becoming increasingly essential globally 

due limited availability of this major hydrologic component and its long recharge time.  

Groundwater overdraft gives rises to multiple adverse impacts including land subsidence 

and permanent groundwater storage loss. In absence of spatially dense monitoring network, 

publicly available in-situ data, and uniform monitoring strategies, it is challenging to assess 

the sustained losses from overexploitation of this resource. Remote sensing based 

techniques have the capacity to fill this gap to increase our groundwater monitoring 

capacities. Exploring the interrelation between groundwater pumping and land subsidence 

using remote sensing datasets can be a very effective technique to measure depletion of 

aquifers. In this study, we developed a machine learning model to explore this relationship 

with the help of gridded remotely sensed and model-based dataset, and Interferometric 

Synthetic Aperture Radar (InSAR) based land deformation data. InSAR generated land 

subsidence data from 36 different regions of the world were used to train a random forests 

model to map land subsidence globally at a high spatial resolution of ~2 km. The model 

predicted land subsidence magnitude in three classes: <1 cm/year, 1-5 cm/year and >5 

cm/year. The model found realistic relationship between the driver variables, groundwater 

pumping and land subsidence with an overall score of 0.84 on the test set. Resulting maps 

from this model will be incredibly helpful in knowing the true spatial extents of subsidence 

in known subsiding areas and in locating unknown groundwater stressed regions where 

subsidence has not been documented before. 
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1. INTRODUCTION 

Growing population, agricultural and energy demand have been laying stress on 

global water resources. Increasing temperature and changing precipitation patterns due to 

climate change have affected the existing balance between different components of the 

hydrologic cycle. The consequence is increased stress on groundwater resources, which 

currently contribute almost one-third to the global freshwater supply (Margat & Van der 

hun, 2013; Shiklomanov, 1993) and will likely contribute a greater share in the future due 

to increasing variability in surface water supplies. Regions where surface water availability 

is limited and groundwater is the dominant source of water (Butler et al., 2018) have the 

highest risk of groundwater depletion, risking food and water supply in these regions.  

Excessive groundwater pumping is responsible for adverse impacts, such as 

permanent aquifer storage loss, land subsidence, arsenic contamination, saltwater 

intrusion, and infrastructure damage (Camp et al., 2014; Chaussard & Farr, 2019; Erban et 

al., 2013; Galloway & Burbey, 2011; Ojha et al., 2018). In spite of its importance, many 

regions of the world with intensive groundwater withdrawals and storage loss are poorly 

monitored, making it challenging to quantify groundwater storage loss. Fortunately, remote 

sensing datasets have the potential to fill this gap by providing global scale datasets that 

are proxies of drivers affecting groundwater storage change.  

One of the most visible and harmful effects of groundwater depletion is land 

subsidence caused by compaction of aquifer materials following the loss of storage. 

Estimating the amount of subsidence can be a way to quantify storage loss in confined 

aquifer systems (Smith & Majumdar, 2020). In-situ measurement methods for quantifying 
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subsidence exist but are spatially far too sparse to be used in accurate subsidence estimation 

at large scale. Interferometric Synthetic Aperture Radar (InSAR) deformation data, 

processed from backscattering phase information obtained by Synthetic Aperture Radar 

(SAR) sensor, can be a very reliable source of subsidence data, providing data with ~1 cm 

accuracy and at a fine spatial resolution of ~100 m. Satellite-based subsidence 

measurements have been used to monitor groundwater storage loss in many aquifer 

systems (Chaussard et al., 2013, 2014; J. Chen et al., 2016; Faunt et al., 2016; Higgins et 

al., 2014). In spite of its success, processing, validating and time series analysis of InSAR 

data involves high computational effort. Therefore, InSAR-based groundwater as well as 

land subsidence studies have been limited to local or regional level.  

Fan et al. (2013); Graaf et al. (2015) used physical groundwater models to simulate 

groundwater heads at shallow depth globally, using datasets from available government 

databases and outputs from global hydrological models, respectively.  Wada et al. (2010) 

derived global groundwater depletion data from groundwater recharge and abstraction data. 

However, subsidence associated with groundwater withdrawal is difficult to measure using 

traditional groundwater models as they require variables that are readily available, 

especially at global scale. Remote sensing and global model-based datasets offer direct 

measurements of some of these variables or sometimes might be assembled to form 

proxies. Previously, Smith & Majumdar (2020) used machine learning approach for 

groundwater pumping associated subsidence mapping for the entire western United States 

combining remote sensing datasets and InSAR-derived subsidence data. Herrera-García et 

al. (2021) employed statistical technique to estimate global land subsidence susceptibility, 
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which provides a map of subsidence risk categorized by probability values. However, no 

existing study have quantified the magnitude of subsidence and associated groundwater 

storage loss globally. 

In this study, we present a machine learning based method to map of pumping-

induced land subsidence globally at a high spatial resolution (~2 km), using remote sensing 

and model-based hydrologic, land use, climatic and geologic datasets. Our method 

produces subsidence estimates in <1cm/year, 1-5 cm/year and >5 cm/year classes. To the 

authors’ best knowledge, this is the first global scale subsidence study that maps subsidence 

magnitude. Additionally, the machine learning model provides a global subsidence 

probability map which is critical in identifying regions under future subsidence threat. As 

land subsidence is the primary mechanism for groundwater storage loss in unconsolidated 

confined aquifers, the produced global subsidence map can be interpreted as a first-order 

map of global confined aquifer groundwater storage loss. Results of this study might be 

helpful in identifying groundwater stressed areas where groundwater resources have not 

been critically studied before and can work as a baseline for regional studies over 

subsidence threatened areas.   
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2. BACKGROUND 

2.1. MECHANISM OF LAND SUBSIDENCE 

In this study, by land subsidence we refer to the downward vertical deformation of 

the ground surface, and we only consider subsidence caused by groundwater extraction. 

Groundwater withdrawal causes the pore pressure in the aquifer to decrease, resulting in 

an increase in effective stress and subsequent compaction in aquifer sediments (Fetter, 

2001). Weak sediments, such as clay, compact more than stronger sediments, like sand and 

gravel. Unconsolidated sedimentary aquifers that have higher clay content are more 

susceptible to land subsidence whereas aquifers formed of consolidated rocks, such as 

carbonate rocks, sandstone or basalt, have very little compaction.  

Subsidence can be inelastic (permanent), and elastic (temporary) based on the 

preconsolidation history of the sedimentary layer. The lowest hydraulic head experienced 

in a sedimentary layer is defined as the preconsolidation head, and corresponds to the 

highest effective stress experienced at that location. When the hydraulic head drops below 

this level, inelastic deformation occurs and subsidence is permanent. (Galloway & Burbey, 

2011, Faunt et al., 2016; Smith et al., 2017; Sneed, 2001). Inelastic subsidence is of 

particular concern as layers undergoing such deformation do not rebound even after 

recharge. In contrast, sediments undergoing elastic subsidence can go back to their 

previous state with natural or managed groundwater recharge. At the depths and pressures 

of virtually all aquifer systems, sands do not experience inelastic deformation, and the 

inelastic deformation is essentially limited to clays. 
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The relationship between groundwater pumping and land subsidence can be 

expressed by the following equation (Fetter, 2001) - 

 𝛥𝑏 = 𝛥ℎ𝑆𝑠𝑘𝑏0 (1) 

where 𝛥ℎ is the change is hydraulic head (ℎ) due to pumping, 𝑏0 is the thickness of the 

aquifer experiencing the change in head, 𝑆𝑠𝑘 is the skeletal specific storage and 𝛥𝑏 is the 

change in thickness of the aquifer, which results in surface deformation. For weaker 

sediments like clay, 𝑆𝑠𝑘 has higher values than stronger sediments. Therefore, subsidence 

(Δb) will be greater in a clay dominated aquifer than a sand-gravel aquifer if equal thickness 

(b0) of both aquifers are experiencing similar change in head (Δh). Depending on whether 

subsidence is elastic or inelastic, the value of 𝑆𝑠𝑘 is typically on the order of 10−5 and 

10−3 𝑚−1, respectively (Smith & Knight, 2019; Sneed, 2001). Since the inelastic 𝑆𝑠𝑘 value 

is roughly two orders of magnitude higher than the elastic 𝑆𝑠𝑘 (Faunt, 2009) and only clays 

deform inelastically, clay has the dominant signal during inelastic subsidence (Smith & 

Knight, 2019) and permanent subsidence only happens in clay-rich layers, especially in 

areas with high groundwater demand but low recharge. 

2.2. LINK BETWEEN SUBSIDENCE AND GROUNDWATER STORAGE LOSS 

Land subsidence can be a measure of groundwater withdrawal and associated 

storage loss in aquifers. Aquifers can be broadly classified into confined and unconfined 

aquifers. Confined aquifers are geologic units under pressurized condition,  and confined 

by aquitards (generally fine-grained sedimentary layers) that disconnect the aquifer from 

the ground surface (Fetter, 2001). Confining units can be leaky if they are thin or not 
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extensive and are often referred to as semiconfined aquifers. Groundwater withdrawal from 

confined or semiconfined aquifer causes it to compact (subside) while maintaining its 

saturated, pressurized state (Fetter, 2001; Freeze & Cherry, 1979; Jacob, 1940). Because 

of existence of clay and soil matrix controlling aquifer storage, these aquifers are at high 

risk of inelastic subsidence. Unconfined aquifer can also undergo inelastic subsidence 

though it might not be as significant as confined aquifer.  

Water holding capacity in confined and semiconfined aquifers are controlled by 

Specific Storage (𝑆𝑠) which is related to compressibility of soil matrix and elasticity of 

water (Faunt, 2009; Lohman, 1972). Following equation defines how 𝑆𝑠 is connected to 

volume of water removed per unit area of aquifer (𝛥𝑆), change in hydraulic head (𝛥ℎ) and 

confined aquifer thickness (𝑏)- 

 𝑆𝑠 =
𝛥𝑆

(𝛥ℎ)𝑏
 (2) 

𝑆𝑠 is the combination of previously explained skeletal specific storage (𝑆𝑠𝑘) and specific 

storage for water (𝑆𝑠𝑤) following the equation: 

 𝑆𝑠 = 𝑆𝑠𝑘 + 𝑆𝑠𝑤 (3) 

𝑆𝑠𝑘 and 𝑆𝑠𝑤 account for the compressibility of soil matrix and elasticity of water, 

respectively (Freeze & Cherry, 1979; Jacob, 1940; Kuang et al., 2020). Except some hard-

rock aquifers where 𝑆𝑠𝑤 value dominates over 𝑆𝑠𝑘, usually 𝑆𝑠𝑘 value is of 1 to 3 orders of 

magnitude higher than 𝑆𝑠𝑤 in aquifers with compressible sediments (Smith et al., 2017). 

For inelastic deformation, when 𝑆𝑠𝑘 is 2 to 3 orders of magnitude higher than 𝑆𝑠𝑤. Under 

these conditions, 𝑆𝑠𝑘 controls specific storage and specific storage can be written equal to 
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skeletal specific storage (𝑆𝑠 =  𝑆𝑠𝑘).  Considering 𝑆𝑠𝑤 as minimum, equation 1 can be 

written as: 

 𝑆𝑠 =
𝛥𝑏

(𝛥ℎ)𝑏
 (4) 

Comparing equation 2 and 4, we get: 

 𝛥𝑆 = 𝛥𝑏 (5) 

Equation 5 connects groundwater storage change to surface deformation 

(subsidence), considering 𝑆𝑠𝑤 is negligible. This explains how land subsidence can work 

as a proxy or direct estimate of groundwater storage loss. Inelastic subsidence in confined 

aquifer system is associated with significant time lag, therefore, change in aquifer storage 

𝛥𝑆 is not reflected on the initial values of land subsidence. When aquifer is pumped, high 

permeability sediments like sand response quickly to groundwater pumping and resulting 

deformation is small compared to clay (Sneed, 2001), which is the lower bound of actual 

land subsidence. In the later stage, clay layers start to release water into the dewatered sand 

pores though the total water storage of the aquifer remains unchanged. Pore water pressure 

in clay drops increasing the effective stress followed by rearrangement of clay particles in 

dispersed formation and significant deformation. The release of water from clay continues 

until the expected total deformation 𝛥𝑏 is reached balancing itself with the amount of water 

pumped 𝛥𝑆. This delayed drainage time can range from several weeks to years (Chen et 

al., 2016; Smith et al., 2017, Smith & Majumdar, 2020).  
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2.3. WATER-BALANCING USING REMOTE SENSING AND MODEL-BASED 

DATASETS 

Remote sensing is a spaceborne technique of collecting geographic data and 

extracting useful information from it, and usually refers to data collected by aircraft or 

satellite sensors. Such datasets can be optical or multispectral depending on the sensor. 

Sometimes datasets assimilated from multiple sensors or estimated from multispectral 

datasets using different methods are also referred to as remotely sensed datasets. In the last 

decade, remote sensing datasets have been increasingly used in wide-ranging fields of earth 

science, such as environmental monitoring, land use change detection, weather forecasting, 

natural hazard tracking, water resources monitoring, etc.  

Monitoring hydrologic fluxes using remote sensing techniques is rapidly rising due 

to their large spatial and temporal coverage. Available in-situ estimates are spatially sparse, 

have temporal gaps, and are highly inconsistent, restraining their capacity in analyzing 

hydrologic phenomena for larger spatiotemporal scales. Due to causes like spatially coarse, 

scant publicly available records, and unwillingness to share data, groundwater monitoring 

with in-situ records has been proven to be very challenging for large basins. Such 

difficulties have increased dependency on remote sensing datasets in tracking groundwater. 

Despite improvements in technology, capacity of airborne remote sensing sensors is 

limited to capture hydrologic and atmospheric fluxes up to a few centimeters of the 

subsurface (Babaeian et al., 2019). Therefore, there is no direct estimate of groundwater 

storage from airborne sensors. Some widely used alternatives are using groundwater 

models and water balancing with constituents of the hydrologic cycle. Groundwater model 

requires a large number of geologic and hydrologic variables as input. Though hydrologic 
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variables are relatively easier to compile, limited availability of geologic data makes it 

difficult to construct reliable groundwater models. Compared to such models, water 

balancing using remotely sensed datasets is a much more achievable approach and has been 

applied in different hydrologic applications including groundwater storage estimation 

(Gleeson et al., 2012; Mladenova et al., 2020; Munier et al., 2014). Such water balancing 

approaches are based on the principles of conservation of mass in the hydrologic cycle and 

can be expressed by the equation: 

 𝑃 = 𝑅 + 𝐸𝑇 + 𝛥𝑆 (6) 

where 𝑃 is precipitation, 𝑅 is streamflow, 𝐸𝑇 is evapotranspiration and  

𝛥𝑆 is change is storage in soil. Some studies have also incorporated total water storage 

(TWS) data from Gravity Recovery and Climate Experiment (GRACE) satellite and 

GRACE-derived datasets in monitoring aquifer storage (Rateb et al., 2020; Yin et al., 

2021). In this study, several remotely sensed and model-based hydrologic fluxes, such as 

evapotranspiration, precipitation, and soil moisture, were assimilated into a machine 

learning model to help the model develop an understanding of interrelations between these 

fluxes. Land subsidence data from InSAR, which is a proxy of groundwater storage change, 

was used in training the model. Soil moisture and land subsidence together represent 𝛥𝑆  

in the model. We did not incorporate any streamflow data in the model, instead, a ‘River 

Distance’ dataset was used. Moreover, the other hydrologic datasets were not added in the 

same unit. Therefore, the water balance represented in the model can be seen as pseudo-

water balance that helps the model interpret the interaction between the fluxes and how 

that drives land subsidence. Despite having access to remote sensing-based estimates of 
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hydrologic fluxes, model-based datasets were used in some cases to incorporate high 

resolution, gap-filled datasets.  

2.4. INSAR IN AQUIFER MONITORING 

InSAR has emerged as a powerful remote sensing technique for tracking land 

surface changes at very fine resolution and large spatial scale. It relies on data collected by 

SAR platform that emits electromagnetic signals at microwave wavelength and collects 

backscattering signals from earth's surface as amplitude and phase information. SAR signal 

can penetrate cloud cover and collect data day and night, being an active source, providing 

continuous data coverage irrespective of weather and daylight conditions. Higher 

wavelength SAR (L and P bands) can penetrate deeper into vegetation cover and 

subsurface, increasing its capacity to extract more information. Using the concept of 

synthetic aperture, where sensor’s motion is used to simulate long synthetic antenna despite 

the short antenna onboard, SAR can collect high spatial resolution data of ground surface. 

Because of the side-looking characteristics of the sensor, data collected are in the line-of-

sight (LOS) direction but can be distributed to vertical and horizontal components. The 

quality of SAR data depends on multiple factors like satellite viewing geometry, surface 

roughness, and dielectric permittivity. For example, high wavelength SAR (L-band) can 

penetrate deeper into soil with low ∈ (low soil moisture) than soil with high ∈ (high soil 

moisture). Radiometric and topographic corrections are applied to remove effects of 

erroneous topographic information (steep slope emitting bright signal) and distorted 

geometry from the data. InSAR uses interferometry to detect change in phase from pairs 

of images collected from successive satellite passes over the same location. At least two 
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images of the same geolocation are required to employ interferometric technique for 

change detection in topography. In addition to ground deformation, factors like viewing 

angle from satellite, water vapor in troposphere, change in orbital path, can contribute to 

the change in phase data. These effects must be removed during InSAR processing to 

account for the phase change contributed by topographic movement only. InSAR can 

accurately detect land disturbance from volcanic activities, earthquakes, landslides, and 

land subsidence. Despite having widespread advantages, the technique is prone to 

spatiotemporal decorrelation and vegetation, tropospheric, and ionospheric effects. 

In hydrology, InSAR has been applied in aquifer storage quantification, analyzing 

aquifer physical properties, soil moisture estimation, etc. Groundwater withdrawal causes 

land surface to subside. Based on the property of geologic unit from where water has been 

extracted, the subsidence can be elastic or inelastic. Recent high temporal resolution data 

has enabled InSAR to monitor seasonal recharge and discharge dynamics in aquifers 

(Chaussard & Farr, 2019; Hoffmann et al., 2001). On the other hand, aquifers with inelastic 

subsidence undergo long-term subsidence which can also be detected. As mentioned in the 

previous section, no available remote sensing technique provides a measure of groundwater 

level. Exploring the relationship established in equation 5 can therefore function as an 

effective mechanism to indirectly estimate aquifer storage change. Land deformation is 

directly linked to the change in head in the aquifer. Thus, subsidence data from InSAR can 

serve as a proxy for groundwater storage change. Due to SAR’s large spatial coverage and 

frequent temporal records, InSAR can be applied to monitor groundwater storage for large 

aquifers irrespective of regional and international boundaries with high accuracy.   
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2.5. DRIVERS OF LAND SUBSIDENCE AND POTENTIAL PROXIES 

Land subsidence is contributed by several factors like aquifer skeletal specific 

storage (𝑆𝑠𝑘), thickness of compressible sediment (𝑏), change in hydraulic head (𝛥ℎ) due 

to pumping and consolidation record of the layer experiencing subsidence. For local and 

even for some regional levels, these datasets are available and can be coupled together to 

estimate land subsidence. However, data scarcity, unwillingness to share data publicly, 

heterogeneity of collected data and coarse resolution of available data make it increasingly 

difficult to compile all required datasets at global scale. Global coverage of remotely 

sensed datasets can bridge this void, such as balancing variables like precipitation, ET, soil 

moisture and TWS data in heavily groundwater exploited areas can give an estimate of 

hydrologic change. TWS data from GRACE satellite along with other hydrologic variables 

have been used in multiple studies to model groundwater storage change in regional scales 

(Rateb et al., 2020; Yin et al., 2021), but it has coarse spatial and temporal resolution 

(Leroux & Pellarin, 2016; Rodell, 2013). To avoid uncertainties arising from such coarse 

resolution, GRACE data was not incorporated in the model with other high resolution 

datasets. Rather InSAR processed land subsidence data can function as a proxy of 

groundwater storage change as discussed in previous section. The model assimilates 

multiple hydrologic, land use and geologic variables which can be related to groundwater 

storage change.  
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3. DATA 

3.1. INPUT DATASETS 

Input variables (predictors) of this model include remotely sensed and model-based 

global gridded datasets, within geographic boundary of -180° W, -60° S, 180° E, 90° N, 

that are proxies of principal hydrologic, geological, and anthropogenic processes that drive 

land subsidence. The variables were integrated in a supervised machine learning model 

named random forests. Random forests is a decision-tree based algorithm that can establish 

nonlinear relationship between predictors and response variable to generate final model 

prediction (Biau, 2012; Breiman, 2001, Smith & Majumdar, 2020).  

High resolution (~4 km) precipitation, soil moisture, evapotranspiration (ET), 

Reference evapotranspiration (RET) and temperature (min and max) data were obtained 

from TerraClimate monthly climate and climatic water balance datasets (Abatzoglou et al., 

2018). TerraClimate climate datasets are generated using climatologically aided 

interpolation (a downscaling technique) of  WorldClim (Fick & Hijmans, 2017), CRU 

JRATs4.0 (Morice et al., 2012) and JRA-55 (Kobayashi et al., 2015) data while the water 

balance datasets come from a one-dimensional water balance model (Abatzoglou et al., 

2018). Despite availability of finer spatial resolution remotely sensed ET data, such as 

MODIS global terrestrial evapotranspiration data (Mu et al., 2013), ET data from 

Terraclimate was selected because of its global coverage, including arid regions like 

Southern Africa, Western Asia, Central Australia where other datasets like MODIS has no 

coverage.  
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Table 3.1 in shows a list of the datasets used in the model along with their original 

spatial resolution and sources. 

 

Table 3.1: List of datasets used in the model. 

Variable Spatial resolution Source 

Soil moisture ~ 4 km Abatzoglou et al. (2018) 

Precipitation ~ 4 km Abatzoglou et al. (2018) 

Evapotranspiration ~ 4 km Abatzoglou et al. (2018) 

Reference Evapotranspiration ~ 4 km Abatzoglou et al. (2018) 

Irrigated Area ~ 1 km Meier et al.(2018) 

Population Density ~ 1 km CIESIN (2018) 

Temperature ~ 4 km Abatzoglou et al. (2018) 

Percentage of Clay 250 m Hengl (2018) 

Sediment Thickness ~ 1 km Pelletier et al.(2016) 

Major River Vector data GRDC (2020) 

EVI 250 m Didan (2021) 

NDWI 500 m Vermote (2021) 

Aridity Index ~ 1 km Trabucco & Zomer (2019) 

DEM 30 m Farr et al. (2007) 

 

 

Global irrigation area dataset at ~1 km resolution by Meier et al. (2018) was used 

in this study as one of the land use datasets. This dataset has been developed combining 

remote sensing technique and downscaled statistics-based irrigated area data (Siebert et al., 
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2013), commonly known as Food and Agriculture Organization of the United Nations 

(FAO)’s irrigation dataset. Considering the strength and limitations of solely statistical or 

remote sensing approach (Siebert et al., 2013; Teluguntla et al., 2014; Thenkabail et al., 

2009), this fusion technique of irrigated area classification provides the most reliable 

source of global irrigation data. Gridded population dataset of ~1 km resolution (CIESIN, 

2018) was included in the model to capture subsidence in populated areas occurring from 

aquifer pumping.  

As discussed in the previous section, existence of clay is the major geologic factor 

for inelastic subsidence. High resolution (250 m) % clay content data at different depths 

(0, 10, 30, 60, 100, 200 cm), generated from a machine learning model based on soil 

information (Hengl, 2018),  was collected. In addition, we  obtained ~1 km resolution 

global sediment thickness data (Pelletier et al., 2016). The highest value of sediment 

thickness in this dataset is 50 which denotes sedimentary deposit thickness of ≥ 50 meter.  

Additional datasets included as predictors in the model were aridity index 

(Trabucco & Zomer, 2019), MODIS-derived Normalized Difference Water Index (NDWI)  

(Vermote, 2021) and Enhanced Vegetation Index (EVI) (Didan, 2021), SRTM-derived 

percent slope, and a vector dataset of major global rivers (GRDC, 2020).  

3.2. LAND SUBSIDENCE DATA 

Supervised machine learning algorithm requires training dataset to establish 

relationships between training data and input variables. Average vertical land subsidence 

rate was used as training data in our machine learning model. Subsidence data was 

collected for 36 regions of the world. InSAR can be a reliable tool for measuring 
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deformation in aquifers at high spatial resolution (Castellazzi & Schmid, 2021; Chaussard 

et al., 2013, 2014; Reeves et al., 2011). In this study, we collected deformation data using 

both primary and secondary methods. Primary method refers to downloading SAR sensor’s 

data and processing it directly to extract inelastic deformation information over high 

groundwater stressed areas, such as Quetta valley in Pakistan, Qazvin region in Iran, North 

China plain and Hefei region in China, and San Luis Valley, Colorado in the United States. 

Processed subsidence data over California and Arizona in US were collected from 

California Natural Resources Agency and Arizona Department of Water Resources, 

respectively. Considering the computational effort required in processing InSAR data, we 

also collected InSAR data from secondary sources. These sources consist of groundwater 

studies that used InSAR information to determine aquifer vertical deformation. A list of 

these training data sources is provided in Table 3.2, where (1-7) were obtained from direct 

InSAR processing; (8-36) were georeferenced and classified from research articles with 

InSAR processed land deformation map and 37 is globally available GNSS-based coastal 

subsidence data. 

 

Table 3.2: Sources of InSAR-based land subsidence data. 

Primary Data Sources (InSAR Processing) 

No. Country Region Sources 

1 China Hebei processed 

2 China Hefei processed 
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Table 3.2: Sources of InSAR-based land subsidence data (cont.) 

3 Iran Qazvin processed 

4 US San Luis Valley, Colorado processed 

5 Pakistan Quetta processed 

6 US California California Natural Resources 

Agency 

7 US Arizona Arizona Department of Water 

Resources 

Secondary Data Sources (Research Articles) 

8 Australia Perth (Castellazzi & Schmid, 2021) 

9 Bangladesh GBM Delta (Higgins et al., 2014) 

10 China Beijing (Chen et al., 2016) 

11 China Yellow River (Higgins et al., 2013) 

12 China Shanghai (Dong et al., 2014) 

13 China Wuhan (Zhou et al., 2017) 

14 China Xian (Qu et al., 2014) 

15 China Tianjin (Luo et al., 2014) 

16 Egypt Nile Delta (Gebremichael et al., 2018) 

17 England London (Bonì et al., 2017) 

18 Indonesia Multiple Locations (Chaussard et al., 2013) 

19 Indonesia Bandung (Ge et al., 2014) 

20 Iran Marand Plain (Andaryani et al., 2019) 

21 Iran Tehran (Haghighi & Motagh, 2019) 

22 Iran Mashhad (Khorrami et al., 2020) 

23 Iraq Tigris Euphrates Basin (Rateb & Kuo, 2019) 

24 Italy Po Delta (Corbau et al., 2019) 

25 Italy Venice (Bock et al., 2012) 

26 India Delhi (Garg et al., 2022) 

27 Mexico Mexico City (Chaussard et al., 2014) 

28 Nigeria Lagos (Cian et al., 2019) 
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Table 3.2: Sources of InSAR-based land subsidence data (cont.) 

29 Philippines Manila (Zoysa et al., 2021) 

30 Spain Murcia (Ezquerro et al., 2020) 

31 Turkey Karapinar (Orhan et al., 2021) 

32 Turkey Bursa (Aslan et al., 2019) 

33 Taiwan Yunlin (Hsu et al., 2015) 

34 US Huston (Miller & Shirzaei, 2019) 

35 Vietnam Ho Chi Minh (Minh et al., 2015) 

36 Vietnam Hanoi (Nguyen et al., 2022) 

37 Coastal - (Shirzaei et al., 2021) 
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4. METHODOLOGY 

4.1. PREPROCESSING INPUT DATASETS 

Datasets in gridded format were downloaded from multiple sources, mostly from 

Google Earth Engine (GEE) platform. Timeline 2013-2019 was considered as the temporal 

window for aggregating (mean/median) time varying datasets before downloading from 

GEE. For integrating data in a machine learning model, all datasets need to be in a uniform 

format under the same coordinate system and similar number of pixels in the gridded 

format. We projected all the downloaded datasets in WGS 1984 geographic coordinate 

system. Depending on the original resolution, the datasets were down/upscaled to a 

resolution of 0.02 deg (~2 km) to achieve a uniform grid size.  

We applied gaussian filter (kernel filtering window size 3𝜎 pixels), available in 

Scipy library (Virtanen et al., 2020), on irrigated area and population datasets to add a 

smoothing effect and remove noise. Gaussian filter normalized the datasets within an 

interval range of 0 to 1, where value towards 1 represents higher density of respective land 

use class and vice versa. The vector dataset of major rivers was processed into a gridded 

format, representing distance from major global rivers, and incorporated in the model as 

well. 

Clay % data at 200 cm depth were multiplied with the sediment thickness dataset 

to create a new ‘Clay Thickness’ dataset. Additionally, a dataset indicating the likely 

presence or absence of a confining layer was produced as part of this study. This was 

produced based on the presence of basins surrounded by high elevation, and regions within 
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25 m elevation of sea level. These regions are likely to have higher and extensive deposition 

of fine-grained sediments. 

4.2. LAND SUBSIDENCE TRAINING DATA 

Figure 4.1 provides the workflow of our modeling steps. Average vertical 

deformation rate (unit in cm/year) of subsiding areas, where significant groundwater 

pumping has been recorded historically, were used as training data in the model. 

Subsidence data collection by directly processing InSAR data requires a significant time, 

being computationally expensive. Therefore, we relied on primary (directly 

processed/collected already processed data) as well as secondary InSAR data sources to 

accumulate land subsidence information for this study. Primary data include InSAR data 

over Quetta valley in Pakistan, Qazvin in Iran, North China Plain and Hefei region in 

China, California, and Arizona in US.  

 

 

Figure 4.1: Workflow of data processing and machine learning model integration. 
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For collecting secondary data, we developed a database of almost 300 subsidence 

studies around the world. The database was filtered for studies that analyzes InSAR data 

to study subsidence that is associated with groundwater pumping only. As discussed in 

Section 2.2, inelastic subsidence can continue up to decades. So, we extended the timeline 

back to 2006 so that our model can capture long-term subsidence that is happening in 

current years. Inelastic subsidence happening in period 2013-2019 might be because of 

groundwater pumping around 2006 in pumped regions. We took images of average vertical 

deformation maps from filtered research articles. The maps were georeferenced using 

ArcGIS tools and ArcGIS built-in tree based algorithm was used to extract deformation 

information from the georeferenced maps. If deformation was reported in the Line of Sight 

(LOS) direction, we converted it to vertical values using satellite incidence angle. The 

extracted data were classified into three classes: <1 cm/year subsidence, 1-5 cm/year 

subsidence, >5cm/year subsidence. Subsidence data collected from research articles are 

referred as georeferenced subsidence data in this study, but they are based on InSAR 

processing. We also integrated vertical land deformation data, based on global navigation 

satellite system (GNSS), from Shirzaei et al. (2021) for coastal regions around the world 

and classified them into our subsidence categories. Out of nearly 3000 samples of this 

dataset, 98% falls into the <1 cm/year class. For this global study, <1 cm/year subsidence 

is considered as negligible to no subsidence class while the other classes represent medium 

to significant subsidence. But it should be noted that subsidence of <1 cm/year values can 

be significantly damaging for coast-side regions due to the impact of climate change and 

resulting sea level rise.  
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Finally, directly processed subsidence data (primary) and the georeferenced 

subsidence data (secondary) were merged and resampled to a spatial resolution of 0.02 deg 

(~ 2 km) to form training subsidence data. This training dataset was used to train the 

machine learning model so that the model can understand inter-relations between 

subsidence and its driving variables. 

4.3. RANDOM FORESTS MODEL PREDICTION 

Variables interplaying in land subsidence have complex non-linear relationships 

that can be explored using a machine learning model. Random forests model performs well 

with non-linear variables and creates randomness in data to minimize noise (Breiman, 

2001). It does not require input variable normalization, being a tree based algorithm, so, 

datasets with values in varying units can be assimilated in such a model without concern. 

Based on the type of output, machine learning models can be designed as a classifier or a 

regressor. Our model predicts subsidence in three classes, hence can be categorized as a 

random forests classifier.  

Multiple number of trees (n_estimators) are generated and trained by the random 

forests model. In a classifier type model, the individual results of these trees are ensembled 

by majority voting to produce the final model outcome. Each tree is trained with a 

subsample of the original training data and can be allowed to grow up to a certain depth 

represented by the parameter max_depth. The subsample data for each tree is generated by 

a technique known as bootstrap aggregating (bagging) which involves random 

subsampling from the original data without replacement and it helps in avoiding 

overfitting. One key feature of the random forests algorithm in random selection of 
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predictors while growing a decision tree. At each node (splitting point), the model selects 

a random max_features number of predictors to make further splits. Splitting continues 

until a split node holds minimum numbers of samples and generates leaf nodes containing 

a minimum number of samples, defined by the parameters min_samples_split and 

min_samples_leaf, respectively. Splits in random forests are made, using values of the 

randomly chosen predictors, in such a way that model variance is minimized. With bagging 

and random splitting techniques dealing with overfitting and variance reduction, random 

forests does not require a separate validation dataset from the training data to help with 

these issues (Breiman, 2001). n_estimators, max_depth, max_features, min_samples_split 

and min_samples_leaf are hyperparameters of the model and were optimized using K-fold 

cross validation to improve model accuracy and avoid overfitting. 

Random forests model creation requires a primary training dataset (also referred as 

response variable), in this case land subsidence data collected by primary and secondary 

methods. Machine learning model learns the relationship between input variables using the 

response variable. To create the training dataset, only grid pixels having land subsidence 

information were filtered from the input datasets. A second filtering was performed on 

those pixels to select only the pixels that do not have no data value. The resulting filtered 

dataset is referred as the original training dataset of the model. This training dataset was 

randomly split into train and test sets, with 70% data on train set and 30% data on test set, 

for model calibration and validation purpose. 80% of the subsidence observations in our 

training dataset belongs to <1 cm/year class, while 13.5% in 1-5 cm/year and 6.5% in >5 

cm/year class, creating imbalance in the dataset. A ‘balanced’ class weight was assigned 
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to prevent the model from being biased towards the majority class (<1 cm/year here). 

‘Balanced’ assigns a lowest to highest class weight value to the most frequent to the least 

frequent class to deal with dataset imbalance.  
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5. RESULT ANALYSIS AND DISCUSSION 

5.1. MODEL ACCURACY 

Performance of the model was assessed with F1-score, being a machine learning 

classifier model, on testing set for individual classes and for all classes. F1-score for <1 

cm/year, 1-5 cm/year and >5 cm/year are 0.95, 0.7 and 0.88, respectively. Considering all 

classes, the macro F1-score is 0.84. To avoid overfitting, we optimized the 

hyperparameters and compared model’s performance with train and test set. Table 5.1 

shows F1-score for discrete classes and for the entirety.  

 

Table 5.1: Model performance score on test set. 

 <1 cm/year 1-5 cm/year >5 cm/year Macro F1-score 

Train Set 0.97 0.86 0.96 0.93 

Test Set 0.95 0.70 0.88 0.84 

 

 

F1-score for <1 cm/year and >5 cm/year are satisfactory. The difference between 

score values for train and test sets for these classes indicate that they have been optimally 

trained by the model. However, the F1-score for 1-5 cm/year class is not as high as the 

other two classes, and the difference between scores on train and test sets shows that there 

is some overfitting in this class. Machine learning models with imbalance datasets can 

often get biased towards the majority observation class (Johnson & Khoshgoftaar, 2019). 
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With only 20% observations in 1-5 cm/year and >5 cm/year classes in the original training 

dataset, majority observations are in <1 cm/year class, generating bias towards this class, 

which might have affected the metrices of 1-5 cm/year class.  

 

 

Figure 5.1: Confusion matrix of test set. 

 

Confusion matrix (Figure 5.1) of the test set shows that the model misclassified 

approximately 23% of the 1-5 cm/year class, compared to 7% in <1 cm/year and 9% in >5 

cm/year classes.  We made random split of the original training dataset into train and test 

sets to ensure that both sets contain some pixels over all training regions. Therefore, even 

if some pixels are misclassified in one region, there are other pixels that are classified 

accurately to indicate ground deformation activity. Under these considerations, we 

accepted the slight overfitted metrices of the 1-5 cm/year class.  



27 

 

 

5.2. VARIABLE IMPORTANCE AND PARTIAL DEPENDENCE 

To determine how our random forests model evaluated the input variables in 

predicting land subsidence, we assessed their importance in the model. Gini importance 

(mean decrease impurity), a method that is based on node purity (James et al., 2013), was 

chosen to measure the relative importance of variables. For each variable, mean decrease 

in impurity in all the trees due to that variable is estimated to find their contribution in the 

model.  

Among the 15 variables used, the model considers soil moisture, temperature (min), 

clay thickness, confining layers, river distance, precipitation, and irrigated area density as 

the most important variables (Figure 5.2). 

  

 

Figure 5.2: Variable importance plot for the model predictors. 
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Another essential evaluation technique of machine learning model is Partial 

Dependence Plots (PDP) that show if the input variables are able capture the known 

dynamics of physical processes in the model. Figure 5.3 presents the PDP plots of the key 

variables of our model for 1-5 cm/year subsidence class. The x-axis of the plots consists of 

variable values within 5-95th percentiles (except Confining Layers). The y-axis of the plots 

represents how subsidence prediction varies with a variable when all the other variables 

are also contributing to the model outcome. The input variables added to the model were 

direct measurements or proxies of principal drivers of land subsidence and groundwater 

withdrawal. While selecting each variable, we had a preliminary assumption on how they 

will affect subsidence prediction. 

 

 

Figure 5.3: The partial dependence plot for the 1-5 cm/year class. 
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As discussed in Sections 2.1 and 2.2, presence of clay and fine-grained confining 

unit in confined or semi-confined aquifer are major impetus of inelastic subsidence. PDP 

plot of clay thickness demonstrates that subsidence probability increases with thickness of 

clay. Subsidence phenomena generally occurs over agricultural lands and developed areas 

where surface water availability is limited. Response from our irrigation, population 

density and river distance datasets justify this rational assumption. Irrigation demands more 

groundwater in arid and semi-arid regions where precipitation is lower than 

evapotranspiration and surface water sources are scarce, which increases subsidence 

susceptibility. Low soil moisture indicates high irrigation water demand in croplands. Soil 

moisture PDP plot shows increased subsidence probability at lower soil moisture values. 

Thus, the presented PDP plots confirm that response of hydrologic fluxes in the model are 

realistic. In contrast to other variables, variable confining layer only has 2 values (1 for 

presence of confining units, 0 for no confining units). Response of this variable in the 

model is more interpretable if PDP plots of this predictor for all classes (<1 cm/year, 1-5 

cm/year, >5cm/year) are analyzed together (Appendix C). For <1 cm/year class, subsidence 

probability is high for no confining layer (value 0), signifying that- areas with no confining 

units tend to be less vulnerable to high subsidence. For the other classes, probability of 

subsidence increases with existence of confining units (value 1). 

5.3. GLOBAL SUBSIDENCE MAP 

Our model predicts subsidence in three classes: <1 cm/year, 1-5 cm/year, 

>5cm/year. As discussed before, we considered <1 cm/year class as the nominal or zero 

subsidence class. Figure 5.4 shows the global map of subsidence, zoomed in on regions 
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with high subsidence signatures, mapped by our random forests model. A larger map is 

showed in Appendix A. We want to clarify that our model only delineates subsidence 

related to aquifer system compaction from groundwater pumping, therefore, total 

subsidence estimates over some regions, which are undergoing subsidence from other 

sources, may not match.  

The model maps considerable amount of subsidence in countries of East Asia: 

China, Taiwan, Vietnam, and Philippines. In China, high irrigation activities have been 

mapped over the North China Plain aquifer by global irrigation mapping attempts (Meier 

et al., 2018; Teluguntla et al., 2018).  Major cities like Beijing, Shanghai, Wuhan, Xian, 

and Tianjin are in or nearby this region and heavily dependent on groundwater to support 

agriculture and urban needs (Chen et al., 2016; Dong et al., 2014; S. Higgins et al., 2013; 

Luo et al., 2014; Qu et al., 2014; Zhou et al., 2017). Our map shows high subsidence 

signature in this whole region indicating significant groundwater storage decline. Countries 

in South and middle-East Asia, such as, Bangladesh, India, Indonesia, Pakistan, Iran, 

Turkey, have high subsidence signals in particular regions as well. These predictions are 

in line with recent InSAR based groundwater studies for these regions (Andaryani et al., 

2019; Aslan et al., 2019; Chaussard et al., 2013; Dang et al., 2014; Erban et al., 2014; 

Haghighi & Motagh, 2019; Higgins et al., 2014; Hung et al., 2010; Kakar et al., 2020; 

Khorrami et al., 2020; Minh et al., 2015; Nguyen et al., 2022; Orhan et al., 2021). Our 

model also predicts subsidence in irrigated regions over Afghanistan, Turkmenistan, 

Uzbekistan, Kyrgyzstan, Azerbaijan, and mixed land use areas over Syria, Jordan, and 

Israel, where we have not found previous land subsidence studies. 
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In Europe, recent studies have shown subsidence occurring in Spain, Italy and 

England (Bock et al., 2012; Bonì et al., 2017; Corbau et al., 2019; Polcari, 2019) with low 

magnitude of less or marginally higher than 1 cm per year. Vertical land movement data 

along the coasts of Italy, Spain, Portugal,  and France from GNSS also shows deformation 

lower than 1 cm/year (Shirzaei et al., 2021), but subsidence of such magnitude can be 

significantly damaging considering the impacts of sea levels. Our model categorizes 

majority of subsidence in Europe as <1 cm/year. The map predicts large subsidence 

between 1-5 cm/year, primarily because of groundwater irrigation, in Albacete and Ciudad 

Real province, and Alto Guadalentín basin in Spain. Some 1-5 cm/year deformation signal 

has also been mapped in dominantly agricultural and industrial (Fabris et al., 2014) Po 

Delta region in Italy. 

In North America, our map shows considerable subsidence in California, Huston 

and Arizona in US and in central Mexico, which follows historic subsidence observed in 

these regions (Borchers et al., 2014; Chaussard et al., 2014; Chaussard & Farr, 2019; 

Conway, 2015; Sharma et al., 2016). Subsidence in California and Arizona is due to 

excessive groundwater irrigation while urban dependency on groundwater is responsible 

for deformation in Huston and Mexico City. The model predicts subsidence in agricultural 

lands in Texas, within the boundary of the heavily pumped  High Plains Aquifer (HPA) 

region (Butler et al., 2018), and in Washington state where Subsidence have not been 

reported before. 
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Figure 5.4: Global model prediction of subsidence. 

 

InSAR studies in Africa (Cian et al., 2019; Gebremichael et al., 2018) have 

estimated less than 1 cm per year subsidence in Nile delta and in several coastal cities, such 

as Lagos, Banjul, Mombasa, Mogadishu. Prediction from the model shows similar 

subsidence rate in these areas. The model predicts 1-5 cm/year subsidence in Morocco, 

Algeria, and Tunisia over irrigated lands. In Australia, subsidence <1 cm/ year has been 

detected in Perth and irrigation dependent Murray-Darling basin, with few locations 

undergoing higher than 1 cm/year subsidence (Castellazzi & Schmid, 2021). Our map 

detects 1-5 cm cm/year subsidence in Murray-Darling region which might be happening in 
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the alluvial aquifers consisting of clay and silt (Lamontagne et al., 2014). No significant 

subsidence has been mapped in the South American continent except over some 

agricultural lands in Argentina.  

 

 

Figure 5.5: Country statistics of subsidence prediction of magnitude >1 cm/year. 

 

Figure 5.5 shows (a) countries with highest percentage of subsidence with respect 

to their land area, (b) countries with highest area of subsidence predicted by our model. 

Percentage of subsiding area (>1 cm/year subsidence) (Figure 5.5(a)) is comparatively 

higher in Asian countries. Significant subsidence has been predicted in small island nations 

like Taiwan, Philippines. Subsidence has been mapped in humid regions as well, such as 

Bangladesh, Myanmar, China, Vietnam, Indonesia, indicating that high precipitation 
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supply is not sufficient to meet water demand in such populous regions. Globally, highest 

subsiding areas have been predicted in China followed by US and Iran (Figure 5.5(b)).  

Subsidence prediction is dominating is Arid and Semi-Arid climates where climatic 

water deficit leads to higher groundwater dependency. Approximately, 84% of our >1 

cm/year subsidence prediction lies on Arid and Semi-Arid regions. Comparison with 

MODIS land use product revealed that subsidence prediction is highest of approximately 

60% on croplands. 10% of urban and built-up lands have subsidence of >1 cm/year. 

Significant subsidence, approximately 21%, has also been observed on vegetation land use. 

MODIS land use product has 75% overall accuracy (Friedl et al., 2010), hence there is 

possibility of intermixing between vegetation and cropland classes. Vegetation sometimes 

exists in vicinity of agricultural lands and might even periodically used for agriculture 

resulting in high subsidence on this class. 

5.4. SUBSIDENCE PROBABILITY 

To assess potential subsidence risks, we generated a probability map (Figure 5.6) 

showing probability of subsidence happening in greater than 1 cm/year magnitude. 

Appendix B shows the global map of >1 cm/year subsidence probability. This map can 

also be interpreted as a map of future subsidence warnings if groundwater resources are 

exploited at current rate. High subsidence probabilities around the world are noticed in 

mostly agricultural and urban lands where groundwater dependency is significant. 

Probability values are considerably high in regions where subsidence is already happening. 

Areas showing probability within 40-60% are under future subsidence threat of higher 

magnitude, particularly if they are in the vicinity of currently highly subsiding areas.  
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Figure 5.6: Probability of subsidence >1 cm/year. 

 

In Asia, a vast region in North China Plain is significantly subsiding with more 

surrounding areas under deformation risk. Similar risk trend in observed in agricultural 

lands of Iran, Turkey, Israel, Jordan, and Syria in middle Eastern Asia and some countries 

in central Asia. 40-60% probability observed near the coasts of Bangladesh, Myanmar, 

Vietnam, Thailand, Philippines, Indonesia, Taiwan signify that increasing coast-side 

regions will be subsiding in near future if groundwater usage practice is not altered. In 

North America, high subsidence probability in California, Arizona, Texas in the US and in 

Mexico City in Mexico indicates already occurring deformation. Significant percentage of 
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lands in the HPA region shows probability (40 to 60%) of subsidence. Bulti-up areas in 

central Mexico also seem to be under high subsidence risk.  

In South America, parts of Argentina show high probability of subsidence near 

coast. Land use classification products from MODIS and other cropland datasets indicate 

that this region in dominantly non-irrigated croplands (Friedl et al., 2010; Meier et al., 

2018; Teluguntla et al., 2018), indicating less groundwater stress in the area. However, 

considering limitations of land use products, especially in identifying irrigated croplands, 

vertical deformation in this region is worth investigating using InSAR techniques. Large 

portion of Murray-Darling basin in South-western Australia shows probability of subsiding 

more than 1cm/year which supports results found in a previous study (Castellazzi & 

Schmid, 2021). In Europe, potential subsidence risk exists in Spain, Italy, and Ukraine. In 

Africa, parts of Egypt, Morocco, Libya, Algeria, and Tunisia shows subsidence risk. 

5.5. LEAVE-ONE-AREA-OUT ACCURACY TEST 

To test our model accuracy further, we designed the Leave-One-Area-Out (LOAO) 

accuracy test, inspired by a popular machine learning model evaluation technique called 

Leave-One-Out Cross-Validation. In previous sections, it was mentioned that we split the 

original training dataset randomly into train and test set for model fitting and evaluation 

purposes, respectively, as well as to ensure that the train set includes pixels from all regions 

to provide the model with better information. In the LOAO method, we did not make any 

random split, instead ran the model number of training regions times, leaving one training 

area completely out from training on each run and evaluating model performance on that 
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left out region (using it as test set). Thus, the model was iterated 36 times (did not consider 

coastal dataset during this test), each time without an area.  

 

 

Figure 5.7: Subsidence probability map from Leave-One-Area-Out test compared to 

original subsidence probability. 

 

Subsiding areas globally varies in terms of climate, hydrologic balance, and 

geologic formation. Removing one area from the training data might cost the model its 

predictive capacity for that region entirely. Therefore, the LOAO test can perform as a key 

evaluation technique for our model performance. We evaluated the model performance 

based on subsidence probability and checked if the model can detect some subsidence 
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signature over a training region without being trained with that training region data. We 

present the original model probability vs LOAO test probability for some regions of the 

world in Figure 5.7. 

We evaluated the subsidence probability from the LOAO test outcomes for each 

training area. Probability of 40% of subsiding >1cm/year subsidence was chosen as the 

threshold value for categorizing the results using the polygon boundary extent of each 

training region (Figure 5.7(a, c, e) show respective polygon extents). We assigned 

‘satisfactory’ accuracy if number of pixels with > 40% subsidence probability was higher 

than number of training subsidence pixels in that polygon extent. Result for areas where 

some subsidence probability of > 40% was observed was contemplated as ‘acceptable’ as 

the model was able to predict some high subsidence signature over that area without 

including the training data of that area. If these two criteria were not met, LOAO test 

performance was determined ‘not satisfactory’ for that region. Table 5.2 shows LOAO test 

results for 36 training regions of the model, out of which only 9 were categorized ‘not 

satisfactory’ according to the criteria described above. We had seven regions in the original 

training dataset where subsidence values all belonged to <1cm/year class. They were 

classified as ‘satisfactory’ if corresponding areas in respective models predicted <1cm/year 

subsidence majorly. For example, San Luis Valley, Colorado training data consisted of 

only <1cm/year class and the model in LOAO test without this data predicted only 10.5% 

pixels with higher subsidence probability, therefore, it was considered ‘satisfactory’. 22 

regions show ‘satisfactory’ and 4 show ‘acceptable’ accuracy. Result was ‘not satisfactory 
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for 10 regions. The ‘bolded’ marked regions are where training data only consisted of <1 

cm/year observations. 

 

Table 5.2: Results of Leave-One-Area-Out accuracy test. 

No. Country Regions 
Accuracy 

category 

% Pixels with > 40% 

probability 

1 Philippines Manila satisfactory 8.17 

2 China Hefei satisfactory 13.59 

3 Spain Murcia satisfactory 16.44 

4 Mexico Mexico City satisfactory 16.98 

5 Turkey Karapinar satisfactory 21.08 

6 Vietnam Ho Chi Minh satisfactory 22.40 

7 Iran Mashhad satisfactory 33.91 

8 Iran Marand Plain satisfactory 37.86 

9 China Beijing satisfactory 42.38 

10 Bangladesh GBM Delta satisfactory 46.56 

11 China Yellow River Delta satisfactory 48.00 

12 China Xian satisfactory 48.18 

13 China Tianjin satisfactory 69.12 

14 China Hebei satisfactory 74.32 

15 Vietnam Hanoi satisfactory 79.41 

16 Indonesia Semarang satisfactory 0.12 

17 Iran Qazvin acceptable 0.36 

18 
United 

States 
California acceptable 3.55 

19 Indonesia Bandung acceptable 3.86 

20 Iran Tehran acceptable 4.76 

21 Australia Perth satisfactory 0.00 
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Table 5.2: Results of Leave-One-Area-Out accuracy test (cont.) 

No. Country Regions Accuracy category 
% Pixels with > 40% 

probability 

22 England London satisfactory 0.00 

23 Italy Venice satisfactory 0.00 

24 Nigeria Lagos satisfactory 0.00 

25 Iraq Tigris Euphrates Basin satisfactory 0.35 

26 US 
San Luis Valley, 

Colorado 
satisfactory 10.49 

27 Egypt Nile Delta not satisfactory 15.73 

28 China Shanghai not satisfactory 0.00 

29 China Wuhan not satisfactory 0.00 

30 India Delhi not satisfactory 0.00 

31 Italy Po Delta not satisfactory 0.00 

32 Pakistan Quetta not satisfactory 0.00 

33 Taiwan Yunlin not satisfactory 0.00 

34 Turkey Bursa not satisfactory 0.00 

35 US Huston not satisfactory 0.01 

36 US Arizona not satisfactory 0.03 

5.6. COMPARISON WITH GLOBAL STUDIES 

There have been very few studies on global groundwater storage, especially for 

deep confined or semi-confined aquifers. Our model predicts groundwater storage loss in 

deep aquifers in terms of land subsidence. Therefore, we compared our model’s result with 

global groundwater depletion study by Wada et al. (2010). Figure 5.8 shows the 

comparison between two studies in major groundwater stressed regions (1- both study 

results match; 2- our study predicts large groundwater storage loss while Wada et al. (2010) 
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does not; 3- Wada et al. (2010) estimates large groundwater decline while our study does 

not).  

 

 

Figure 5.8: Comparison of model result with Wada et al. (2010). 

 

In North China (Figure 5.8(b)), similar groundwater storage loss pattern (>1 

cm/year) is observed in both studies. In North America (Figure 5.8(a)), both studies predict 

aquifer loss in central valley (California) and central Mexico. Wada et al. (2010) estimates 

large depletion in HPA region in US but our model only shows subsidence in parts of 

Texas. In central Asia, our results show aquifer loss in Uzbekistan, Afghanistan, 

Turkmenistan, Kazakhstan, and Azerbaijan in contrast to Wada et al. (2010). Both models 

predict groundwater depletion over Iran while Wada et al. (2010)’s estimate covers larger 
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spatial extent than our study. Large groundwater depletion in India is estimated in Wada et 

al. (2010) as well where our model predicts no significant subsidence.   

Regardless the approach, both studies have been able to identify groundwater 

decline in key water-stressed regions. Number of reasons might have affected the 

inconsistency in results by the studies in some areas. Wada et al. (2010) assimilated global 

hydrological model generated groundwater recharge and publicly available groundwater 

use data, available from multiple sources, to map annual global groundwater depletion (for 

year 2000) in sub-humid and arid climates (Wada et al., 2012). Groundwater abstraction 

records from scattered sources may not be coherent and might fail to represent complete 

groundwater usage scenario being spatially inconsistent. However, we believe that the 

study was able to recognize regional pattern of groundwater depletion trend of that 

timeline. The reported spatial resolution of the depletion data is 0.5 deg (~55km) which is 

much coarser than our model resolution. This might have an impact on higher spatial extent 

reported by the study compared to our results in some places. Also, the depletion study did 

not segment their estimate into confined and unconfined portions rather reported the total 

depletion, while in our study storage loss in only confined or semi-confined aquifers have 

been modeled, which might have caused the difference in values in the studies. Future 

studies can be focused on regions where both studies do not converge. Comparison of our 

study result in North China Plain with a regional study (Gong et al., 2018) also found 

similar groundwater storage loss trend in that area by both studies.  

For this research, no in-situ data was incorporated in the model rather we depended 

on open source remotely sensed and model-based datasets, which made the input datasets 
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spatially and temporally consistent, and easily collectable. High quality was maintained in 

accumulating and processing the training InSAR data.  To ensure that our model recognizes 

groundwater storage loss associated inelastic deformation, we only considered studies that 

reported long-term vertical deformation from InSAR. Adding directly processed InSAR 

data with georeferenced InSAR data made the training data more robust and helped our 

model recognize subsidence pattern in vulnerable groundwater stressed regions, such as 

California in US, regions in Iran, North China Plain in China. 

5.7. STUDY UNCERTAINTIES 

Machine learning model performance is related to quality and quantity its training 

data. Training data used in our model has reasonable number of observations though class 

imbalance restricts the model’s ability to predict minority classes (1-5 cm/year and >5 

cm/year) to some extent. Significant number of our training data were extracted from 

research articles. This process involved georeferencing and accurately segmenting 

deformation rate into three classes. Both processes are based on human perception and 

prone to some level of uncertainties. We maintained a georeferencing residual value below 

0.004 in most cases for ensuring uniformity. 

InSAR processing is the primary source of land deformation data in the research 

articles from which we extracted training data. We also processed InSAR data over some 

regions directly to form the model’s training dataset. Data processed from InSAR have 

uncertainties from atmospheric disturbance (Higgins et al., 2014; Reeves et al., 2014), 

irregularity in surface scattering (Erban et al., 2013) and tropospheric hindrance (Fattahi & 

Amelung, 2015), which were accumulated in the training data we formed.  
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Gridded datasets used in this study as input variables have inherent uncertainties 

from their sources. Remotely sensing based estimates are bound by their sensor’s 

limitation. Sometimes post-processing, filtering, and statistical methods are applied on 

remote sensing datasets to refine the data or to come up with a new dataset from multiple 

remote sensing estimates, such as land use classification. Such techniques transfer the 

parent dataset’s uncertainties to the new dataset formed. TerraClimate climatic estimates 

inherit uncertainties from their forming datasets. Water balance components of 

TerraClimate comes from a 1-D land surface model and limitations of the model 

assumptions can add uncertainties to the resulting estimates (Abatzoglou et al., 2018).  
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6. CONCLUSIONS 

In this study, we developed a machine learning model that maps groundwater 

withdrawal associated inelastic land subsidence and subsidence probability at a high spatial 

resolution (~2 km) based on open source remotely sensed and model-based datasets. To 

the author’s knowledge, this is the first attempt to map subsidence magnitude globally 

integrating machine learning and open source datasets.  We trained our model with InSAR-

derived land deformation data for 36 regions of the world to capture climatic and water use 

characteristics of representative regions. The model shows realistic response to land use 

patterns and hydrologic fluxes in partial dependence plots. Most of the predicted subsiding 

regions, approximately 70%, are on croplands and urban areas, which indicates high 

groundwater dependency of the predicted regions. High probability of subsidence with 

increase in irrigation and population density represents the model’s ability to contemplate 

the relation between long-term subsidence and groundwater use in those land use. As 

inelastic subsidence causes permanent loss of aquifer storage, the predicted regions are 

where groundwater storage is permanently declining. Comparison with documented 

subsidence locations shows that the machine learning model was able to reveal the true 

spatial extent of subsidence in some regions. These subsiding areas might keep 

experiencing future subsidence, with increasing risk to spatially extend subsidence extent 

as shown in our subsidence probability map, if water use practice is not modified. We also 

identified subsidence in locations where groundwater related subsidence has never been 

studied and reported before. These regions are undergoing critical groundwater stress and 

it is essential to partake effective long term aquifer monitoring to understand the true 
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dynamics of groundwater resources in the affected regions. Additionally, regional studies 

incorporating InSAR data analysis should be undertaken for the mapped subsidence risk 

areas. Such efforts will help to formulate appropriate groundwater use, recharge, and long-

term action plan for aquifer sustainability. 
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APPENDIX A. 

GLOBAL MAP OF LAND SUBSIDENCE
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Figure A1: Global Subsidence Map 
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APPENDIX B. 

GLOBAL MAP OF PROBABILITY OF >1 CM/YEAR SUBSIDENCE
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Figure B1: Global map of probability of >1 cm/year subsidence. 5
0
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APPENDIX C. 

PARTIAL DEPENDENCE PLOTS OF VARIABLE ‘CONFINING LAYERS’  

FOR ALL MODEL CLASSES
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Figure C1: Partial dependence plots of variable ‘confining layers’ for all 

model classes. 
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