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ABSTRACT 

Integrating sensors that read states of the human body into everyday life is an 

increasing desire, especially with the rise of deep learning which requires vast stores of 

data to make predictions. This work explores integrating these sensors into the human 

experience through two methods and recording the results. The first of these methods 

integrates a MXene based field-effect transistor sensor for the 2019-nCov spike protein 

with a mobile app. This allows the user to read how saturated their breath is with Covid-

19. The second method integrates 3D-printed pressure sensors, and a motion capture 

system, into a glove to read data on the human hand. This glove was then used in a human-

robot collaboration project to teach a robot to react to a human collaborator's gestured intent 

after watching a collection of intentional demonstrations. This work seeks for the sensor 

application, human data glove, and robot-collaboration framework made in this project to 

be used in later scientific exploration on integrating sensors into the human experience.  

Human-robot collaboration is the key emphasis of this work and was achieved 

through a combination of human intent prediction and robot policy encoding. Human intent 

prediction was achieved by a stacked LSTM neural network. This network was trained on 

demonstrations gathered where an individual wearing the human data glove performed an 

action, and a robot arm controlled by a human operator was moved through the desired 

trajectory in response to said action. The robot policy was encoded using a probabilistic 

movement primitive by learning the actions of the robot during these demonstrations. Once 

trained, the network could watch the actions of the human wearing the glove and respond 

with the appropriate robot policy with no human assistance. 
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1. INTRODUCTION 

 

As humanity and technology become increasingly intertwined, the importance of 

embedding sensor systems into everyday life grows. Smartphones and smartwatches are 

the most common devices that people use to interact with sensors on a daily basis. 

According to Google sensor types supported by Android devices (such as smartphones and 

smartwatches) include accelerometers, gyroscopes, heart rate, light, ambient temperature, 

magnetic field sensors, proximity, pressure, and relative humidity [13]. These sensors are 

useful for a complete smartphone or smartwatch experience but only the heart rate sensor 

reads the state of the human body. To design systems that improve the everyday lives of 

the user it is necessary to incorporate sensors that read the state of the human body. 

However, simply reading the state of the human body is not the only factor to consider. 

These sensors must be read at a high enough frequency to satisfy user expectations and the 

process of using the sensor must be done in an unobtrusive manner. If the sensor system is 

irritating or uncomfortable to wear, or if it doesn't update fast enough, the user is unlikely 

to use it for long. Incorporating these sensors into devices familiar to the user can help 

lower the noticeability and increase acceptance of the system. Ways to achieve this include 

embedding the sensors into clothing and having an existing device perform all computation 

and analysis of the sensor data. For example, according to the Pew Research Center as of 

February 2021 85% of the US population owns a smartphone [14]. Therefore, integrating 

sensor analysis into a smartphone is unlikely to cause any irritation to the user. The 

likelihood of irritation becomes even less likely when considering the wide range of highly 

specific smartphone apps Americans are downloading and using every day. In some cases, 

it may be necessary to incorporate sensors into their own housings that must be attached to 
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the user. To justify a user putting on a custom device specific to the task special 

considerations must be made. 

• Does the usefulness the sensor helps achieve outweigh the effort of putting 

on this custom device? 

• Is the device simple to put on and begin using? 

• Does the device cause any physical discomfort? 

With these considerations taken into account sensor integration into the human experience 

should cause no grievances for the user. 

This project takes on the challenge of integrating novel sensors into two separate 

environments. The first environment is connecting a smartphone application to a MXene 

based field-effect transistor sensor for 2019-nCov spike protein and H1N1 virus sensing. 

The sensor was integrated into a mask that the user can wear while breathing normally. As 

the user is wearing the mask the sensor readings are sent to an Arduino. This Arduino then 

transmits the sensor data over Bluetooth Low-Energy to a phone application that graphs 

the state of the sensor in real-time. The focus of this portion of the project was to find an 

unobtrusive way to relay this sensor data to a user through the use of a device that the user 

already has on them. This method is far better from a user experience perspective than 

current covid detection methods. For example, the BinaxNOW covid-19 antigen self-test 

requires the user to stick a long swab in each nostril and swirl it for 15 seconds per nostril 

[15]. On top of this, the sensor reading is not available to the user until a minimum of 15 

minutes after the test was taken. Our system provides much more transparency to the user 

and any data collected can be exported for further analysis.  
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The second sensor integration involved incorporating 3D-printed pressure sensors 

and motion capture tracking pearls into a glove. The glove is designed to facilitate Human-

Robot collaboration tasks, by allowing the user to transmit the pressure and position of 

each finger to a workstation controlling a robot arm. The system reacts to the human’s 

intent in real-time, allowing seamless interaction between the user and the robot arm. For 

example, when the user reaches for a board, the system recognizes the user's intent, and the 

robot arm grabs the other side of the board then assists in moving it. This system allows 

for the programming of human-robot collaboration tasks purely through demonstration and 

can remove the need for any programmer involvement. To use the system all the human 

user must be concerned with is putting on the glove and switching it on, needing no further 

technical considerations. 

The rest of this thesis covers the implementation of the sensor graphing application 

and robot collaboration framework. Section 2 is a literature review covering some previous 

attempts at sensor integration and human-robot collaboration. Section 3 covers the design 

and implementation of the sensor graphing application. Section 4 covers the design and 

implementation of the human data collection glove. Section 5 covers the design and 

implementation of the human-robot collaboration system. The final section covers 

conclusions on the work and further research. 
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2. LITERATURE REVIEW 

2.1. OVERVIEW 

The application areas for sensors reading data about the human body are incredibly 

broad. Hence, the focus of this literature review is on the specific areas in which we applied 

sensors to the human body. This section details previous work in graphing real-time sensor 

data over Bluetooth, glove devices for reading finger-tip pressure and finger position, and 

efforts to achieve human-robot collaboration. 

2.2. APPLICATIONS FOR READING SENSOR DATA OVER BLUETOOTH 

The Sensor Graphing application that was created is not the first application to 

graph sensor data in real-time for example the Sensor Plot Kit for iOS [16] is an example 

of an API that would allow for the same functionality that was achieved using the Android 

Sensor Graphing application. Another popular sensor reading API for iOS and Android is 

Sensing Kit [28] but this is limited to reading the sensors that already exist on your phone 

and not external sensors. This Sensor graphing application was a steppingstone in 

transmitting human-centric sensor data over Bluetooth, saving it, and exporting it in a real-

time setting. This allowed us to have a higher level of expertise when the sensor glove was 

designed for the Human-Robot Collaboration Project. 

2.3. HUMAN INTERFACE DEVICES FOR HUMAN-ROBOT 

COLLABORATION 

 

Human interface devices for gesture recognition, a key task in human-robot 

collaboration work, have two main approaches. The first approach is using a data collection 
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glove of some sort which prevents the need for the developer to post-process data and often 

the data is more accurate. The second approach is using a vision-based method to extract 

key points on the human hand. The second method has gotten much more accurate over 

time but is still prone to more errors and requires more post-processing. 

Glove devices for reading data about the human hand have a wide range of uses 

because they are involved in the majority of human interaction with the world. For 

example, Yeo [17] created a wireless sensor glove to read movement and pressure on the 

thumb. While this glove can tell that the thumb is moving it cannot tell the position of the 

thumb in space like the human data glove. This is an advantage gained by the use of a 

motion capture system. In 2021 Zhu [18] created a data glove to read the positions of each 

of the user's fingers with the use of flex sensors. This allowed the user to teleoperate a robot 

hand with a similar form to the human hand.  

Human interface devices in reference to Human-Robot collaboration are not only 

limited to gloves. Awais and Henrich used a digital camera to monitor a human hand in a 

scene and then using image processing extracted an outline of the hand [19]. This approach 

can be an effective way to guess human intentions from the orientation of the hand, but it 

does not include pressure data for each fingertip as the human data glove designed for this 

project does. Wu [20] used a more modern approach than Awais and Henrich through the 

use of the Leap Motion Controller but this limits the working range of the human operator 

to 80 cm from the leap motion.  
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2.4. HUMAN-ROBOT COLLABORATION 

Human-Robot collaboration is a field that covers humans and robots working 

together to complete tasks. The ways in which this can be achieved are numerous. For 

example, some see human-robot collaboration as introducing methods of commands to 

robots that are more familiar to humans such as [22], [23] and [24] which all use some 

form of natural language processing to issue commands to a robot collaborator.  While 

others see the robot as a proxy for a human being such as [4],[11], [20], and [21]. In this 

approach, the researchers are replacing what would normally be another human in a 

collaborative task. This project is taking this approach when looking at human-robot 

collaboration. Like this project, these tasks tend to be performed over a table of some sort 

because it allows for both the robot and human to have a common place to work while 

making up for the limited mobility of the robot collaborator. 

2.4.1. Learning Complex Robot Trajectories with Movement Primitives. 

Movement primitives have been a solution to complex motor control in robotics for a while. 

The first generally used movement primitive was introduced by Stefan Schaal in 2006 and 

is known as the Dynamic Movement Primitive or DMP [2]. The DMP was then updated in 

2013 by Auke Ijspeert [3]. The core idea of the DMP is to describe a trajectory using two 

parts: a point attractor function and a forcing function. The point attractor function simply 

pulls the trajectory towards a specific point over time and grows in magnitude. So, at first, 

the point attractor does not have much effect but at the end of the trajectory, it is the most 

powerful force. The forcing function is a set of basis functions that diminish in magnitude 

over time and allow more complex paths to be described. This allows for a complex 

trajectory to be followed very closely at first but at the end of a DMP you are always 
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guaranteed to converge on a final waypoint because of the point attractor function. The 

DMP can also be adjusted in two ways given parameters. The first is it can be spatially 

scaled meaning it ends its trajectory at a point closer or further away from its original 

ending waypoint. The second is it can be temporally scaled meaning that it can take a 

shorter or longer amount of time to complete its complex trajectory. Katharina Mülling 

used DMPs to describe the trajectories of a robot arm playing table tennis with a human 

collaborator [4] showing how powerful they can be when paired with a neural network. In 

2013 the Probabilistic Movement Primitive or ProMP was introduced by Alexandros 

Paraschos [5]. ProMPs do not use a point attractor unlike DMPs and instead use a set of 

Gaussian basis functions to describe a complex trajectory as a probability distribution. 

Describing a trajectory in this way not only allows us to get a much more accurate 

representation of a trajectory than DMPs allow for but our ability to adapt ProMPs is also 

superior. “[ProMPs] can be used to adapt [a] movement at any time point during [a] 

trajectory’s execution” [6] this includes conditioning a trajectory to start/arrive at a specific 

location or velocity. This means if we use a ProMP to demonstrate the trajectory of a robot 

arm waving we can condition properties such as the direction it's facing, speed of 

execution, and stopping point with all joints updating according to these new conditions. 

All these features of the ProMP can be described with as little as three parameters: initial 

position, final position, and relative execution time. For these reasons, this project is 

utilizing the ProMP to learn complex robot trajectories as adaptability is such a large 

advantage. 

2.4.2. Robot Control Methods. In order to learn these trajectories, recordings of 

demonstrations on the robot arm must be gathered. Matthias Rambow’s paper on 
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Autonomous Manipulation of Deformable Objects based on Teleoperated Demonstrations 

[7] shows that in order to teleoperate a robot arm with many degrees of freedom a complex 

control system must be made to give a human finite control of a robot arm. A paper by 

Gianluca Lentini [8] shows a less expensive approach to teleoperation by using a VR 

headset with motion trackers but this is software heavy and still relatively expensive. This 

is a route that is not only time intensive and financially infeasible but also overcomplicates 

the problem. The best solution to finite robot arm control for complex trajectories is 

kinesthetic control. Samuel Detzel used Kinesthetic control in order for a surgeon to teach 

complex trajectories to a robot arm for middle ear surgery [9]. This shows not only how 

simple kinesthetic teaching can be because someone who is not a robotics expert efficiently 

operated a robot, but they were also able to get a level of fine control exact enough to use 

in surgery. Alberto Montebelli’s paper on kinesthetic teaching [10] not only showed larger 

scale tasks like this project is attempting such as wood planing but also showed the types 

of real-time constraints that were overcome in this project. Their robot arm was able to 

send its state at a 1 kHz frequency and once a trajectory was recorded it would be repeated 

at 500 Hz. The robot arm for this project, the UFactory xArm 6 will be operating at 250 

Hz. 

2.4.3. Human Gesture Prediction. After a set of movement primitives has been 

learned the next step is intelligently deploying them. Mülling used an RNN gating 

networking [4] that was trained off demonstrations in an imitation learning stage and then 

further improved using reinforcement learning when training online. A more recent method 

from November 2021 saw a team skip the imitation learning step and simulated a robot 

playing tennis entirely within a simulation then transferred that into reality [11]. This has 
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the advantage of skipping demonstrations but requires a complex simulation to be built for 

every task that you want to attempt. This project achieves human gesture prediction 

through the use of a stacked LSTM (Long Short-Term Memory) Neural Network. Every 

20 ms the state of the human operator is sent to the network and a prediction of what gesture 

the human collaborator is making is produced. Wu [20] used an LSTM in order to predict 

the gestures of a human in a human-robot collaboration setting but the device for hand 

recognition, the Leap Motion, limited the gestures to hand movements. Large sweeping 

movements like waves and grabbing objects that are used in this project would not be able 

to be recognized by that system. 
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3. ANDROID APPLICATION FOR REAL-TIME SENSOR READING 

 

The Android Application for Real-Time sensor reading allowed any set of 1, 2, or 

3 sensor values to be transmitted over Bluetooth Low Energy and graphed on an Android 

phone in real-time. A view of the user interface and an example of a Bluetooth Peripheral 

wired to read sensor data can be seen in Figure 3.1. As the values were being graphed they 

were saved in memory and could be exported as a csv file of sensor readings with 

timestamps relative to when the recording started. This system allowed our team to read 

the state of MXene based field-effect transistor sensors for the 2019-nCov spike protein 

and the H1N1 virus in real-time while a patient was wearing a mask with the sensor 

embedded. 

 

 

Figure 3.1 Diagram of Example Bluetooth Peripheral Transmitting Sensor Data to Sensor 

Graphing Application 
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Another key focus of the design of the application was ease of use. This was 

because this application was being used to test several patients using the previously 

mentioned sensors at the hospital. Therefore, efficiently switching between the patients and 

exporting the collected information needed to be straightforward. To connect, all a user 

had to do was start the Bluetooth peripheral transmitting the sensor data (in our case this 

was an Arduino Nano) and open the graphing sensor app. Once in the sensor app the user 

simply had to follow the steps that are laid out in Figure 3.2. 

 

Figure 3.2 Sensor Application User Process 
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3.1. IMPLEMENTATION 

The sensor application was created with the Android Studio IDE using the Java 

programming language. The system targets Android 11.0 which according to Statcounter 

means as of March 2023 62.04% [25] of all global Android Devices can run the application 

thanks to backward compatibility. The application has two key factors to its functionality. 

The first is scanning for Bluetooth Low Energy (BLE) Devices, connecting to the 

appropriate device, and reading the device on a regular interval. The second key factor is 

taking the data read from the BLE device, then saving and graphing it in real-time. 

3.1.1. BLE Functionality.  Upon pressing the “Start” button the Sensor app will 

begin scanning for BLE devices to find the appropriate one to connect to. This is 

implemented through the BLE scan function. BLE uses what are known as UUIDs, 

Universal Unique Identifiers, these UUIDs are presented to the host device by the 

peripheral to tell it what services are offered by the device and the data format that will be 

transmitted. In the case of the sensor application, a UUID associated with both a service 

and a characteristic is being searched for. A service encapsulates a set of values called 

characteristics that are transmitted by the BLE peripheral. An example of a service would 

be a battery service which contains a battery-level characteristic. The host device would in 

this scenario query the BLE peripheral with the UUIDs associated with the battery 

characteristic and battery service. In response, the BLE peripheral would return the battery 

service information. The sensor application has one UUID used to query for the sensor 

service and sensor characteristics. The sensor service simply encapsulates the 

characteristic. The sensor characteristic returns a floating point value representing the 

current sensor reading every time that it is queried. The BLE scan function starts the 
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Android device’s Bluetooth adapter and starts a scanning callback function. The scanning 

callback function calls a function called “on scan result” every time a new BLE peripheral 

is discovered. This function reads information about the device to see if it has the expected 

address. If it has the expected address, a connection is established by calling the connect 

Bluetooth function. Once the connection is established a callback function is run because 

the Bluetooth adapter connection state has changed. This function calls the service 

discovery function which initiates another callback function once services are discovered. 

This callback function steps through every service and the service that is equal to the 

expected UUID is selected. Once this is complete every characteristic within the service is 

stepped through and the characteristic with the expected UUID is selected as well. Finally, 

the data handling function is called and writes data to the BLE peripheral requesting the 

state of the sensor characteristic. The BLE peripheral then responds with the state of the 

sensor. This is repeated in a loop while the graphing and data-saving functionality runs in 

between BLE peripheral read and write operations. The BLE functionality runs at between 

1 and 3 Hz with the number of sensors being scanned affecting the sensor update frequency. 

This is because it helps with graphing stability and a sensor does not have to read at a rate 

faster than 1 Hz for the use case of reading the state of a Covid-19 sensor. Figure 3.3 is a 

diagram showing the flow of functions for the BLE functionality.  

3.1.2. Real-Time Graphing and Saving Data.  For each of the sensor modes, 1, 

2, or 3 sensors, graphing and saving data operates in the same manner just with more graphs 

on the screen at once. While attempting to make this portion of the app the most difficult 

part was getting three real-time graphs to run on the phone stably. Originally the project 

used the GraphView library [26] which advertises the ability to create real-time graphs. 
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Figure 3.3 BLE Connect and Read Process 

 

While it can produce a functional real-time graph the frequency with which 3 graphs were 

being updated caused instability and the application would often crash under the stress of 

frequently updating all of the graphs. This led to the project switching to using the 

MPAndroidChart library [27] which does not explicitly list real-time graphs as one of its 

features. Real-time functionality was achieved with this graphing library by limiting the 

number of points visible on the graph at one time to a maximum of 50. Every time a new 

data point was received from the BLE peripheral a new data point would be added to the 

set holding the graph data. The graph would then be notified that the data had changed and 

the graph window would automatically update to accommodate the new data range. If the 

length of the graph data exceeded 50 then the first 25 data points would be removed from 

the set. Figure 3.4 shows the layout of 1 graph, 2 graphs, and 3 graphs. This is where writing 

to the data to memory becomes a factor. Once the 25 data points were removed they were 
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written to a file called “experimentData.csv” which was continuously updated throughout 

the experiment. Once the experiment was complete and the export button was selected this 

file would then be exported from the program to the application selected by the user. 

 

 

Figure 3.4 Graph Layouts for 1, 2, or 3 Graphs 

3.2. RESULTS 

After the app was created it was successfully used in a total of 6 experiments in 

order to collect data on the 2019-nCov spike protein and H1N1 virus sensor. The first of 

these experiments was a specificity verification experiment. This experiment ensured that 

the 2019-nCov spike protein sensor did not spike in the presence of the H1N1 virus. While 
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the sensors were being sprayed in a contained box with the H1N1 virus the sensor app was 

graphing the results of the experiment in real-time. Figure 3.5 shows a screenshot of the 

experiment running in real-time. The sensor application was able to clearly show that in  

 

 

the presence of the H1N1 virus, the 2019-nCov spike protein sensor stayed stable while 

the H1N1 virus sensor spiked. Once the experiment was complete the data was exported 

and used for further analysis. 

The second experiment the sensor app was used in was a concentration study. In 

this experiment 3 2019-nCov spike protein sensors were used. Sensor 2 was placed directly 

below the nozzle spraying the 2019-nCov spike protein while sensors 1 and 3 were equally 

spaced away from the nozzle on the left and right of sensor 2 respectively. This experiment 

showed the reactivity of the sensors under different concentrations of the spike protein. 

Figure 3.5 Specificity Verification Experiment 
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The graphing application showed in real-time that sensor 3 had the highest concentration 

of 2019-nCov spike protein contact because it was closest to the air filtration system which 

was pulling air into it. While sensors 1 and 2 showed similar reactions to the 2019-nCov 

spike protein. Figure 3.6 is a screenshot of the experiment where the graphing application 

is showing these differences. As with the previous experiment once complete the data was 

exported and used for further analysis. 

 

 

Figure 3.6 2019-nCov Spike Protein Concentration Study 

 

The third experiment was a flow rate study for the 2019-nCov Spike Protein sensor. 

This was a total of 3 experiments each recording one sensor at a time. Each of the sensors 

was measured for reactivity to the 2019-nCov Spike Protein in the presence of different 

flow rates from the nozzle. The three flow rates that were tested are 0.009 fg/s, 0.014 fg/s, 

and 0.018 fg/s. The sensor application showed the expected results, as the flow rate 
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increased the number of spike proteins contacting the sensor increased and the reading on 

the sensor went up. Figure 3.7 is a screenshot of the experiment demonstrating these results. 

This experimental data was all exported and used for further analysis. 

 

 

Experiment 4 embedded the  2019-nCov Spike Protein Sensor into an n95 mask 

and put it on a model of a human head with a nozzle emitting 2019-nCov spike protein 

through the mouth.  The experiment tested the sensor's ability to read the levels of 2019-

nCov spike proteins in two scenarios. The first scenario used an unsealed mask that was 

put on normally allowing for regular airflow through an n95 mask. The second scenario 

completely sealed the edges of the mask with tape allowing for a higher concentration of 

the spike protein. While the unsealed mask showed readings above the baseline as expected 

Figure 3.7 2019-nCov Spike Protein Sensor Flow Rate Study 
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the sealed mask had much higher readings. Figure 3.8 shows a screenshot of this 

discrepancy between the two scenarios. 

 

 

The 5th experiment tested a single 2019-nCov Spike Protein Sensor in a closed 

environment. This was a simple experiment that simply wanted to show the 2019-nCov 

Spike Protein Sensor changing readings in the presence of 2019-nCov Spike proteins in a 

sealed-off box. It is conceptually similar to the sealed mask experiment but the volume of 

the closed space is much larger than the sealed mask. The experiment showed higher 

readings on the 2019-nCov Spike Protein Sensor and this is reflected on the app. Figure 

3.9 shows the experimental setup and the higher readings on the 2019-nCov Spike Protein 

Sensor. 

 

Figure 3.8 2019-nCov Spike Protein Sensor Mask Experiment in a Sealed and Unsealed 

Mask 
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Figure 3.9 Closed Environment Experiment with Single 2019-nCov Spike Protein Sensor 

 

The 6th experiment tested the sensor application in real-life scenarios. A set of 

masks with embedded 2019-nCov Spike Protein Sensors was brought to Phelps Health and 

a phone with the sensor graphing application was brought along. The mask was then put 

on patients while the sensor graphing application collected readings from the sensor. This 

was done on a total of 85 patients who had previously been tested for covid-19 and 

confirmed as positive or negative. The phone application allowed for real-time results on 

the sensor readings with no need for bulky equipment to be present. Due to patient 

confidentiality, no photos of this experiment are available. 

3.3. SUMMARY 

This section covered the development of a real-time sensor graphing application. 

This Android app has the ability to connect to a peripheral over Bluetooth Low Energy, 
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BLE, and graph the state of up to 3 sensors in real-time. The sensor data is also recorded, 

timestamped, and saved in a csv file which can easily be exported to app that supports file 

sharing. This app was developed for the purpose of recording the state of a 2019-nCov 

Spike Protein Sensor embedded into a n95 mask. This allowed for a convenient hands off 

method for recording a patients covid-19 status. 
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4. BLUETOOTH GLOVE PLATFORM FOR CAPTURING HIGH-FREQUENCY 

SENSOR DATA 

 

The Bluetooth glove platform for capturing high-frequency sensor data allows a 

user to track the position of their fingers in space as well as track a set of up to six 

resistance-based sensors. The information on the sensors is transmitted using classic 

Bluetooth. For this project's use case, the glove was fitted with 5 3D printed pressure 

sensors, one on each fingertip. The purpose of building this glove was to easily extract the 

intent of a human being based on the movement and actions of their hand. A construction 

glove was chosen specifically because the targeted use case of the project's human-robot 

collaboration system is construction. This glove can easily be switched out for different 

scenarios since all electronics are stored on a forearm-mounted housing that is secured with 

Velcro straps. Lastly, the arm has a rechargeable battery that is recharged through a micro-

USB port. The hope for this glove is that it cannot only be used as a method to capture 

human hand data for this human-robot collaboration project but be used in future projects 

with numerous potential applications. Figure 4.1 provides a general overview of the glove's 

features and appearance. 

4.1. IMPLEMENTATION 

This section covers the full breadth of the design of the sensor glove. Aspects of 

the glove that will be covered include the glove structure, electronic components, and 

software. Section 4.1.1, Glove Structure, covers all of the non-electronic materials needed 

to create the glove. Section 4.1.2, Electronic Components, covers every electronic 

component and how to connect them together. Lastly, Section 4.1.3, Software, covers the 
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software powering Bluetooth connection and transmission and an overview of the Vicon 

Nexus SDK. The intention is that this section covers the glove in enough detail that 

someone seeking to recreate it would have a clear understanding of how to rebuild it. 

 

 

4.1.1. Glove Structure. The gloves structure almost entirely consists of a set of 

off-the-shelf materials that are inexpensive to purchase. Based on current market prices all 

of these components would cost x dollars. Table 4.1 lists all off-the-shelf materials and 

their current prices. The only piece of the glove structure that has additional requirements 

is the custom housing for the electronic components. This component was 3D printed and 

therefore requires a 3D printer to create. The housing neatly secures all electronic 

components in place and connecting all electronic components to it only requires 7 screws, 

7 nuts, and a small amount of glue. Figure 4.2 shows a technical drawing of the electronics 

housing mount. 

Figure 4.1 Glove Features Overview 
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Table 4.1 Off-The-Shelf Components and Current Prices 

Component Cost 

Hyper Tough High-Performance Black 

Synthetic Leather Work Gloves 

$15.96 

VELCRO Brand 15 ft x ¾ in Roll $7.98 

9.5 mm Vicon Tracking Pearl  

(10 pack) 

$70.00 

6.4 mm Vicon Tracking Pearl  

(10 pack) 

$70.00 

7 x 2mm Machine Screws with 4mm 

Length 

$0.49 

7 x 2mm Hex Nuts $0.49 

Total Cost $164.92 
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Figure 4.2 Technical Drawing of Electronic Housing Mount for Glove  

(dimensions in mm) 

 

As can be seen from Figure 4.2 the base plate has two slots. These slots are intended 

to fit two Velcro straps allowing the user to secure the housing to their arm. In total, the 

device has 12 Vicon Motion tracking pearls. Only five of these pearls are used by our 

system for data, the pearls at the tips of the fingers. The other 7 pearls are used to reinforce 

the proper labeling of the fingers by the Vicon motion tracking system. 

4.1.2. Electronic Components The electronic components consist mainly of parts 

that can be sourced from suppliers online with only one custom-made component. These 

off-the-shelf components are listed in Table 4.2 with their current market prices. All of the 

electronics are connected together using a custom-designed PCB. This PCB holds all of 
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the components except for the charging circuitry and DC-DC power booster. All computing 

on the device is done from an Arduino Nano. The Arduino Nano does not have built-in 

Bluetooth connectivity, so this is enabled by wiring it into an HC-05 Bluetooth chip.  

 

Table 4.2 Electronic Components and Current Prices 

Component Cost 

Adafruit PowerBoost 500C Charger $18.50 

Legion SS01-BBIWA-RA20-R  

(Power Switch) 

$1.20 

LiPo Battery - 3.7v 2500 mAh $14.95 

Arduino Nano $24.90 

Adafruit MiniBoost 5v @ 1A $3.95 

Total Cost $63.50 

 

The HC-05 can deliver sensor data every 10 ms giving the device a frequency of 

100 Hz. Figure 4.3 and Figure 4.4 show the wiring diagram and PCB schematic for the 

Arduino Nano variant of the glove design respectively. An alternative PCB has been 

designed and tested with the Arduino Nano RP 2040. This chip is much more powerful 

than the Arduino Nano having an onboard IMU as well built-in BLE and Wi-Fi support. 

The limiting factor of this device is that it only has 4 usable analog ports when Wi-Fi or 

BLE are enabled. If a limited number of Analog ports is not an issue this is the 
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recommended chip to use for a more versatile glove. In the case of this project, the Arduino 

Nano was used because reading pressure sensor values from all 5 fingers was critical to the 

use-case. Figures 4.5 and 4.6 show the wiring diagram and PCB schematic for the Arduino 

Nano RP2040 variant of the glove design. Powering both of the chips is a 3.7V LiPo 2500 

mAh battery. This battery has been tested and runs continuously for 24+ hours before 

requiring a recharge. This is advantageous to our project because the human-robot 

collaboration portion of this project is targeting the construction field where workers labor 

for long hours often with no outlets nearby. 

 

 

Figure 4.3 Sensor Glove Wiring Diagram – Arduino Nano with HC-05 Chip Variant 
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Figure 4.4 Sensor Glove PCB Schematic – Arduino Nano with HC-05 Chip Variant 

 

 

Figure 4.5 Sensor Glove Wiring Diagram – Arduino Nano RP2040 Variant 
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Figure 4.6 Sensor Glove PCB Design – Arduino Nano RP2040 Variant 

 

4.1.3. Software. The software for the sensor glove has three components. The first 

of these components is the code that is powering the Arduino. This software controls the 

collection of sensor data and the following transmission of that data over Bluetooth. The 

second component is the Vicon System tracking the position of the glove in space. Lastly, 

the third component is the host device receiving the data from the glove. This section 

focuses on the first two components. This is due to the fact that the third component is very 

task specific. The function of the host computer for the human-robot collaboration project 

is covered in Section 5.2.2.  

The Arduino Bluetooth pseudocode can be found in Algorithm 4.1 with the code 

listed in the appendix. As can be seen in the pseudo-code below the Arduino waits for a 

host device to establish a connection and send a start signal. This is due to an issue of 

alignment between the host device and the Arduino. If the host device were to read in the 
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number of bytes that make up the entire message, 6 bytes, it is very common for the host 

pc to receive the end of a previous message and the start of a new one. This can be 

overcome by sending the same message twice. Therefore, when the host pc reads double 

the message length, 12 bytes, it is guaranteed to receive at least one whole message instead 

of an incomplete combination of two messages. An alternative solution is to only transmit 

messages from the Arduino when a request message is received from the host device. While 

this guarantees that the next 6 bytes received from the Arduino will be a complete message 

it introduces a new more detrimental problem to proper device operation, latency. When 

the HC-05 chip switches from writing to reading operations a delay of ~70 ms is introduced 

into the system. This takes the glove from a 100 Hz system down to 14 Hz, an 86% decrease 

in frequency. The small overhead of writing the same message twice is far smaller than the 

overhead of context switching between reading and writing on the HC-05.  

Algorithm 4.1 Bluetooth Glove Operation 
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The Vicon system is also critical to the functioning of the glove. It tracks each of 

the markers on the glove using a set of 10 cameras. Each of these markers is labeled 

automatically by the Vicon system through the creation of what is known as a subject. The 

subject learns what the name of each marker is based on its relative position to a set of 

other expected markers. Figure 4.7 shows what the subject looks like from within the Vicon 

GUI. In Section 5 the Vicon SDK is covered in more detail. This creates a Python interface 

into Vicon allowing the marker data to be extracted from the system in real-time, without 

this the human-robot collaboration project could not have functioned. 

 

 

Figure 4.7 Vicon Sensor Glove Subject 

4.2. RESULTS 

The glove was tested in four different scenarios, sliding a board on a table, 

operating a drill, and manipulating a ball. These tests each show the accuracy and response 

time of the glove in several scenarios that demonstrate vastly different methods of 
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manipulation with the hand. Figure 4.8 shows a screenshot of the first scenario, sliding a 

board on a table. 

 

 

Figure 4.8 Sensor Glove Test Scenario – Sliding Board on Table 

 

As Figure 4.8 shows these test scenarios show a real video of the test in the bottom 

left, the visualization from the Vicon system in the background, and lastly a visualization 

of the pressure on each finger represented by circles that grow and shrink on each fingertip. 

This demonstration shows the glove's ability to accurately and quickly digitize the state of 

the human hand. The next two scenarios shown in Figures 4.9 and 4.10 demonstrate the 

glove's ability to accurately mark each finger in scenarios that may cause occlusion or the 

Vicon system to mistake one finger for another. 
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Figure 4.9 Sensor Glove Test Scenario – Drill 

 

 

Figure 4.10 Sensor Glove Test Scenario - Ball 
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These scenarios demonstrate that the sensor glove is a robust system able to easily 

track the state of the human hand even in scenarios that are difficult for a motion capture 

system to track. This system is later used in Section 5 to determine human intent in the 

human-robot collaboration project. 

4.3. SUMMARY 

This section covered the development of a Bluetooth enabled sensor glove. This 

sensor glove can transmit the state of up to 6 resistance-based sensors at 100 Hz over 

Bluetooth while using a Vicon Motion Capture System to track the location of the fingers 

in space. The sensor glove was developed with the intent of being used in the human-robot 

collaboration system covered in Section 5 but it is believed that it could be used in future 

research where recording data about the human hand is required. 
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5. HUMAN-ROBOT COLLABORATION ON TASKS LEARNED THROUGH 

DEMONSTRATION 

 

This system attempts to view a human collaborator working on a translation task 

over a desk with a kinesthetically controlled robot arm over several demonstrations and 

using imitation learning, learns to control the robot arm to complete the same translation 

task with the human in real-time. Figure 5.1 Provides a visual overview of the whole 

system. 

 

 

Figure 5.1 Human-Robot Collaboration System Overview 

 

To track the human collaborator's movements the Bluetooth Sensor glove, from 

Section 4, is used. While running the system the sensor data from the glove as well as the 

position of each finger is transmitted over an ethernet cable, using the UDP protocol, to a 

workstation, referred to as the robot workstation from now on, running the xArm 6 control 
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policy. The system has two modes of operation that determine how the data being sent to 

the robot workstation is used. The first mode is demonstration recording mode. This mode 

collects demonstrations in order to train the system. When data from the sensor glove 

arrives at the robot workstation it is time-stamped and saved to a csv, comma-separated 

value, file. At the same time, a second independent script is recording the state of the robot 

arm and saves that to a csv. The robot and human data are kept separate because they are 

used to train two learning systems. The system uses the human data demonstrations to train 

a form of RNN, recurrent neural network, known as an LSTM, Long Short-Term Memory. 

The LSTM learns what movement the human is attempting to make by watching several 

demonstrations of each movement. For example, the LSTM can learn to recognize when a 

human is attempting to wave. Once the LSTM has recognized that a gesture is being 

performed it then tells the robot arm to perform the corresponding trajectory that was 

learned from demonstration. In the case of a human waving the LSTM would tell the robot 

arm to wave back in response. The trajectory that the robot has learned from several 

demonstrations is known as a movement primitive. A movement primitive allows for 

complex trajectories to be learned from demonstrations as well as reduces the number of 

commands required to describe a complex trajectory. For example, instead of having every 

joint position saved that describes a robot's wave there is instead a learned equation that 

can be used to describe the entire trajectory. The specific type of movement primitive used 

for this project is known as a ProMP, Probabilistic Movement Primitive, and is covered in 

further detail later in this section. Currently, the LSTM can decide from three total options 

no ProMP should be used at this moment, the wave ProMP should be used, or the pick and 

place board ProMP should be used. Once the LSTM's confidence that a particular gesture 
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is being performed exceeds 90% the corresponding gesture is performed in response on the 

robot arm. While this system is currently only limited to two response actions from the 

robot it is easily scalable to many more actions by recording a larger amount of training 

data. 

5.1. METHODOLOGY 

This section covers the two key learning algorithms fundamental to this project's 

success. The first learning algorithm is the human intent recognition LSTM, allowing for 

gestures to be identified from multiple sequences of human hand data. The second learning 

algorithm allows robot trajectories to be learned from a sequence of robot joint positions. 

5.1.1. Human Intent Recognition LSTM. As stated earlier the human intent 

recognition LSTM is a form of RNN, recurrent neural network. From a high level, this 

means that previous inputs, as well as the current input data, affect the LSTM’s prediction. 

The RNN structure is ideal for time series data like a sequence of time-stamped human 

hand data. Figure 5.2 shows the structure of an RNN over multiple predictions. As can be 

seen from the figure a recurrent neural network takes a Hidden input, H, from the previous 

iteration of the RNN and an input X representing the current state of the system. It uses 

both of these values in order to make a prediction which is the output Y. The simple RNN 

has an inherent disadvantage though. It treats all previous inputs as equal. This means that 

it quickly forgets events that happened in the past. This can be seen in equation 5.1 which 

describes the forward propagation function of the hidden layer of a simple RNN. 
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Figure 5.2 Recurrent Neural Network Structure Over Multiple Iterations 

 

 𝐻𝑡 = 𝑎(𝑊ℎℎ𝐻𝑡−1 + 𝑊ℎ𝑥𝑋𝑡−1 + 𝑏ℎ) (5.1)1 

In equation 5.1 it shows that to determine the current hidden state Ht, an activation function 

is used on a set of three inputs. The previous hidden state Ht-1 multiplied by its 

corresponding weights Whh, the current input Xt-1 multiplied by its corresponding weights, 

and the bias bh. The flaw with the recurrent neural network can be seen within the forward 

propagation step for the previous hidden state WhhH
t-1, this function does not have the 

ability to distinguish between important events that occurred previously in the time 

sequence. In effect, it is averaging all previous events and multiplying them by a set of 

learned weights. Therefore, the effect of an event that happened 200 timesteps ago has a 

significantly smaller impact on Ht-1 than an event that just occurred 1 timestep ago. When 

recognizing human gestures this means that a simple RNN would quickly forget what had 

recently happened and therefore have a difficult time recognizing long gestures. The LSTM 

 

1 Equations on LSTM architecture adapted from [27] 
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makes up for this disadvantage through the use of its attention mechanism. The attention 

mechanism allows an LSTM to learn what are the most important data points that occur in 

a sequence and therefore give them a higher level of influence on the prediction of the 

network. This is done through a set of 6 equations describing the forward propagation of 

an LSTM. The first equation is Equation 5.2 which describes the memory cell. 

 𝑐𝑡 = 𝛤𝑢 ∗ 𝑐̇𝑡 + 𝛤𝑓 ∗ 𝑐𝑡−1  (5.2) 

The memory cell, ct, is a new value passed between iterations. This gives the LSTM the 

ability to choose what information to remember and what to forget. This is done by 

multiplying a new candidate memory cell, ċt, with an update gate, 𝛤𝑢, and multiplying what 

was previously saved in memory, 𝑐𝑡−1, with a forget gate, 𝛤𝑓. Therefore, during every call 

to an LSTM, a decision is made as to whether the memory cell,  𝑐𝑡, should keep the same 

value or be replaced by the new candidate memory cell, 𝑐̇𝑡. Equation 5.3 shows the 

computation for, 𝑐̇𝑡. 

 𝑐̇𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑐[𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑐) (5.3) 

The candidate memory cell is computed using the previous hidden state and the current 

input which are multiplied by a set of learned weights Wc and have a bias bc added to them 

before going through the tanh activation function. The update and forget gates are 

described in equations 5.4 and 5.5 respectively. 

 𝛤𝑢 = 𝜎(𝑊𝑢[𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑢) (5.4) 

 𝛤𝑓 = 𝜎(𝑊𝑓[𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓) (5.5) 

These gates have a very similar form to the candidate memory cell, but they have their own 

learned weight matrices, Wu and Wf, as well as their own learned biases, bu and bf. They 
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also pass through the sigmoid activation function, represented by 𝜎, instead of tanh. After 

ct the hidden layer output Ht is determined. Equation 5.6 shows how Ht is calculated. 

 𝐻𝑡 = 𝛤𝑜 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (5.6) 

The hidden layer output is computed by the memory cell, ct, which is multiplied by an 

output gate, 𝛤𝑜. Equation 5.7 describes the output gate. 

 𝛤𝑜 = 𝜎(𝑊𝑜[𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜) (5.7) 

The output gate is structured in the same fashion as the previous gates in equations 5.4 and 

5.5 with its own learned weight matrix, Wo and bias, bo. Finally, once the Ht is determined 

it can be passed through any activation function with its own weights and bias to generate 

the output Yt. Figure 5.3 is a diagram describing the function of an LSTM in a graphical 

manner as opposed to the equations just covered. 

 

 

Figure 5.3 LSTM Layer Diagram 
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The form of LSTM made for this project is many-to-many which means that for 

every timestep the LSTM produces a prediction. This allows the gesture prediction to be 

updated rapidly. The input into the network is a set of 21 input variables describing the 

state of the human user's hand. This includes 5 (X, Y, Z) coordinates describing the position 

of the fingers in space, 5 pressure readings, and one timestamp (describing the time elapsed 

since the value was received). Figure 5.4 is a diagram showing all of the input variables 

and where they come from on the glove. The output of the network is a set of 3 percentage 

point values that add up to 100. These describe the confidence level that the human gesture 

being performed is either no gesture, a wave, or a grab. Figure 5.5 is a diagram showing 

the output from the network. 

 

 

Figure 5.4 Human Intent Recognition LSTM Input 
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Figure 5.5 Human Intent Recognition LSTM Output 

 

The architecture of the network is a 6-layer stacked LSTM with a dense output layer 

and SoftMax activation function. In total, the network has 183,155 trainable parameters. 

Figure 5.6 is a diagram of the network architecture used for the project. The size and depth 

of this network was large enough to recognize the long-range dependencies required to 

recognize a gesture while not being so large that it overfits to the training set. In order to 

further prevent overfitting, the first LSTM layer has a 20% dropout rate while the next 5 

LSTM layers have a 30% dropout rate. Dropout randomly turns the weight of a specified 

percentage of neurons to 0. This prevents a neural network from learning the training set 

too specifically which causes a network to have a hard time generalizing to new inputs. 

 

 

Figure 5.6 Human Intent Recognition LSTM Architecture 
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The human intent recognition LSTM was trained using the Categorical Cross 

entropy loss function and the Adam optimizer with stochastic gradient descent. Categorical 

cross-entropy is a loss function used when you have a set of one-hot encoded categories to 

choose from. Equation 5.8 shows the math describing the loss function. 

 𝐶𝐸 = − ∑ 𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)
𝑛
𝑖=0  (5.8) 

The Adam optimizer combines rmsPROP and momentum optimizers to create an optimizer 

that can quickly move down shallow portions of the loss surface but can also slow down 

the learning rate to ensure that a minimum is not overshot. Lastly, Stochastic gradient 

descent is batch gradient descent with a batch size of 1. This causes the movement across 

the loss surface to be erratic and it can overshoot the global minimum. This is because 

when calculating the gradient only one sample is used which does not accurately represent 

the loss surface. Figure 5.7 shows the difference between batch and stochastic gradient 

descent. This is used because the sequences the neural network is training on are variable 

in length. Padding the sequences to be the same length can be used to overcome this but it 

does change the statistical distribution of the data, so it was not chosen as the solution. 

 

 

Figure 5.7 Batch Gradient Descent vs. Stochastic Gradient Descent on Loss Surface 
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5.1.2. Probabilistic Movement Primitives. Probabilistic Movement Primitives, 

ProMPs, enable the robot policy to be encoded by watching a series of demonstrations. The 

robot policy is the strategy the robot uses in pursuit of its goals. In this case, that means the 

trajectory the robot uses in response to a certain gesture performed by the human. ProMPs 

represent the trajectory as a distribution over the set of all demonstrated trajectories. Figure 

5.8 shows a graph of the trajectory distribution learned on each joint of the xArm 6 after 

learning from a series of wave demonstrations. ProMPs are used in this project because 

they achieve 3 functions: reduction of the action space for the LSTM, issuing high-

frequency commands to the xArm 6, and the ability to modulate movements to the specific 

scenario.  

The first and most important feature of ProMPs is the ability to reduce the action 

space of the human-intent recognition LSTM. The action space is the n-dimensional space 

describing the output of a neural network, where n is the number of output values. 

Currently, the LSTM has a finite action space of 3. The 3 actions are stand, wave, and grab. 

This is only possible because 2 ProMPs describe all of the joint movements that make up 

the wave and grab robot trajectories. If a ProMP was not used the LSTM would have to 

describe the exact position all 7 degrees of freedom (6 joints and 1 end effector) must move 

to as the output of every call to the LSTM. This makes the action space of the LSTM, 7 

highly sensitive floating-point values. They are sensitive because sending a value outside 

of the expected range could cause the xArm 6 to perform in dangerous ways, potentially 

damaging itself, or knocking over items in the environment. Another factor is that the 

current position would be coupled to the previous position since the LSTM saves the state 

of previous predictions. Therefore, errors in the LSTM prediction could compound over 
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Figure 5.8 Trajectory Distribution of Wave on Each Joint of the xArm6 Learned from a 

set of Demonstrations 

 

time causing increasing error. This means that the LSTM must be precise when it is 

guessing a response movement to the human collaborator with no room for error. The 

ProMP overcomes these issues by describing the trajectory as a function that can be queried 

for a precise position to move each joint, keeping all responses in a safe working area with 

no chance of compound errors. 

The second justification for using ProMPs is related to a frequency constraint 

caused by the collection of the Human data. After optimization, the state of the human data 

can only be gathered every 20 ms. This is due to the fact that receiving a Bluetooth 

transmission on the state of the pressure sensors takes 10 ms and receiving the state of the 



 

 

46 

markers takes 10 ms as well. Both of these actions are blocking and therefore require 20 

ms for both to be completed. If both actions could be computed in parallel, it may be 

possible to get the response time down to 10 but this is still not fast enough. The xArm 6 

takes new joint position commands at a rate of 250 Hz, which means a response from the 

LSTM must arrive in 4 ms. With current data collection restraints, this is not possible to 

overcome. Achieving a 4 ms response time for the LSTM may also not be ideal for future 

scalability. If the network were scaled to recognize a large library of gestures at some point 

it is feasible that the processing time for the LSTM exceeds 4 ms. ProMPs can respond 

instantaneously because they generate all of the points the x Arm 6 will move along when 

they are queried initially. This means that no processing time is required between each x 

Arm 6 joint command which makes implementation easier and more scalable. A robot 

response that would take 10,000 timesteps has the same inter-command computational 

overhead as a response that takes 100,000 timesteps.  

Lastly, ProMPs allow for the trajectory to be modulated in two key ways. These 

include temporal modulation and waypoint conditioning. Temporal modulation allows the 

total execution time of a trajectory to be sped up or slowed down by a coefficient known 

as the phase variable. Waypoint conditioning allows for a trajectory to arrive at a specific 

point within the learned distribution. For example, if the xArm 6 was trained to perform a 

wave it could be conditioned to perform that same wave facing 45° to the left. Currently, 

ProMP conditioning is not part of the robot-collaboration framework because far more 

demonstrations must be collected for this to work effectively. The functionality can be 

added to the network with modifications to the final layer of the network but without an 
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adequate amount of demonstration data, a model cannot produce an accurate enough 

waypoint or temporal modulation coefficient for human-robot collaboration. 

ProMPs are implemented using a HBM, Hierarchical Bayesian Model, which 

allows for a distribution to be extracted from a set of trajectories. Figure 5.9 shows the 

HBM. 

 

 

Figure 5.9 Hierarchical Bayesian Model Used by ProMPs2 

 

A trajectory is described as a set of joint angles over time, τ={qt}t=0...T. A weight 

vector, ω, is multiplied with a basis function vector 𝚽t = [𝜑𝑡, 𝜑̇𝑡] to produce a trajectory, 

yt, shown in equation 5.9. 

 𝑦𝑡 = [𝑞𝑡 , 𝑞𝑡̇] = 𝜱𝒕 ω (5.9) 

The variables 𝑞𝑡, 𝑞𝑡̇ represent the angle and angular velocity at time t respectively. A 

similar relationship holds for variables 𝜑𝑡, 𝜑̇𝑡 which represent the time dependent basis 

 

2 Figures and Equations on ProMP implementation are adapted from [6] 
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function for the angle and its derivative representing angular velocity respectively. This 

equation, yt, is used with ω, and the variance of y, Σy, to create the probability of observing 

a trajectory τ. This is shown in equation 5.10. 

 𝑝(𝜏|𝜔) = ∏ 𝒩(𝑦𝑡|𝜱𝒕 𝜔, 𝛴𝑦)𝑡  (5.10) 

A distribution p(ω; θ) is defined to show the variance of the trajectories where θ = {μω, 

Σω} which are the mean and variance of ω respectively. Finally using the previously 

defined equations the probability distribution over the trajectories 𝛕 can be defined in 

equation 5.11. 

 𝑝(𝜏;  𝜃)  =  ∫ 𝑝(𝜏|𝜔)𝑝(𝜔;  𝜃)𝑑𝜔 (5.11) 

Using learning methods, the weight vector, ω, can be fit so the probability distribution 

better matches the set of trajectories.  

The basis function vector, 𝚽t, described earlier can represent any basis function 

that the user desires. The implementation used by the human-robot collaboration 

framework is a Gaussian radial basis function. This basis function has the form shown in 

equation 5.12. 

 𝜑𝑡 = 𝑒−𝜀‖𝑡−𝑡𝑖‖2
 (5.12) 

Where 𝜀 is a parameter to scale the input of the radial basis function and ti is a value a fixed 

distance from the current timestep t. Radial basis functions are effective at approximating 

complex functions because they are capable of computing infinite interactions between the 

input variables. 
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5.2. IMPLEMENTATION 

The Human-Robot collaboration framework was implemented using a combination 

of Python and C++. The human data workstation is a Windows 10 PC and all scripts used 

on the device were written in Python. The robot data workstation is a Linux PC. A majority 

of the scripts written on this device were written in Python but scripts with a tight time 

constraint, specifically the robot trajectory recording script were written in C++.  All tasks 

took place over a desk with the human operator on one side and xArm 6 on the other.  For 

the remainder of this section, all references to code will be accompanied by pseudo-code. 

The actual code used to implement this project can all be found in the appendix. 

5.2.1. Experimental Setup. The experimental setup takes place over a desk with 

the human user on one side and the robot collaborator on the other. The experimental 

workspace is surrounded by a set of 10 Vicon motion tracking cameras. Figure 5.10 shows 

a diagram of the experimental setup. The cameras allow for total coverage of the workspace 

but when a marker gets occluded software solutions were programmed to make up for these 

problems. This is covered in Section 5.2.2 Data Collection. 

 

 

Figure 5.10 Experimental Setup Design 
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5.2.2. Data Collection. In order for the human-robot collaboration system to 

function, sensor glove data must be collected on the human data workstation and 

transmitted over an ethernet cable to the robot data workstation where it is saved alongside 

the robot data as a demonstration to train the human-intent recognition LSTM as well as a 

ProMP for the movement being performed on the robot arm. The collection of data and 

transmission to the robot workstation is an identical operation regardless of if the system 

is saving demonstrations to memory or the system is performing real-time human-robot 

collaboration. This section focuses on the collection of data on the human-data workstation, 

transmission to the robot workstation, and lastly the saving of those demonstrations to 

memory. Information on how the robot workstation operates when performing real-time 

human-robot collaboration can be found in Section 5.2.5. 

The human-data workstation collects data from two sources: the Vicon system, and 

pressure sensors on the glove. Algorithm 5.1 shows pseudocode explaining the 

initialization, data collection, and transmission process for the human-data workstation. 

 

 

Algorithm 5.1 Human Data Workstation Client 
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As can be seen in the pseudocode for algorithm 5.1 the human-data workstation initializes 

the Vicon system, Bluetooth connection, and robot workstation connection in lines 1-3. 

After this, the human data workstation collects data on the glove markers from the Vicon 

system and the state of the sensors from the Bluetooth connection. It then concatenates that 

data together and transmits it to the robot workstation. Algorithm 5.2 shows the 

initialization of the Vicon system from line 1 of Algorithm 5.1. 

 

 

Algorithm 5.2 Initialize Vicon 

 

In Algorithm 5.2 the Vicon client is connected to the workstation, before the 

markers representing the four corners of the table the human and robot collaborators are 

working over are gathered. The four markers are then used to determine an origin point in 

the center of the table in lines 3-5. This is a pre-processing step to produce consistent 

coordinates between uses of the human-robot collaboration framework. This is done by 

shifting the coordinates of the markers on the sensor glove to be relative to the origin point 

at the center of the table. By performing this step, it becomes easier for the human-intent 

LSTM to recognize gestures.  
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As discussed in Section 4.1.3 the sensor glove has onboard software for 

transmitting the sensor data on the device when connected to the host pc. In the case of the 

human-robot collaboration system, the host device is the human-data workstation. 

Algorithm 5.3 shows how this connection to the sensor glove is initialized (this 

initialization occurs on line 2 of Algorithm 5.1). 

 

 

Algorithm 5.3 Initialize Bluetooth 

 

The last initialization step for the human data workstation is to establish a 

connection to the robot workstation. This is done by simply listening for an initialization 

message from the IP associated with the robot workstation. Once this message is received 

the data begins being read and transmitted to the robot workstation. 

Data is read and transmitted from the human-data workstation every time a request 

is received from the robot workstation. Algorithm 5.4 Shows how data is read from the 

Vicon system. 
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Algorithm 5.4 Read Vicon 

 

The Vicon reading algorithm reads the state of the markers on the glove. If it is the 

case that a marker is occluded, the previous position of the occluded marker is updated 

with the moving average of the marker velocity multiplied by the time since the last data 

read was performed. This prevents demonstration data from having missing values while 

providing a reasonable estimate of the marker's position. After the Vicon system is read 

the sensor glove is read over Bluetooth. This is covered in Algorithm 5.5. 

 

 

Algorithm 5.5 Read Bluetooth 
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Messages from the sensor glove are transmitted every 10 ms which fills the buffer 

on the human-data workstation with messages. To get the most recent message this means 

that a whole message must be read and discarded for every 10 ms that have passed since 

the last message was read from the buffer. This is implemented on lines 1 and 2 in 

Algorithm 5.5. 

Once data is transmitted to the robot workstation one of two scripts will be run. 

This section covers the Data collection server which collects data from the xArm 6, and 

the human-data workstation before saving them as a demonstration for training the LSTM 

and ProMP. Algorithm 5.6 shows how the Data Collection Server functions. 

 

 

Algorithm 5.6 Data Collection Server 

 

After connecting to the xArm 6 and human-data workstation the data collection 

server waits for the user to press enter before starting. Once this has occurred a subprocess 

known as record trajectory is opened. This is a program written in C++ that reads and 

records the state of the xArm 6 at 250 Hz. After this subprocess is started data is requested 

from the human-data workstation before being written to a file. Once the user presses ‘q’ 
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the data collection for the xArm 6 and human data end. Record trajectory had to be written 

as a subprocess because requesting human data is blocking and takes on average 20 ms to 

complete, 5 times slower than the 4 ms response time that the x Arm 6 recording needs to 

achieve. Algorithm 5.7 shows how the record trajectory script functions. 

 

 

Algorithm 5.7 Record Trajectory 

 

Once a set of demonstrations have been collected the human data needs to be 

labeled before it is ready to train the LSTM. This is done through a demonstration labeling 

script where the user pans through a visualization of the human demonstration data and 

marks what gesture was performed as well as on what frames said gesture began and ended. 

Algorithm 5.8 shows how the demonstration labeling script functions. 

5.2.3. Training the LSTM. The human-intent recognition LSTM was 

implemented using TensorFlow 2.0 and the sequential Keras API. Algorithm 5.9 covers 

the process of creating and training the LSTM. After data has been loaded an initial model 

is created with the Keras API known as the stateless model. This is a model that does not 

save the internal state of the LSTM between calls to the LSTM. 
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Algorithm 5.8 Demonstration Labeling 

 

 

Algorithm 5.9 LSTM Model Creation and Training 
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Therefore, in order to use this model an entire sequence must be provided to it. A 

model of this form is only useful for training because in real-time operation the model will 

get a single sample every 20 ms. After training for 10 epochs and graphing the training loss 

(shown in Section 5.3) a new model known as the stateful model is created with the Keras 

sequential API. This model has an identical architecture to the stateful model, but its state 

is saved between calls to the model therefore you can provide one sample at a time. The 

weights from the trained stateless model are then transferred to the stateful model. Lastly, 

the stateful model is converted to a TensorFlow Lite model before being saved. 

TensorFlow Lite models have optimizations for running models on weaker devices such as 

cell phones. The reason that it is used in this scenario is that it causes the model to produce 

predictions in under 1 ms on the robot workstation making the overhead insignificant. 

Lastly, the model is saved to memory for later use in real-time operation. 

5.2.4. Training the ProMPs. ProMPs were trained with the publicly available 

Movement Primitives library [12] for Python. This library allows for ProMPs to be trained 

from a set of trajectories, conditioned on positions, and have their execution time 

modulated. Algorithm 5.10 covers the ProMP training script created for the human-robot 

collaboration system. For the two possible responses from the xArm 6 a ProMP was 

trained. These were a wave ProMP and a grab ProMP. From a computing resources 

perspective, this is the most demanding portion of this project as training these movement 

primitives took upwards of two hours and 70 gigabytes of RAM. Once the ProMPs are 

trained the resources needed to utilize them do become computationally insignificant. 
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Algorithm 5.10 ProMP Trainer 

 

5.2.5. Real-Time Human-Robot Collaboration.As stated in section 5.2.2, real-

time human-robot collaboration and data collection operate identically in regard to 

operation on the human-data workstation. When running in real-time mode the robot 

workstation is running a real-time server script. The Pseudo code for this script can be 

found in algorithm 5.11. 

 

 

Algorithm 5.11 Real-Time Server 
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Similar to algorithm 5.6 the real-time server script establishes a connection to the 

xArm 6 and human data workstation and then waits for the user to press enter before 

beginning operation. Once enter has been pressed data is requested from the human data 

workstation. The human intent recognition LSTM saved to memory in algorithm 5.9 is then 

used to make a prediction using the data received from the human data workstation. If the 

prediction confidence that a wave or grab is being performed exceeds 90% and no gesture 

is currently being performed, then it performs the associated robot response by opening the 

replay ProMP script as a subprocess. This loops until the user ends the program by pressing 

‘q’. The reason that the replay ProMP script must be a subprocess is related to achieving a 

250 Hz frequency for controlling the xArm 6 because requesting data from the human-data 

workstation blocks for 20 ms. Algorithm 5.12 covers how the replay ProMP subprocess 

functions. 

 

 

Algorithm 5.12 Replay ProMP 
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The replay ProMP subprocess is straightforward. The script connects to the xArm 

6 and the ProMP that was requested as an input parameter is loaded. If the user has supplied 

a final waypoint to condition the ProMP to arrive at then it is conditioned on that position. 

Once this is complete the xArm 6 is moved to the initial position of the trajectory before a 

command is sent every 4 ms until the trajectory completes. 

5.3. RESULTS 

For each human-robot collaboration task 20 demonstrations were recorded in order 

to train the LSTM and ProMPs. Figure 5.11 shows an overview of this process. After 

training the human-intent LSTM was able to achieve a training loss of 0.0334. This is 

shown graphically in Figure 5.12. 

 

 

Figure 5.11 Data Collection and Training Process 
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Figure 5.12 Training Loss vs. Epoch for Human-Intent Recognition LSTM 

 

This translated to accurate real-time results. Standing, waving, or grabbing was 

detected with high accuracy when a gesture began, and this prediction accuracy was 

sustained throughout the entire movement. Figures 5.13 and 5.14 show the process for 

detecting and responding to a wave and grab respectively. 

 

 

Figure 5.13 Human-Robot Collaboration Real-Time Wave Response 
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Figure 5.14 Human-Robot Collaboration Real-Time Grab Response 

5.4. SUMMARY 

This section showed a robust system for training a robot arm to function in a human-

robot collaboration setting. By recording as little as 20 example demonstrations an LSTM 

can be trained through imitation learning to recognize the intent of a human collaborator. 

Once the human collaborators intent is recognized a probabilistic movement primitive is 

then used to respond with the appropriate trajectory on the robot arm. This allows a robot 

arm to assist a human in tasks such as picking up and placing a board down and waving in 

response to the collaborator. 
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6. CONCLUSION 

6.1. SUMMARY OF WORK 

This work incorporated novel sensors for reading the state of human health and 

motion intent into two real-time computing settings. The first of these settings was a sensor 

graphing application that could record and graph the state of up to 3 sensors in real-time. 

This was used to read the Covid-19 status of 85 patients in a hospital wearing a n95 mask 

with a sensor embedded inside. The second setting saw a novel pressure sensor 

incorporated into a glove to read the pressure on each finger. This glove was also able to 

read the position of the fingers in space with the use of the Vicon Motion Capture System. 

The glove was used to collect data to infer the gesture a human was performing with an 

LSTM, Long Short-Term Memory, neural network in a human-robot collaboration system. 

Once a gesture was inferred a Probabilistic Movement Primitive, ProMP, was used to 

perform a trajectory in response to the human collaborator. 

6.2. NOVELTY OF RESEARCH 

This first system in this work combined an n95 facemask with an embedded Covid-

19 sensor allowing for the state of the wearer to be viewed in real-time and saved on a 

smartphone. This sensor application was also generalizable and could be used with any 

type of sensor.  

The human-robot collaboration framework utilized a stacked LSTM to recognize 

human motion intent in real-time and select a Probabilistic Movement Primitive, ProMP, 

to use for the robot response. The human-intent recognition LSTM and ProMP were both 



 

 

64 

trained using 20 demonstrations per task. The combination of these two algorithms creates 

a system that can be scaled to many more tasks. This system was also made possible by a 

custom cost-effective glove for reading the state of the human hand with Bluetooth. This 

gloves ability to read pressure on fingertips provided a more detailed description of human 

gestures than would normally be seen with gloves used for the purpose of human-robot 

collaboration. 

6.3. PUBLICATION PLAN 

Currently two publications are actively being developed. Associated with the work 

in Section 3 on the sensor application the paper,  

1. Nucleic Acid Probes Capture COVID-19 Virus in Low-Cost Rapid Testing 

MXene-Graphene Field Effect Transistors. The authors of this paper are Jiaoli 

Li, Yuwei Zhang, Yanxiao Li, Congjie Wei, Adam Sawyer, ZheKun Peng, 

DongHyun Kim, Risheng Wang and Chenglin Wu.  

The second paper associated with Sensor Glove in Section 4 is titled,  

2. Reach to Grasp: 3D Printed Dual Mode Contact Sensor. The authors of this 

paper are Jiaoli Li, Yu Li, Adam Sawyer, Mingyuan Sun, Bo Li, Chenglin Wu. 

The work in Section 5 is intended to be made into a publication with the title, 

3.  Human Robot Collaboration in Construction Using LSTM and ProMP. The 

authors will be Adam Sawyer, Anastasia Reed-Comeaux, Jiaoli Li, Yun Seong 

Song, Joe Stanley and Chenglin Wu. 



 

 

65 

6.4. FUTURE PLANS 

6.4.1. Improvements to Human-Robot Collaboration System. Improvements 

that can make this system more useful in the future have been recognized throughout its 

development. The first improvement would be tracking the human hand through a key 

point detection algorithm which is fed image data through a single HD camera. While the 

Vicon system is effective it must be noted that it reduces the portability and increases the 

cost of deploying a system such as this in any practical system. Containing the camera 

system to a single generic HD camera would reduce the cost significantly and make the 

device easily portable. Another improvement that should be made in the future is adding 

reinforcement learning to the systems real-time operation so the systems response can 

improve as it is collaborated with. Currently the system only relies on imitation learning 

therefore it only improves initially when training off pre-recorded demonstrations. Lastly 

recording many more demonstrations and a larger breadth of gestures would improve the 

usability and accuracy of the system. The combination of reinforcement learning, and 

greater data collection would also enable ProMP waypoint and time modulation to be a 

feature of the systems real-time operation. Therefore, one learned ProMP could be used to 

generate many movements. 

6.4.2. Applications of Technology. The sensor application developed in Section 3 

offers utility to the health sector and academic sensor research. The health sectors use case 

was proven by the deployment of the sensor embedded n95 mask with 85 patients at the 

hospital. Researchers looking for a convenient and pre-programmed way to test the outputs 

of their novel sensors can use the sensor application view and export experimental data.  
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The sensor glove in Section 4 shows promises in being used in future academic 

endeavors that need to read the state of the human hand efficiently. The glove's modularity 

in regard to sensor attachments allows for many different use cases in academia. The 

specific design of the glove for this project also equips it to be used in construction because 

it is a work glove with a long battery life. The long battery life would prevent workers from 

having to stop their work to recharge the device. Lastly, the human-robot collaboration 

system in Section 5 shows promises for collaboration in work bench-bound translation 

tasks. This includes assisting in moving items and providing components to the worker. 
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APPENDIX 

SOURCE CODE 

This section contains the source code associated with all of the Pseudo Code from 

within the main sections. It contains a mix of Python, C, and C++. 
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#include <SoftwareSerial.h> 

 

#define TxD 2 

#define RxD 3 

SoftwareSerial mySerial(RxD, TxD); 

 

const int THUMB = A1; 

const int INDEX = A2; 

const int MIDDLE = A3; 

const int RING = A4; 

const int PINKY = A5; 

 

bool started = false; 

 

void setup() { 

  mySerial.begin(115200); 

} 

 

void loop() { 

  if (mySerial.read() == '1' or started){ 

    if (started == false){ 

      started = true; 

    } 

    byte message[6] = {(byte)255,(byte)(analogRead(THUMB) >> 2), 

                       (byte)(analogRead(INDEX) >> 2), 

                       (byte)(analogRead(MIDDLE) >> 2), 

                       (byte)(analogRead(RING) >> 2), 

                       (byte)(analogRead(PINKY) >> 2)}; 

    byte message_double[12] = {message[0], message[1], message[2],  

                               message[3], message[4], message[5],  

                               message[0], message[1], message[2],  

                               message[3], message[4], message[5]}; 

    mySerial.write(message_double, 12);   

    delay(10); 

  } 

} 
 

 

Source Code 1 Bluetooth Glove Operation – Written in C3 

 

3 Covers Pseudocode in Algorithm 4.1 
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# Collects data from Vicon and BlueTooth Glove, combines it and transmits over 

ethernet 

from vicon_dssdk import ViconDataStream 

import bluetooth 

import socket 

import csv 

import datetime as dt 

import numpy as np 

import time 

import win32api 

import win32process 

import struct 

 

grab = {'PWF': False, 'PWB': False, 'TWF': False, 'TWB': False, 'MWF': False, 

'MWB': False,  

             'palm': False, 'thumb': True, 'index': True, 'middle': True, 'ring': 

True, 'pinky': True} 

 

record = {'bar1': [[],[],[]], 'bar2': [[],[],[]], 'bar3': [[],[],[]],  

          'bar4': [[],[],[]], 'pinky': [[],[],[]], 'ring': [[],[],[]],  

          'middle': [[],[],[]], 'index': [[],[],[]], 'thumb': [[],[],[]]} 

 

def init_vicon(): 

    #setting up connection to the Vicon Nexus 

    client = ViconDataStream.Client() 

    client.Connect('localhost:801') 

    client.SetBufferSize(10) 

    client.EnableMarkerData() 

    client.SetStreamMode(ViconDataStream.Client.StreamMode.EServerPush) 

 

    #establishing the origin with reference to the table 

    client.GetFrame() 

    P1 = list(client.GetMarkerGlobalTranslation("table", "table1"))[0] 

    P2 = list(client.GetMarkerGlobalTranslation("table", "table2"))[0] 

    P3 = list(client.GetMarkerGlobalTranslation("table", "table3"))[0] 

    P4 = list(client.GetMarkerGlobalTranslation("table", "table4"))[0] 

    origin = [] 

    for num1, num2 in zip(P1, P4): 

        temp = (num1+num2)/2 

        origin.append(temp) 

    #current process of establishing the Z coordinate by averaging the Z of each 

table marker 

    origin[2] = (P1[2]+P2[2]+P3[2]+P4[2])/4 
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    return client, origin 

 

# Returns the data from vicon system as comma separated values 

def read_vicon(client, origin): 

    # vals = "" 

    vals = bytearray() 

    client.GetFrame() 

    subjectNames = ["bar", "glove2"] 

    for subjectName in subjectNames: 

        markerNames = client.GetMarkerNames( subjectName )             

        for markerName, _ in markerNames: 

            position = list(client.GetMarkerGlobalTranslation( subjectName, 

markerName )) 

            if (subjectName == 'glove2' and grab[markerName] == False): 

                continue 

            #This handles situations where the marker is occluded 

            elif position[1] == True: 

                if not len(record[markerName]): 

                    continue 

                #calculates the average velocity and adds that to the most recent 

marker position to generate positions for missing markers 

                else: 

                    if len(record[markerName][0]) == 0: 

                        vals.extend(struct.pack(f"<3f",0, 0, 0)) 

                        position = [0, 0, 0] 

                    else: 

                        avg_vel_temp = 

(sum(np.diff(np.array(record[markerName][0])))/len(record[markerName][0]), 

sum(np.diff(np.array(record[markerName][1])))/len(record[markerName][0]), 

sum(np.diff(np.array(record[markerName][2])))/len(record[markerName][0])) 

                        avg_vel = [avg_vel_temp[0] if avg_vel_temp[0] >= 1 else 

0, avg_vel_temp[1] if avg_vel_temp[1] >= 1 else 0, avg_vel_temp[2] if 

avg_vel_temp[2] >= 1 else 0] 

                        position = [record[markerName][0][-1] + avg_vel[0], 

record[markerName][1][-1] + avg_vel[1], record[markerName][2][-1] + avg_vel[2]] 

                        vals.extend(struct.pack(f"<3f", position[0], position[1], 

position[2])) 

            #if not occluded, transform the marker positions so they're relative 

to the origin and then add to vals 

            else: 

                position = [a[0] - a[1] for a in list(zip(position[0], origin))] 

                vals.extend(struct.pack(f"<3f", position[0], position[1], 

position[2]))  
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           #at the start of adding things to the record, this duplicates the 

initial position so there will always be two positions to calculate velocity from 

            if len(record[markerName][0]) == 0: 

                record[markerName][0].append(position[0]) 

                record[markerName][1].append(position[1]) 

                record[markerName][2].append(position[2]) 

 

                record[markerName][0].append(position[0]) 

                record[markerName][1].append(position[1]) 

                record[markerName][2].append(position[2]) 

 

            #this section maintains the record length at 200 by popping before 

adding a new position  

            elif len(record[markerName][0]) == 15: 

                record[markerName][0].pop(0) 

                record[markerName][0].pop(1) 

                record[markerName][0].pop(2) 

 

                record[markerName][0].append(position[0]) 

                record[markerName][1].append(position[1]) 

                record[markerName][2].append(position[2]) 

            else: 

                record[markerName][0].append(position[0]) 

                record[markerName][1].append(position[1]) 

                record[markerName][2].append(position[2]) 

    return vals 

 

last_read = None 

 

def init_BT(): 

    global last_read 

 

    nearby_devices = bluetooth.discover_devices(lookup_names=True) 

    print("Found {} devices.".format(len(nearby_devices))) 

 

    sock = bluetooth.BluetoothSocket() 

    for addr, name in nearby_devices: 

        if name == 'PressureGlove': 

            sock.connect((addr, 1)) 

     

    sock.send('1'.encode("utf-8")) 

    last_read = time.perf_counter() 

     

 

    print("BT Connected")  
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    return sock 

 

def read_BT(bt_socket): 

    global last_read 

    buffer = bytearray() 

    read = max(int((time.perf_counter() - last_read)/0.010) + 1, 1) 

    read = int(12*read) 

    while len(buffer) < read: 

        buffer.extend(bt_socket.recv(read - len(buffer))) 

    last_read = time.perf_counter() 

 

    idx = buffer[:buffer.rfind(255)].rfind(255) 

    return buffer[idx + 1:idx + 6] 

 

# Connects to the linux workstation and waits for start command 

def connection_init(): 

    client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

    client.bind(('', 4444)) 

 

    print("Connected") 

 

    message = client.recv(1).decode("utf-8") 

    while message != "0": 

        print(message) 

        message = client.recv(1).decode("utf-8") 

 

    return client 

 

def send_data(client, data): 

    client.sendto(data, ('192.168.2.15', 4444)) 

 

def main(): 

    win32process.SetPriorityClass(win32api.GetCurrentProcess(), 

win32process.REALTIME_PRIORITY_CLASS) 

 

    vicon_client, origin = init_vicon() 

    bt_socket = init_BT() 

    client = connection_init() 

 

    while vicon_client.IsConnected(): 

        try: 

            if client.recv(1).decode('utf-8') == '0': 

                strt = time.perf_counter() 

                d_1 = read_vicon(vicon_client, origin)  
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               vic_tim = time.perf_counter() - strt 

                strt = time.perf_counter() 

                d_2 = read_BT(bt_socket) 

                bt_tim = time.perf_counter() - strt 

                data = d_1 + d_2  

                strt = time.perf_counter() 

                print(f"Message Bytes: {len(data)}") 

                send_data(client, data) 

                send_tim = time.perf_counter() - strt 

 

                print(f"Elapsed time:\n\tVicon Time: {vic_tim}\n\tBT Time: 

{bt_tim}\n\tSend Time: {send_tim}") 

             

        except KeyboardInterrupt: 

            vicon_client.Disconnect() 

 

if __name__ == "__main__": 

    main() 
 

 
Source Code 2 Human Data Workstation Client – Written in Python4 

 

 

4 Covers Pseudocode in Algorithms 5.1, 5.2, 5.3, 5.4, and 5.5 
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import socket 

import keyboard 

import time 

import struct 

import subprocess 

import os 

from datetime import datetime 

from xarm.wrapper import XArmAPI 

 

def handle_err_warn_changed(item): 

    print('ErrorCode: {}, WarnCode: {}'.format(item['error_code'], 

item['warn_code'])) 

 

def main(): 

    ip = "192.168.1.224" 

 

    arm = XArmAPI(ip, do_not_open=True) 

    arm.register_error_warn_changed_callback(handle_err_warn_changed) 

    arm.connect() 

 

    server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

    server.bind(('', 4444)) 

 

    input("Press enter key to start experiment") 

    server.sendto('0'.encode("utf-8"), ('192.168.2.10', 4444)) 

     

    loop_sum, loop_cnt = 0, 0 

    max_loop = 0 

     

    first_recv = True 

 

    rec_demonstration = "" 

     

    while not keyboard.is_pressed('q'): 

        server.sendto('0'.encode("utf-8"), ('192.168.2.10', 4444)) 

        buffer = bytearray() 

        while len(buffer) < 113: 

            print(len(buffer)) 

            server.settimeout(10.0) 

            buffer.extend(server.recv(113 - len(buffer))) 

            server.settimeout(0.0) 

 

        if first_recv == True: 
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            process = subprocess.Popen(["./custom_scripts/record_trajectory", 

"192.168.1.224"]) 

            first_recv = False 

 

        buffer = struct.unpack("<27f5B", buffer) 

 

        arm_pos = arm.get_position()[1] 

        rec_demonstration += ','.join([str(b) for b in buffer]) + 

f",{arm_pos[0]},{arm_pos[1]},{arm_pos[2]},{arm_pos[3]},{arm_pos[4]},{arm_pos[5]},

{time.time()}\n" 

 

    process.terminate() 

 

    demonstration = open(os.path.join(os.path.dirname(__file__), '..', 

'Demonstrations', 'demo_stand', 'demo_stand_' + (datetime.now()).strftime('%d-%m-

%Y_%H:%M:%S')) + '.csv', "w+") 

    demonstration.write(rec_demonstration) 

 

if __name__ == "__main__": 

    main() 
 

 

Source Code 3 Data Collection Server – Written in Python5 

  

 

5 Covers Pseudocode in Algorithm 5.6 
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#include <chrono> 

#include <thread> 

#include <fstream> 

#include <ctime> 

#include <xarm/wrapper/xarm_api.h> 

 

void record_traj(XArmAPI *arm); 

 

// Get current date/time, format is YYYY-MM-DD_HH:mm:ss 

const std::string currentDateTime() { 

    time_t     now = time(0); 

    struct tm  tstruct; 

    char       buf[80]; 

    tstruct = *localtime(&now); 

 

    strftime(buf, sizeof(buf), "%Y-%m-%d_%X", &tstruct); 

 

    return buf; 

} 

 

int main(int argc, char **argv) { 

    if (argc < 2) { 

        printf("Please enter IP address\n"); 

        return 0; 

    } 

     

    std::string port(argv[1]); 

    std::cout << port << std::endl; 

    XArmAPI *arm = new XArmAPI(port); 

 

    std::cout << "To stop recording press q" << std::endl; 

 

    record_traj(arm); 

     

    return 0; 

} 

 

void record_traj(XArmAPI *arm){ 

    using clock = std::chrono::system_clock; 

    using sec = std::chrono::duration<double>; 

    auto start = clock::now(); 

 

    std::ofstream trajFile; 

    trajFile.open("rec_trajectories/demo_stand/rec_traj_stand_" + 

currentDateTime() + ".csv", std::ios::out);  
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    trajFile << "Jp_1, Jp_2, Jp_3, Jp_4, Jp_5, Jp_6, Gp, Jv_1, Jv_2, Jv_3,  

                 Jv_4, Jv_5, Jv_6, Je_1, Je_2, Je_3, Je_4, Je_5, Je_6, time 

(ms)\n"; 

 

    fp32 position[7], gripper_pos[2], velocity[7], effort[7]; 

    while (true) 

    {    

        start = clock::now(); 

         

        arm->get_joint_states(position, velocity, effort); 

        arm->get_gripper_position(gripper_pos); 

 

        auto cur_time = std::chrono::system_clock::now(); 

        // We are using the xArm 6 therefore we do not record index 6 for 

position, velocity  

        // or effort because it refers to a nonexistent 7th joint 

        trajFile << position[0] << "," << position[1] << "," << position[2] << 

","  

                 << position[3] << "," << position[4] << "," << position[5] << 

","  

                 << gripper_pos[0] << "," << velocity[0] << "," << velocity[1] << 

","  

                 << velocity[2] << "," << velocity[3] << "," << velocity[4] << 

"," << velocity[5] << "," 

                 << effort[0] << "," << effort[1] << "," << effort[2] << ","  

                 << effort[3] << "," << effort[4] << "," << effort[5] << ","  

                 << 

std::chrono::duration_cast<std::chrono::milliseconds>(cur_time.time_since_epoch()

).count() << '\n'; 

 

        sec duration = clock::now() - start; 

        std::this_thread::sleep_for(std::chrono::milliseconds(4) - duration); 

         

    } 

    trajFile.close(); 

} 

 
 

 

Source Code 4 Record Trajectory – Written in C++6 

 

 

6 Covers Pseudocode in Algorithm 5.7 
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import sys 

 

def main(): 

    file = open(sys.argv[1],'r') 

    length = len(file.readlines()) 

    file.close() 

 

    gesture = input("What is the gesture?\n\t0: Stand\n\t1: Wave\n\t2: Grab\n") 

 

    if gesture != '0': 

        start = input("On what frame does the gesture start?\n") 

        stop = input("On what frame does the gesture end?\n") 

 

    dir = (sys.argv[1]).split('/') 

    print(dir) 

 

    folder = dir[-2] 

 

    labels_dir = dir[-1][:-4] + "_labels" 

    labels = open("./Demonstrations/" + folder + "/labels/" + labels_dir, "w+") 

 

    if gesture != '0': 

        for i in range(0,int(start)): 

            labels.write("0\n") 

        for i in range(int(start),int(stop) + 1): 

            labels.write(gesture + '\n') 

        for i in range(int(stop) + 1, length): 

            labels.write("0\n") 

 

    else: 

        for i in range(length): 

            labels.write("0\n") 

 

    labels.close() 

 

if __name__ == "__main__": 

    main() 
 

 

Source Code 5 Demonstration Labeling7 

 

7 Covers Pseudocode in Algorithm 5.8 
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import tensorflow as tf 

from tensorflow import keras 

from keras.models import Sequential 

from keras.preprocessing import sequence 

from keras.layers import Dropout 

from keras.layers import Dense, GRU, LSTM 

from keras.utils import to_categorical 

     

from os import listdir 

 

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) 

 

# Viewing Data 

sample = pd.read_csv('./Demonstrations/demo_grab/demo_grab_27-03-

2023_20:53:56.csv', header=None) 

 

# We drop the markers for the board and set the time column to be the difference 

from the previous row 

sample = sample.drop(list(range(15,27)) + list(range(32,38)), axis = 1) 

sample.iloc[:,-1] = sample.iloc[:,-1].diff() 

sample.iloc[0,-1] = 0.0 

sample.head() 

 

input_shape = (1,21) 

 

# Loading Dataset 

data = [] 

 

keep, cnt = 4, 0 

 

# Stand Data 

for d in listdir("./Demonstrations/demo_stand/"): 

    if d == "labels": 

        continue 

     

    df = pd.read_csv("./Demonstrations/demo_stand/" + d, header=None) 

    df = df.drop(list(range(15,27)) + list(range(32,38)), axis = 1) 

    df.iloc[:,-1] = df.iloc[:,-1].diff() 

    df.iloc[0,-1] = 0.0 

     

    labels = open("./Demonstrations/demo_stand/labels/" + d[:-4] + "_labels") 

    df['39'] = np.array([float(x) for x in labels.read().splitlines()], 

dtype="float32") 

    labels.close() 
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    if cnt % 4 == 0: 

        data.append(df.to_numpy()) 

    cnt += 1 

 

# Wave Data 

for d in listdir("./Demonstrations/demo_wave/"): 

    if d == "labels": 

        continue 

 

    df = pd.read_csv("./Demonstrations/demo_wave/" + d, header=None) 

    df = df.drop(list(range(15,27)) + list(range(32,38)), axis = 1) 

    df.iloc[:,-1] = df.iloc[:,-1].diff() 

    df.iloc[0,-1] = 0.0 

 

    labels = open("./Demonstrations/demo_wave/labels/" + d[:-4] + "_labels") 

    df['39'] = np.array([float(x) for x in labels.read().splitlines()], 

dtype="float32") 

    labels.close() 

 

    data.append(df.to_numpy()) 

 

# Grab Data 

for d in listdir("./Demonstrations/demo_grab/"): 

    if d == "labels": 

        continue 

 

    df = pd.read_csv("./Demonstrations/demo_grab/" + d, header=None) 

    df = df.drop(list(range(15,27)) + list(range(32,38)), axis = 1) 

    df.iloc[:,-1] = df.iloc[:,-1].diff() 

    df.iloc[0,-1] = 0.0 

     

    labels = open("./Demonstrations/demo_grab/labels/" + d[:-4] + "_labels") 

    df['39'] = np.array([float(x) for x in labels.read().splitlines()], 

dtype="float32") 

    labels.close() 

 

    data.append(df.to_numpy()) 

     

for d in data: 

    print(d.shape) 

len(data) 

 

# Model Creation 

model = Sequential() 
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model.add(LSTM(128,return_sequences=True, 

dropout=0.2,input_shape=(None,input_shape[1]))) 

model.add(LSTM(64,dropout=0.3,return_sequences=True)) 

model.add(LSTM(64,dropout=0.3,return_sequences=True)) 

model.add(LSTM(32,dropout=0.3,return_sequences=True)) 

model.add(LSTM(32,dropout=0.3,return_sequences=True)) 

model.add(LSTM(16,dropout=0.3,return_sequences=True)) 

model.add(Dense(3, activation='softmax')) 

model.compile(loss='categorical_crossentropy', optimizer='adam') 

 

model.summary() 

 

def TrainGenerator(data): 

    cnt = 0 

    while True: 

        idx = cnt % len(data) 

        if idx == 0: 

            train_data_perm = np.random.permutation(len(data)) 

         

        cnt += 1 

        x_train = (data[train_data_perm[idx]])[:,:-1] 

        y_train = (data[train_data_perm[idx]])[:,-1] 

        y_train = to_categorical(y_train,3) 

        y_train = y_train.reshape((y_train.shape[0], 3)) 

        y_train = y_train[None,...,None] 

        x_train = x_train[None,...] 

        print(x_train.shape) 

        print(y_train.shape) 

        yield x_train, y_train 

 

history = model.fit(TrainGenerator(data), epochs=10, steps_per_epoch=len(data), 

shuffle=True) 

 

loss = history.history["loss"] 

 

import matplotlib.pyplot as plt 

 

epochs = range(1, len(loss) + 1) 

 

plt.plot(epochs, loss, 'b') 

plt.title("Training Loss v. Epoch") 

 

plt.show() 

 

x = (data[0])[:,:-1]  
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print(model.predict(x[None,...])) 

 

# Making Stateless LSTM Model to Stateful 

stateful_model = Sequential() 

stateful_model.add(LSTM(128,stateful=True,return_sequences=True, dropout=0.2, 

                        batch_input_shape=((1,input_shape[0],input_shape[1])), 

                        input_shape=input_shape)) 

stateful_model.add(LSTM(64,stateful=True,dropout=0.3,return_sequences=True)) 

stateful_model.add(LSTM(64,stateful=True,dropout=0.3,return_sequences=True)) 

stateful_model.add(LSTM(32,stateful=True,dropout=0.3,return_sequences=True)) 

stateful_model.add(LSTM(32,stateful=True,dropout=0.3,return_sequences=True)) 

stateful_model.add(LSTM(16,stateful=True,dropout=0.3,return_sequences=True)) 

stateful_model.add(Dense(3, activation='softmax')) 

stateful_model.compile(loss='categorical_crossentropy', optimizer='adam') 

 

stateful_model.set_weights(model.get_weights()) 

 

stateful_model.summary() 

 

x = (data[25])[:,:-1] 

y = (data[25])[:,-1] 

print(y[0]) 

 

stateful_model.save("stateful_LSTM_NoRobotPos") 

converter = tf.lite.TFLiteConverter.from_saved_model("stateful_LSTM_NoRobotPos") 

tflite_model = converter.convert() 

with open("stateful_LSTM_NoRobotPos.tflite", "wb") as f: 

    f.write(tflite_model) 

 

from time import perf_counter 

 

def predict(tflite, tensor): 

    tflite.set_tensor((tflite.get_input_details())[0]["index"], tensor) 

    tflite.invoke() 

    output = tflite.get_tensor(tflite.get_output_details()[0]["index"]) 

    probabilities = np.array(output[0]) 

    return probabilities 

 

x = (data[44])[:,:-1] 

y = (data[44])[:,-1] 

 

tflite_model = tf.lite.Interpreter("stateful_LSTM_NoRobotPos.tflite") 

tflite_model.allocate_tensors() 
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tflite_model.reset_all_variables() 

for x_i in x: 

    print(f"Input Tensor: {x_i}") 

    start = perf_counter() 

    prediction = predict(tflite_model,(np.array(x_i.reshape(input_shape), 

dtype="float32")[None,...])) 

    print(f"Prediction: {prediction}", end="\n") 

 

x = (data[20])[:,:-1] 

y = (data[20])[:,-1] 

 

tflite_model = tf.lite.Interpreter("stateful_LSTM_NoRobotPos.tflite") 

tflite_model.allocate_tensors() 

 

tflite_model.reset_all_variables() 

for x_i in x: 

    start = perf_counter() 

    print(predict(tflite_model,(np.array(x_i.reshape(input_shape), 

dtype="float32")[None,...])), end=" ") 

    print(f"time: {(perf_counter() - start) * 1000} ms") 

 
 

 

Source Code 6 LSTM Model Creation and Training8 

 

 

 

 

 

 

 

 

8 Covers Pseudocode in Algorithm 5.9 
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from movement_primitives.plot import *  

from movement_primitives.promp import ProMP 

from movement_primitives.io import read_pickle, write_pickle 

import matplotlib.pyplot as plt 

import numpy as np 

from os import listdir 

def main(): 

    demos = np.array([np.loadtxt('./replayable_trajectories/demo_stand/' + 

dir_content, delimiter=',', dtype=float) for dir_content in 

listdir('./replayable_trajectories/demo_stand')]) 

    print(demos.shape) 

    for i in range(len(demos)): 

        print(demos[i].shape) 

 

    print("---------") 

    max_rows = max([d.shape[0] for d in demos]) 

 

    for d_idx in range(len(demos)): 

        if demos[d_idx].shape[0] < max_rows: 

            demos[d_idx] = np.append(demos[d_idx], [demos[d_idx][-1,:] for i in 

range(max_rows - demos[d_idx].shape[0])], axis=0) 

 

    for i in range(len(demos)): 

        print(demos[i].shape) 

         

    print("---------") 

 

    demos = np.array([d for d in demos]) 

    print(demos.shape) 

    print("---------") 

     

    times = np.array([ np.arange(0, 0.004*max_rows, 0.004, dtype=float) for i in 

range(len(demos))]) 

    print(times.shape) 

     

    print("---------") 

 

    print(times[0,0:10]) 

 

    print("---------") 

 

    traj_promp = ProMP(demos.shape[2], n_weights_per_dim=15) 

    print('done') 

 

    traj_promp.imitate(times, demos, min_delta=0, verbose=1)  
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 plot_distribution_in_rows(traj_promp.mean_trajectory(times[0,:]), 

np.sqrt(traj_promp.var_trajectory(times[0,:])), times[0,:]) 

    plt.show() 

 

    write_pickle("./demo_stand_promp", traj_promp) 

 

    traj_promp = read_pickle("./demo_stand_promp") 

 

    plot_distribution_in_rows(traj_promp.mean_trajectory(times[0,:]), 

np.sqrt(traj_promp.var_trajectory(times[0,:])), times[0,:]) 

    plt.show() 

  

    return 0 

 

if __name__ == "__main__": 

    main() 
 

 

Source Code 7 ProMP Trainer9 

  

 

9 Covers Pseudocode in Algorithm 5.10 
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import socket 

import keyboard 

import time 

import struct 

import subprocess 

import os 

 

import tensorflow as tf 

 

from datetime import datetime 

import numpy as np 

from xarm.wrapper import XArmAPI 

 

def handle_err_warn_changed(item): 

    print('ErrorCode: {}, WarnCode: {}'.format(item['error_code'], 

item['warn_code'])) 

 

def predict(tflite, tensor): 

    tflite.set_tensor((tflite.get_input_details())[0]["index"], tensor) 

    tflite.invoke() 

    output = tflite.get_tensor(tflite.get_output_details()[0]["index"]) 

    probabilities = np.array(output[0]) 

    return probabilities 

 

def main(): 

    robot_controller = 

tf.lite.Interpreter("/home/arsrbt/Documents/ML/stateful_LSTM_NoRobotPos.tflite") 

    robot_controller.allocate_tensors() 

 

    server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

    server.bind(('', 4444)) 

 

    input("Press enter key to start system") 

    time.sleep(10) 

    server.sendto('0'.encode("utf-8"), ('192.168.2.10', 4444)) 

     

    first_recv = True 

    prev_time = None 

 

    p = None 

 

    strt_1 = time.perf_counter() 

 

    rec_demonstration = ""  
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    while not keyboard.is_pressed('q'): 

        server.sendto('0'.encode("utf-8"), ('192.168.2.10', 4444)) 

        buffer = bytearray() 

        while len(buffer) < 113: 

            server.settimeout(10.0) 

            buffer.extend(server.recv(113 - len(buffer))) 

            server.settimeout(0.0) 

 

        buffer = list(struct.unpack("<27f5B", buffer)) 

        buffer = buffer[0:15] + buffer[27:] 

        buffer += [time.time()] 

 

        data = (np.array(buffer, dtype="float32")).reshape((1,21)) 

 

        if first_recv == True: 

            prev_time = data[0,-1] 

            data[0,-1] = np.float32(0.0)             

            first_recv = False 

        else: 

            temp = data[0,-1] 

            data[0,-1] = np.float32(temp - prev_time) 

            prev_time = temp 

 

        # Make prediction based on current state 

        prediction = predict(robot_controller, data[None,...])[0,:] 

        movement = np.argmax(prediction) 

 

        if movement == 0: 

            print(f"STAND with {prediction[movement]:.2%} confidence") 

        elif movement == 1: 

            print(f"Wave with {prediction[movement]:.2%} confidence") 

        elif movement == 2: 

            print(f"Grab with {prediction[movement]:.2%} confidence") 

 

        if movement != 0 and float(f"{prediction[movement]:.2%}".strip('%')) > 

0.9: 

            if p == None: 

                if movement == 1: 

                    p = 

subprocess.Popen(["python3","./custom_scripts/load_replay_Promp.py", 

"./ProMPs/demo_wave/demo_wave_promp"]) 

                if movement == 2: 

                    p = 

subprocess.Popen(["python3","./custom_scripts/load_replay_Promp.py", 

"./ProMPs/demo_grab/demo_grab_promp"])  
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        if p != None: 

            poll = p.poll() 

            if poll is not None: 

                robot_controller.reset_all_variables() 

                p = None 

 

if __name__ == "__main__": 

    main() 
 

 

Source Code 8 Real-Time Server10 

  

 

10 Covers Pseudocode in Algorithm 5.11 
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from xarm.wrapper import XArmAPI 

from movement_primitives.io import read_pickle 

from movement_primitives.promp import ProMP 

import numpy as np 

import sys 

import time 

 

def replay_trajectory(arm: XArmAPI, lines): 

     

     

    # Set arm and gripper to initial position 

    arm.set_servo_angle(angle=lines[0][0:-1], speed=80, mvacc=100, wait=True, 

radius=None) 

    arm.set_gripper_position(pos=lines[0][-1], wait=True) 

 

    while arm.get_is_moving(): 

        time.sleep(0.1) 

     

    arm.set_mode(1) 

    arm.set_state(state=0) 

    time.sleep(0.1) 

 

    for line in lines[1:]: 

        strt = time.time() 

        # Subtract elapsed time from max wait time 

        arm.set_servo_angle_j(angles=line[0:-1]) 

        arm.set_gripper_position(pos=line[-1], wait=False) 

        wait_time = 0.004 - (time.time() - strt) 

        if wait_time > 0: 

            time.sleep(wait_time) # Refresh at 250 hz 

 

def handle_err_warn_changed(item): 

    print('ErrorCode: {}, WarnCode: {}'.format(item['error_code'], 

item['warn_code'])) 

 

def main(): 

    ip = '192.168.1.224' 

 

    arm = XArmAPI(ip, do_not_open=True) 

    arm.register_cmdnum_changed_callback(handle_err_warn_changed) 

    arm.connect() 

    arm.motion_enable(enable=True) 

    arm.set_mode(0) 

    arm.set_state(0) 

    arm.set_gripper_enable(True)  
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arm.set_gripper_mode(0) 

    arm.set_gripper_speed(5000) 

 

    traj_ProMP = read_pickle(sys.argv[1]) 

    file = open(sys.argv[1][:sys.argv[1].rfind('/')] + "/max_steps.txt", 'r') 

    max_steps = int(file.readline())/2 

    file.close() 

    times = np.arange(0, 0.004*max_steps, 0.004, dtype=float) 

 

    if len(sys.argv) > 2: 

        replay_trajectory(arm, (traj_ProMP.condition_position((np.array([float(x) 

for x in sys.argv[2].split(',')])), None, t=1.0)).mean_trajectory(times)) 

    else: 

        replay_trajectory(arm, traj_ProMP.mean_trajectory(times)) 

 

if __name__ == "__main__": 

    main() 
 

 

Source Code 9 Replay ProMP11 

 

 

 

11 Covers Pseudocode in Algorithm 5.12 
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