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ABSTRACT 

 

 

 

Compliant mechanisms derive some or all of their mobility from the deflection of 

flexible members.  A pseudo-rigid-body model (PRBM) provides an elegant and simple 

way of modeling and analyzing traditionally nonlinear large-deflection problems 

pertaining to compliant mechanisms.   In this work, several aspects pertainting to the 

dynamics of compliant mechanisms are considered.   First, dynamic models are derived 

to predict not only the natural frequency of the large-deflection systems, but also the 

transient response, using the PRBM approach. A unique multi-stage damping model is 

developed to determine the transient response in free vibration.    Recent works have 

neglected to consider the transient response prediction of these problems.  Investigations 

are conducted into the dynamic analysis of partially compliant slider mechanisms, 

composed of rigid and compliant segments as well as revolute and prismatic pairs are 

considered.  The static response of these mechanisms is predicted and tested.  The PRBM 

is then used to determine their dynamic response with emphasis on the energy 

characteristics of these mechanisms.  Specifically, modular constant-force mechanisms 

are considered in this work primarily for their unique force-deflection characteristics.  It 

is anticipated they would have a multitude of applications.  Experimental results are 

presented ranging from static to dynamic testing.   
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1. INTRODUCTION 

 

 

 

1.1  COMPLIANT MECHANISMS 

Compliant mechanisms are devices that gain some or all of their mobility through 

the deflection of their flexible members.  This deflection is accompanied by a 

transformation or transference of motion, force, and/or energy [1,2].  Figure 1.1 shows a 

one-piece compliant fish hook remover, the Compliers [3], which utilizes a fully-

compliant mechanism.  The motion and force transference is enabled due to the 

compliant segments of the mechanism.  A majority of mechanisms can be made 

compliant by replacing their rigid member with  flexible segments.  

 

 

 

 

Figure 1.1. Compliers® Fully Compliant Fishhook Remover 

 

 

 

 

Compliant mechanisms are typically designed for prescribed displacement and/or 

force boundary conditions and/or energy storage requirements. With the definitions 

provided in [1, 2], a compliant mechanismmay be designed with the notion of integrating 
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its function into the body of the mechanism; several advantages are realized as a result.  

Simply by applying appropriate design methodologies, compliant mechanisms exhibit: 

1.) Part-count reduction 

2.) Reduced assembly time 

3.) Simplified manufacturing processes 

4.) Increased precision 

5.) Increased reliability 

6.) Reduced wear and lash 

7.) Reduced weight 

8.) Reduced maintenance 

However, compliant mechanisms typically exhibit two drawbacks.  First, 

compliant mechanisms frequently experience large deflections, and their analysis is 

rendered difficult using traditional engineering methods.    Second, issues of creep and 

fatigue become more important and have to be considered more carefully. 

 

1.2  HISTORICAL DEVELOPMENT OF COMPLIANT MECHANISMS 

Compliance in life has been a part of the world since the beginning.  Natural 

compliance may be found in tree saplings, where early humans exploited the energy 

storage characteristics to make tools and weapons.  Perhaps the earliest example of 

compliance can be found in the atlatl and dart.  The atlatl itself is a rigid extension, 

however, the dart may be regarded as a flexible energy storage element [4].  Another 

early example, perhaps more widely known, would be the English longbow constructed 

from the Yew bush [5].   It is interesting to note that while looking at mechanisms in 
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history, compliant mechanisms had their hand in expanding ancient civilizations who had 

first developed them.  More recently, development of compliant mechanisms has 

exploded, and for less baser objectives than war.  The development of non-pneumatic 

tires, for example the Michelin X-Tweel, has resulted in an airless tire that utilizes a 

compliant honeycombed structure to provide support [6].  Researchers at Brigham Young 

University have developed a compliant replacement for spinal disks as an alternative to 

spinal fusion [7].  Numerous examples may be seen in the development of compliant 

robot end effectors that aid in increased precision, reliability, and safety. 

The study of elastica had been developed for years prior to the publication of 

Leonhard Euler’s work in 1744. He deserves much credit for building upon and 

expanding the field of elastica analysis by providing characterization of curves and 

solutions to differential equations [8]. After Euler, the field of large deflection became 

relatively stagnant until 1968, when Burns and Crossley [9] used kinetostatic approaches 

to synthesize and analyze large-deflection mechanisms.  Bisshopp and Drucker [10] 

developed closed-form elliptic integral solutions to the large-deflection analysis of a 

cantilever beam end loaded with a vertical force.  Her and Midha [11] developed a 

method known as the chain algorithm that discretized a continuum into small, straight 

beam segments, and treated each segment as a cantilever beam with fixed end conditions 

to the preceding element.  This method utilized a shooting method with an iterative 

Newton-Raphson method to solve for specified displacement boundary conditions.  This 

method continues to serve as a precise and rapid solver for complex geometries and 

loading conditions. 
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Salamon [12] developed methods of designing rigid-link mechanisms and 

implementing a compliant link to analyze the mechanism utilizing a Pseudo-Rigid-Body 

Model (PRBM), discussed in depth in the next chapter.  Salamon and Midha [13] studied 

the effect of compliance on the mechanical advantage of mechanisms.  Midha et al., [14] 

and  Bapat [15] utilized these concepts and further investigated mechanical advantage of 

compliant mechansisms drawing important conclusions.  Byers and Midha [16] 

developed a parallel compliant griper device using the chain algorithm.  Nahvi [17] 

developed static and dynamic models of compliant mechanisms using a finite element 

approach.  Murphy [18] generalized a theory of type synthesis for compliant mechanisms 

by adding compliant features to existing rigid-body mechanisms.  Howell [19] 

investigated the energy storage and kinematic equations of PRBM to synthesize 

compliant mechanisms for desired energy storage characteristics.  Howell and Midha [20] 

proposed a PRBM for analysis purposes and optimization of fully compliant mechanisms, 

and Howell and Midha [21] designed mechanisms using small-length flexural pivots 

(SLFPs).  Howell [22] and Howell and Midha [23] extended the PRBM for cantilever 

beams subjected to any combination of moment and end-force loads. Midha et al., [24] 

and Bapat [15] presented a PRBM model for a compliant beam with an inflection point.  

Mettlach and Midha [25] developed the concept of the characteristic deflection domain, 

and this work was utilized by Bapat [15] and Midha and Bapat [26].  Pauly [27] and 

Kuber [28] presented works leading to improvements in parameterization of key values 

of the PRBM 
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1.3  HISTORICAL DEVELOPMENT OF CONSTANT-FORCE MECHANISMS 

Early work can be witnessed in the development of constant-force springs, which 

resemble a coil of sheet metal.  These springs can generate constant force for large ranges 

of motion [29].  Some of the earliest patents for constant-force mechanisms can be seen 

in [30-32].  These mechanisms utilize a combination of rigid links and mechanical 

springs to achieve constant force over a desired range of motion.  Harmening [33] 

developed a four bar mechanism for mass balancing.  Carson [34] developed a synthesis 

technique to achieve mechanisms with the same input and output forces for the general 

mechanism case.  Jenuwine and Midha [35] used loop-closure and energy methods to 

develop a mechanisms leading to a constant-force output for accelerated pavement 

testing.  Murphy [18] developed type synthesis methods for compliant mechanisms and 

discussed partially compliant constant-force configurations.  Howell et al., [36] utilized 

an optimization scheme of the PRBM to synthesize constant-force four-bar mechanisms.  

Midha et al., [37] employed this theory for electrical connectors.  Miller et al., [38] 

experimentally validated the theory of dimensional synthesis.  Parkinson et al., [39] 

utilized parametric optimization to develop constant-force mechanisms.  Evans and 

Howell [40] developed a robotic end-effector for glass cutting applications.  Weight [41] 

compared compliant constant-force mechanisms based on certain parameters like 

stiffness, percentage constant force, etc., and optimized them to obtain new mechanisms 

with improved characteristics. Nahar and Sagar [42] analyzed a constant-force 

relationship for a double-sided mechanism used for micro/macro applications and 

experimentally validated the relationship. Howell and Magleby [43] developed a 

resistance module for an exercise machine that would provide a substantially constant 

output force for a range of input displacement. Meaders and Mattson [44] performed a 
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robust design optimization of constant-force electrical connectors that were subjected to 

mating uncertainty. Hajhashemi et al., [45] developed a constant-force micro-gripper for 

precise positioning of needles and surgical knives in teleoperation surgeries. Lan et al., 

[46] presented a constant-force mechanism to regulate the contact force of a robot end-

effector. Ugwuoke [47] designed and developed compliant constant-force mechanisms 

for use as constant-force compression spring electrical contacts. 

 

 1.4  HISTORICAL DEVELOPMENT OF COMPLIANT MECHANISMS                                                                 

AA  DYNAMICS 

   The study of large-deflection dynamics has been very broad and not specifically 

tailored to compliant mechanisms.  However, two specific works exist that study the 

large-deflection vibrations of compliant mechanisms.  These works also provide the 

inspiration for the present research. Boyle [48] extended the static development of the 

constant-force four bar mechanisms and applied Lagrangian dynamics to obtain a closed-

form model to determine the dynamic response.  The constant-force four bar mechanisms 

were developed in [37]  Static and dynamic testing was done, however conclusions drawn 

may not be completely representative of constant-force mechanisms as the static portion 

of testing failed to yield constant force.  Lyons [49] studied the natural frequency 

characteristics of compliant cantilever beams in combined loading and compared with 

FEA and experimental results.  The theory was based on utilizing the mass moment of 

inertia of the PRBM as the mass term.  The theory was also applied to micro and macro 

mechanisms with experimental validation.  Yu et al., [50] developed natural frequency 

predictions based on energy equivalence methods.  Wang and Yu [51] developed highly 

parametric equations to develop the energy expressions for different loading conditions 

and extend this theory to four bar mechanisms with negligible side link masses.  There 
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exist numerous other works that are tailored to a specific mechanism and lose generality 

and typically involve finite element methods, as in the  work of [52]. 

 

1.5  SCOPE OF INVESTIGATION 

 The main objective of the present work is to implement a constant-force 

mechanism design, experimentally test the mechanism for force constancy, develop a 

simplified dynamic model utilizing basic compliant mechanism principles, and provide 

experimental validation of the dynamic model developed.  The primary device under 

consideration is a 2-D planar, four-bar compliant slider mechanism.  The present research 

is divided into six sections.   

 Section 1 presents an introduction and a historical development of the pertinent 

components of the present research. 

 Section 2 presents current methods for large-delfection analysis, knowns as the 

PRBM.  The PRBM for end force loading condtions will be discussed in detail.   

  Section 3 will discuss the development of the basic dynamic model for 

compliant segments undergoing beam end forcing. A new dynamic model will be 

presented in contrast to previous work.  The transient response of a single segment will 

be discussed and experimental results provided. 

 Section 4 will discuss the development on a compliant constant-force slider 

mechanism based on the virtual work approach.  An optimization scheme is implemented 

to determine appropriate design parameters that provides a constant force or nearly 

constant-force mechanism.  Static test results will be presented. 
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 Section 5 will detail the experimental dynamic testing completed on the constant-

force mechanism. 

 Section 6 will discuss conclusions drawn and provide a path towards future 

research that should be completed. 

 The motivation for this study is twofold.  Firstly, little work has been done 

studying the dynamic energy characteristics of compliant mechanisms by way of the 

pseudo-rigid-body model.  Properly modeling the energy characteristics of compliant 

mechanisms in a dynamic scenario will only help to further their applications.  Secondly, 

mechanisms with unique force deflection curves have interested the engineering 

community for several years.  The applications using constant-force mechanisms are 

expected to be bountiful and a further study of these mechanisms and proper modeling 

techniques is necessary.  From biomedicalto electro-mechanical to manufacturing 

applications, these mechanisms are increasingly finding utility in a host of industries.  

Therefore, in order to advance their usage, a thorough understanding and modeling 

methodology must be developed.  
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2. LARGE-DEFLECTION ANALYSIS 
                    

 

        

2.1 INTRODUCTION 

The geometric nonlinearities associated with large deflections pertaining to 

compliant mechanisms makes analysis very difficult.  The underlying equation that 

requires a solution is the classic Euler-Bernoulli Beam Equation:  

 M EI
s


 


  (1) 

Traditional analysis assumes small deflections, leading to the assumption that 

curvature is equal to the second derivative of the deflection as shown below: 

 
2

2

y
M EI

x


 


  (2) 

In large-deflection analysis this assumption does not hold true, and the proper 

equation is given by below  In turn the solution to the large-deflection problem becomes 

problematic.     

 
3

2 22

2

1

1

s
y y

x x




  
    
         

 

  (3) 

In order to address these issues, Bisshopp and Drucker [10] developed closed-

form solutions for cantilever beams for vertical end loads.  Benamar and Bennouna [53] 

presented methods of weighted coefficients to solve nonlinear vibration problems and 

decomposed the solutions on a per mode basis.  Gorski [54] presented a compilation of 
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large-deflection analysis with hundreds of sources.  It can be seen that in the arena of 

large deflections a multitude of analysis methods exist, all focused around solving 

equation (3).  These methods include numerical methods, elliptical integral, and PRBM 

models.  A straightforward method for practicing engineers for a quick implementation is 

the PRBM.  The PRBM allows both graphical visualization and accurate solutions to 

large-deflection problems.  The PRBM utilizes several optimization routines that have 

been tabulated as functions of beam geometry and loading.  Section 2.2 will discuss these 

parameters in context of a cantilever beam.   

 

2.2  THE GENERAL PRBM MODEL FOR CANTILEVER BEAM WITH FORCE   

AA AND FREE END (FIXED-PINNED) 

A cantilever beam with length L and uniform cross section undergoing small 

strain deflection is shown in Figure 2.1. The end force can be a combination of vertical 

(P) and horizontal (nP) loading, where the resultant force is applied at an angle of ϕ.  The 

beam end angle is denoted by 0  .  By assuming small strains, the beam geometry 

remains approximately the same before and after deflection, which has been proven true 

through multiple experimental results [15]. 
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Figure 2.1. Cantilever Beam Undergoing Large-deflection 

 

 

 

 

Upon examination, the free end of the beam is seen to follow a nearly circular 

path with a center of curvature, known as the characteristic pivot, located near the 

clamped end of the beam [19].  Physically, the beam undergoes deflection along the 

entire length of the beam, however as one approaches the clamped end, the deflections 

become smaller.  The PRBM of the cantilever beam is modeled as two rigid links joined 

at the characteristic pivot with a torsional spring.  The location of the characteristic pivot 

was found in [20] via optimization to be at a distance of L  from the free end.   , is 

known as the characteristic radius factor.  The torsional spring mimics the resistance to 

bending of the continuous beam.  The PRBM of the beam is shown in Figure 2.2. 
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Figure 2.2. PRBM of Large-deflection Cantilever Beam 

 

 

 

 

  The angle  is referred to as the pseudo-rigid-body angle, and is a measure of the 

beam deflection in the PRBM.  The beam end location can be found using equations 

below, where a is the horizontal location and b is the vertical location.  It is important to 

note that the values for the PRBM constants may be obtained using either the averaged 

integral equations, or tabulated values in the literature.  Recently, Midha et al., [55] gave 

improved PRBM variables that were an improvement on those given in [22]. 

 [1 (1 cos( ))]a L         (4) 

 b L (sin( ))      (5) 

The equation to find the torsional spring stiffness is given below: 
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K

K
E I

L

   
   (6) 

While many other segment types exist, the fixed free beam is the main subject of 

the present research.  Readers are referred to Bapat [15] and Karthik [56] for further 

review of the segment types.  The limitations of the PRBM include increasingly higher 

error as the PRBM angle increases.  Furthermore, the PRBM is only applicable to small 

strain deformation, which implies that the beam must be of Euler-Bernoulli type.  This 

section presented several methods of large-deflection analysis.  By comparison, the 

PRBM is a simplified approach to the large-deflection problem as compared to the 

elliptic integral approach.  While the chain algorithm has proven to be fast and accurate, 

the user often can lose the visualization that the PRBM offers.  
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3. LARGE-DEFLECTION DYNAMICS 
 
 
 

3.1 INTRODUCTION 

The PRBM has been shown to accurately predict the static response of large-

deflection members.  Given the static response is accurately portrayed, a dynamic model 

can be developed based on the PRBM.  A brief explanation of the Euler-Bernoulli model 

will be given, but first several fine points must be enumerated about compliant 

mechanisms and their behavior. 

The large-deflection problem has been studied by numerous researchers.  Early 

research was done to provide a closed-form solution that could be solved.  With the 

advent of the PRBM, a numerical solution was presented that gave an algebraically 

closed-form solution that was accurate to within an acceptable degree of 0.5% relative 

error [19].  Recently, several attempts have been made at using finite element analysis 

techniques and numerical optimization schemes that are quite cumbersome to the end 

user and do not capture the simplicity and elegance of the PRBM.  While the PRBM as 

used here is a single-degree-of-freedom system, the development of PRBM’s containing 

multiple characteristic pivots can be used in a similar manner for dynamic situations.   

 Midha [57] identified the fundamental concept of compliant mechanisms: 

compliant mechanisms behave as they are designed to.  Behavior of mechanisms is often 

not fully integrated into the design process.  However, by the unique nature of compliant 

mechanisms, the mechanism behaves in a deterministic fashion and is limited in the 

number of ways that it can behave.  This behavior was investigated by Midha and 

Bagivalu Prasanna [58] by investigating the number of statically deflected positions 
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possible.  This work provides a foundation of how to determine the possible deflected 

shapes of a compliant mechanism based on the minimum of potential energy.  In this 

development, non-following force, and beam end loading only are considered [20].  

Given these constraints, there are a very limited number of ways in which the beams may 

be deflected. 

It would be appropriate here to distinguish the large-deflection compliant systems 

on hand from yet another class of large displacement motions, as in high speed 

machinery undergoing vibration superposed onto the nominal rigid-body motion.  The 

resulting equations of motion are characterized by time-dependent coefficients, and the 

system is subject to parametric vibrations and instability [59]. 

Another justification for the use of a single-degree-of-freedom system is found by 

analyzing the small-deflection Euler-Bernoulli beam.  A good dynamic model should 

encapsulate the majority of potential and kinetic energies of a system.  Analyzing the 

linear Euler-Bernoulli beam model, and observing the energies as a function of mode 

numbers will help to understand the relative order of contributions of modes. Figures 3.1 

and 3.2 show the kinetic energy and potential energy, respectively, vested in each mode.  

As seen in these figures, the majority of energy is captured in the first mode of free 

vibration.  Figures 3.1(b) and 3.2(b)  show amplified plots to highlight the relative energy 

contents of the higher modes.  The plots in Figures 3.1 and 3.2 represent the energy 

contents in each mode contributing to the total motion of the free vibration response 

when the beam end is given an intial deflection and released.  As may be seen, a majority 

of the energy is captured in the first mode of vibration, an expected result due to the intial 

deflection in the first mode.   
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(a) 

 
(b) 

 

Figure 3.1. Normalized Kinetic Energy for Cantilever Beam 
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(b) 

 

 
(a) 

 

 

Figure 3.2. Stiffness Normalized Potential Energy for Cantilever Beam 

 

 

 

 

The potential energy in large-deflection cantilever beams were investigated using 

ANSYS® and compared with that of the PRBM.  The beam end was deflected and the 

corresponding strain energy was determined using Ansys®
 and the PRBM®.  Young’s 
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Modulus was held constant for each trial in order to simplify the testing.  The data shows 

what has been observed in the past, that the PRBM predicts slightly stiffer segments.  The 

results are shown in Table 3.1.  While the PRBM predicts slightly stiffer segments, the 

potential energy terms are adequately accounted for under static considerations. 

 

 

 

Table 3.1. Potential Energy Comparison 

 

 

 

3.2  EULER-BERNOULLI BEAM MODEL 

In continuous vibration models several assumptions are made that allow for the 

solution of a differential equation to predict the deflection response.  The solution is 

comprised of the homogenous and non-homogenous portions; both the forced and free 

vibrations are readily solved.  The forced portion of the solution is due to the external 

forcing on the dynamic system.  The free vibration is a result of the natural frequency 

response due to the initial conditions.  The equation of a slender cantilever beam 

undergoing forced vibration, without any system losses is shown below[60]: 

 

2

2 22

2 3 2

2 2

( , )

( , )
A ( , )

( , )
(1 ( ) )

w x t

w x tdxE I F x t
x dtw x t

dx



 
  
      

  
  

  (7) 

Width Thickness Length 
Beam End 

Displacement 

Potential 

Energy  

ANSYS® 

Potential 

Energy 

PRBM 

% Error 

0.1 0.1 10 5 10.884 11.216 2.96 

0.5 0.1 15 10 75.80 76.77 1.26 

0.1 0.5 15 10 1894.29 1919.18 1.30 
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Where w(x,t) represents the transverse deflection, ρ the mass density, A the cross-

sectional area, E the Young’s Modulus of elasticity, I the mass moment of inertia, and 

F(x,t) the external forcing function.  Under the small-deflection assumption, the nonlinear 

terms can either be disregarded due to the smallness of their contribution, or be 

transformed into the following [60]: 

 
4 2

4 2

( , ) ( , )
A ( , )

w x t w x t
E I F x t

x dt


 
     


  (8) 

 It is important to note that the natural frequency for each mode of a cantilever 

beam can be solved by the eigenvalue equation shown below [60]:  

 
4

4

4

( )
( ) 0

d W x
W x

dx
     (9) 

subject to the boundary conditions: 
2

2

(0) (L)
(0) 0, 0, 0,
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W

dx dx
   and 

3
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(L)
0

d W

dx
  

where, 
2

4 A

EI

 
    (10) 

and ( )W x  represents the mode of vibration.  Numerous texts tabulate several eigenvalues 

[60], β, and the natural frequency, ω, is easily found from using Table 3.2 and equation 

(10). 

 

 

 

Table 3.2. Eigenvalues (β) for the First Five Modes of a Cantilever Beam  

Mode Number 1 2 3 4 5 

Eigenvalue (β) 1.8751 4.6941 7.8548 10.9955 14.1372 
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The above derivation, however, only applies to small-deflection dynamics.  

Nonlinear terms in the potential energy arising from nonlinear geometry pose a difficult 

problem.  However, work done by Azrar et al. [61] shows that for a clamped-clamped 

beam, the change in natural frequency by accounting for the nonlinearity is only 2.22%.  

Furthermore, [53] shows that the modal participation factor for large-deflection 

vibrations of a clamped-clamped beam is 99.8598%.  The modal participation factor is a 

method of measuring the relative contribution of each mode of vibration to the total 

solution [62].  While these results are not specific to the cantilever beam, they do shed 

light as to the similarities of the small deflection assumption and the large-deflection 

problems.  As suggested, the PRBM predicts the potential energy of the nonlinear beam 

adequately.  Therefore, the next step would be to calculate the natural frequency or the 

kinetic energy of the PRBM.   

 

3.3 PSEUDO-RIGID-BODY DYNAMIC MODEL 

 Before a PRBM is suggested, the following assumptions are made relative to the 

elastic beam: 

1.)  It has uniform cross-sectional area along its length 

2.) It has uniform material properties 

3.) The elastic segment is considered to be a slender beam 

4.) Only beam end loads are applied 

5.) Only non-following forces are considered 
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A PRBM utilizes all five assumptions.  The beam slenderness is important if large 

deflections are to be considered.  Figure 3.3 shows the basic dynamic PRBM for a 

compliant cantilever beam. 

 

 

 

 

Figure 3.3. Basic Dynamic PRBM  

 

 

 

 

Referring to Figure 3.3, the governing equation of motion may be found using 

Lagrange’s principle.  The Lagrange’s equation is expressed as: 

  
iq

i i

L L
Q

t q q

  
 

  
  (11) 

where L, termed the Lagrangian,represents the difference between the kinetic and 

potential energies, 𝑞𝑖 the ith generalized coordinate, and  𝑄𝑞𝑖
 the ith generalized force.  
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For the PRBM in Figure 3.3, the kinetic energy (T) and potential energy (U) are shown in 

equations (12) and (13), and the Lagrangian (L) in equation (14): 

  
21

Θ  
2

T J t     (12)

   21
Θ cos Θ

2 2

L
U K m g t


         (13) 

 L T U    (14) 

where 21

12
J m l   , represents the polar moment of inertia, K is the PRBM 

stiffness, Θ is the PRBM angle, g is gravity, and  m A L    is the mass of the beam.  

In case of free vibration, the applied force is zero.  Substituting these values into equation 

(11) yields the following equation of motion: 

       Θ Θ
2

K L
t t m g sin t

J J


         (15) 

   The model derivived has been termed the Polar Moment of Intertia Model, as it 

utilizes the polar moment of intertia of the beam as the mass term.  Lyons [49] provided a 

similar approach to modeling a single segment, however, gravity was neglected.  Given 

the masses typically associated with compliant segments, one solution is to simply ignore 

gravity rendering the equation of motion linear; however, it is included here for 

completeness.  Lyons showed that for a wide range of cases the natural frequency was 

predicted to be within 7% of measured values of beams undergoing large deflection; 

however, these results are only valid for beams with small masses.  The results of this 

model are summarized later in this chapter. 
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3.4 IMPROVED PSEUDO-RIGID-BODY DYNAMIC MODEL 

In order to minimize the error of the above model with respect to Euler-Bernoulli 

beam theory, a new model will be presented.  This model allows for the calculation of 

first natural frequency that will have zero error as compared to Euler-Bernoulli theory, 

while maintaining the simplicity of the PRBM.  Consider the system shown in Figure 3.4. 

 

 

 

 

Figure 3.4. Dynamic PRBM Model Based on Characteristic Mass 

 

 

 

 

Deriving the kinetic and potential energies of the system yields: 

 
 

 
2

2
Θ  

4

L
T m t


    (16) 
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   21
Θ cos Θ

2 2
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K gU m t


        (17) 

and substitution into equation (11) gives the following equation of motion: 

  
 

    2
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Θ Θ

2

K
t t g sin t

LL m 
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
  (18) 

As with the first dynamic model, the gravity may be viewed as an external forcing 

function.  The natural frequency of the system found by comparing the equation of 

motion to that of the equation below: 

 2( ) ( ) 0t t       (19) 

 Euler-Bernoulli beam theory gives the first natural frequency of a cantilever 

beam as [60]: 
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   (20) 

where 𝜌 is the linear density of the beam, and A the cross-sectional area.  Equating 

equation (20) and the natural frequency of equation (18) gives a mass value equal to: 
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4K AL
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   (21) 

This PRBM approach is an approximation technique that lumps the potential 

energy of large deflections at a single point, using the methodology recently developed.  

In the same spirit, it is deemed rational to assume that the mass may be lumped at an 

appropriate point.  This approach will yield zero error in natural frequency when 
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compared to the Euler-Bernoulli beam theory.  The main goal of this method is to 

reconcile any small approximation errors between the PRBM and Euler-Bernoulli beam 

theory methods.  This method has been termed the Parametric Point Mass Model, due to 

the dependency of the mass term on the PRBM parameters.  It is important to note that 

the term parametric here does not refer to classic stability problems associated with 

traditional nonlinear dyanimc systems.  The alternative to this model is to place the 

physical mass at the center of the pinned segment, this alternative approach is termed the 

Physical Point Mass Model.   

Table 3.3 shows sample cases for the Polar Moment of Interia, Physical Point 

Mass, and Parametric Point Mass Models.  In this case both mass density and Young’s 

modulus of elasticity were held constant.  As seen, the Parametric Point Mass Model is 

the only one with zero error as compared to the Euler-Bernoulli beam theory and also has 

the closest results with ANSYS®
 with regards to natural frequency.  This results is as 

expected due to the formulation of the mass term used in the Parametric Point Mass 

Model.  However, all three models predict results very well.  The implementation of 

models can be left to the end user to decide the degree of accuracy which is needed.  The 

test cases were run using a material having a Young’s Modulus of 60 GPa and a mass 

density of 183 Kg/m3. 
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Table 3.3. Natural Frequency Comparisons 

 

Width, thickness, 

Length 

(wxtxl) 

 

Polar 

Moment of 

Inertia 

 

Physical 

Point Mass 

Parametric 

Point Mass 

Euler-

Bernoulli 

ANSYS® 

.020x0.00125x0.11 9.05 10.45 9.62 9.62 9.62 

.0405x0.0025x.2 5.47 6.33 5.82 5.82 5.82 

.025x0.0005x.01 438.29 506.09 465.49 465.49 465.27 

 

 

 

 

3.5 SYSTEM LOSSES IN THE PRBM 

The next step in the construction of a dynamic model is to include system losses 

such as damping in order to mimic a real world scenario.  Many forms of damping exist 

however the use of viscous damping in modeling is perhaps the most straightforward and 

most widely accepted in engineering practice.  The addition of this term is very simple in 

the proposed models is shown in below in equation (22) and (23) for the Polar Moment of 

Inertia Model and the Point Mass Models, respectively: 

         Θ 2 Θ  
2

K K L
t t t m g sin t

J J J


           (22) 
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However, the damping ratio, , is typically determined experimentally and thus 

design of mechanisms for desired behavior where damping will affect the outcome will 

be difficult to model.  The approach would be iterative until a solution that displays 

desired damping characteristics is found.  The damping of a single segment has been 

found to be related to how close to the yield point the segment is vibrating [63].  To 

observe this behavior, an experimental study was conducted by deflecting a beam nearly 

one-half of its length and letting it vibrate freely.  The first mode shape was extrapolated 

by implementing a digital band-pass filter about the lowest measured frequency peak.  

The plot of the peak envelope may be seen in Figure 3.5. 

 

 

 

 

Figure 3.5. Peak Envelope Plot of Measured Acceleration 
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Curve fitting this measured response shows a two-term exponential decay rate.  

The general equation is shown in equation (24): 

   Bx Dxf x Ae Ce     (24) 

Where A and C represent the magnitude of each terms contribution to the decay, 

and B and D define the rate of decay. 

While the exact behavior would be difficult to model, a two-staging damping ratio 

is readily implementable.  Solving equation (15) or equation (18), and then comparing the 

deflection obtained to a defined ranges of deflection, such as 100% to 10%, and 10% to 

0% of the beam length, a value for the damping ratio can be obtained for each regime of 

vibration based on damping ratios measured from experimental results.  This allows for 

the damping ratio to be larger in the large-deflection region, and a smaller value in the 

small-deflection regime.  At the time of transition from large to small deflection in the 

time response, the next zero crossing in time is found and the displacement and velocity 

constraints are imposed on the next regime.  For example, if the last peak for the large-

deflection response occurs at time t, the small-deflection damping ratio value will be 

imposed at the immediate next zero crossing in time.  Going forward, the solution to the 

differential equation uses initial conditions of zero displacement and a nonzero velocity.  

The proposed method may be implemented for any number of defined damping ratios.  

For example, if it is determined that the damping ratio changes significantly for 

diplacements over 10%, 30%, and 50% of the beam length, the damping ratios can be 

calculated in a similar fashion, by solving the differential equation of motion and using a 

damping ratio unique to each regime.  More complex damping models may also be 
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implemented, particularly for multi-degree-of-freedom systems.  While this method does 

not explicitly address structural damping, the net effects are included in the damping 

model proposed.  Other losses such as that due to Coulomb friction may be readily 

accounted for, however, as needed, and will be discussed in application to mechanisms in 

a later section.  

 

3.6 EXPERIMENTAL VALIDATION 

In order to determine the validity of the proposed models, experiments are conducted 

that focus on the transient response of the single segment and the natural frequency 

measured.  The experimental setup consisted of a cantilever beam made of Delrin®, an 

acetal co-polymer, and measuring 2.0 in. x 0.125 in. x 11.0 in.  The beam is secured to a 

large table with a clamp, and an accelerometer placed at the beam tip in the center of the 

beam.  The beam is deflected 6 in., approximately one-half of the beam length, and 

allowed to vibrate freely until coming to rest.  The first mode of vibration is isolated from 

the experimental data using a hardware band pass filter along with the first peak in the 

frequency spectrum.  The band pass filter is +/- 5 Hz of this peak, eliminating frequencies 

above and below this band.  The experimental data is shown in Figure 3.6.   
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Figure 3.6. Measured Acceleration of Delrin® Beam 

 

 

 

 

The damping ratio, ζ, is calculated using the logarithmic decrement method over 

the first ten peaks of the large-deflection acceleration data.  The model is then run to 

determine a time at which the beam end deflection was less than 15% of the beam length.  

At this time, a new damping ratio is calculated from the experimental data and amplitude 

decays to a sufficiently small value.  Figure 3.7 shows a Fast Fourier Transform (FFT) of 

the predicted and measured signals.  As observed, the dynamic model shows good 

correlation with the measured signals, both in terms of amplitude, frequency, and band 

width.  The chosen dynamic PRBM uses the Polar Moment of Inertia Model. 
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Figure 3.7. FFT of Measured and Predicted Signals for Delrin® Beam 

 

 

 

 

Figure 3.8(a) shows the predicted and measured acceleration values.  Note that 

Figure 3.8(b) is the magnified portion of the intial release of the beam. 
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 Figure 3.8. Measured and Predicted Time Acceleration Histories for Delrin® Beam 
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Figure 3.9. Peak Envelope Plot of Measured and Predicted Signals for Delrin® Beam 

Another way of comparing the plots is then to show the positive peak envelope of 

the signal.  The predicted and measured values match closely; however, as the deflection 

increases, so does the error.  The multi-stage damping ratios could help alleviate this 

problem, however, the current results are deemed suitable as a first approximation.  The 

peak envelope plot is shown in Figure 3.9.  

 

 

 

 

 

 

 

 

The area under the peak envelopes was used as a method to determine the 

suitability of the transient model.  The integral of the force deflection curve represents 

energy, and so the integral of the acceleration profile is a measure of energy, but is not 

the absolute value.  This method can be used to investigate trends of the energy profiles. 

To do this the trapz command in Matlab® was used on the data set displayed above. For 
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the above case the integrals were computed over the entire dataset and the percent 

difference was found to be 0.0863%. 

Another test was conducted on a metallic specimen of aluminum.   This test 

utilized the Parametric Point Mass Model.  The FFT and peak envelope plots of 

acceleration are shown below in Figure 3.10 and Figure 3.11 for a beam measuring 

2.05”x.0375”x11.75”.  The initial deflection of the beam was 2.75 inches.  A three stage 

damping regime was implemented, with conditions of 8.5% and 2% of the beam length.  

If the deflection falls above 8.5% of the beam length, the highest damping value is used.  

If the deflection is between 8.5% and 2%, the medium damping value is used, and if 

below 2% the lowest value is used.  The damping values were recorded over numerous 

peaks from the experimental data and times which aligned with the simulation.  

Discrepancies noted are easily attributed to the difficulty of releasing the beam.  Any 

small variations in the manual release of the beam will result in changes to the initial 

conditions, therefore changing the response. 
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Figure 3.10. FFT of Measured and Predicted Signals for Aluminum Beam 

 

 

 
 

 Figure 3.11. Peak Envelope Plot of Measured and Predicted Signals for Aluminum Beam 
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Again, the area under the peak envelopes was used as a method to determine the 

suitability of the transient model. For the above case the integrals were computed over 

the entire dataset and the percent difference was found to be 1.9340%. 

 

3.7 APPLICATIONS TO MECHANISMS 

In order to expand the proposed method to mechanisms, a parallel guiding 

mechanism was constructed.  A new equation of motion was derived.  The formulation is 

centered on the fact that the parallel guiding mechanism is a four bar mechanism and thus 

single degree of freedom mechanism.  A schematic of the parallel guiding mechanism is 

shown in Figure 3.12. 

 

 

 

 

Figure 3.12. PRBM of Parallel Guiding Mechanism 
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The energies of the system can be calculated and traditional Lagrangian dynamics 

implemented.  Calculation the potential and kinetic energies of the system is shown in 

equations (25) and (26), respectively based on the Polar Moment of Interia Model: 
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Implementing these into expressions in equation (11) gives the following equation 

of motion: 
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  (27) 

Where M is the mass of the side links, either the parametric mass or physical mass 

will work in this case, and m represents the mass of the coupler.  A mechanism was 

constructed from Delrin® and tested.  The mechanism was built from links 

.75”x.125”x10.5” with a coupler mass of 65 grams.  The initial deflection of the 

mechanism was 4.5 inches in the horizontal.  As was the case for the single segment 

model the natural frequency of the mechanism was predicted adequately as shown in 

Figure 3.13. 

 



38 
 

 

Figure 3.13. FFT of Measured and Predicted Signals for Parallel Guiding Mechanism 

 

 

 

 

Again, any errors will be magnified by the discrepancy in natural frequency, and 

the peak envelope plot again is used to compare the model in Figure 3.14.  The integral 

error was found to be 3.03%. 
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Figure 3.14. Peak Envelope Plot of Measured and Predicted Signals for Parallel Guiding 

Mechanism 

 

 

 

 

3.8 CONCLUSIONS 

Dynamic models capturing the transient behavior of a freely vibrating compliant 

segment were developed.  An improved version of this model was developed to yield 

zero error with traditional small deflection dynamic techniques. A two stage damping 

regime, where the damping constant, ζ, depends on the local maximum cyclic deflection 

is derived, with the ability to expand to multiple stages.  Implementation of two and three 

stage damping regimes were given with experimental results.  Applications to 

mechanisms are investigated by means of implementing the transient model in a parallel 

guiding mechanism.  The natural frequency and peak envelope are used to gauge the 

proposed model’s viability with experimental results, with acceptable error. 
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4. CONSTANT-FORCE SLIDER MECHANISMS 
 
 
 

 4.1  DEVELOPMENT OF COMPLIANT CONSTANT-FORCE SLIDER 

MECHANISM 

Mechanisms with unique force deflection curves have been of interest to the 

engineering community for some time.  These mechanisms can find niche applications in 

many industries.  Recently research has been re-ignited on the design and analysis of 

constant-force slider mechanisms. The earliest constant-force mechanisms can be found 

in [30] and [37].  These mechanisms utilized six bar mechanisms with linear springs to 

achieve a constant force at the output port.  In [36], development of multiple 

configurations of compliant constant-force slider mechanisms was presented.  In Boyle 

[48] the dynamic characteristics of these compliant slider mechanisms was investigated 

with varying results.  In Karthik [56] a modular design of multiple compliant segments 

was present with promising experimental results.  The present work expands on the work 

done in [56] with investigations into both the compressive and extensive characteristics 

of compliant constant-force mechanisms.  First the static response will be investigated 

from a virtual work approach.  An overview of the optimization schemes used to 

determine appropriate link length ratios will be given.  Next considerations for mass 

effects and friction will be given, something unique not done in previous work.  Finally 

experimental results obtained from a universal testing machine (UTM) will be given to 

confirm the presented modeling for a cycle of compression and extension of the 

compliant mechanism.  
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4.2  DIMENSIONAL SYNTHEIS OF CONSTANT-FORCE SLIDER 

MECHANISMS 

Four bar mechanisms are very popular in engineering and mechanical design due 

to their simplicity.  The four bar displays characteristics of good mechanical advantage 

and 1 degree of freedom.  Murphy [18] generated design iterations of a constant-force 

mechanism by implementing flexible segments in place of linear springs.   Out of this 

work twenty-eight configurations of constant-force mechanisms were generated.  A 

generalized schematic of the four bar mechanism is shown below. 

 

 

 

 

Figure 4.1. PRBM of Generic Slider 

 

 

 

 

   Howell [19] furthered this work by classifying the 28 mechanisms into several 

classes and performed dimensional synthesis to generate optimized values for link length 

and stiffness ratios.  The five classes are summarized below. 

            For class 1A mechanisms shown in Figure 4.2 one rigid link of the four bar 

mechanism is replaced with a flexible segment.  This replacement eliminates one pin 
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joint at an end of the mechanism, and also constrains the flexible segment to be a fixed 

pinned segment.   

 

 

 

 
Figure 4.2. Class 1A Constant-Force Mechanisms 

 

 

 

 

Class 1B mechanisms are shown in Figure 4.3.  For this case the mechanisms 

either consist of small length flexural pivots in place of pin joints or a flexible link fixed 

to the rigid link. 

 

 

 

 
Figure 4.3.Class 1B Constant-Force Mechanisms 

 

 

Class 2A mechanisms are shown in Figure 4.4.  The mechanisms are generated by 

replacing the center pin joint and another pin joint by small length flexural pivots. 
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Figure 4.4. Class 2A Constant-Force Mechanisms 

 

 

Class 2B mechanisms, shown in Figure 4.4 are created by replacing the two pin 

joints at the end of the mechanism with flexible links. 

 

 

 

 

 

 

Class 3 Mechanisms are created by replacing each pin joint with a flexible link.  It 

is important to note that for all classes the mechanisms on the right are created by 

replacing the order of the links on the left i.e. r2 becomes r3 and vice versa. 

Figure 4.4. Class 2B Constant-Force Mechanisms 
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Figure 4.5.  Class 3 Constant-Force Mechanisms 

 

 

 

 

Furthermore, Midha et al. [37] presented an alternative solution to using pin 

joints.  A sliding contact pair may be modeled as a pin joint, as shown in Figure 4.6. 

 

 

 

 

Figure 4.6. Sliding Contact Pair as Pseudo Link 

 

 

 

 

Howell et al. [36] also presented used the principle of virtual work to generate an 

equation relating the output force to the slider displacement.  Assuming that the slider is 

in line with the fixed point of r2 then the force at the slider can be found as: 
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Where ki represents the stiffness from the PRBM and ri represents the link lengths 

of the PRBM.  The above derivation neglects mass effects, if the slider was parallel to 

gravity, and any friction effects.  To account for friction and mass effects one needs 

simply to subtract (or add) the expressions for these terms from the above equation.  A 

more in-depth analysis will be given in the following chapters. 

 

4.3  OPTIMIZED DIMENSIONAL SYNTHESIS 

The intent of dimensional synthesis is to derive a mechanism that will yield a 

constant or nearly constant output force for a large range of input angles, i.e. stiffness and 

link length ratios.  Using equation (31) the nondimesional force, Φ, can be plotted for 

various R values to investigate the behavior of varying link length ratios.  For a class 1A-

c or d mechanism, the stiffness ratios are ignored as there is only one spring.  Howell was 
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able to implement IMSL optimization and used dnconf to dimensionally synthesize in-

line constant-force slider mechanisms [19].  The exercise was done by minimizing the 

non-dimensional force over a range of specified non-dimensional slider displacements.   

The non-dimensional slider displacement is given by: 

 
2 3
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r r
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  (33) 

The value of the non-dimensional force was calculated at 50 evenly spaced points 

along the non-dimensional displacement.  The optimization scheme us summarized 

below: 
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Where Ξ represents the deviation from constant force over the entire range of 

motion.  In this case, maintianing Ξ as close to one as possible will yield a more constant 

force mechanism.    Recently Karthik [56] performed optimization using fmincon in 

Matlab® and a finer resolution on spacing.  In addition to these differences, the input link 

rotation was used as input to the optimization instead of non-dimensionalized 

displacement.  Offset slider mechanisms were also considered in this study.  The 

summary of this investigation for inline mechanisms is given below in Table 4.1.  The 

table is useful due to the non-dimensional values.  Using link 2 as a free choice, the table 

will then allow the user to determine the length of link 3, and the value of the spring 

constant for link 3.  Note that for every non-dimensional displacement, the first value 

listed was found in [19] and the second value was found in [56].  
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Table 4.1 Link Length and Spring Ratios for Constant-force Mechanism Classes 

 
Class 

2 3/ ( )x r r   
R K1 K2 Ξ Φ 

1A 

.16[13]* .8274 0 0 1.0031 .4537 

.16 [48]* .8271 0 0 1.0031 .4536 

.40 .8853 0 0 1.0248 .4773 

.40 .8849 0 0 1.0244 .4752 

1B 

.16 1 0 0 1.0570 2.0563 

.16 1 0 0 1.0570 2.0373 

.40 1 0 0 1.1591 2.1513 

.40 1 0 0 1.1591 2.1018 

2A 

.16 .3945 .1906 0 1.0016 .9575 

.16 .3470 .1637 0 1.0006 .8934 

.40 .4323 .2237 0 1.0061 1.0466 

.40 .3911 .1927 0 1.0027 1.0111 

2B 

.16 .7591 0 .1208 1.0030 1.2259 

.16 .7784 0 .0913 1.0028 .5044 

.40 .8441 0 .1208 1.0241 2.2154 

.40 .8435 0 .1208 1.0239 .5416 

3 

.16 2.6633 1 12.6704 1.0002 3.4016 

.16 2.5641 1.0621 12.4888 1.0007 3.5628 

.40 2.0821 1 9.3816 1.0052 3.6286 

.40 2.0857 .9919 9.3837 1.005 2.6100 

*First value for each displacement row is from [13] second value is from [48] 
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Karthik [56] investigated numerous effects of mechanism parameters such as 

varying offset ratios, non-zero initial starting angles, and varying link length ratios.  The 

reader is referred to this work for a more concise and in depth analysis of these effects.  

 

4.4  MASS AND FRICTION EFFECTS 

The design of a modular constant-force mechanism was first attempted by Evans 

and Howell [40] by the construction of a robot end effector.  This end effector was 

constructed such that a total of four slider mechanisms were used in an axisymmetric 

fashion.  The prototype of this mechanism can be seen in Figure 4.7 [48]. 

 

 

 

 

Figure 4.7. Compliant Constant-Force Robot End Effector  
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Experimental testing was done to characterize the force deflection curve of this 

mechanism.  For one complete cycle of compression and extension, the results are shown 

in Figure 4.8 [40]. 

 

 

 

Figure 4.8. Force Deflection Curve for Robot End Effector  

 

 

 

 

A few characteristics of the test data should be noted.  First is the ramping of the 

compression stroke.  A slight linear slope is noticed throughout the entire range of 

motion.  Secondly, at the end of the compression stroke and start of the extension stroke, 

a significant and instantaneous drop in force is noticed.  Lastly, the ramp effect on the 
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extension stroke is a negative slope however is not identical to the compression stroke.  

This testing was done such that acceleration effects could be neglected.  

Jenuwine and Midha [35] developed an exact constant-force single input multi 

output port mechanism for accelerated pavement testing.  The mechanism was a rigid 

body mechanism where the energy storage was obtained from linear springs.  Figure 4.9 

shows the rigid body mechanism. 

 

 

 

Figure 4.9. Constant-Force 6-Bar Mechanism in Deflected and Undeflected Position 

 

 

 

 

Interestingly, the results from this testing appear to show nearly the same trends 

as those in [40]. Figure 4.10 [64] shows the summary of the results. 
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Figure 4.10. Constant-force 6-Bar Test Results 

 

 

 

 

In this case mass effects cannot be ignored.  Based on the results of these two 

seemingly dissimilar mechanisms, and the fact that the trends of the curves are very 

similar it is proposed that Coulomb friction has a profound effect on the response of the 

constant-force slider mechanisms.  However, in order to analyze this issue, a mechanism 

will first be developed.  Turning attention to Karthik [56] a modular compliant slider 

mechanism was developed utilizing radial symmetry.  A class 1A-d mechanism was 
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developed having five compliant segments and no pin joints.  Initial testing was given 

and below is the plot of the experimental data in Figure 4.11. 

 

 

 

Figure 4.11. Modular Constant-Force Compliant Mechanism Test Results [56] 

 

 

 

 

However the friction and mass effects were not considered in any analysis given 

in [19] or [56].  A solid model rendering of the mechanism under consideration is shown 

in Figure 4.12. 
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Figure 4.12. 3D Rendering of Modular CFM 

 

 

 

 

In order to account for mass and friction effects a free body diagram approach is 

utilized.  The PRBM of the mechanism under consideration is shown in Figure 4.13. 
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Figure 4.13. PRBM of Modular CFM 

  

 

 

It is important to note that the center of curvature of the toroidal dome must lie in 

line with the center line of the compliant segments, and that from this center point, the 

radius is constant to the contact surface.  The free body diagram is shown in Figure 4.14. 
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Figure 4.14. Free Body Diagram of Compliant Plunger 

 

 

 

Where 
5

M
 is the mass of the slider and is divided by the number of compliant 

segments, m is the mass of the compliant segment, and FR is the reaction force from link 

2 to link 3, and the friction force is assumed proportional to the normal force and acts 

perpendicular to the normal force.  From the free body diagram an equation for FR can be 

obtained, noting the mechanism under study has five compliant fingers. Summing the 

torques at the pin joint yields: 

 3 3

,

2 2 3 3 2 2 3 3

5

(cos( ) sin( )) r sin( ) (sin( ) cos( )) r cos( )
R comp

k
F



       


  
  (39) 
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   The above formulation applies for increasing 2 , for decreasing 2 the equation 

for reaction force is given by: 

 3 3

,

2 2 3 3 2 2 3 3

5

(cos( ) sin( )) r sin( ) (sin( ) cos( )) r cos( )
R ext

k
F



       


  
  (40) 

Now that the reaction for has been calculated, the non-conservative friction force 

can be taken into and the force output of the mechanism can be calculated using equation 

(39) for compression and (40) for extension. 

 
, 2sin( ) ( )losses comp RF F F M m g       (41) 

 
, 2 ,sin( ) ( )losses ext R extF F F M m g       (42) 

             Where F is calculated from equation (28), ( )M m g  is the combined weight of 

the slider and compliant links, and  is the coefficient of friction of the sliding contact.  

The force calculated in (28) should be at the halfway between the compression and 

extension forces.  Equations (41) and (42) represent the net force from the compliant 

slider mechanism for compression and extension, respectively.  A test case was run 

where the coefficient of friction was set to zero to ensure that the simulation was 

behaving as expected.  Figure 4.15 shows the simulation for the coefficient of friction 

equal to zero.   
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Figure 4.15. Simulation with no Friction Effects 

 

 

 

 

 Given the response of the simulation appeared appropriate, another test case for an 

arbitrary coefficient of friction of was ran.  Figure 4.16 shows the response of the 

simulation for the coefficient of friction equal to .25. 

 
 
 

 

Figure 4.16. Simulation with Mass and Friction Effects 
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 As seen the addition of the friction forces causes the response in extension and 

compression to drastically deviate from each other.  The compression case tends to match 

closer to the force predicted in equation (28).  As 2  tends to zero it is interesting to note 

the rapid slope change.  However there is an indication that while the forces deviate in 

extension, there is still a large constant-force region that is still found in the extension 

case.   

 

4.5  EXPERIMENTAL VALIDATIONS 

The above equations give the response of a constant-force mechanism for one cycle 

of motion.  Experimental validations were carried out by construction of a modular 

mechanism.  The mechanism was tested on an ADMET universal testing machine.  In 

order to reduce friction Teflon spheres inserted into the compliant plungers.  All sliding 

surfaces were lubricated with lithium grease as well.  Figure 4.17 shows the realization of 

the prototype mechanism constructed.   

 

 

 

Figure 4.17. Physical Prototype Fully Extended and Fully Compressed 

 

(a) (b) 
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The compliant plungers were constructed from 1074 scale less blue spring steel.  The 

toroidal dome was precision machined on a CNC lathe, and the rest of the mechanism 

was fabricated by hand by experienced machinists.  The spring steel plungers were 

.015”x.5”x2.15”.  The mass of the slider was measured to be .255 kg.  The length of the 

pseudo-link was 1.59”. 

The test data was recorded by use of a force transducer and simultaneously recording 

the linear displacement of the transducer.  The speed of the test was 15 mm/min, a value 

deemed suitable to neglect the acceleration and inertia effects of the mechanism.  The 

force deflection plot of the mechanism is shown in Figure 4.18. 

 

 

 

 

Figure 4.18. UTM Test Data 
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Taking the coefficient of friction of the sliding interface as .25 [65] and 

implementing the above formulations the response was predicted.  Figure 4.19 shows the 

response of the mechanism using the friction and mass modeling, the principle of virtual 

work neglecting friction and mass effects, and the measured response. 

 

 

 

 

Figure 4.19. UTM Test Data and Modeled Response 

 

 

 

 

The response in compression is measured approximately equal by either 

accounting or neglecting friction.  The results obtained here in compression match those 

found in Karthik [56].  The beginning of the compression stroke shows an overshoot 
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response that is most likely either a buckling phenomenon or friction effects not 

accounted for.  At the end of the of the compression stroke a large hysteretic drop is seen.  

The reason for this is attributed to the friction changing direction in conjunction with the 

force output of the mechanism changing directions, thus leading to the force due to the 

mass acting opposite of the measured force.  The model predicts the trend of the response 

however discrepancies are seen in the amplitudes.  While the above model does not 

predict the extension response with high precision, it does provide an easily 

implementable modeling technique as a first round approximation.  

  The compression stroke has a nearly linear increasing trend.  The extension 

stroke however appears to have a nonlinear behavior.  This again could be due to some 

buckling type phenomenon not accounted for.   Manufacturing tolerances and defects 

could also play a role in this, however it is more likely some effect not accounted for is 

the main reason for the error terms for the extension cycle.  

While preliminary modeling techniques were able to predict trends of the 

response, error in the amplitude is shown to be above acceptable limits.  However this 

investigation does shed some light into the response shown in past research in the 

construction and validation of constant-force mechanisms.  The integrals of the curves 

where calculated for both the compression and extension case, the compression error was 

found to be 10.54% and the extension error was found to be 8.92%.  The larger error in 

the compression case is attributed to the buckling response seen at the beginning of the 

stroke. 
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5. DYNAMIC ANALYSIS OF CONSTANT-FORCE MECHANISMS 
 
 
 

5.1  DYNAMIC RESPONSE OF COMPLIANT CONSTANT-FORCE   

AA.MECHANISMS 

Initially an investigation was undertaken to determine the plausibility of 

generating a square acceleration profile from a constant-force mechanism.  Initial 

research was done into using existing rigid body solutions as generated by Jenuwine and 

Midha [35]  Initial investigations proved promising as reported in Midha et al, [66].  The 

applications envisioned for such a mechanism were directed at impact testing for 

electronic equipment.  However more far reaching applications were proposed such as 

shock absorption and energy management.  Characterizing the characteristics of constant-

force mechanisms will help ascertain the feasibility of these mechanisms in applications 

requiring energy management.  This chapter will investigate the dynamic characteristics 

of compliant constant-force mechanisms.  First a dynamic model will be presented.  

Modification of this model will then take place based on experimental static testing.  

Finally experimental results will be shown. 

 

5.2  GENERAL DYNAMIC MODEL 

Lagrangian techniques will again be used to model the general case for the compliant 

slider.  First consider the system below undergoing planar motion shown in Figure 5.1. 
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Figure 5.1. Dynamic Slider 

 

 

 

 

Using loop closure equations the position and velocity of the slider can be found 

by the following equations: 
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 3 2 2 2 3 3 3

1
sin( ) sin( )

2
rv r r        (48) 

 

Taking the gravitational datum when 2  is zero and assuming the system is 

perpendicular to gravity, and neglecting contributions from 2r , the kinetic and potential 

energies of the system can be written as shown below: 

 2 2 2

1 3 31 3 3

1
( )

2
s rV m r J m v     (49) 

 2

3 31 3 2 2 3 1

1 1
( cos( ) 3cos( ))

2 2
sU k m g r r m gr        (50) 

Where vr3 represents the velocity of the center of mass of link 3, m3 represents the mass of 

link 3, r3 is the length of link 3 based on the PRBM, k3 is the PRBM stiffness, r1 is the 

vertical distance from ground to the pin joint connecting r3 and the slider, and ms 

represents the mass of the slider. 

It is important to note that the energy terms are nearly identical to those given in 

Boyle [48] however the polar moment of inertia term, J, has been modified to represent a 

link rotating at its end.  Formulating the Lagrangian yields: 

 2 2 2

1 3 31 3 3

1
( )

2
s rL m r J m v   - 2

3 31 3 2 2 3 1

1 1
( cos( ) 3cos( ))

2 2
sk m g r r m gr       (51) 

While taking the appropriate derivatives of the Lagrangian is possible, the ensuing 

derivations would be very cumbersome and so Maple’s Euler-Lagrange function call was 

used to derive the equation of motion for the mechanism.  The equation of motion for the 

mechanism is shown below as obtained from equation (11): 
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Where  
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A simulation was conducted to verify the above derivation.  The case of extension 

in the mechanism was considered.  The mechanism was simulated to be fully compressed 

and then suddenly released, and the resulting acceleration profile was captured as shown 

in Figure 5.2. 
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Figure 5.2. Ideal Dynamic Extension Stroke 

 

 

 

 

5.3  MODIFICATION FOR THE EXTENSION CASE 

From static testing the modular constant-force slider mechanism was shown to 

deviate from the predicted constant force values.  Based on this it can be inferred that the 

potential energy of the mechanism deviates from the predicted expression in equation 50.  

This relationship was derived in Midha and Jenuwine [35]: 

 
dE

F
dr

   (53) 
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To properly model the mechanism based on the static response, either the 

potential energy can be obtained from the force deflection curve, or the static response 

can be treated as an external forcing function.  The former of these two options was 

implemented.  To calculate the potential energy the Force vs. θ2 curve was fitted using a 

second order polynomial equation.  The curve fit was then integrated with respect to θ2 

and the potential energy was known.  Figure 5.3 shows the Force vs. θ2 curve with the 

second order polynomial curve fit.   

 

 

 

Figure 5.3.  Force vs. θ2 for Extension Stroke 

 

 

 

 

The potential energy can now be expressed with terms including system losses 

and gravity terms as: 
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 3 227.308 36.822
5.4187

3 2
U   


        (54) 

This expression only applies to the extension case.  The potential energy term can 

be viewed as a nonlinear spring and implementation of the term into the Lagrangian 

yields a nonlinear differential equation, however the solution of this equation is still 

possible by numerous numerical solver schemes, such as Runge-Katta 4-5th order solvers.  

The final equation of motion for the adjusted potential energy terms is shown in equation 

below: 
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It is important to note that the force deflection curve of the mechanism can be 

implemented directly into the equation of motion.  By ignoring any potential energy 

terms in the Lagrangian,  the polynomial curve fit would simply replace the right hand 

side of equation (52). 

 

5.4  MODIFICATION FOR THE COMPRESSION CASE 

While static testing showed much better prediction for the compression case 

modification to the equation of motion was implemented to ensure better results.  

Furthermore, the testing procedures for the compression case would dictate changes to 

the equation of motion.  First consider the system below, a mass falling onto a spring bed 

as shown in Figure 5.4. 

 

 

 

Figure 5.4. Mass Spring Bed System 

 

 

 

 

After impact, assuming the mass M follows the platen mass m, the kinetic and 

potential energies of the spring bed platen can be expressed by equations below.  In this 

case k represents the nonlinear spring rate of the constant-force mechanism.  It is 
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important to note that the masses used in the equations below are not correlated with the 

masses in equations (41) and (42).  The term m, represents the combined mass of the 

slider and the compliant links. 

 21
( )

2
T M m x    (56) 

 21
( )

2
U kx M m gx     (57) 

To obtain the initial conditions of the system the Conservation of Momentum 

needs to be implemented to compare the initial and final velocities about the impact of 

the falling mass striking the platen.  The following equation demonstrates how to obtain 

the velocity of the platen after impact: 

 
2

2(M m) v

i

o

Mv
e


  (58) 

By using any standard kinematic equation to determine the initial velocity of the 

impact, vi,  and assuming a coefficient of restitution, one can determine the initial 

velocity, v0, to the equation of motion.  The forcing function of this system is no longer 

zero, and is given below for the impact: 

 0 ( )F Mv t   (59) 

Where ( )t  represents the Dirac Delta function.  As with the extension case, the 

potential energy term needs to be adjusted to mimic the static deflection of the 

mechanism.  Following the same procedure in the previous section, the Force vs. θ2 plot 

can be seen in Figure 5.5. 
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Figure 5.5. Force vs. θ2 for Compression Stroke 

 

 

 

 

Implementing the curve fit the potential energy of the system can now be 

expressed as: 
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Where gravity and friction effects are accounted for in this expression.  Thus the 

final equation of motion is expressed as: 

y = -.0188x2+8.6991x+20.266
R² = 0.991222
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While the modification of the potential energy may be viewed by some as forcing 

the model to fit, it is important to note Table 3.1 that showed very high accuracy of the 

prediction of strain energy with that of ANSYS®.  The power of the PRBM to predict the 

potential energy of single segments has been proven already, and the discrepancies are 

again most likely a cause of the construction of the mechanism with effects not 

considered in the modeling. 
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5.5  EXPERIMENTAL SETUP 

With both cases of mechanism travel modeled, experimental validations were 

conducted to test the validity of the predictions.  First, a brief outline of the equipment 

used and testing procedures will be outlined. 

For any dynamic experiment a proper data acquisition system is necessary.  Ease 

of use, practicality of implementation, sample rate, and availability often dictate which 

systems will be used.  The all dynamic testing done in this work the National Instruments 

9234 C-DAQ series was used.  The 9234 has four BNC inputs, offers in-built hardware 

anti-aliasing filtering and IEPE excitation for piezo electric sensors.  The maximum 

sample rate of this system is 51.2 kHz [67] . National Instruments also provides several 

software integration features to facilitate data collection that require no user 

programming.  The package of choice was National Instruments Signal Express (SE).  SE 

offers flexibility in experimental setup, filtering, and frequency analysis.  Data collected 

from SE was exported as either filtered or unfiltered and imported into Matlab.   

Sensor choices should be done so that the sensor is capable of capturing the 

frequency range of interest and minimal impact on the system under test.  The Kistler 

8614A5 was chosen due to its small weight and high frequency range.  Beeswax was 

used to attach the accelerometer to the devices under test.  Low noise BNC cables were 

used to minimize or eliminate unwanted electrical noise.  All experiments were 

conducted on large vibration isolating tables to reduce external environmental effects 

such as building vibrations.   
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5.6  EXPERIMENTAL VALIDATION EXTENSION CASE 

For the case of extension the sensor was placed at the centerline of the mechanism 

in order to reduce any effects due to force imbalances.  The mechanism was compressed 

and held in place with a dowel pin acting as a release mechanism.  The change of height 

relative to the foundation on which the mechanism rested was measured, and from this 

initial conditions for the differential equation were calculated.  Masses such as the mass 

of the slider were measured using a digital scale and the values implemented into the 

differential equation.  The simulation was conducted using Matlab and invoking the 

ODE45 function call.  ODE45 is a 4-5th order Runge-Katta solution method for general 

differential equations.  The solution to the differential equation yielded displacement and 

velocity as a function of time.  These values were the substituted back into the original 

differential equation to determine the acceleration profile of the mechanism.  Below is a 

plot of the experimental data for the extension case.  This data was filtered using an 8 

pole Butterworth low-pass filter with a cutoff frequency of 5000 Hertz.  The sample rate 

was 51.2 kHertz.   

 

 

 



76 
 

 

Figure 5.6. Measured Acceleration Signal for Extension Stroke 

 

 

 

 

The behavior is as expected.  From the static testing the force is higher at the 

beginning of the extension stroke and reduces in amplitude as the mechanism reaches its 

equilibrium position.  The time duration of the stroke is very important to note.  If the 

energies of the system can be captured correctly, the time duration of the physical 

mechanism and the simulations should match.  Under the modifications of the dynamic 

model, the potential energy terms have been adjusted and should reflect the physical 

system under test with high fidelity.  Therefore, and discrepancies in the time duration 

would come from errors in predicting the kinetic energy of the system.  Oscillations 
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noticed in the experimental results can be attributed to small imperfections of the 

machined toroidal dome and external vibrations not isolated by the base.  As the 

mechanism reaches its equilibrium point, the response of the mechanism may excite itself 

into other modes of vibrations not accounted for in the modeling.  Vibrations after the 

mechanism has reached its equilibrium position are due to the collision of a physical stop 

implemented on the main shaft.  This was done to prevent the mechanism from 

separating.    Lastly, a slight rise time at the onset of the data can be seen.   This has been 

attributed to small friction and any cocking of the mechanism as the pin is pulled that has 

not been accounted for the in the model.   Figure 5.7 shows the overlay of the predicted 

acceleration profile and the measured response.   
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Figure 5.7. Measured and Predicted Acceleration for Extension Stroke 

 

 

 

 

As seen the predicted values closely resemble the shape and duration of the 

measured pules.  Oscillations at the end of the stroke appear to be nearly symmetric about 

the predicted values.  Issues such as rise time to nominal acceleration, the ramp effect at 

the beginning of the stroke, are not accounted for.  The predicted value very nearly 

accounts for the entire area under the measured values.  While some areas are slightly 

higher in the measured response, others are slightly under.  Integrating the area under 

both signals reveals insights about the energy absorption characteristics of the 

mechanism.  The integration was done for two conditions, once over the entire range of 

motion, and once neglecting the rise time at the beginning of the response.  If the rise 
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time phenomenon can be explained, implementation of this into the model can be done 

and will perhaps lead to better correlation.  Taking the integration of both signals over the 

time duration of the stroke shows extremely good correlation.  It is important to note that 

the integration of the curve represents the impulse of the mechanism.  Computing the 

percent difference of the integrals gives a percent error of 3.4525%.  Extremely 

promising results for a simple single degree of freedom model.  Applying the unmodified 

model yields an error of nearly 50%, showing the impetus to have carefully constructed 

mechanisms.  Furthermore, the large error from the theoretical model points to the fact 

that more insight is needed into the physical mechanisms for the errors in the static cases. 

The model predicts the area under the measured acceleration curve very closely.  

Proper prediction of the acceleration profile for constant-force mechanisms will prove to 

greatly lend a hand in the analysis of the energy absorption characteristics. 

 

5.7  EXPERIMENTAL VALIDATION COMPRESSION CASE 

For the compression case a slightly different approach was taken than that in 

Boyle [48].  In previous work an actuator was used to give a displacement boundary 

condition to the mechanism and the response and force input was measured.  However 

the response of the mechanism will be highly dependent on the input displacement 

conditions, and in fact the dynamic response could be dominated by this.  To try to 

overcome these issues an impact test was implemented in the case of dynamic 

compression testing.  A cylindrical mass of aluminum was dropped from a known 

position and the response of the slider was measured.  Some liberal assumptions were 

made as to the impact portion such as all momentum of the impacting mass is transferred 

to the slider and that the impact was perfectly elastic.  While these assumptions are most 
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likely not prefectly true, they provide a starting point for determining the systems 

response. 

For this testing a mass of 1.18 Kg was dropped from a distance of 4 inches.  The 

accelerometer was attached to bottom of the platen.  Initially the data was filtered again at 

5000 Hz with the Butterworth filter from the extension testing.  A plot of the filtered data 

is below. 

 

 

 

 

Figure 5.8. Multiple Cycles from Compression Test 

 

 

 

 

As seen, the mechanism undergoes a sharp acceleration downward to the end of 

the stroke, and then the extension portion becomes evident by the rebound witnessed.  



81 
 

This cycle continues at least two noticeable times before vibration in the mechanism 

becomes more than the rigid-body response.  The response is composed of two regimes, 

the compression and the extension stroke.  The full cycle from one maximum 

compression displacement to another represents the full cyclic response of the 

mechanism.  Also of note is  thedeviation on the decreasing portion of the compression 

stroke.  This is most likely due to external vibrations.  To emphasize the nature of this 

portion of the stroke, all that is of concern is the initial deceleration portion of the first 

curve.  After that the model will diverge due to the potential energies not being correct.  

As mentioned above the liberal assumption of the coefficient of restitution equal to 1 

yielded unreasonable results.  The initial condition was iterated upon to determine a 

suitable coefficient of restitution.  The modeling shown uses a coefficient of restitution of 

0.4. 
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Figure 5.9. Measured and Predicted Acceleration for Compression Test 

 

 

 

 

The simulation results are shown along with the first compression cycle of the 

experimental results.  The correlation appears to be very good at first sight.  The 

magnitude of the maximum acceleration is predicted adequately, along with the time to 

reach the maximum.  Calculating the integrals under the curve from the initial 

deceleration to the minimum yields a percent error of 1.1309%.  While the results look 

extremely promising more analysis and thought needs to be given on the assumptions 

made in the modeling. 
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6. CONCLUSIONS AND FUTURE WORK 
 
 
 

6.1  FUTURE WORK AND CONCLUSIONS 

           The validity of the PRBM for dynamic transient modeling has been established.  

Several approaches to account for the kinetic energy with a “characteristic mass” have 

been presented.  Each model provides reasonable accuracy when compared with 

experimental results.  Furthermore, approaches to modeling the transient response of 

flexible segmentsm with nonlinear damping representation, utilizing a two stage damping 

ratio determination have been developed.  This approach should be investigated for 

further damping stages and validated with forced vibration tests.  Furthermore, 

applications of the 2R and 3R PRBM may be implemented to allow for higher accuracy, 

including more modes of vibration modeled using the PRBM.  From the modeling 

presented the PRBM predicts the potential energy of a large-deflection cantilever beam 

extremely well, and given the high precision with which the natural frequencies are 

predicted, the PRBM predicts the kinetic energy of these segments by way of defining the 

“characteristic mass.”  Further work should be done with other segment types such as the 

SLFP and fixed-guided segments. 

 The work pertaining to single segments was extend to simple mechanisms e.g. 

a parallel guiding mechanism.  The dynamic model based on the PRBM was able to 

capture the natural frequency content and the decay of the free vibration resonse of this 

mechanism. 

 The static response of constant-force slider mechanisms was also investigated.  

Throughout the literature review, numerous works have been presented on the 
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mechanisms that generate constant force, however, analytical insights as to their 

deviation from expected results were never given.  This work is the first to attempt to 

explain discrepancies in the measured and predicted values of the constant force 

generated by the slider mechanisms.  While the expansion stroke predictions have a 

larger error associated with them, the compression strokes have far better accuracy, and 

trends in this and previous works can now be explained with clarity.  Further 

investigation into the buckling phenomenon and friction effects should be conducted.  

 An important objective of this thesis was to generate a rectangular impulsive 

acceleration profile.  The main premise and hope was that constant force would yield 

constant acceleration.  With the construction of the selected configuration, however, this 

was not exactly possible due to manufacturing difficulties and friction effects.  However, 

a dynamic model analyzing the acceleration of the constant-force slider mechanism was 

presented and validated, for both compression and extension cases.  Further testing 

should be done in both cases for forced vibration analysis.  Fully understanding the 

dynamic characteristics of the mechanisms will help with practical application matching 

for these devices.  Currently, it is recommended that the devices be investigated for 

applications in:mpact Testing 

1.) Packaging Protection 

2.) Fall Protection 

3.) Vehicle Crash Protection 

 As greater understanding of these mechanisms is developed, so will be their 

applications.  Finally, it is suggested that a careful study of their manufacturing be 

considered, so that the effects of manufacturing tolerances and friction may be 
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minimized.  As manufacturing methods advance and materials sciences develop stronger 

and more resilient materials, it would be very possible to generate large constant-force 

loads for applications on a very large scale.  This work provides a fundamental basis for 

the dynamic analysis of such mechanisms while benefiting from the true spirit of the 

PRBM, i.e., in its ease of implementation of the modeling presented.  
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 Figure A.1. Steel Plate 
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Figure A.2. Deflector 
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Figure A.3. Base of Modular Device 
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Figure A.4. Mounting Base 
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Figure A.5. Platen 
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Figure A.6. Retainer 
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Figure A.7. Main Bearing Shaft 
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Figure A.8. Mounting Sides 
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Figure A.9. Toroidal Dome 
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STATIC CFM MATLAB® CODE
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%Class 1a 

clc; 
clear all; 
format longe; 
phi = 0.4773; 
R = 0.8853; 
gama=0.89; %Gamma 
Kt=2.65; %K theta 
L=2.2*.0254; %Length of beam 
r3=gama*L;  
r2=1.59*.0254; %R2  
k2=0;  %Spring 2 
k1=0;  %Spring 1 
E=210e9; % Young's Modulus 
h11 = 0.01526*.0254; %Thickness of compliant beam 
w=0.5*.0254; %Width of compliant beam 
I=w*h11^3/12;  %moment of interia 
g=0; 
h = 2*pi; 
k3=gama*Kt*E*I/L;  %spring 3 
u=.025  %coefficient of friciton in compression 
n=1; 
max1=18/1000 %max displacement 
theta2=linspace(10*pi/180 ,pi/4.6, 75) %theta 2 values 
r4=.04*.0254 %offset  
for n=1:numel(theta2) 
    %calulate kinematic values 
    theta3(n) = asin((-r2*sin(theta2(n))-r4)/(r3)); 
    theta311(n) = (asin(r2*sin(theta2(n))-r4)/r3); 
    theta311c(n)=theta311(n); 
    theta31(n)=(2*pi+theta3(n)); 
    r1(n)=r2*cos(theta2(n))+r3*cos(theta3(n)); 
    %end kinematics 
    %start forces 
    Ff(n)=5*k3*theta311(n)/((((cos(theta2(n))-u*sin(theta2(n)))... 
        *gama*L*sin(theta311(n))))+(sin(theta2(n))... 
    +u*cos(theta2(n)))*gama*L*cos(theta311(n))); %reaction force 
    Ffy(n)=Ff(n)*u*sin(theta2(n)); %friction force y 
    Ffx(n)=Ff(n)*u*sin(theta2(n)); %friction force x 
    Fx(n)=Ff(n)*sin(theta2(n)); %reaction force x 
    Fy(n)=Ff(n)*cos(theta2(n)); %reaction force y 
    F1(n) = (r3*cos(theta31(n))*(k1*(theta2(n)-g)... 
        + k2*(theta2(n)-theta31(n)-g+h)))... 
        /(r2*r3*sin(theta2(n)-theta31(n))); %virtual work force 1 
    F2(n) = (r2*cos(theta2(n))*(k3*(h-theta31(n))))... 
        /(r2*r3*sin(theta2(n)-theta31(n))); %virtual work force 2 
    F(n)=F1(n)+F2(n); %total virtual work for 1 segment 
    Fd(n)=F(n)*5; %module virutal work force 
    Ft1(n)=Fd(n); 
    Ftest1(n)=Fd(n)-Ffy(n)+.2*9.81; %output force w losses 
E1(n)=.5*k3*5*(theta311(n))^2-Ff(n)*u*r2*theta2(n)... 
    +.255*9.81*(r1(n)); %energy w loses 
    d11(n) = r1(1)-r1(n); %displacement 

     
    n=n+1; 
end 
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for n=1:numel(theta2)-1 
    Fc(n)=-(E1(n+1)-E1(n))/(r1(n+1)-r1(n)); %force from energy 
    rc(n)=r1(1)-r1(n); 
    theta21(n)=theta2(n); 
end 
plot((d11),Ftest1,'blue+',(d11),Fd,'green*','linewidth',2) 
axis([min(rc) max1 0 50]) 
theta2e=(theta2) 
u=.225 % coefficient of friction for extension  
theta311=0 
%%repeat loop as above 
for n=1:numel(theta2e)  
  theta3(n) = asin((-r2*sin(theta2(n))-r4)/(r3)); 
    theta311e(n) = (asin(r2*sin(theta2(n))-r4)/r3); 
    theta31(n)=(2*pi+theta3(n)); 
    r2e(n)=r2*cos(theta2e(n))+r3*cos(theta3(n)); 
     Ffe(n)=5*k3*theta311e(n)/((((cos(theta2(n))+... 
         u*sin(theta2(n)))*gama*L*sin(theta311e(n))))... 
         +(sin(theta2(n))-u*cos(theta2(n)))*gama*L*cos(theta311e(n))); 
    Ffy(n)=Ffe(n)*u*cos(theta2e(n)); 
    Ffx(n)=Ffe(n)*u*sin(theta2e(n)); 
    Fx(n)=Ffe(n)*sin(theta2e(n)); 
    Fy(n)=Ffe(n)*cos(theta2e(n)); 
    Rye(n)=Ffe(n)*cos(theta2e(n))+u*Ffe(n)*sin(theta2(n)); 
   Fmease(n)=Ry(n)-.155*9.81; 
   F1(n) = (r3*cos(theta31(n))*(k1*(theta2e(n)-g) + k2*(theta2e(n)-... 
       theta31(n)-g+h)))/(r2*r3*sin(theta2e(n)-theta31(n))); 
    F2(n) = (r2*cos(theta2e(n))*(k3*(h-theta31(n))))... 
        /(r2*r3*sin(theta2e(n)...-theta31(n))); 
    F(n)=F1(n)+F2(n); 
    Fd(n)=F(n)*5; 
    Ft2(n)=Fd(n); 
end 
Fd=fliplr(Ft2) 
for n=1:numel(theta2e) 
   Ftest2(n)=Fd(n)-Ffy(n)-.2*9.81; 
E2(n)=.5*k3*5*(theta311e(n))^2-

Ffe(n)*u*r2*theta2e(n)+.255*9.81*(r2e(n)); 
    d2(n) = r2e(n)-r2e(1);   
    n=n+1; 
end 
for n=1:numel(theta2e)-1 
   E22(n)=.5*k3*5*(theta311(n+1)-theta311(n))^2-Ffe(n)*u*r2*... 
       (-theta2e(n+1)+theta2e(n))+.255*9.81*(-r2e(n+1)+r2e(n)); 
    Fe(n)=(E2(n)-E2(n+1))/(r2e(n+1)-r2e(n)); 
    re(n)=d2(n); 
    theta2e1(n)=theta2e(n); 
end 
hold on 
plot((abs(d2)),(Ftest2),'redo','linewidth',2) 
 %,abs(fliplr(re)),Fe,'green') 
%plot((abs(re)),(Fe),'red') 

  
%%input data vector from test data removed for thesis 
  %theta2(n) = (acos((r1^2+r2^2-r3^2)/(2*r1*r2))); 
  %%for data manipulation this loop finds r1 based on test data and 

theta2 
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  for kk=1:numel(data(:,1)) 
      r1test(kk)=r2+r3-data(kk,1)/1000-data(1,1)/1000; 
      theta2test(kk)=real(acos((r1test(kk)^2+r2^2-r3^2)... 
          /(2*r1test(kk)*r2))); 
  test(kk,1)=theta2test(kk); 
  end 
plot(data(:,1)/1000,data(:,2),'black','Linewidth',2) 
xlabel({'';'Distance, m'},'FontSize',15) 
ylabel({'Force, N';''},'FontSize',15) 
title({'Force vs. Deflection';''},'FontSize',20) 
legend('Compression ','Virtual Work', 'Extension ','Test Data') 
legend('boxoff') 
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MAPLE® EQUATION OF MOTION DERIVATION CODE 
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> restart; 
> ##BEGIN KINEMATICS 

> eq1:=r2*cos(theta(t))+r3*cos(theta3(t))=r1; 
> eq2:=r2*sin(theta(t))+r3*sin(theta3(t))=0; 
> theta3(t):=solve(eq2,theta3(t)); 
> theta23(t):=Pi+theta3(t)-theta(t)-2*Pi; 

> theta31(t):=arcsin(r2/r3*theta(t)); 
> r1:=solve(eq1,r1); 
> r1dot:=diff(r1,t); 

> r1dotdot:=diff(r1dot,t); 
> ##END KINEMTAICS 
> #PE:=.5*K*theta31(t)^2-ms*g*r1-

mprbm*g*(r2*cos(theta(t))+r3/2*cos(theta3(t))): 

##IDEAL PE WITHOUT LOSSES 
> F:=int(-20.826*theta^2+29.739*theta+7.9425,theta): 

##FORCE DEFLECTION CURVE 

> PE:=-

.0188/3*theta(t)^3+8.6991/2*theta(t)^2+20.266*theta(t): 

##PE FROM FORCE CURVE 
> 

v3sq:=expand(diff((r2*cos(theta(t))+r3*cos(theta3(t))),t)^2

): 

##VELOCITY OF LINK 3 SQUARED: 
> KE1:=(.5*ms*r1dot^2): ##KE PLATEN 

> KE2:=.5*mprbm*(-r2*sin(theta(t))*(diff(theta(t), t)) 

-r2^2*sin(theta(t))*cos(theta(t))*(diff(theta(t), 

 t))*.5/(r3*sqrt(1-r2^2*sin(theta(t))^2/r3^2)))^2: 

##PLANAR KE OF LINK 3; 
> KE3:=.5*J3*diff(theta31(t),t)^2: 

##ROTATIONAL KE OF LINK 3: 
> Lagrangian:=KE1+KE2+KE3-PE: 

> with(VariationalCalculus); 
> test:=EulerLagrange(Lagrangian,t,theta(t)): 

##TEST IS EOM 

> subs(theta(t)=disp,subs(diff(theta(t),t)=vel, 

subs(arcsin=asin,subs(arccos=acos,subs(diff(theta(t), 

t$2)=accel,(test[1])))))): 

##COPY PASTE INTO MATLAB AND SOLVE FOR ACCEL 

>  
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MAPLE® NORMALIZED ENERGY CODE  
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restart; 

with(plots); 

AA:=linalg[matrix](4,4,[1,0,1,1,0,1,1,-1, 

-cos(alpha),-sin(alpha),exp(alpha),exp(-alpha),sin(alpha) 

,-cos(alpha),exp(alpha),-exp(-alpha)]); 

##matrix for canitlever beam 

eigvals:=[1.8751040687119611664,4.6940911329741745764,7.8547574382376125649 

,10.995540734875466991,14.137168391046470581]: 

##eigenvalues for cantilever beam 

Lb:=11.5*.0254;#length 

b:=.5*.0254;#width 

 h:=.015*.0254;#thickness 

rhobar:=7700;#density  

Ab := b*h; 

rho:=rhobar*Ab; 

Yb:=207000e6;#modulus 

Ib:=b*h^3/12; 

uL:=2*.0254:#initial deflection 

##Vibrations math below this line 

omegas := [seq(sqrt(Yb*Ib/(rhobar*Ab*Lb^4))*eigvals[i]^2, i = 1 .. nops(eigvals))]; 

fns:= [seq(evalf((sqrt(Yb*Ib/(rhobar*Ab*Lb^4))*eigvals[i]^2)/2/Pi), i = 1 .. nops(eigvals))]: 

AAinv:= linalg[inverse]( linalg[delrows]( linalg[delcols]( AA, 4..4 ), 4..4 ) ): 

col4:= matrix(3, 1, [ 

  [-linalg[col]( AA, 4) [1] ], 

  [-linalg[col](AA, 4) [2] ],  

  [-linalg[col]( AA, 4) [3] ] 

                         ]): 

solnVec:= linalg[multiply](AAinv, col4): 

 

B1:= linalg[col]( solnVec, 1 )[1]: 

   B2:= linalg[col]( solnVec, 1 )[2]: 

    B3:= linalg[col]( solnVec, 1 )[3]: 
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    B4:= 1: 

U:=unapply(B1*cos(alpha*x/Lb)+B2*sin(alpha*x/Lb)+B3*exp(alpha*x/Lb)+B4*exp(-alpha*x/Lb),x,alpha): 

plot(diff(U(x,eigvals[3]),x$2),x=0..Lb); 

Nn:=[seq(int(U(x, eigvals[i])*(U(x, eigvals[i])),x=0..Lb),i=1..nops(eigvals))]: 

eta0 := unapply(uL*(int((3*x^2-x^3/Lb)*U(x, alpha), x = 0 .. Lb))/(2*Lb^2*N_), alpha, N_); eta := 
unapply(eta0(alpha, N_)*cos(omega*t), t, omega, alpha, N_); 

phi := Sum(U(Lb, eigvals[i])*eta(t, omegas[i], eigvals[i], Nn[i]), i = 1 .. n); 

Phi := unapply(phi, t, n); 

phi1 := Sum(U(Lb, eigvals[i])*diff(eta(t, omegas[i], eigvals[i], Nn[i]),t), i = 1 .. n): 

Phi1 := unapply(phi1, t, n): 

##End lots of math 

P3 := plot(Phi(t, 3), t = 0 .. 20, color = "Green", numpoints = 1000, legend = "3"); 

P4 := plot(Phi(t, 4), t = 0 .. 20, color = "SteelBlue", numpoints = 1000, legend = "3"); 

P5 := plot(Phi(t, 5), t = 0 .. 20, color = "SteelBlue", numpoints = 1000, legend = "4"); 

ph1 := Sum(U(x, eigvals[i])*eta(t, omegas[i], eigvals[i], Nn[i]), i = 1 .. 1); 

ph2 := Sum(U(x, eigvals[i])*eta(t, omegas[i], eigvals[i], Nn[i]), i = 2 .. 2); 

ph3 := Sum(U(x, eigvals[i])*eta(t, omegas[i], eigvals[i], Nn[i]), i = 3 .. 3); 

ph4 := Sum(U(x, eigvals[i])*eta(t, omegas[i], eigvals[i], Nn[i]), i = 4 .. 4); 

ph5 := Sum(U(x, eigvals[i])*eta(t, omegas[i], eigvals[i], Nn[i]), i = 5 .. 5); 

PE1:=(evalf(.5*int((diff(ph1,x$2))^2,x=0..Lb))): 

PE2 := evalf(.5*(int((diff(ph2, `$`(x, 2)))^2, x = 0 .. Lb))); 

PE3 := evalf(.5*(int((diff(ph3, `$`(x, 2)))^2, x = 0 .. Lb))); 

PE4 := evalf(.5*(int((diff(ph4, `$`(x, 2)))^2, x = 0 .. Lb))); 

PE5 := evalf(.5*(int((diff(ph5, `$`(x, 2)))^2, x = 0 .. Lb))); 

 

PP1 := plot(PE1, t = 0 .. 4*(1/10), color = "SteelBlue", legend = "Mode 1"); 

PP2 := plot(PE2, t = 0 .. 4*(1/10), color = "Black", legend = "Mode 2"); 

PP3 := plot(PE3, t = 0 .. 4*(1/10), color = "Red", legend = "Mode 3"); 

PP4 := plot(PE4, t = 0 .. 4*(1/10), color = "Green", legend = "Mode 4"); 

PP5:=plot(PE5,t=0..4/10,color="Purple",legend="Mode 5"): 

 display([PP1,PP2,PP3,PP4,PP5],labels=([typeset("\n Time"),typeset(" Potential 
Energy\n")]),labeldirections=[horizontal,vertical],title=typeset("Stiffness Normalized Potential Energy vs 
Time\n "),titlefont = ["ROMAN", 22, "bold"], labelfont = ["ROMAN", 18, "bold"], legendstyle = [font = 
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["ROMAN", 18], location = right], axes = boxed, size = [1000, 500], axesfont = ["ROMAN", 18], numpoints = 
10000 ): 

PP1 := plot(PE1, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "SteelBlue", legend = "Mode 1"); 

PP2 := plot(PE2, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "Black", legend = "Mode 2"); 

PP3 := plot(PE3, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "Red", legend = "Mode 3"); 

PP4 := plot(PE4, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "Green", legend = "Mode 4"); 

PP5:=plot(PE5,t=0..1/10,y=0..5/(1000),color="Purple",legend="Mode 5"): 

display([PP1, PP2, PP3, PP4, PP5], labels = [typeset("\n Time"), typeset(" Potential Energy\n")], 
labeldirections = [horizontal, vertical], title = typeset("Stiffness Normalized Potential Energy vs Time\n "), 
titlefont = ["ROMAN", 22, "bold"], labelfont = ["ROMAN", 18, "bold"], legendstyle = [font = ["ROMAN", 
18], location = right], axes = boxed, size = [1000, 500], axesfont = ["ROMAN", 18], numpoints = 10000); 

kE1:=(evalf(.5*int((diff(ph1,t))^2,x=0..Lb))): 

kE2 := evalf(.5*(int((diff(ph2, t))^2, x = 0 .. Lb))); 

kE3 := evalf(.5*(int((diff(ph3, t))^2, x = 0 .. Lb))); 

kE4 := evalf(.5*(int((diff(ph4, t))^2, x = 0 .. Lb))); 

kE5 := evalf(.5*(int((diff(ph5, t))^2, x = 0 .. Lb))); 

KP1 := plot(kE1, t = 0 .. 4*(1/10), color = "SteelBlue", legend = "Mode 1"); 

kP2 := plot(kE2, t = 0 .. 4*(1/10), color = "Black", legend = "Mode 2"); 

kP3 := plot(kE3, t = 0 .. 4*(1/10), color = "Red", legend = "Mode 3"); 

kP4 := plot(kE4, t = 0 .. 4*(1/10), color = "Green", legend = "Mode 4"); 

kP5:=plot(Pk5,t=0..4/10,color="Purple",legend="Mode 5"): 

display([KP1, kP2, kP3, kP4, kP4], labels = [typeset("\n Time"), typeset(" Kinetic Energy\n")], 
labeldirections = [horizontal, vertical], title = typeset("Mass Normalized Kinetic Energy vs Time\n "), 
titlefont = ["ROMAN", 22, "bold"], labelfont = ["ROMAN", 18, "bold"], legendstyle = [font = ["ROMAN", 
18], location = right], axes = boxed, size = [1000, 500], axesfont = ["ROMAN", 18], numpoints = 10000); 

KP1 := plot(kE1, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "SteelBlue", legend = "Mode 1"); 

kP2 := plot(kE2, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "Black", legend = "Mode 2"); 

kP3 := plot(kE3, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "Red", legend = "Mode 3"); 

kP4 := plot(kE4, t = 0 .. 1/10, y = 0 .. 5*(1/1000), color = "Green", legend = "Mode 4"); 

kP5:=plot(Pk5,t=0..4/10,y=0..5/(1000),color="Purple",legend="Mode 5"): 

display([KP1, kP2, kP3, kP4, kP4], labels = [typeset("\n Time"), typeset(" Kinetic Energy\n")], 
labeldirections = [horizontal, vertical], title = typeset("Mass Normalized Kinetic Energy vs Time\n "), 
titlefont = ["ROMAN", 22, "bold"], labelfont = ["ROMAN", 18, "bold"], legendstyle = [font = ["ROMAN", 
18], location = right], axes = boxed, size = [1000, 500], axesfont = ["ROMAN", 18], numpoints = 1000
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Main Program 

clear all  
close all 
clc 
%%declare globals 
global b 
global w 
global gamma 
global L 
global Ktheta 
global Area 
global rhobar 
global beta 
global E 
global I 
global x0 
global v0 
global tstep 
global tfinal 
global rho 
global theta0 
global thetadot0 
global K 
global Mass 
global x01 
global x02 
global theta01 
global theta02 
global v01 
global v02 
global thetadot01 
global thetadot02 
global zeta2 
global zeta1 
global tinitial01 
global tinitial 
global g 

  
load test0017.csv 
a=test0017; 
raw_data1=a(:,2)*1000*9.80665; 
offset=sum(raw_data1)/numel(raw_data1); 
raw_data=raw_data1/offset; 
t=a(:,1); 
rawpeaks=findpeaks(raw_data); 
rawpkmax=find(rawpeaks==max(rawpeaks)); 
plotrawpks=rawpeaks(rawpkmax:numel(rawpeaks)); 
%load data and find peaks of data 
tinitial=t(1); 
g=-9.81 

  
n11=1; 
n12=10; 
n1=n12-n11; 
x11=plotrawpks(n11); 
x1n=plotrawpks(n12); 
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delta1=1/n1*log(x11/x1n); 
zeta1=1/(sqrt(1+(2*pi/delta1)^2)); 
%%determine damping 1 
recl=(t(numel(t))-t(1)); 
fs= 1/(t(2)-t(1)); 
taus=1/fs; 
nsamples=numel(t); 

  
deltaf=1/recl; 
fscale=deltaf; 
xp=fft(raw_data,nsamples); 
xp=abs(xp)/nsamples; 
f=fscale*(0:(nsamples/2)-1); 

  
plot(f,xp(1:nsamples/2)); 
axis([0 500 0 2e-4]) 
xlabel('frequency   hertz') 
ylabel('spectral amplitude') 
title('FFT of Machinery Noise Time Signal') 
%%FFT algorithim above 

  

  

  

  
b=2.15*.0254; %%width in meters 
w=.125*.0254; %%thickness in meters 
gamma=.8517; %gamma 
L=11*.0254; %length in meters 
Ktheta=2.65; 
Area=b*w; 
rhobar=2000 ;%density in kg/m^3 
rho=rhobar*Area; 
beta=1.8751040687119611664; 
E=     1.5e9; %Young's modulus in Pa 
I=1/12*b*w^3; 
x01=-6.1*.0254; %initial x deflection in meters 
theta01=asin(x01/(gamma*L)); %theta0 
theta02=asin(x02/(gamma*L)); %theta0 
v01=0; %initial velocity 
thetadot01=v01/cos(theta01); 
thetadot02=v02/cos(theta02);%initial thetadot 
tfinal=t(numel(t));% final time in sec 
tstep=  t(2)-t(1); %time step 
K=gamma*Ktheta*E*I/L; %%Spring value for beam 
Mass=rho*gamma*L %%Mass value for beam 
global J 
J=1/12*Mass*(gamma*L)^2; 

  

  
%%%% 

  
%%pass to ODE 45 and solve 
[time1,disp11]=second_oder_ode2();  %damping ratio 1 
disp1=disp11(:,1); %displacement 1 from damping ratio 1 
peaks1=findpeaks(real(disp1(:,1))); %local maxima from damping ratio 1 
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pp=0; 
  for i=1:numel(peaks1)-2; %if ratio 1 gives, go to this loop 
if real(peaks1(i))>asin(.15/gamma); % condition for small deflection 
            y1(i)=peaks1(i); %data tracking of peaks bigger than 

condition 
            z1=y1(i); %data tracking 
           q1(i)=peaks1(i+1); 
           v1=q1(i); 
           zzz=find(real(disp1)==v1); 
           xx=find(real(disp1)==z1); %find output of ODE45 that meets 

the condtion 

    
           pp=pp+1; 

            
           for jj=1:(zzz-xx) 
               zeros1(jj)=min((disp1(jj+xx))); 

               
           end 
           minzero=(min(real(abs(real(zeros1))))); 
           zeroindex=find(abs(real(zeros1))==minzero); 
         zerocross23=find(disp1==zeros1(zeroindex)); 
           for p=1:zerocross23; 
               xfinal(p)=disp1(p); %store output from ODE 45 
               timefinal(p)=time1(p); 
           end 

           
else 

              
end 

  
  end 
  %%damping 2 
  n21=pp; 
n22=pp+5; 
n2=n22-n21; 
x21=rawpeaks(n21); 
x2n=rawpeaks(n22); 
 delta2=1/n2*log(x21/x2n);  
  zeta2=1/(sqrt(1+(2*pi/delta2)^2)); 

  
thetadot02=disp11(zerocross23,2); 
theta02=disp11(zerocross23,1); 
tinitial01=timefinal(zerocross23); 

  
[time2,disp22]=second_oder_ode();  %damping ratio 2 

  
disp2=disp22(:,1); %displacement 2 from damping ratio 2 

  
peaks2=findpeaks(real((disp2(:,1)))); %local maxima from damping ratio 

2 
y1=zeros(numel(peaks2),1); 
xfinal=zeros(numel(time2),1); 
timefinal=zeros(numel(time2),1); 
y2=zeros(numel(peaks2),1); 
 timenew=tinitial:tstep:tfinal; 
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 %%merge two solutions of ODE  
for jj=1:zerocross23; 
    xnew(jj)=disp1(jj); 
    vnew(jj)=disp11(jj,2); 
end 
for kk=zerocross23+1:numel(time1); 
    xnew(kk)=disp2(kk-zerocross23); 
    vnew(kk)=disp22(kk-zerocross23,2); 
end 

  

  

  
%%find disp, vel and accel of beam end 
   thetadotdot=diff(vnew)/tstep; 
time4=[tinitial:tstep:tfinal-tstep]; 
for kk=1:numel(thetadotdot); 

     
    tk(kk)=timenew(kk); 
disptip(kk)=gamma*L*sin(xnew(kk)); 
vel(kk)=gamma*L*(cos(-1*xnew(kk)))*-1*vnew(kk); 
accel(kk)=-gamma*L*(sin(-1*xnew(kk)))*(1*vnew(kk))^2... 
+gamma*L*cos(xnew(kk))*thetadotdot(kk); 

  
end 

  
reclt=(timenew(numel(timenew))-timenew(1)); 
fst= 1/(timenew(2)-timenew(1)); 
taust=1/fst; 
nsamplest=numel(timenew); 

  
deltaft=1/reclt; 
fscalet=deltaft; 
xpt=fft(accel,nsamplest); 
xpt=abs(xpt)/nsamplest; 
ft=fscalet*(0:(nsamplest/2)-1); 
%%FFT for model above 
figure(3) 
plot(ft,xpt(1:nsamplest/2),f,xp(1:nsamples/2)); 
xlabel('Frequency,Hz') 
ylabel('Spectral Amplitude') 
title('FFT of Raw and Predicted Signals') 
axis([0 75 0 30]) 
legend('Experimental','Predicted','Location','SouthEast') 

  
peaksnew=findpeaks(accel); 
rawpkmax=find(rawpeaks==max(rawpeaks)); 
plotrawpks=rawpeaks(rawpkmax:numel(rawpeaks)); 

  
%figure(1) 
%plot(t,raw_data,tk,accel,tk,disptip*1000,time2,disp2*1000) 

  
figure(2) 
plot(t,raw_data,tk,accel) 
xlabel('Time,sec') 
ylabel('Acceleration,m/s^2') 
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title('Raw and Predicted Acceleration') 
%axis([0 75 0 30]) 
legend('Experimental','Predicted','Location','SouthEast') 

  
figure(4) 
plot(plotrawpks) 
hold on 
plot(findpeaks(accel,'MinPeakDistance',600),'green') 
hold off 
xlabel('Sample Number') 
ylabel('Amplitude m/s^2') 
title('Peaks of Raw and Predicted Signals') 
%axis([0 75 0 30]) 
legend('Experimental','Predicted','Location','NorthEast') 

 

  

ODE 45 Solver 
function [t,x]=second_oder_ode() % add output argument 

  
% SOLVE  d2x/dt2+5 dx/dt - 4 x = sin(10 t) 
% initial conditions: x(0) = 0, x'(0)=0 
%%copy these variables to second_oder_ode 
global b 
global w 
global gamma 
global L 
global Ktheta 
global Area 
global rhobar 
global beta 
global E 
global I 
global x0 
global v0 
global tstep 
global tfinal 
global rho 
global theta0 
global thetadot0 
global K 
global Mass 
global x02 
global theta02 
global v02 
global thetadot02 
global zeta2 
global tinitial01 
global g 
global J 
%%%% 

  
t= tinitial01:tstep:tfinal;   % time scale 

  
initial_x    = theta02; 
initial_dxdt = thetadot02; 
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[t,x]=ode45( @rhs, t, [initial_x initial_dxdt] ); 

  
plot(t,x(:,1),'green'); 
xlabel('t'); ylabel('x'); 

  
    function dxdt=rhs(t,x); 

       
        dxdt_1 = x(2); 
        K_t=(.004233+2.567095*x(1)-.037173*x(1)^2+.17997*x(1)^3)/x(1); 

       
       % dxdt_2=(-

L^2*cos(x(1))^2*Mass*x(2)^2+4*3.001399338*zeta2*x(2)+4*K*x(1))/(L*L*cos

(x(1))*sin(x(1))*Mass); 
      % dxdt_2=-2*zeta2*sqrt(K/Mass)*x(2)-K/Mass*x(1); 
    %  dxdt_2=-

2*(Mass*g*sin(x(1))*gamma*L+2*K*x(1)+4*sqrt(K/Mass)*zeta2*x(2))/(Mass*g

amma^2*L^2)  ; 
      dxdt_2=-K*x(1)/J-2*sqrt(K/J)*zeta2*x(2)-gamma*L/2*Mass*sin(x(1)); 

   
    dxdt=[dxdt_1; dxdt_2]; 

     
    end 

  
end 
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clear all  

clc 
hold on 
global b 
global h 
global gama 
global L 
global Kt 
global Area 
global rhobar 
global beta 
global E 
global I 
global x0 
global v0 
global tstep 
global tfinal 
global rho 
global theta0 
global thetadot0 
global K 
global mprbm 
global zeta1 
global tinitial 
global r3 
global r2 
global Ib 
global ms 
global g 
global m2 
global J3 
m2=0; 

  
b=.5*.0254; %%width in meters 
h=.015*.0254; %%thickness in meters 
gama=.8276; %gamma 
L=2.25*.0254; %length in meters 
Kt=2.59707; 
Area=b*h; 
rhobar=7700;%density in kg/m^3 
rho=rhobar*Area; 
beta=1.875; 
E=210e9; %Young's modulus in Pa 
Ib=1/12*b*h^3; 
tfinal=.5;% final time in sec 
g=-9.81 
tinitial=0 
tfinal=.1;% final time in sec 
tstep=  .0001; %time step 
K=gama*Kt*E*5*Ib/L; %%Spring value for beam 
ms=.255 
r2=1.59*.0254; 
r3=gama*L; 
theta0=35*pi/180; 
v0=0; %initial velocity 
mprbm=gama*L*rho 
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thetadot0=0; 
J3=1/12*mprbm*r3^2;  
global C 
global tum 
global u1 
global u2 
global zeta2 
global Pi 
Pi=pi 
u1=0 
u2=0 
tum=0 
global offset 
global Er 
global r4 
offset=0  
%%%% 
r4=0; 
Er=r4/r2 
R=.8853 
k1=0 
k2=0 
k3=K 
[time1,disp11]=second_oder_ode_cfm();  %damping ratio 1 
disp1=disp11(:,1); %displacement 1 from damping ratio 1  
r=r2*cos(disp11(1))+r3*cos(asin(-r2*sin(disp1(1))/r3))+(1-gama)*L; 
 for kk=1:numel(time1)-1 
    theta2(kk)=disp1(kk); 
    x(1)=disp1(kk); 
    x(2)=disp11(kk,2); 
    theta3(kk)=-asin((r2*sin(x(1)))/r3); 
    theta31(kk)=2*Pi+asin((r2*sin(x(1)))/r3); 
    r1(kk)=r2*cos(x(1))+r3*sqrt(1-(r2*sin(x(1)))^2/r3^2); 
    tum=0; 
    %tum=(-r2*sin(x(1))-r2^2*sin(x(1))*cos(x(1))/(r3^2-

r2^2*sin(x(1))^2))*u2; 
    %tum=u1*K*x(1)*L*theta3(kk)+offset+u2*(-r2*sin(x(1))*x(2)-

r2^2*sin(x(1))*cos(x(1))*x(2)/(r3*sqrt(1-r2^2*sin(x(1))^2/r3^2))); 
   tum1(kk)=tum; 
    r1dot(kk)=-r2*sin(x(1))*x(2)-(r2*sin(x(1))-

r4)*r2*cos(x(1))*x(2)/(r3*sqrt(1-(r2*sin(x(1))-r4)^2/r3^2));       

thetadotdot(kk)=(.50*(2.00*K*asin(r2*x(1.00)/r3)*r3^8.00+2.00*x(2.00)^2

.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))^3.00*ms*r2^3.00*r3^7.

00-2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*ms*r2^2.00*r3^8.00+2.00*J3*x(1.00

)*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^4.00*r2^7.00*r3-

4.00*J3*x(1.00)*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^2.00*r2^5.00*r3^3.00+2.00*x(1.00)^

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*ms*r2^8.00*r3-

4.00*x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*ms*r2^6.00*r3^3.00+2.00*x(1

.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-
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1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*ms*r2^4.00*r3^5.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*ms*r2^6.00*r3^3.00+8.00*x(1

.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*ms*r2^4.00*r3^5.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*ms*r2^2.00*r3^7.00+2.00*x(1.00)^

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*mprbm*r2^8.00*r3-

4.00*x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*mprbm*r2^6.00*r3^3.00+2.00*

x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*mprbm*r2^4.00*r3^5.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*mprbm*r2^6.00*r3^3.00+8.00*

x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*mprbm*r2^4.00*r3^5.00-

4.00*K*x(1.00)^4.00*asin(r2*x(1.00)/r3)*sin(x(1.00))^2.00*r2^6.00*r3^2.

00-

4.00*K*x(1.00)^2.00*asin(r2*x(1.00)/r3)*sin(x(1.00))^4.00*r2^6.00*r3^2.

00+2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*mprbm*r2^4.00*r3^5.00-

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*mprbm*r2^2.00*r3^7.00+2.00*

sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*ms*r2^4.00*r3^5.00-

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*ms*r2^2.00*r3^7.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*mprbm*r2^2.00*r3^7.00+4.00*x(2.0

0)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*cos(x(1.00))*ms*r2^5.00*r3^5.

00-6.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*cos(x(1.00))*ms*r2^3.00*r3^7.

00+2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))*ms*r2*r3^9.00+2.00*sq

rt(-(1.00*(r2^2.00*x(1.00)^2.00-1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*ms*r2*r3^8.00-

4.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))*ms*r2^3.00*r3^7.00+2.

00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))^3.00*ms*r2^7.00*r3^3.

00-4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*ms*r2^3.00*r3^6.00

+2.00*x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*ms*r2^5.00*r3^4.00

-2.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*mprbm*r2^3.00*r3^6

.00-6.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*cos(x(1.00))*ms*r2^7.00*r3^3.
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00+4.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*cos(x(1.00))*ms*r2^9.00*r3-

4.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))^3.00*ms*r2^5.00*r3^5.

00+12.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*cos(x(1.00))*ms*r2^5.00*r3^5.

00-8.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*cos(x(1.00))*ms*r2^7.00*r3^3.

00+2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*sqrt(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)*cos(x(1.00))^2.00*ms*r2^4.00*r3^6.00+4.00*x(1.0

0)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*ms*r2^4.00*r3^6.00-

2.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*ms*r2^6.00*r3^4.00+4.00*x(2.00)^2

.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))^2.00*ms*r2^2.00*r3^8

.00+2.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))*ms*r2^5.00*r3^5.00+sq

rt(-(1.00*(r2^2.00*x(1.00)^2.00-1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*mprbm*r2*r3^8.00-

4.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*sqrt(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)*cos(x(1.00))^2.00*ms*r2^6.00*r3^4.00+4.00*x(1.0

0)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))^2.00*ms*r2^6.00*r3^4

.00+2.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*sqrt(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)*cos(x(1.00))^2.00*ms*r2^8.00*r3^2.00-

8.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))^2.00*ms*r2^4.00*r3^6

.00+x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*mprbm*r2^5.00*r3^4

.00+2.00*K*asin(r2*x(1.00)/r3)*sin(x(1.00))^4.00*r2^4.00*r3^4.00-

4.00*K*asin(r2*x(1.00)/r3)*sin(x(1.00))^2.00*r2^2.00*r3^6.00+2.00*K*x(1

.00)^4.00*asin(r2*x(1.00)/r3)*sin(x(1.00))^4.00*r2^8.00+2.00*K*x(1.00)^

4.00*asin(r2*x(1.00)/r3)*r2^4.00*r3^4.00-

4.00*K*x(1.00)^2.00*asin(r2*x(1.00)/r3)*r2^2.00*r3^6.00+2.00*sqrt(-

(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*ms*r3^9.00+2.00*sqrt(-

(1.00*(r2^2.00*x(1.00)^2.00-
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1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*mprbm*r3^9.00+8.00*K*x(1.00)^2.0

0*asin(r2*x(1.00)/r3)*sin(x(1.00))^2.00*r2^4.00*r3^4.00+2.00*J3*x(1.00)

*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*r2^3.00*r3^5.00))/(sqrt(-

(1.00*(r2^2.00*x(1.00)^2.00-1.00*r3^2.00))/r3^2.00)*r2*r3*(-

2.00*x(1.00)^4.00*(-(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*sin(x(1.00))^2.00*cos(x(1.00))*ms

*r2^5.00*r3^3.00-

1.00*x(1.00)^4.00*sin(x(1.00))^6.00*ms*r2^8.00+x(1.00)^4.00*sin(x(1.00)

)^4.00*cos(x(1.00))^2.00*ms*r2^8.00+2.00*x(1.00)^4.00*sin(x(1.00))^4.00

*ms*r2^6.00*r3^2.00-

1.00*x(1.00)^4.00*sin(x(1.00))^2.00*cos(x(1.00))^2.00*ms*r2^6.00*r3^2.0

0+4.00*x(1.00)^2.00*(-(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*sin(x(1.00))^2.00*cos(x(1.00))*ms

*r2^3.00*r3^5.00+2.00*x(1.00)^2.00*sin(x(1.00))^6.00*ms*r2^6.00*r3^2.00

-

2.00*x(1.00)^2.00*sin(x(1.00))^4.00*cos(x(1.00))^2.00*ms*r2^6.00*r3^2.0

0-1.00*x(1.00)^4.00*sin(x(1.00))^2.00*ms*r2^4.00*r3^4.00-

4.00*x(1.00)^2.00*sin(x(1.00))^4.00*ms*r2^4.00*r3^4.00+2.00*x(1.00)^2.0

0*sin(x(1.00))^2.00*cos(x(1.00))^2.00*ms*r2^4.00*r3^4.00-2.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*sin(x(1.00))^2.00*cos(x(1.00))*ms

*r2*r3^7.00-

1.00*sin(x(1.00))^6.00*ms*r2^4.00*r3^4.00+sin(x(1.00))^4.00*cos(x(1.00)

)^2.00*ms*r2^4.00*r3^4.00+J3*x(1.00)^2.00*sin(x(1.00))^4.00*r2^6.00+2.0

0*x(1.00)^2.00*sin(x(1.00))^2.00*ms*r2^2.00*r3^6.00+2.00*sin(x(1.00))^4

.00*ms*r2^2.00*r3^6.00-

1.00*sin(x(1.00))^2.00*cos(x(1.00))^2.00*ms*r2^2.00*r3^6.00-

2.00*J3*x(1.00)^2.00*sin(x(1.00))^2.00*r2^4.00*r3^2.00-

1.00*J3*sin(x(1.00))^4.00*r2^4.00*r3^2.00-

1.00*sin(x(1.00))^2.00*ms*r3^8.00+J3*x(1.00)^2.00*r2^2.00*r3^4.00+2.00*

J3*sin(x(1.00))^2.00*r2^2.00*r3^4.00-1.00*J3*r3^6.00)); 
       %tum=offset+u2*(r2*sin(x(1))*x(2)-

r2^2*sin(x(1))*cos(x(1))*x(2)/(r3*sqrt(1-r2^2*sin(x(1))^2/r3^2))); 
       r1dotdot(kk)=-r2*cos(x(1))*x(2)^2-r2*sin(x(1))*thetadotdot(kk)-

(r2*sin(x(1))-r4)^2*r2^2*cos(x(1))^2*x(2)^2/(r3^3*(1-(r2*sin(x(1))-

r4)^2/r3^2)^(3/2))-r2^2*cos(x(1))^2*x(2)^2/(r3*sqrt(1-(r2*sin(x(1))-

r4)^2/r3^2))+(r2*sin(x(1))-r4)*r2*sin(x(1))*x(2)^2/(r3*sqrt(1-

(r2*sin(x(1))-r4)^2/r3^2))-(r2*sin(x(1))-

r4)*r2*cos(x(1))*thetadotdot(kk)/(r3*sqrt(1-(r2*sin(x(1))-r4)^2/r3^2)); 
    tk(kk)=time1(kk); 
    tum1(kk)=tum; 
    dr1(kk)=r2+r3+r1(kk); 
    KEslider(kk)=.5*(ms)*r1dot(kk)^2; 
    

KEplunger(kk)=.5*mprbm*(r2^2*x(2)^2+.25*r2*r2*cos(x(1))^2*x(2)^2/(1-

r2^2*sin(x(1))^2/r3^2)-

r2*r2*cos(x(1)+asin(r2*sin(x(1))/r3))*x(2)^2*cos(x(1))/sqrt(1-

r2^2*sin(x(1))^2/r3^2)); 

    PEplunger(kk)=.5*K*theta31(kk)^2; 
    PEgravity(kk)=-ms*g*(r1(kk))-mprbm*g*r2*cos(x(1))+(1/2)*r3*sqrt(1-

r2^2*sin(x(1))^2/r3^2); 
    KErot(kk)=.5*J3*r2^2*cos(x(1))^2*x(2)^2/(r3^2*(1-

r2^2*sin(x(1))^2/r3^2)); 
    PEtot(kk)=PEplunger(kk)+PEgravity(kk); 
    KEtot(kk)=.5*ms*(-r2*sin(x(1))*x(2)-

r2^2*sin(x(1))*cos(x(1))*x(2)/(r3*sqrt(1-
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r2^2*sin(x(1))^2/r3^2)))^2+.5*mprbm*(r2^2*x(2)^2+.25*r2^2*cos(x(1))^2*x

(2)^2/(1-r2^2*sin(x(1))^2/r3^2)-

r2^2*cos(x(1)+sin(r2*sin(x(1))/r3))*x(2)^2*cos(x(1))/sqrt(1-

r2^2*sin(x(1))^2/r3^2))+.5*J3*r2^2*cos(x(1))^2*x(2)^2/(r3^2*(1-

r2^2*sin(x(1))^2/r3^2));  
    end 

  
% lpFilt = designfilt('bandpassfir','FilterOrder',500, ... 
%          'CutoffFrequency1',2,'CutoffFrequency2',100, ... 
%          'SampleRate',1/(t(2)-t(1))); 
% fvtool(lpFilt) 
% dataIn = raw_data; 
% dataOut = filter(lpFilt,dataIn); 
figure(5)  
plot((tk),(r1dotdot),'Linewidth' ,2); 
axis([0 16e-3 -10 200]) 
% plot(t,dataOut)  
title('Acceleration vs. time','Fontsize',20) 
ylabel({'Amplitude, m/s^2',''},'Fontsize',15) 
xlabel({'','Time, sec'},'Fontsize',15) 
legend('Model','Experimental','Location', 'NorthEast') 
legend('boxoff') 

 

ODE 45 Solver 

function [t,x]=second_oder_ode_cfm() % add output argument 

  
% SOLVE  d2x/dt2+5 dx/dt - 4 x = sin(10 t) 
% initial conditions: x(0) = 0, x'(0)=0 
%%copy these variables to second_oder_ode 

  
global b 
global h 
global gama 
global L 
global Kt 
global Area 
global rhobar 
global beta 
global E 
global I 
global x0 
global v0 
global tstep 
global tfinal 
global rho 
global theta0 
global thetadot0 
global K 
global mprbm 
global zeta1 
global tinitial 
global r3 
global r2 
global Ib 
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global ms 
global g 
global m2 
global rho 
global J3 
global C 
global tum 
global u1 
global u2 
global zeta2 
global Pi 
global offset 
global Er 
global r4 
%%%% 

  
t= tinitial:tstep:tfinal;   % time scale 

  
initial_x    = theta0; 
initial_dxdt = thetadot0; 

  
[t,x]=ode23tb( @rhs, t, [initial_x initial_dxdt], 'NonNegative' ); 

 
    function dxdt=rhs(t,x); 

       
        dxdt_1 = x(2); 
        

dxdt_2=(.50*(2.00*K*asin(r2*x(1.00)/r3)*r3^8.00+2.00*x(2.00)^2.00*sqrt(

-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))^3.00*ms*r2^3.00*r3^7.

00-2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*ms*r2^2.00*r3^8.00+2.00*J3*x(1.00

)*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^4.00*r2^7.00*r3-

4.00*J3*x(1.00)*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^2.00*r2^5.00*r3^3.00+2.00*x(1.00)^

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*ms*r2^8.00*r3-

4.00*x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*ms*r2^6.00*r3^3.00+2.00*x(1

.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*ms*r2^4.00*r3^5.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*ms*r2^6.00*r3^3.00+8.00*x(1

.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*ms*r2^4.00*r3^5.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*ms*r2^2.00*r3^7.00+2.00*x(1.00)^

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*mprbm*r2^8.00*r3-

4.00*x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*mprbm*r2^6.00*r3^3.00+2.00*

x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*mprbm*r2^4.00*r3^5.00-
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4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*mprbm*r2^6.00*r3^3.00+8.00*

x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*mprbm*r2^4.00*r3^5.00-

4.00*K*x(1.00)^4.00*asin(r2*x(1.00)/r3)*sin(x(1.00))^2.00*r2^6.00*r3^2.

00-

4.00*K*x(1.00)^2.00*asin(r2*x(1.00)/r3)*sin(x(1.00))^4.00*r2^6.00*r3^2.

00+2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*mprbm*r2^4.00*r3^5.00-

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*mprbm*r2^2.00*r3^7.00+2.00*

sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*g*ms*r2^4.00*r3^5.00-

4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*g*ms*r2^2.00*r3^7.00-

4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*mprbm*r2^2.00*r3^7.00+4.00*x(2.0

0)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*cos(x(1.00))*ms*r2^5.00*r3^5.

00-6.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*cos(x(1.00))*ms*r2^3.00*r3^7.

00+2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))*ms*r2*r3^9.00+2.00*sq

rt(-(1.00*(r2^2.00*x(1.00)^2.00-1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*ms*r2*r3^8.00-

4.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))*ms*r2^3.00*r3^7.00+2.

00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))^3.00*ms*r2^7.00*r3^3.

00-4.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*ms*r2^3.00*r3^6.00

+2.00*x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*ms*r2^5.00*r3^4.00

-2.00*x(1.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*mprbm*r2^3.00*r3^6

.00-6.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*cos(x(1.00))*ms*r2^7.00*r3^3.

00+4.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*cos(x(1.00))*ms*r2^9.00*r3-

4.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))^3.00*ms*r2^5.00*r3^5.

00+12.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*cos(x(1.00))*ms*r2^5.00*r3^5.

00-8.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^5.00*cos(x(1.00))*ms*r2^7.00*r3^3.

00+2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*sqrt(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)*cos(x(1.00))^2.00*ms*r2^4.00*r3^6.00+4.00*x(1.0

0)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-
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1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*ms*r2^4.00*r3^6.00-

2.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*ms*r2^6.00*r3^4.00+4.00*x(2.00)^2

.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))^2.00*ms*r2^2.00*r3^8

.00+2.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*cos(x(1.00))*ms*r2^5.00*r3^5.00+sq

rt(-(1.00*(r2^2.00*x(1.00)^2.00-1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*mprbm*r2*r3^8.00-

4.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*sqrt(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)*cos(x(1.00))^2.00*ms*r2^6.00*r3^4.00+4.00*x(1.0

0)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))^2.00*ms*r2^6.00*r3^4

.00+2.00*x(1.00)^4.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))^3.00*sqrt(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)*cos(x(1.00))^2.00*ms*r2^8.00*r3^2.00-

8.00*x(1.00)^2.00*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))^2.00*ms*r2^4.00*r3^6

.00+x(1.00)^4.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*cos(x(1.00))*g*mprbm*r2^5.00*r3^4

.00+2.00*K*asin(r2*x(1.00)/r3)*sin(x(1.00))^4.00*r2^4.00*r3^4.00-

4.00*K*asin(r2*x(1.00)/r3)*sin(x(1.00))^2.00*r2^2.00*r3^6.00+2.00*K*x(1

.00)^4.00*asin(r2*x(1.00)/r3)*sin(x(1.00))^4.00*r2^8.00+2.00*K*x(1.00)^

4.00*asin(r2*x(1.00)/r3)*r2^4.00*r3^4.00-

4.00*K*x(1.00)^2.00*asin(r2*x(1.00)/r3)*r2^2.00*r3^6.00+2.00*sqrt(-

(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*ms*r3^9.00+2.00*sqrt(-

(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*sin(x(1.00))*g*mprbm*r3^9.00+8.00*K*x(1.00)^2.0

0*asin(r2*x(1.00)/r3)*sin(x(1.00))^2.00*r2^4.00*r3^4.00+2.00*J3*x(1.00)

*x(2.00)^2.00*sqrt(-(1.00*(r2^2.00*x(1.00)^2.00-

1.00*r3^2.00))/r3^2.00)*r2^3.00*r3^5.00))/(sqrt(-

(1.00*(r2^2.00*x(1.00)^2.00-1.00*r3^2.00))/r3^2.00)*r2*r3*(-

2.00*x(1.00)^4.00*(-(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*sin(x(1.00))^2.00*cos(x(1.00))*ms

*r2^5.00*r3^3.00-

1.00*x(1.00)^4.00*sin(x(1.00))^6.00*ms*r2^8.00+x(1.00)^4.00*sin(x(1.00)

)^4.00*cos(x(1.00))^2.00*ms*r2^8.00+2.00*x(1.00)^4.00*sin(x(1.00))^4.00

*ms*r2^6.00*r3^2.00-

1.00*x(1.00)^4.00*sin(x(1.00))^2.00*cos(x(1.00))^2.00*ms*r2^6.00*r3^2.0

0+4.00*x(1.00)^2.00*(-(1.00*(r2^2.00*sin(x(1.00))^2.00-
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1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*sin(x(1.00))^2.00*cos(x(1.00))*ms

*r2^3.00*r3^5.00+2.00*x(1.00)^2.00*sin(x(1.00))^6.00*ms*r2^6.00*r3^2.00

-

2.00*x(1.00)^2.00*sin(x(1.00))^4.00*cos(x(1.00))^2.00*ms*r2^6.00*r3^2.0

0-1.00*x(1.00)^4.00*sin(x(1.00))^2.00*ms*r2^4.00*r3^4.00-

4.00*x(1.00)^2.00*sin(x(1.00))^4.00*ms*r2^4.00*r3^4.00+2.00*x(1.00)^2.0

0*sin(x(1.00))^2.00*cos(x(1.00))^2.00*ms*r2^4.00*r3^4.00-2.00*(-

(1.00*(r2^2.00*sin(x(1.00))^2.00-

1.00*r3^2.00))/r3^2.00)^(3.00/(2.00))*sin(x(1.00))^2.00*cos(x(1.00))*ms

*r2*r3^7.00-

1.00*sin(x(1.00))^6.00*ms*r2^4.00*r3^4.00+sin(x(1.00))^4.00*cos(x(1.00)

)^2.00*ms*r2^4.00*r3^4.00+J3*x(1.00)^2.00*sin(x(1.00))^4.00*r2^6.00+2.0

0*x(1.00)^2.00*sin(x(1.00))^2.00*ms*r2^2.00*r3^6.00+2.00*sin(x(1.00))^4

.00*ms*r2^2.00*r3^6.00-

1.00*sin(x(1.00))^2.00*cos(x(1.00))^2.00*ms*r2^2.00*r3^6.00-

2.00*J3*x(1.00)^2.00*sin(x(1.00))^2.00*r2^4.00*r3^2.00-

1.00*J3*sin(x(1.00))^4.00*r2^4.00*r3^2.00-

1.00*sin(x(1.00))^2.00*ms*r3^8.00+J3*x(1.00)^2.00*r2^2.00*r3^4.00+2.00*

J3*sin(x(1.00))^2.00*r2^2.00*r3^4.00-1.00*J3*r3^6.00)); 
        %tum=offset+u2*(r2*sin(x(1))*x(2)-

r2^2*sin(x(1))*cos(x(1))*x(2)/(r3*sqrt(1-r2^2*sin(x(1))^2/r3^2))); 
      dxdt=[dxdt_1;dxdt_2]; 
    end 
end 
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APPENDIX G 

ANSYS® INPUT CODE 
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finish 

/clear  

     

/TITLE, Dynamic Analysis 

/FILNAME,Dynamic,0 ! This sets the jobname to 'Dynamic'    

/PREP7 ! Enter preprocessor 

K,1,0,0 ! Keypoints 

K,2,20,0  

finish !These two commands clear current data 

/clear 

/title, Nonlinear Analysis 

/prep7 ! Enter the preprocessor 

et,1,BEAM3 ! Define element as Beam3 

mp,ex,1,112364.35 ! Young's modulus (in MPa) 

mp,prxy,1,0.33 ! Poisson's ratio 

r,1,0.6874,0.004331,0.137482 ! area, I, height 

k,1,0,0,0 ! Fixed-end 

k,2,10,0,0 ! Guided-end 

l,1,2 ! Line 1 k1-k2 

esize,0.5 ! Sets element size to 0.5 in. 

REAL,1 

lmesh,1 ! Mesh line 

finish 

/solu 

antype,static ! Static analysis (not buckling) 

!!Comment above line and uncomment below for modal analysis!!! 

!ANTYPE,2 ! Modal analysis 

!MODOPT,SUBSP,5 ! Subspace, 5 modes 

!EQSLV,FRONT ! Frontal solver 

!MXPAND,5 

!!!!! 

nlgeom,on ! Nonlinear geometry solution supported 

outres,all,all ! Stores bunches of output 

nsubst,5 ! Load broken into 5 load steps 

neqit,20 ! Use 20 load steps to find solution 

autots,on ! Auto time stepping 

lnsrch,on 

/eshape,0 ! Plot the beam as a volume rather than line 

dk,1,all,0 ! Constrain bottom 

dk,2,uy,0.127082 !Deflect End 

finish 

/post1 

/eshape,1 

PLNS,u,sum $ /REPLOT 
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