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ABSTRACT 

 

Traumatic brain injury (TBI) is a growing health concern, with millions of TBI 

diagnoses in the United States each year. The vast majority of TBI diagnoses are mild 

traumatic brain injuries (mTBI), which can be challenging to manage due to variation in 

symptoms and outcomes. Most individuals with mTBI successfully recover quickly, but a 

small subset has a delayed recovery. Although the factors that contribute to this variation 

in recovery are not clearly understood, it is possible that genetic differences may play a 

role. Very few studies have investigated the association between single nucleotide 

polymorphisms (SNPs) with mTBI outcomes and this is an emerging area of research. In 

this study, we utilize data collected in the Transforming Research and Clinical 

Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to test the 

association between 10 different SNPs and 7 TBI outcomes measured at six- and twelve-

months post injury. Linear mixed models are utilized to investigate the association 

between genotypes and mTBI outcome measurements over time. Previous studies have 

primarily focused on a single time point at six months for one or two SNPs. This study 

seeks to expand the existing literature by using the TRACK-TBI Pilot data to evaluate 

multiple SNPs and multiple outcome assessments to discover their connections over time. 

The findings in this study demonstrate the potential benefits of using linear mixed models 

to identify relationships between genotypes and TBI outcomes over time.  

 



v 

 
 

ACKNOWLEDGMENTS  

 

I would like to thank Dr. Gayla Olbricht, my advisor, for her guidance in research, 

and my professional career.  She brought passion to the project and deeply invested 

herself in my success in data science and statistics.  My master’s degree would not have 

been possible without her guidance and support throughout my undergraduate and 

graduate programs at Missouri S&T.  I would like to thank Dr. Tayo Obafemi-Ajayi, Dr. 

Dan Hier, Hung Nguyen, and Dr. Robert Paige for bringing their expertise to the project 

and advising me on the data set.  I would also like to thank Dr. V.A. Samaranayake for 

serving on my defense committee.  

I am grateful for my family and friends, especially my parents Michael and 

Kimberly Schott and husband Nicholas Tompkins, for the support and encouragement 

throughout my studies.  



vi 

 
 

TABLE OF CONTENTS 

 

             Page 

PUBLICATION DISSERTATION OPTION ................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGMENTS ...................................................................................................v 

LIST OF ILLUSTRATIONS ............................................................................................. ix 

LIST OF TABLES ...............................................................................................................x 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

1.1. MOTIVATION ................................................................................................... 1 

1.2. TRACK-TBI PILOT DATA SET ...................................................................... 3 

1.2.1. Demographic and Clinical Data. .............................................................. 5 

1.2.2. Genotype Data. ......................................................................................... 6 

1.2.3. Outcome Assessments. ........................................................................... 10 

1.3. STATISTICAL MODELING APPROACHES ................................................ 11 

1.3.1. Two sample 𝑡-Test. ................................................................................ 11 

1.3.2. Chi-squared Test..................................................................................... 12 

1.3.3. Hardy-Weinberg Principle. .................................................................... 14 

1.3.4.Linear Model. .......................................................................................... 16 

1.3.5. Linear Mixed Model. .............................................................................. 17 

1.3.6. Multiple Testing Correction. .................................................................. 21



vii 

 
 

PAPER 

I. IDENTIFYING ASSOCIATIONS BETWEEN SINGLE NUCLEOTIDE 

POLYMORPHISMS AND TRAUMATIC BRAIN INJURY OUTCOMES OVER 

TIME. ........................................................................................................................ 23 

ABSTRACT ................................................................................................................. 23 

1. INTRODUCTION .................................................................................................... 24 

2. DESCRIPTION OF DATA ...................................................................................... 28 

2.1. STUDY DESIGN ............................................................................................. 28 

2.2. PATIENT SELECTION ................................................................................... 29 

2.3. DEMOGRAPHIC AND CLINICAL DATA .................................................... 30 

2.4. GENOTYPE DATA ......................................................................................... 30 

2.5. OUTCOME ASSESSMENTS .......................................................................... 32 

2.5.1. Glasgow Outcome Scale - Extended. ..................................................... 32 

2.5.2. Trail Making Test. .................................................................................. 33 

2.5.3. Weschler Adult Intelligance Scale, Fourth Edition. ............................... 34 

2.5.4. Brief Symptom Inventory. ...................................................................... 35 

2.5.5. Satisfaction with Life Scale. ................................................................... 35 

3. STATISTICAL METHODS. ................................................................................... 36 

3.1. DATA EXTRACTION ..................................................................................... 36 

3.2. DEMOGRAPHIC ANALYSIS ........................................................................ 37 

3.3. CHECK ASSUMPTIONS ................................................................................ 38 

3.4. LINEAR MIXED MODELING ....................................................................... 39 

3.5. MULTIPLE TESTING CORRECTIONS ........................................................ 41 



viii 
 

 
 

4. RESULTS. ................................................................................................................ 42 

5. CONCLUSION. ....................................................................................................... 46 

5.1. DISCUSSION AND CONCLUSIONS ............................................................ 46 

5.2. LIMITATIONS AND FUTURE WORK ......................................................... 47 

REFERENCES ............................................................................................................. 48 

SECTION 

2. CONCLUSION ........................................................................................................ 52  

APPENDIX ........................................................................................................................55 

BIBLIOGRAPHY ..............................................................................................................69 

VITA ..................................................................................................................................74 

 

 



ix 

 
 

LIST OF ILLUSTRATIONS 

 

PAPER I Page 

Figure 1. Statistical Modeling Framework. ...................................................................... 36 

Figure 2. Side-by Side boxplots for WAIS Sum of Scale (left), Percentile (middle), and 

Composite (right) by G allele presence (group 1)/absence (group 0) for  

rs11604671 . ...................................................................................................... 45 

 

 

  



x 

 
 

LIST OF TABLES 

 

SECTION Page 

Table 1.1. Outcome assessment domains and available post-injury times in months. ..... 10 

Table 1.2. Hardy-Weinberg Equilibrium (HWE) p-value for each single nucleotide 

polymorphism (SNP) tested. ............................................................................ 16 

PAPER I 

Table 1. Summary of single nucleotide polymorphisms (SNPs) and genotype 

comparisons. ....................................................................................................... 31 

Table 2. Significant WAIS results for G allele absence/presence in rs11604671. ........... 44 

 



 

 
 

I. INTRODUCTION 

 

 1.1 MOTIVATION 

Traumatic brain injuries (TBI) have resulted in over 56 thousand deaths in the 

United States and 50 million TBI diagnoses internationally in a single year, making it a 

leading cause of death and disability (Alan D. Kaplan, 2022). While TBI deaths have 

lowered dramatically since the early 1970s, TBIs are still a major global health issue and 

it is important to research the disabilities caused by them (Nelson LD, 2017). TBIs have a 

wide range of severity, with most injuries (70-90%) classified as mild (mTBI), defined by 

the Glasgow Coma Scale (GCS) score of 13 to 15 (Winkler EA, 2016). Patients with 

mTBIs, typically have full recovery within weeks to months, but effects can last up to a 

year after the initial accident (Cnossen MC & Investigators, 2017).  Post-concussive 

syndrome, a clinical term, is used to explain cognitive, physical, and psychological 

functions that have been affected by a TBI (Cnossen MC & Investigators, 2017) (Nelson 

LD, 2017).   

Within mTBI patients, there is a wide range of variation in outcomes and it is not 

well understood which factors may contribute to this variation (Lingsma HF & 

Investigators, 2015).  Gaining a better understanding of this variation can aid in 

determining which patients are at higher risk for poor prognosis and could provide 

improved treatment plans. One factor that could be impacting this variation is genetic 

differences between individuals.  Recent studies have begun to explore connections 

between single nucleotide polymorphisms (SNPs) and mTBI outcomes. A SNP is a 

common type of genetic variation in patients that represents a difference in a single DNA 
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building block (nucleotide) (National Library of Medicine, n.d.). Some prior studies have  

performed genetic association analysis to investigate the connection between a SNP and 

certain outcomes at the six-month post-injury time point (Winkler EA, 2016) (John K. 

Yue, 2015 ) (Yue JK W. E.-A., 2017). The results from these studies have shown that 

SNPs within certain genes (e.g., APOE and COMT) have a significant association with 

specific mTBI 6 month outcomes. Although this indicates that genetic association 

analysis is a promising avenue for better understanding mTBI outcome heterogeneity, the 

previous studies have been limited in analyzing one or two SNPs at a single time point on 

a small subset of mTBI outcomes.   

In this study, a more comprehensive genetic association analysis is performed by 

utilizing data available from the TRACK-TBI Pilot study. The work aims to test the 

association between 10 different SNPs and 7 outcomes assessments measured for at least 

two post-injury time points in mTBI patients. A linear mixed model is utilized to 

determine if changes in post-injury outcomes over time differ significantly between 

genotypes. This is a unique aspect of this study, as prior works do not assess this type of 

relationship over time. If no such significant association over time is found for the SNP 

being tested, then an overall association test between the genotype and outcome will be 

conducted. Secondary analyses will also be conducted to test for overall changes in the 

outcomes over time and for associations between outcomes and potential covariates. 

Through this comprehensive investigation of multiple SNPS and mTBI outcomes 

together in one study, the chance of false associations can be better controlled and 

missing data can be handled in an effective way through the linear mixed modeling.   
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The thesis contains a paper intended for publication in a peer reviewed journal. 

The paper contains a description of the data and the genetic association analysis results, 

along with details of the overall statistical modeling framework that includes steps for 

data curation, demographic analysis, assumption checking, the linear mixed modeling 

and multiple testing corrections. However, additional details about the data set and 

statistical modeling methods that are not provided in the paper are given in this 

introduction to the thesis. Section 1.2 of the introduction provides a detailed description 

of the data set used in the research and Section 1.3 provides details about all of the 

statistical modeling methods that are utilized in the work. The overall goal of this thesis is 

to illustrate how linear mixed models can be utilized in genetic association studies 

connecting SNP data to longitudinal TBI outcomes.     

   

1.2. TRACK-TBI PILOT DATA SET  

The data used in this study is taken from the Transforming Research and Clinical 

Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study (Yue JK & 

Investigators, 2013). The TRACK TBI Pilot data set is available through the Federal 

Interagency Traumatic Brain Injury Research (FITBIR) website (https://fitbir.nih.gov/) 

and this database provided the initial inspiration for this work. The data utilized for this 

study was obtained from the Principal Investigator (PI), Dr. Geoffrey Manley, which 

included data available on FITBIR as well as additional genotype data and 12-month 

neurocognitive assessments that were not available through FITBIR (Geoffrey Manley, 

n.d.).   

https://fitbir.nih.gov/
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TRACK-TBI Pilot is an observational study conducted at three level I trauma 

centers in the United States – San Francisco General Hospital, University of Pittsburgh 

Medical Center, and University Medical Center Brackenridge (Kreitzer NP, 2019).  The 

pilot study inclusion criteria required adults to present at a level I trauma center with 

external force trauma to the head and complete a computed tomography (CT) scan in the 

first 24 hours after injury (Yue JK W. E.-A., 2017).  Adults (age 18 or over) could not 

participate if they were pregnant, had a life-threatening disease, incarcerated, on 

psychiatric hold, or did not speak English (due to the assessments being given in 

English). Demographic, clinical, biomarker, and neuroimaging data were collected on 

patients in the acute injury phase. Outcome assessments were collected at multiple post-

injury time points (3, 6, and 12 months) to monitor recovery, with the 6- and 12-month 

neurocognitive assessments being provided for most outcomes in the data set obtained 

from the TRACK-TBI Pilot study PI, Dr. Geoffrey Manley (Geoffrey Manley, n.d.). In 

addition, genotype data on a select set of candidate single nucleotide polymorphisms 

(SNPs) was obtained on a subset of patients, which was made available by Dr. Geoffrey 

Manley. The goal of this research is to test for associations between SNPs and post-injury 

outcomes collected at prolonged post-injury time points in a population of adult patients 

with mild traumatic brain injuries.  

The initial data set had 650 participants in the study, but 51 of these patients were 

from a rehabilitation center instead of a level I trauma centers and these were excluded in 

this work (Yue JK & Investigators, 2013). Thus, a total of 599 patients were enrolled at 

the three sites and were considered as potential subjects for the current study. After 

limiting the inclusion criteria to mild TBIs (i.e., having a GCS score of 13 to 15 upon 
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arrival at the emergency department) and reducing the age range from 18 to 80, the total 

possible number of patients with available SNP and outcome assessment data is N=330.  

Data were available on 11 SNPs and 6 different types of outcome assessments 

with 6- and 12-month measurements. One SNP (rs3219119) was removed due to not 

meeting Hardy-Weinberg Equilibrium (described in Section 1.3.3) and one type of 

assessment (Craig Handicap Assessment and Reporting Technique) was removed since 

the vast majority of patients attained the highest score (100) on all subscales at both time 

points, resulting in a lack of variation. Thus, a total of 10 SNPs and 5 different 

assessments (with 7 total outcomes since one assessment had 3 subscales) were 

considered for further analysis. Additionally, a set of 7 demographic and clinical variables 

were also selected to characterize the study population and to consider as potential 

covariates in the statistical modeling. The demographic variables, genotype/SNP data, 

and outcome assessments are briefly described in the following sections. Additional 

details can also be found in Paper I. Note that the sample size for each variable may differ 

from N=330 due to missing data on some variables.  

1.2.1. Demographic and Clinical Data. The demographic variables include age, 

sex, race, and education in years. The race data was combined into 3 groups, consisting of 

78.5% Caucasian, 9.5% African American/African, and 12% other races. The average age 

was 42, average number of education years was 14, and the study sample was comprised 

of 72% males and 28% females.  In addition to the demographic variables, three clinical 

variables were also included in the analysis: GCS score upon arrival to the emergency 

department, Injury Severity Score (ISS) score (≤ 15  or >15), and whether the patient had 

an abnormal CT scan. Most patients (73.6%) had a GCS score of 15, 67.8% had an ISS 
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less than or equal to 15, and 57.1% did not have an abnormal CT scan. The GCS score 

helps in determining the level of consciousness a patient has post-injury and the ISS score 

assesses the severity of the injury, with a score over 15 indicating major trauma (Eric A 

Toschlog, 2003). Demographic summaries for individual SNPs can be found in the 

Appendix.  

1.2.2. Genotype Data. For each patient included in this study, blood samples 

were collected within 24 hours of injury and genotyping was performed on a set of 

candidate SNPs (Yue JK & Investigators, 2013). It is first helpful to review some genetic 

definitions to clarify important concepts related to SNPs and genetic association studies. 

Alleles consist of alternate versions of DNA sequence at a given genetic locus, which 

could be a SNP that differs in one nucleotide base or a variation of a longer segment of 

nucleotide bases. Many loci are biallelic, in that there are two different forms of the allele 

(e.g., A and a), although some loci have more than two possible alleles. Alleles are 

inherited, one from each parent, with the genotype representing the set of two specific 

alleles that an individual has at the given genomic location (National Human Genome 

Research Institute, 2023).  A homozygous individual has two alleles that are the same 

(e.g., A/A or a/a) and a heterozygous individual has two alleles that are different (e.g., 

A/a) (National Human Genome Research Institute, 2023).  For biallelic SNPs, the allele 

that is the most frequent in the population is called the major allele, while the allele that is 

that is less common is called the minor or variant allele. A genotype is called a carrier of 

a minor allele if it contains at least one of the minor alleles (i.e., homozygous for the 

minor allele or heterozygous). 
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To perform the genetic association analysis, mTBI outcomes will be compared 

between genotypes to determine if there are any significant differences. In this study, it is 

of interest to compare presence of the minor allele (i.e., minor allele carriers) versus 

absence of the minor allele (i.e., non-carriers). The SNPs investigated in this work are 

described briefly below with an explanation of their importance based on previous studies 

and a description of the comparison that will be made. Note that when referring different 

SNP alleles, the letters A, C, T, G refer to the DNA nucleotide bases adenine, cytosine, 

thymine, and guanine. 

• APOE. The Apolipoprotein E (APOE) gene is critical to maintenance, repair, and 

growth of neurons  (Yue JK R. C.-A., 2017). APOE is a polymorphic gene with four 

allelic variants (𝜀1, 𝜀2, 𝜀3, 𝜀4) that are defined by two SNPs (rs7412 and rs429358). 

The 𝜀4 allele is considered the high-risk variant with an association to Alzheimer’s 

disease. APOE-𝜀4, has also been shown to increase one's risk for unfavorable 

outcomes following a TBI (Yue JK R. C.-A., 2017). APOE plays an important role in 

neural response to brain injury, but the 𝜀4 allele causes reduced growth and branching 

of neurites in vitro (H Houlden, 2006). This study compares the presence and absence 

of the 𝜀4 allele. This is the only variant in the study where the allele is defined by two 

SNPs.  

• rs1800497. The rs1800497 genotype is part of the Ankyrin Repeat and Kinase 

Domain Containing 1 (ANKK1) gene, that has been shown to play a part in the 

reduction of the Dopamine Receptor D2 (DRD2) density in the brain and possibly 

linked to neuropsychiatric disorders (McAllister TW, 2008).  Previous studies 

compared the presence of the minor T allele (T/T, C/T) and absence of the T allele 
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(C/C), although some studies compare all three genotypes (John K. Yue, 2015 ) 

(McAllister TW, 2008). In this study, presence verses absence of the minor T allele is 

compared. 

• rs4938016. The rs4938016 genotype is also part of the ANKK1 gene and has been 

shown to have an association with cognitive outcome measures after a brain injury. 

This study compared the presence (C/C, C/G) of the minor C allele against the 

absence (G/G) of it, as was done in previous studies (John K. Yue, 2015 ) (McAllister 

TW, 2008). 

• rs11604671. The rs11604671 genotype is another SNP that is part of the ANKK1 

gene, and it has similar associations with the TBI outcome measures and DRD2 that 

the rs1800497 and rs4938016 have. This study compared the presence (G/G; A/G) 

and absence (A/A) of the minor G allele based on the study of the ANKK1 gene 

affecting cognitive outcomes after a TBI (McAllister TW, 2008). 

• rs17759659. The rs17759659 genotype is part of the BCL2 Apoptosis Regulator 

gene. It is associated with an increased risk of intracranial hypertension, cerebral 

edema, and the need for surgical intervention (Deng H, 2021). Previous studies 

compared the presence (A/G; G/G) and absence (A/A) of the minor G allele on 

neurobehavioral outcomes after a severe TBI (Nicole Zangrilli Hoh, 2010). 

• rs6265. The rs6265 genotype is part of the Brain Derived Neurotrophic Factor 

(BDNF) gene and is associated with depression. This study compared the presence 

(A/A; A/G) and absence (G/G) of the minor A allele as was done in a study that 

investigated the association between suicidal thoughts and depression in the variant 

carriers (Sarchiapone M, 2008). 
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• rs4680. The rs4680 genotype is part of the Catechol-O-Methyltransferase (COMT) 

gene, which breaks down dopamine in the brain prefrontal cortex. This study 

compares the presence (A/A; A/G) and absence (G/G) of the minor A allele. Note that 

the A allele codes for the amino acid methionine and the G allele codes for valine. 

The G to A substitution occurs at codon 158. Thus, this SNP is often referred to as 

Val158Met, with Met158 (A) being the minor allele and Val158 (G) being the major 

allele (Winkler EA, 2016). 

• rs6277. The rs6277 genotype is part of the Dopamine Receptor D2 (DRD2) gene that 

is one of several SNPs of the dopamine receptors (Wiebke Bensmann, 2020). 

Previous studies compared the presence (T/T; C/T) and absence (C/C) of the minor T 

allele, including a study showing an association between DRD2 and six-month verbal 

learning following a traumatic brain injury (Yue JK W. E.-A., 2017). 

• rs6311. The rs6311 genotype is part of the 5-Hydroxytryptamine Receptor 2A 

(HTR2A) gene that is important in human neuropsychiatric disorders (Ryan M. 

Smith, 2013). In this study, the presence (T/T; C/T) of the minor T allele was 

compared with the absence (C/C) of the T allele,  as suggested by a study comparing 

anger- and aggression- related traits with the HTR2A gene (Giegling I, 2006). 

• rs1799971. The rs1799971 genotype is part of the Opioid Receptor, Mu 1 (OPRM1) 

gene. When the amino acid at residue 40, asparagine (Asn), is replaced by aspartic 

acid (Asp), it can lead to drug and alcohol problems (Esther van den Wildenberg, 

2007).  Previous studies compared the presence (A/G; G/G) and absence (A/A) of the 

minor G allele (which codes for Asp) as suggested by a study done on adolescent 

alcohol misuse (Miranda R, 2010). 
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1.2.3. Outcome Assessments. The outcome assessment tools for traumatic brain 

injury patients that were used in this study include the Glasgow Outcome Scale-Extended 

(GOS-E), Trail Making Test (TMT), Weschler Adult Intelligence Scale 4th Edition 

(WAIS-IV), Brief Symptom Inventory 18 (BSI-18), and Satisfaction with Life scale 

(SWLS). For the WAIS-IV assessment, three metrics (composite, percentile, and sum of 

scaled) from the processing speed index (PSI) component of the test were utilized. These 

outcomes were selected since data were available for them at the 6- and 12-month post 

injury time points. The GOS-E also had data available at the 3-month time point. Each 

assessment is related to a specific domain, and these are summarized for each assessment 

along with the available time points in Table 1.1(Shirley Ryan, 2019) (Centre for 

Research Excellence in Brain Recovery) (Centre for Research Excellence in Brain 

Recovery) (Shirley Ryan, 2015) (Shirley Ryan, 2016). A more thorough explanation of 

each outcome assessment is provided in Paper I. 

Table 1.1. Outcome assessment domains and available post-injury times in 

months. 

Outcome Assessment Domain Post-Injury Time  

(Months) 

GOS-E Global Outcome  3, 6, 12 

TMT Neuropsychological Impairment 6, 12 

WAIS-IV  

• Composite 

• Percentile 

• Sum of Scaled 

Neuropsychological Impairment 6, 12 

BSI-18 Psychological Status 6, 12 

SWLS Quality of Life 6, 12 
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1.3 STATISTICAL MODELING APPROACHES 

In this section all the statistical methods that are utilized in this research are 

described in detail. The analysis is performed in a series of steps that are aimed at 

ensuring a robust result. First, it is important to note that this study is observational in 

nature, in that the main comparison of interest is between two genotype groups. 

Genotypes are inherent characteristics of individuals that must be observed and thus 

randomization is not possible. As such, there is a potential for confounding variables. 

Although this makes it difficult to establish causation, one attempt to reduce the impact 

of potential confounding variables is to test for differences on key demographic variables 

between genotype groups to determine if there is any major imbalance. A chi-squared test 

is used for categorical variables and a 𝑡-test is used for quantitative variables. Any 

variable that is found to differ significantly between groups can then be included as a 

covariate in the linear mixed model.  

The next step in the analysis is to check assumptions and take action if they are 

not met. This involves testing SNPs to see if they meet Hardy-Weinberg Equilibrium 

(HWE) and checking the assumptions of the linear mixed model. Finally, the linear 

mixed model is performed to test for associations between each SNP and each mTBI 

outcome measured over time. Since multiple tests are conducted, the false discovery rate 

is controlled. In this section, the two-sample 𝑡-test, chi-squared test, HWE, linear mixed 

modeling approach, and multiple testing correction method are explained in detail.  

1.3.1. Two-sample 𝒕-Test. A two-sample 𝑡-test was used to compare the means of 

quantitative demographic/clinical variables (age and education in years) between two 

genotype groups (variant allele carriers and non-carriers). The two samples should be 
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independent and normally distributed (de Winter, 2013). The hypotheses for the two-

sample 𝑡-test are as follows: 𝐻0: 𝜇1 − 𝜇2=0 vs. 𝐻𝑎: 𝜇1 − 𝜇2 ≠ 0, where 𝜇1 − 𝜇2 

represents the difference in the population means (𝜇1, 𝜇2) for genotype groups 1 and 2, 

respectively.  Under the within-group normality assumption, but allowing the variances to 

differ between the two groups, the 𝑡-statistic is calculated as shown in equation (1) 

𝑡 =
(�̅�1−�̅�2)

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

~𝑡(
(

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
)2

1

𝑛1−1
(

𝑠1
2

𝑛1
)2+

1

𝑛2−1
(

𝑠2
2

𝑛2
)2

)  under 𝐻0.  (1) 

In equation (1), 𝑛1 is the sample size for the first genotype group and 𝑛2 is the sample 

size of the 2nd genotype group, 𝑠1
2 and 𝑠𝑠

2 are the sample variances, and �̅�1 and �̅�2 are the 

sample means of the two genotype groups (Ruxton, 2006).  Note the degrees of freedom 

for the 𝑡 distribution under the null hypothesis is calculated using the Welch’s 

approximation (Zach, 2019). When the p-value is below 0.05 the test was considered 

statistically significant. The two-sample 𝑡-tests were conducted using the t.test function in 

R. Results for all two-sample 𝑡-tests are found in the Appendix for each SNP. The 

average age was found to be significant different between carriers and non-carriers for 

APOE and rs17759659. No other significant differences between genotype groups were 

found for age or education years were found.    

1.3.2. Chi-squared Test. A 𝒳2 test is used to compare the distribution of two 

categorical or nominal variables in a sample (Stat Trek, n.d.).  In this study, a 𝒳2 test is 

used to test whether the distribution of patients on categorical demographic/clinical 

variables (sex, race, GCS on admission, ISS score ≤15 or not, and abnormal CT scan or 

not) differs between genotype group (variant allele carriers vs. non-carriers).  The null 
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hypothesis for the 𝒳2 test is that both genotype groups have the same 

distribution/proportion of observations within each class of the demographic/clinical 

categorical variable (e.g., carriers and non-carriers have the same proportion of males and 

females).  The alternative hypothesis is that there is some difference in the 

distributions/proportions between the genotype groups. The chi-square test-statistic is 

given in equation (2): 

𝜒𝑜𝑏𝑠
2 = ∑

(𝑂𝑖𝑗−𝐸𝑖𝑗)
2

𝐸𝑖𝑗
𝑖𝑗      (2) 

where 𝑂𝑖𝑗 is the observed and 𝐸𝑖𝑗  is the expected number of patients in the 𝑖𝑡ℎ genotype 

group for the 𝑗𝑡ℎlevel of the categorical variable. Note that 𝐸𝑖𝑗 =
𝑛𝑖∗𝑛𝑗

𝑛
 where 𝑛𝑖 is the 

total number of patients in the 𝑖𝑡ℎ genotype group, 𝑛𝑗  is the total number of patients in the 

𝑗𝑡ℎ  level of the categorical variable, and 𝑛 is the total sample size (McHugh, 2013) (Stat 

Trek, n.d.). Under the null hypothesis, the approximate distribution of the test statistic (2) 

is a 𝜒(𝑟−1)∗(𝑐−1)
2 , where 𝑟=2 (number of genotype groups) and 𝑐 is the number of classes 

of the demographic/clinical variable being tested.  The p-value is calculated from this 

distribution and if it is less than 0.05, then it was concluded that there was a significant 

difference in the distribution of the categorical demographic/clinical variable between the 

genotype groups.  Note that a continuity correction was also used since the true 

distribution of the test statistic is discrete but is approximated by the continuous 𝜒2 

distribution. Also, if the expected frequency for each cell (genotype by categorical 

variable combination) is less than 5 in more than 20% of the cells, the approximation may 

not work well. The chi-squared test is carried out by the chisq.test function in R for this 

study.  Results for all chi-squared tests are found in the Appendix for each SNP.  The 
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distribution of GCS values were found to differ significantly between carriers and non-

carriers for rs6311. No other significant differences between genotype groups were found 

for any other SNP or demographic/clinical variable. 

1.3.3 Hardy-Weinberg Principle. The Hardy-Weinberg Equilibrium (HWE) is a 

population genetic principle that is used to estimate genotype frequencies in a population 

for a genetic locus with two alleles (e.g., A and a) (Nikita Abramovs, 2020).  The 

expected genotype frequencies are based off allele frequencies in the data. Under HWE, 

the genotype frequencies for A/A, A/a, and a/a should have expected frequencies 𝑝2, 

2𝑝𝑞, and 𝑞2, respectively, where 𝑝 represents the allele frequency for A and 𝑞 = 1 − 𝑝 is 

the allele frequency for a (Nikita Abramovs, 2020).  The HWE principal states that these 

expected genotype frequencies will remain unaltered over time in the absence of outside 

factors such as non-random mating, natural selection, and other evolutionary forces 

(Nikita Abramovs, 2020). In genetic association studies it is important to assess whether 

each SNP meets the HWE expected genotype frequencies, since violations of HWE are 

indicative of potential issues such as genotyping errors and population substructure. 

HWE is tested at each SNP by performing a chi-squared goodness-of-fit test, 

using the HWChisq function in the Hardy Weinberg package in R to find the p-value 

(Cran R-Project, 2022).  Under the null hypothesis (𝐻0), the genotype frequencies at a 

particular SNP follow those expected under HWE.  Under the alternative hypothesis (𝐻𝑎) 

there is a deviation from HWE. Equation (3) provides the chi-squared test statistic:   

𝜒𝑜𝑏𝑠
2 =

(𝑛𝐴𝐴−𝑛𝑝𝐴
2 )

2

𝑛𝑝𝐴
2 +

(𝑛𝐴𝑎−2𝑛𝑝𝐴(1−𝑝𝐴))2

2𝑛𝑝𝐴(1−𝑝𝐴)
+ 

(𝑛𝑎𝑎−𝑛(1−𝑝𝐴)2)2

𝑛(1−𝑝𝐴)2
         (3)  
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where 𝑛𝐴𝐴 and 𝑛𝑎𝑎 represent the sample genotype counts for the two homozygotes,  

𝑛𝐴𝑎represents number of heterozygotes in the sample, and 𝑛 is the total sample size 

(Hendrick, 2011).  The estimated population allele frequency, �̂�𝐴, for allele A is found by 

equation (4) 

�̂�𝐴 =
2𝑛𝐴𝐴+𝑛𝐴𝑎

2𝑛
                    (4) 

(J Graffelman, 2016).  The test statistic follows the general form for chi-squared test 

statistic, as described in Equation (2),  where 𝑛𝐴𝐴, 𝑛𝐴𝑎 , 𝑛𝐴𝐴 are the observed genotype 

counts and 𝑛�̂�𝐴
2, 2𝑛�̂�𝐴(1 − �̂�𝐴), and 𝑛(1 − �̂�𝐴)2 are the respective expected genotype 

counts under HWE.  Under the null hypothesis, the approximate distribution of the test 

statistic (3) is a 𝜒1
2 distribution, which is used to calculate p-values. Note that a continuity 

correction was also used since the true distribution of the test statistic is discrete but is 

approximated by the continuous 𝜒2 distribution. Any SNP with a p-value <0.05 indicates 

the null hypothesis can be rejected and that SNP violates HWE. Otherwise, the SNP is 

assumed to be in HWE.  

The results of the HWE test for the 10 potential individual SNPs to be included in 

the study are shown in Table 1.2. After completion of the HWE test, one SNP, rs3219119, 

was removed because it had a significant deviation from HWE.  The SNP rs1800497 was 

shown to deviate from HWE (p=0.044), but it was not removed to compare to work done 

in previous studies (John K. Yue, 2015 ).  Note that for the APOE gene, this study only 

tested for presence/absence of the 𝜀4 allele, which is defined by two SNPs (rs429358 and 

rs7412).  Those SNPs are not tested individually for genetic associations with TBI 

outcomes and are thus not included in the HWE testing.  In total, there were 9 SNPs plus 
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the APOE-𝜀4 presence/absence that were included in the genetic association analysis in 

Paper I after the HWE testing.  

 

Table 1.2. Hardy-Weinberg Equilibrium (HWE) p-value for each single nucleotide 

polymorphism (SNP) tested. 

SNP  HW p-value  

rs1800497  0.044  

rs4938016   0.70  

rs11604671  0.084  

rs17759659   0.33  

rs6265  0.36  

rs4680  0.56  

rs6277  0.079  

rs6311  0.97  

rs1799971    0.88  

rs3219119 0.00016  

 

1.3.4. Linear Model. The model used in this work to test whether there is a 

significant association between genotypes and mTBI outcomes is a linear mixed model.  

In this section, important concepts related to linear modeling are discussed prior to 

describing the linear mixed model. A linear model shows the relationship between an 

observable response and an observable design matrix of predictor variables (Peña EA, 

2006), as given in equation (5):  

𝑌  =  𝑋𝛽 + 𝜀                        (5) 

where 𝑌 is the response vector, 𝑋  is the design matrix of predictor variables, 𝛽 is the 

vector of unknown regression coefficients,  𝜀 is the unobservable error, and 𝜎 is the 

unknown error standard deviation,  (Muller, 2004). The assumptions of the model 

include: 
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• Linearity: The assumption that the relationship between the predictor variables 

and response variable is linear. This can be assessed using a scatterplot and 

residual vs. fitted values plot (Deanna Schreiber-Gregory, 2018).   

• Normality: This assumption requires that the distribution of the error terms 

follows a normal distribution (bell shape curve) (Deanna Schreiber-Gregory, 

2018).  This assumption can be checked with a normal quantile-quantile (Q-Q) 

plot of the residuals.  

• Constant Variance: This assumption assumes the errors have constant variance 𝜎2 

and this can be checked using the residuals vs. fitted values plot. This is also 

known as homoscedasticity (Nahhas, 2023).  

• Independence: The error terms are also assumed to be independent. This 

assumption is typically assumed based on the nature of how the data were 

collected. 

1.3.5. Linear Mixed Model. For longitudinal data where data are collected on the 

same subjects at multiple time points, the independence assumption of the previously 

described linear model is unlikely to be met since measurements collected on the same 

subject are likely to be correlated. Linear mixed models provide an ideal way to handle 

this type of data where subjects are considered to be random effects that can vary from 

the overall relationship of the response over time. The model is called mixed since it 

includes both fixed and random effects. The linear mixed model can be written as in 

equation (6): 

𝑌  =  𝑋𝛽 + 𝑍𝑏 + 𝜀      (6) 
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where 𝑌 is the response, 𝛽 is the fixed-effect parameter vector, 𝑏 is the random-effect 

parameter vector, 𝜀 is the random error, and 𝑋 and 𝑍 are the design matrices of the fixed 

and random effects, respectively (Douglas Bates, 2015).   The linearity between 𝑋 and 𝑌 

is still assumed in this model, as is the normality and constant variance of the errors 𝜀. 

The 𝑏 random effects are assumed to be independent of 𝜀 and are also assumed to be 

normally distributed with a variance-covariance matrix Σ. Scatterplots and residual plots 

can also be used to check assumptions similar to those described in Section 1.3.4 for the 

linear model. 

For this study, a linear mixed model was fit for each SNP and outcome assessment 

(𝑌𝑖𝑗) as shown in equation (7): 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖 + 𝛽2𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗 + 𝛽3𝑇𝑖𝑚𝑒𝑖 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗 + 𝛾0𝑗 + 𝜀𝑖𝑗,      (7) 

for 𝑖 = 1, … , 𝐼 time points and 𝑗 = 1, … , 𝑛 individuals  (Douglas Bates, 2015)  (Sven 

Hilbert, 2019).  The fixed effects part of the model includes 𝑇𝑖𝑚𝑒, 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒, and their 

interaction (𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒), with their respective regression coefficients 𝛽1, 𝛽2, 𝛽3, 

and the overall intercept 𝛽0.The 𝛾0𝑗 term represents a random subject effect and the 𝜀𝑖𝑗 

term is the random error.  It is assumed that 𝛾0𝑗~𝑁(0, 𝜏2) and  𝜀𝑖𝑗~𝑁(0, 𝜎2) are 

independent. The genotype groups were coded such that non-carriers of the variant allele 

were the reference group coded as 0 and the variant allele carriers were coded as 1. Thus, 

the model can be broken down by genotype group as follows. 

When 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 0, the model for non-carriers becomes, equation (8):    

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖 + 𝛾0𝑗 + 𝜀𝑖𝑗.     (8) 
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When 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 1, the model for the carriers of the variant allele becomes, equation 

(9): 

𝑌𝑖𝑗 = (𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)𝑇𝑖𝑚𝑒𝑖 + 𝛾0𝑗 + 𝜀𝑖𝑗.               (9)  

Thus, 𝛽0 and 𝛽1 are the intercept and slope for the linear model of the outcome over time 

for the non-carriers of the variant allele. The 𝛽2 and 𝛽3 coefficients represent the 

difference in the overall intercept and slope, respectively, between the variant allele 

carriers and non-carriers. By including the random subject effects, 𝛾0𝑗, each subject is 

allowed to deviate from the overall intercept in both genotypes.  

 To determine if there is a significant association between the SNP and the mTBI 

outcome, a set of tests is conducted. First, the interaction term is tested (𝐻0: 𝛽3 = 0 vs.  

𝐻𝑎: 𝛽3 ≠ 0). This tests whether there is a difference in slopes between the carriers and 

non-carriers. That is, this tests whether there is a difference in the rate of change in the 

outcome over time between the genotype groups. Thus, a significant interaction effect 

would indicate that the rate of recovery on a specific TBI assessment is associated with 

what genotype the individuals has for that SNP. If the interaction is not significant and the 

slopes are not significantly different between the genotypes, then a test for the genotype 

effect (𝐻0: 𝛽2 = 0 vs.  𝐻𝑎: 𝛽2 ≠ 0) is conducted. A significant genotype effect would 

indicate that there is a significant difference in the average outcome between carriers and 

non-carriers (irrespective of time). These are the primary tests of interest in this study 

focused on identifying genetic associations with mTBI outcomes. As a secondary 

analysis, the time effect is also tested (𝐻0: 𝛽1 = 0 vs. 𝐻𝑎: 𝛽1 ≠ 0) when the interaction is 



20 
 

 
 

not significant to determine if there is a significant change in the outcome over time 

(irrespective of genotype).  

Some SNPs may require the inclusion of a covariate, if there were any significant 

differences between demographic/clinical variables between the genotype groups. When 

a covariate is included, the model becomes, equation (10): 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖 + 𝛽2𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗 + 𝛽3𝑇𝑖𝑚𝑒𝑖 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗 + 𝛽4𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑗 + 𝛾0𝑗 + 𝜀𝑖𝑗. (10) 

The same tests for 𝛽2 and 𝛽3 as described for model (7) are performed as the primary 

analysis since the focus in this study is on the genetic associations. The tests for 

𝑇𝑖𝑚𝑒 (𝐻0: 𝛽1 = 0) and 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 (𝐻0: 𝛽4 = 0) are also performed as a secondary 

analysis. 

The linear mixed model was fit using the lmer function from the lme4 library in R 

for the models with (10) and without a covariate (7) (Douglas Bates, 2015) (Wiley, 2020). 

The model is performed as shown below in equation (11) 

𝑙𝑚𝑒𝑟 (𝑌~𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + (1|𝐺𝑈𝐼𝐷))     (11) 

for model (7) without a covariate and equation (12) 

𝑙𝑚𝑒𝑟 (𝑌~𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 + (1|𝐺𝑈𝐼𝐷))    (12) 

for the model (10) with a covariate. The GUID represents an identifier for an individual 

subject. The estimation method used in lme4 is restricted maximum likelihood (REML), 

which is the standard method for estimating parameters in linear mixed models 

(Christopher M. Gotwalt). It has less bias for variance estimates by estimating the 

variances first, then estimating the fixed effects coefficients (Newsom, 2019). To test the 
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fixed effects of interest, a test statistic whose null distribution is approximated by an F-

distribution with the denominator degrees of freedom approximated by the Kenward 

Roger method was utilized to obtain the p-values for the mixed model. This is obtained 

via the pbkrtest package in R (Cran R-Project, 2021). It is important to note that this 

estimation procedure for linear mixed models allows the use of all available data for a 

subject.  Thus, if a subject has data available at one time but is missing data at another 

time point, the subject will still be included in the modeling. As long as the data are 

missing at random, the linear mixed model is robust to potential bias from missing data 

(G. L. Gadbury, 2003). 

1.3.6. Multiple Testing Correction. The false discovery rate (FDR) estimation is 

used to combat the higher likelihood of a false positive occurring across multiple tests 

compared to a single test.  The FDR is defined as the expected proportion of discoveries 

(rejected null hypotheses) that are false. FDR estimates are computed directly from the p-

values, which are assumed to follow a uniform distribution under the null hypothesis 

(Noble, 2009).  That is, the p-values follows equation (13) under the null hypothesis: 

𝑃 ∼ 𝒰[0,1]       (13) 

so multiple testing corrections can estimate the proportion of false positives (Maarten van 

Iterson, 2010). The FDR procedure works by sorting the p-values in ascending order, then 

dividing each observed p-value by its percentile rank to get an estimate (Noble, 2009).  

The ranked p-values for a total of 𝑚 tests are denoted as 𝑝(𝑖) where 𝑖 = 1, 2, … , 𝑚 

(Winkler, 2011).  The Benjamini and Hochberg’s FDR-controlling procedure works by 

letting 𝑘 be the largest 𝑖 such that equation (14) holds:  
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𝑝(𝑖) <  
𝑖𝑞

𝑚
,      (14)  

where q is the desired FDR level. The null hypotheses are then rejected for all 𝑖 =

1, … , 𝑘. Equation (15) provides the FDR-corrected p-values (Winkler, 2011): 

𝑞(𝑖) =
𝑝(𝑖)𝑚

𝑖
.     (15)  

One additional adjustment is made to ensure monotonicity, such that the corrected p-

values for each 𝑖 are the smallest 𝑞(𝑘) where 𝑘 ≥ 𝑖. This formulation allows for a 

significance declaration and a new threshold of 𝑞(𝑖) for significance determinations for 

when the FDR-corrected p-value is < 0.05 (Winkler, 2011) (Yekutieli, 2001). In this 

work, the FDR was utilized across the multiple tests for each SNP.  The linear mixed 

model results with both the original and FDR-corrected p-values can be found in the 

Appendix with more details in Paper I.  
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PAPER 

I. IDENTIFYING ASSOCIATIONS BETWEEN SINGLE NUCLEOTIDE 

POLYMORPHISMS AND MILD TRAUMATIC BRAIN INJURY OUTCOMES 

OVER TIME 
 

ABSTRACT 

 

Traumatic brain injury (TBI) is a growing health concern, with millions of TBI 

diagnoses in the United States each year. The vast majority of TBI diagnoses are mild 

traumatic brain injuries (mTBI), which can be challenging to manage due to variation in 

symptoms and outcomes. Most individuals with mTBI successfully recover quickly, but a 

small subset has a delayed recovery. Although the factors that contribute to this variation 

in recovery are not clearly understood, it is possible that genetic differences may play a 

role. Few studies have investigated the association between single nucleotide 

polymorphisms (SNPs) with mTBI outcomes and this is an emerging area of research. In 

this study, we utilize data collected in the Transforming Research and Clinical 

Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to test the 

association between 10 different SNPs and 7 TBI outcomes measured at six- and twelve-

months post injury. Linear mixed models are utilized to investigate the association 

between genotypes and mTBI outcome measurements over time. Previous studies have 

primarily focused on a single time point at six months for one or two SNPs. The findings 

in this study demonstrate the potential benefits of using linear mixed models to identify 

relationships between genotypes and TBI outcomes over time.  
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1. INTRODUCTION 

 

Traumatic brain injury (TBI) occurs when an external force causes a change in 

brain function or pathology  (Menon DK & Health, 2010). Approximately 2.5 million 

people in the United States (US) sustain a TBI annually and up to 30% of injury related 

deaths in the US are related to TBIs (John K. Yue, 2015 ).  It is estimated that long-term 

disability from TBIs currently affects up to 5.3 million people (Yue JK W. E.-A., 2017).  

TBIs have a wide range of severity, with most injuries (70-90%) classified as mild 

(mTBI) on an initial injury severity assessment called Glasgow Coma Scale (GCS) 

(Winkler EA, 2016).  Most recovery from mTBI happens within 3 months if no other risk 

factors are present (Hilary Bertisch & Investigators, 2019).  However, around 20% of 

mTBI patients have a prolonged experience with symptoms (e.g., headache and fatigue) 

and cognitive deficits (Winkler EA, 2016) (Hilary Bertisch & Investigators, 2019).  

Within mTBIs, a large amount of variability in outcomes appears across individuals 

(Winkler EA, 2016). Individuals with injuries that are nearly identical often have 

different symptoms resulting in variability in outcomes (Winkler EA, 2016).  

Furthermore, more studies are needed to identify factors that can help explain this 

variability in outcomes among individuals with mTBIs.  Gaining a better understanding 

of which individuals are at risk for poor outcomes could assist in designing individual 

recovery plans.  

One avenue that recent studies have explored as a potential factor in explaining 

some of the clinical variability is the association between genetic variations within 

individuals' genes and outcomes following a TBI (John K. Yue, 2015 ) (Yue JK W. E.-A., 
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2017) (Winkler EA, 2016) (Yue JK R. C.-A., 2017) (Ethan A. Winkler, 2017).  These 

genetic association analysis studies investigate a type of genetic variation called a single 

nucleotide polymorphism (SNP), which involves a single nucleotide substitution that 

occurs in the DNA. When SNPs arise within a gene’s coding sequence or regulatory 

element, they can influence protein structures or abundance (Winkler EA, 2016).  Several 

candidate SNPs have been identified that occur within genes that are known to be 

involved in processes important to cognitive function.  Recent studies have tested for 

associations between some of these candidate SNPs in genes of interest (ANKK1, DRD2, 

APOE, and COMT) and TBI outcomes (John K. Yue, 2015 ) (Yue JK W. E.-A., 2017) 

(Winkler EA, 2016) (Yue JK R. C.-A., 2017) (Ethan A. Winkler, 2017). 

One set of studies among TBI patients of all severities investigated SNPs in genes 

that are involved in the dopaminergic pathway, which is important to attention, memory, 

and executive function (John K. Yue, 2015 ) (Yue JK W. E.-A., 2017).  The ankyrin repeat 

and kinase domain-containing 1 (ANKK1) gene, which is involved in dopamine 

transmission, has a C/T SNP (rs1800497, also known as Taq1A) (John K. Yue, 2015 ).  

Within TBI patients, the presence of the T allele of Taq1A has been shown to have a 

negative association with episodic memory and response latency 1-month post-injury 

(McAllister TW F. L., 2008). A similar association was found in another study on verbal 

learning ability and non-verbal processing 6-months after injury that identified poorer 

performance among the T/T homozygotes (John K. Yue, 2015 ).  The dopamine D2 

receptor (DRD2) gene is adjacent to ANKK1, and it also has a C/T SNP (rs6277, also 

known as C957T) (Yue JK W. E.-A., 2017).  TBI patients with the T allele of C957T 

showed better verbal learning and recall at 6-months, even after adjusting for the ANKK1 
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genotype and other potential covariates.  No significant associations were found for non-

verbal processing speed or mental flexibility, indicating that the T allele may only exhibit 

a performance advantage in selective cognitive domains (Yue JK W. E.-A., 2017). 

Some studies have focused on conducting genetic association analysis within 

mTBI patients.  This can help in reducing the clinical heterogeneity that occurs between 

different TBI severities while elucidating genetic connections that may be influencing the 

variation within mTBI outcomes.  One gene studied in mTBI patients is Apolipoprotein E 

(APOE), which is a highly polymorphic gene that plays a role in neuronal survival and 

execution of antioxidant effects (Yue JK R. C.-A., 2017).  The APOE- 𝜀4 allele is a risk 

factor for neurogenerative disorders such as Alzheimer’s disease (Yue JK R. C.-A., 2017).  

Within mTBI patients, the APOE-𝜀4 allele has been associated with an increased risk of 

verbal memory impairment at the 6-month time point (Yue JK R. C.-A., 2017).  The 

Catechol-O-Methyltransferase (COMT) gene has also been investigated in mTBI 

patients.  COMT is an enzyme that inactivates catecholamine neurotransmitters and is 

involved in regulating dopamine transmission in brain regions important to cognition.  

COMT has a SNP (rs4680, also known as Val158Met) in which valine (G; Val158) is 

substituted with methionine (A; Met158) at the codon 158.  The Met158 allele is associated 

with higher catecholamine bioavailability with improved performance on memory and 

attention tasks (Winkler EA, 2016) (Ethan A. Winkler, 2017).  In mTBI patients, the  

Met158 allele is associated with lower incidence in post-traumatic stress disorder and 

improved global function outcomes, as well as increased performance of non-verbal 

processing speed at the 6-month time point (Winkler EA, 2016) (Ethan A. Winkler, 

2017). 
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These studies indicate that the impact of genetic effects on mTBI patients is an 

important component in disentangling the heterogeneity in post-injury outcomes and 

further research in this area is needed.  The previous studies provide focused 

investigations on the association between a single SNP with a few TBI outcomes at one 

time point, typically at six months post-injury.  However, a wealth of data is available 

through the Transforming Research and Clinical Knowledge in Traumatic Brain Injury 

(TRACK-TBI) Pilot data that would enable a more thorough investigation across 

multiple SNPs, TBI outcomes, and post-injury time points.  The TRACK-TBI Pilot study 

was conducted at three Level I trauma centers on patients who completed a computed 

tomography (CT) scan within 24 hours of sustaining a TBI (Winkler EA, 2016).  Data 

were collected on demographics, clinical information, neuroimaging, and outcome 

assessments.  Genotype information was also collected on a subset of the patients for a 

set of candidate SNPs that may be connected to cognitive outcomes (Yue JK W. E.-A., 

2017).  The pilot study had a total of ~600 subjects and was the foundation for the 

TRACK-TBI study that now has 3000 patients from 18 sites (University of California, 

2014). 

In this work, data from the TRACK-TBI Pilot study were used to test the 

association between genotypes of 10 different SNPs and 7 outcome assessments in mTBI 

patients.  Each outcome is measured for at least two post-injury time points (6 and 12 

months).  A linear mixed model is employed to determine if the changes in post-injury 

outcomes over time differ significantly between genotypes.  Since most previous studies 

focus on one post-injury time point, this work provides a unique perspective by exploring 

whether genetics plays a role in recovery over time.  For SNPs where no such significant 
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association over time is found, an overall association test between genotype and outcome 

is conducted, irrespective of time.  Through this comprehensive investigation of multiple 

SNPS and mTBI outcomes together in one study, the chance of false associations can be 

better controlled across the multiple tests conducted.  Additionally, previously unexplored 

SNP and mTBI outcome associations have the potential to be revealed.  

 

2. DESCRIPTION OF DATA 

 

2.1. STUDY DESIGN 

This study uses data from the Transforming Research and Clinical Knowledge in 

Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study. TRACK-TBI Pilot data is 

available through the Federal Interagency Traumatic Brain Injury Research (FITBIR) 

website, which motivated this work (Health, n.d.). The data utilized in this work was 

obtained from the TRACK-TBI Pilot Study Principal Investigator (PI), Dr. Geoffrey 

Manley. This data set included data available on FITBIR as well as additional SNP data 

and 12-month neurocognitive assessment data that were not available through FITBIR.  

As described in (Yue JK & Investigators, 2013), TRACK-TBI Pilot is a 

prospective observational study conducted at three acute care sites that are level 1 trauma 

centers (San Francisco General Hospital, University of Pittsburgh Medical Center, and 

University Medical Center Brackenridge in Austin, Texas).  Patients who visited one of 

the trauma centers and received a computed tomography (CT) scan within 24 hours of a 

head injury were considered for inclusion in the study.  Patients were excluded if they 

were less than 18 years old, pregnant, incarcerated, on a psychiatric hold, or diagnosed 
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with a life-threatening condition (Yue JK W. E.-A., 2017).  Non-English speakers were 

also excluded due to challenges in obtaining accurate outcome assessments, which were 

administered in English (Yue JK W. E.-A., 2017).  Information about the Institutional 

Review Board and informed consent can be found in the original paper describing the 

study (Yue JK & Investigators, 2013).  A total of ~600 patients, recruited through 

convenience sampling, were enrolled in the study at the three sites (Health, n.d.).  The 

initial study also included 51 patients from a rehabilitation center that were not included 

in this work (Yue JK & Investigators, 2013).  

The TRACK-TBI Pilot study focused on collecting data in the set of Common 

Data Elements (CDEs) for TBI patients, as defined by the National Institutes of Health 

and National Institute of Neurological Disorders and Stroke (Winkler EA, 2016).  A 

wealth of demographic, clinical, biomarker, and neuroimaging data were collected on 

patients in the acute stage after the injury.  Outcome assessments were also collected at 

multiple post-injury time points to investigate patient recovery trajectories.  The initial 

study targeted the 3- and 6-month time points, but data were also collected at 12 months 

for some outcome assessments.  In a subset of the patients, genetic data were obtained 

from blood samples to obtain the genotypes for a set of candidate SNPs. The PI of the 

TRACK-TBI Pilot study, Dr. Geoffrey Manley, provided SNP data and 12 month 

neurocognitive assessment data that were not available from the FITBIR database.  

 

2.2. PATIENT SELECTION 

The goal of the current work is to test the association between candidate SNPs 

and prolonged post-injury outcomes in adult mild TBI patients.  Thus, patients in the 
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current work were restricted to those with genetic data available on at least one SNP, had 

a GCS score of 13-15 indicating mild injury, and were between 18-80 years old.  

Additionally, outcomes with data collected at 6 and 12 months were selected to 

investigate recovery over a longer time period.  Only patients with data on at least one of 

the selected outcomes in at least one time point were included in the current study.  

 

2.3. DEMOGRAPHIC AND CLINICAL DATA 

To understand the characteristics of patients included in the study, a certain set of 

demographic and clinical variables were selected. Variables that may have an impact on 

the outcome assessments were chosen and summarized between different genotypes for 

each SNP to determine if the groups were evenly balanced.  The demographics include 

age (years), sex (male or female), race (Caucasian, African American/African or other 

races), and education (years). For the race data, the “other races” group was combined 

due to the small sample sizes within individual races that were not Caucasian or African 

American/African.  The clinical data collected in the acute phase include GCS score (13, 

14, 15) upon arrival at the emergency department, Injury Severity Score (ISS) (classified 

into two groups: ≤15 or >15), and whether or not the patient had an abnormal CT scan.  

 

2.4. GENOTYPE DATA 

 Blood samples were collected within 24 hours of injury for genotyping on a set of 

candidate SNPs. A more detailed description of how samples were collected and 

processed, including the DNA extraction and genotyping methods, is described in (Yue 

JK & Investigators, 2013).  In this work, 10 SNPs are tested for an association with 
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different outcome assessments in mTBI patients.  For each SNP, it is important to 

determine which genotypes should be compared between the outcomes.  In this study, the 

presence of the minor allele (i.e., minor allele carrier) is tested against the absence of the 

minor allele.  Thus, there are two groups: absence (coded as 0) of minor allele (i.e., 

homozygous for the major allele) vs. presence (coded as 1) of the minor allele (i.e., 

homozygous for minor allele or heterozygous).  

 

Table 1. Summary of single nucleotide polymorphisms (SNPs) and genotype 

comparisons. 

SNP/variant Gene 

Symbol  

Full Gene Name Variant 

Allele 

 Genotype Comparison 

rs1800497  ANKK1  Ankyrin Repeat and 

Kinase Domain 

Containing 1  

T 0: C/C  | 1:C/T, T/T  

rs4938016  ANKK1  

  

Ankyrin Repeat and 

Kinase Domain 

Containing 1  

C 0: G/G  | 1: C/G, C/C  

rs11604671  ANKK1  Ankyrin Repeat and 

Kinase Domain 

Containing 1  

G 

 

0: A/A  | 1:A/G, G/G  

APOE APOE  Apolipoprotein E  𝜀4  0: 𝜀4 Absent | 1: 

𝜀4 Present  

rs17759659  BCL2  BCL2 Apoptosis 

Regulator  

G 0: A/A  | 1: A/G, G/G  

rs6265  BDNF  Brain Derived 

Neurotrophic Factor  

A 0: G/G  | 1: A/G, A/A  

rs4680  COMT  Catechol-O-

Methyltransferase  

A (Met) 0: G(Val)/G(Val) | 

1: A(Met)/G(Val), 

A(Met)/A(Met) 

rs6277  DRD2  Dopamine Receptor 

D2  

T 0: C/C  | 1: C/T, T/T  

rs6311  HTR2A  5-

Hydroxytryptamine 

Receptor 2A  

T 0: C/C  | 1: C/T, T/T  

rs1799971  OPRM1  Opioid Receptor, 

Mu 1  

G 0:A/A   | 1:A/G, G/G  
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The only exception is the comparison for APOE, since the allelic variants 

(𝜀1, 𝜀2, 𝜀3, 𝜀4) are based on two SNPs (rs7412, rs429358), with the 𝜀4 allele being the 

high-risk variant associated with Alzheimer’s disease.  Thus, the comparison of interest is 

presence vs. absence of the 𝜀4 allele (Yue JK R. C.-A., 2017).  Comparisons for all other 

SNPs were determined by reviewing previous studies (John K. Yue, 2015 ) (Yue JK W. 

E.-A., 2017) (Winkler EA, 2016) (Ethan A. Winkler, 2017) (Giegling I, 2006) (Nicole 

Zangrilli Hoh, 2010) (McAllister TW F. L., 2008) (Sarchiapone M, 2008).  Table 1 

provides a list of the 10 SNPs investigated in this work, along with a description of the 

gene in which they are located and the comparison of interest that will be tested. The 

letters A, C, G, T represent the nucleotide bases on the DNA sequence (A=adenine, 

C=cytosine, G=guanine, T=thymine). Val and Met are the amino acids valine and 

methionine, respectively. The polymorphism in the APOE gene is a combination of two 

SNPs (rs429358 and rs7412). The 𝜀4 allele is the high-risk variant. 

 

2.5. OUTCOME ASSESSMENTS 

The outcome assessments chosen for this study were core CDEs with data 

available at the 6- and 12-month time points. All available assessments that met these 

criteria were utilized, apart from the Craig Handicap Assessment and Reporting 

Technique (CHART). CHART data were excluded due to a lack of variability in the 

scores, as most patients attained the highest score (100) on each subscale at both time 

points.  A total of 7 outcomes (from 5 different assessments) were included in the genetic 

association analysis.   

2.5.1 Glasgow Outcome Scale – Extended. The Glasgow Outcome Scale – 

Extended (GOS-E) is in the global outcome domain for TBI patients 18 and older 
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(Wilson L, 2021).  The assessment is used as a performance measure to assess the global 

disability and recovery after a TBI (Wilson L, 2021) (Kreitzer NP, 2019).   An overall 

evaluation for a patient is determined through a structured interview with questions 

related to consciousness, independence, employment, social and leisure activities, 

relationships, and return to daily life (Wilson L, 2021).  The GOS-E has a score minimum 

of one and maximum of eight, with the following ordinal categories 1- Dead, 2-

Vegetative State, 3-Lower Severe Disability, 4-Upper Severe Disability, 5-Lower 

Moderate Disability, 6 - Upper Moderate Disability, 7-Lower Good Recovery, 8-Upper 

Good Recovery (Wilson L, 2021).  The data set has three-, six-, and twelve-month 

outcome time points for GOS-E. Note this is the only outcome with data at the three-

month time point in this study.   

2.5.2 Trail Making Test. The Trail Making Test (TMT) is in the 

neuropsychological impairment domain and has six- and twelve- month outcome time 

points.  TMT is used to measure the neuropsychological functions, such as attention, 

memory, and executive function, that often affect everyday activities and social role 

participation (Salthouse, 2011).  TMT is a timed test that is split into two parts (A and B), 

where the participant is given a task to perform in each part. TMT-A assesses visual 

attention and processing, while TMT-B is related to working memory and task switching 

ability (SÁNCHEZ-CUBILLO, 2009).  The score on each part is the number of seconds 

required to complete the task, with lower scores indicating better performance. In order to 

attain a more general indicator of executive control function, the ratio (B/A) is used in 

this work as a commonly derived index of the TMT components where a lower value is 

preferred (Winkler EA, 2016) (Salthouse, 2011). 
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2.5.3 Weschler Adult Intelligence Scale, Fourth Edition. The Weschler Adult 

Intelligence Scale (WAIS) is in the neuropsychological domain with six- and twelve- 

month outcomes split into several sections, composite, percentile, and sum of scaled. The 

test was standardized for patients age 16 to 90 in the USA and are composed of 10 core 

subsets that produce scores for verbal comprehension, perceptual reasoning, working 

memory, and processing speed and an IQ level (Gomaa Said Mohamed Abdelhamid, 

2021).  This study used the processing speed index (PSI) consisting of symbol searching 

and coding tests for the composite and percentile scores (Injury, 2018).  

 The composite score ranges from 50 to 150 for correspondence across age groups 

with the 0.1st to 99.9th percentile in performance (Winkler EA, 2016). The percentile rank 

score is the percentile in which the patient’s composite PSI falls in, with a range of 0.1 to 

99.9 (The Washington Center for Cognitive Therapy, n.d.).  The descriptive 

classifications are based on IQ level and percentile ranges are as follows by level and 

percentage, intellectual disability (level 69 and below, 0.01%-2%), borderline (level 70 to 

79, 2%-8%), low average (level 80 to 89, 9%-23%), average (level 90 to 109, 25%-73%), 

high average (level 110 to 119, 75%-90%), superior (level 120 to 129, 91%-97%), and 

very superior (level 130 and above, 98%-99.9%) (The Washington Center for Cognitive 

Therapy, n.d.).  The sum of scaled score is the proration for the verbal comprehension or 

the perceptual reasoning indices (Traci W. Olivier, 2013).  All scores are preferred to be 

higher representing higher improvement in their specific category (verbal comprehension, 

perceptual reasoning, working memory, and non-verbal processing speed) (Gomaa Said 

Mohamed Abdelhamid, 2021)  (Traci W. Olivier, 2013). 
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2.5.4 Brief Symptom Inventory. Brief Symptom Inventory-18 (BSI-18) is in the 

psychological domain with six- and twelve- month outcomes.  BSI-18 measures 

psychological distress and psychiatric disorders associated with mTBIs that can affect life 

adjustments, personality changes, or mood disturbances (Recklitis CJ, 2007) (Injury, 

2018).  The self-reported questionnaire consists of six descriptions of psychical and 

emotional pain symptoms in the past seven days (Injury, 2018).  The Likert scales ranges 

from 0 meaning “not at all” and 4 meaning “extremely” and cannot be administered to 

anyone under the age of 18 (15).  The BSI-18 ranges from 0 to 24 and is a subset of the 

Global Severity Index that has a range of 0 to 72 which high scores measure a higher 

level of psychological distress (Injury, 2018) (Merport A, 2012).  

2.5.5 Satisfaction with Life Scale. The Satisfaction with Life Scale (SWLS) is in 

the perceived generic and disease-specific health related quality of life domain with six- 

and twelve- month time points.  SWLS is a self-reported measurement used to measure 

the life satisfaction component of subjective well-being and has been linked to mental 

health and predictive future behaviors (Kreitzer NP, 2019) (Injury, 2018).  The seven-

point Likert style response scale with eight sub-scales (physical functioning, role 

limitations-physical, bodily pain, general health, vitality, social functioning, role 

limitations-emotional, and menta health) range from 5 to 35, with a higher score 

indicating a higher satisfaction with life (Kreitzer NP, 2019) (Injury, 2018). 
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3. STATISTICAL METHODS 

 

This study aims to examine the genetic associations on mTBI outcomes over time 

for multiple candidate SNPs. To accomplish this goal, the statistical modeling framework 

described in Figure 1 was employed to ensure a robust analysis.  The modeling 

framework consists of five phases (data extraction, demographic analysis, check 

assumptions, statistical modeling, and multiple testing correction).  Each of these phases 

is described in detail in the following subsections. R statistical software (version 4.2.2) 

was utilized for all statistical analyses. 

   

Figure 1. Statistical Modeling Framework. 

 

3.1 DATA EXTRACTION 

The first step in the analysis requires extracting data needed for this work from 

the larger TRACK-TBI Pilot data set.  This involves discussion with domain experts to 

determine the study population, outcome assessments, and SNPs to target, so that the 

appropriate subset of the data can be obtained.  For this study, the inclusion criteria 

described in Section 2.2 are applied to filter out any individuals with TBIs that were not 
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mild cases or were outside of the 18-80 age range.  Among individuals that met the 

inclusion criteria, only those with data on at least one SNP and at least one selected 

outcome was extracted and utilized in the statistical analysis.  A total sample size of 

n=330 patients met these criteria. 

 

3.2. DEMOGRAPHIC ANALYSIS  

An initial analysis was performed on the seven demographic and clinical variables 

described in Section 2.3 to summarize the characteristics of the study sample.  Means and 

standard deviations were found for the quantitative variables (age, education in years), 

while counts and percentages per group were found for the categorical variables (race, 

sex, ISS score ≤15 or not, GCS score on admission, and abnormal CT scan status).  It is 

important to compare key demographic and clinical variables that may influence the 

outcome assessment results between the genotypes being tested.  Since this is an 

observational study, this helps determine if the genotype groups are evenly mixed. Any 

variables that are unbalanced can be addressed in the further modeling. To test for 

significant associations between the genotype and the seven demographic/clinical 

variables, t-tests and chi-squared tests were conducted for each SNP.   A two-sample t-

test, assuming unequal variance, compared the normally distributed quantitative 

demographic/clinical variables between the two genotype comparisons groups.  A chi-

squared test aimed to analyze group differences when the demographic/clinical variable is 

categorical (McHugh, 2013 ).  Any demographic/clinical variable that was significantly 

different (p<0.05) between genotypes were then included as covariates in the linear 

mixed model for that SNP.  
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3.3. CHECK ASSUMPTIONS 

Prior to making formal statistical inferences, it is important to check both genetic 

and modeling assumptions and apply appropriate filters/remedies when needed.  The first 

aspect of checking assumptions involves testing each SNP to determine if it follows the 

Hardy-Weinberg Equilibrium (HWE).  HWE is an important genetic principal that states 

that genotype frequencies should remain constant over generations unless disturbed by an 

outside factor (e.g., natural selection, genetic drift, non-random mating) (Nikita 

Abramovs A. B., 2020).  In genetic association studies, deviations from HWE are 

potentially indicative of issues such as genotyping errors (Moreno, 2013).  When testing 

HWE, the expected frequency of both homozygous genotypes (i.e., two major alleles or 

two variant alleles) and the heterozygous variant carriers (i.e., one major allele, one 

variant allele) are estimated from allele frequencies in the population. These proportions 

should remain constant even with increases and decreases in population size (Nikita 

Abramovs A. B., 2020).  The chi-squared test with a continuity correction was used to 

test HWE (Jan Graffelman, 2023).  Thus, if the SNP genotype frequencies deviates 

significantly (p<0.05) from those expected under HWE, the SNP was taken out of the 

study due to its instability.    

There are several assumptions required for the linear mixed model, described in 

the next section (Section 3.4).  These assumptions include normality and constant 

variance of the errors and the random subject effect. Linearity is also assumed between 

the outcome and time, as well as any continuous covariate. Prior to interpreting model 

results, it is important to check whether the assumptions are met and perform remedies if 

needed. Linearity was checked using scatterplots. Constant error variance was 
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investigated using residuals vs. fitted plots (Nahhas, 2023) (Deanna Schreiber-Gregory, 

2018).   Normality of the errors was checked to ensure the model residuals followed a 

normal distribution by using a Quantile-Quantile plot (Deanna Schreiber-Gregory, 2018).  

For any outcome assessment for which these assumptions were violated, a transformation 

of the outcome was considered.  

 

3.4. LINEAR MIXED MODELING 

Linear mixed models have several advantages for modeling the type of 

longitudinal data collected in this study. First, they allow the possibility of testing 

whether changes in mTBI outcomes over time differ between genotypes. In the case that 

the changes over time do not differ by genotype, the model also provides a test for overall 

differences in outcomes between the genotypes.  Additionally, linear mixed models 

account for the correlation between data collected on the same subject over time, while 

allowing each subject to vary from the overall average within their genotype group.  

Finally, the mixed modeling process can also help combat the challenge of having 

missing data, since not all subjects may complete the outcome assessments at all the time 

points.  Linear mixed models use all of the available data for a subject and are robust 

when data are missing at random (G. L. Gadbury, 2003).  The specific model utilized for 

this study is described in detail below.   

For each SNP, a linear mixed model was fit for each outcome assessment (𝑌𝑖𝑗) 

shown in equation (1): 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖 + 𝛽2𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗 + 𝛽3𝑇𝑖𝑚𝑒𝑖 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗 + 𝛾0𝑗 + 𝜀𝑖𝑗 ,      (1) 
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for 𝑖 = 1, … , 𝐼 time points and 𝑗 = 1, … , 𝑛 individuals (Douglas Bates, 2015) (Sven 

Hilbert, 2019).  The number of time points is 𝐼 =2 (6 and 12 months) for all outcomes 

except GOSE, which has 𝐼=3 outcomes (3, 6, and 12 months).  The 𝑛 varies slightly for 

each outcome and SNP, depending on the number of subjects with available data. The 

fixed effects include 𝑇𝑖𝑚𝑒, 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒, and their interaction (𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒).  Note 

that the genotype groups were coded as described in Table 1, with non-carriers of the 

variant allele being the reference group coded as 0 and the variant allele carriers coded as 

1.  A random subject effect (𝛾0𝑗) was included due to the multiple measurements taken on 

the same subject over time. The 𝜀𝑖𝑗 term represents the random error.  In this model, 𝛽0 

represents the overall intercept for the  non-carriers of the variant allele (reference 

genotype group), 𝛽1 is the change in the average outcome for each additional month post-

injury (i.e., slope) for the non-carriers, 𝛽2 is the difference in the overall intercept 

between the variant allele carriers vs. non-carriers, and 𝛽3 indicates how much the change 

in the outcome over time differs between the carriers and non-carriers (i.e., difference in 

slopes between genotype groups).  The random subject effect (𝛾0𝑗) represent deviations 

from the overall intercept for individual subjects and are assumed to follow a normal 

distribution with a mean of 0 and a variance 𝜏2.  The random errors (𝜀𝑖𝑗) are also 

assumed to follow a normal distribution with a mean of 0 and a variance of 𝜎2.  The 

𝜀𝑖𝑗 and 𝛾0𝑗 are assumed to be independent.  If any of the demographic or clinical 

variables showed significant differences between genotype groups, it was also included 

as a fixed covariate for that SNP.   

The restricted maximum likelihood method was used for estimating the model 

parameters with the ‘lme4’ package in R (Douglas Bates, 2015).  To obtain p-values for 
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the testing significance of the fixed effects, the Kenward-Roger approach was utilized to 

approximate the denominator degrees of freedom for the F-tests (Luke, 2016).  The 

primary tests of interest are the fixed effects that involve the genotype, as these indicate 

whether or not there is a genetic association with the outcome. The 𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 

interaction was tested first to determine if the changes in outcome assessments over time 

differed by genotype.  If the interaction term was not significant, then the 

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 effect was tested.  This determines if there is a significant difference in the 

average outcome between carriers and non-carriers (regardless of time). As a secondary 

analysis, when the interaction was not significant, the 𝑇𝑖𝑚𝑒 effect was also tested to 

determine if there were any overall changes in the average outcomes over time 

(regardless of genotype).  For SNPs with a covariate, the 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 effect was also 

tested.   

 

3.5. MULTIPLE TESTING CORRECTIONS 

For each SNP, a linear mixed model was performed for each outcome assessment, 

resulting in multiple tests for the 𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 , 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒, 𝑇𝑖𝑚𝑒, and 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 

effects.  Performing multiple tests increases the probability of making a false association 

(Type I error) across the set of tests (Center, 2019).  Thus, a multiple testing correction 

procedure was used to control the false discovery rate (FDR) across the multiple tests for 

each SNP.  The FDR is defined to be the expected proportion of discoveries (statistically 

significant tests) that are false.  That is, among all tests where the null hypothesis was 

rejected and an association was detected, the FDR is defined as the proportion of those 

that are incorrect and there is not a true underlying association (Maarten van Iterson, 
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2010).  The raw p-values from the multiple tests within a SNP are adjusted using the 

Benjamini and Hochberg (BH) procedure to control the FDR at 5% (Yoav Benjamini, 

2018). Thus, any adjusted p-value less than 𝛼 = 0.05  is considered statistically 

significant.   

 

4. RESULTS 

 

After the data extraction step was complete, a total sample size of n=330 subjects 

were potentially available for each analysis. Among these subjects, the average age was 

42 and average education years was 14.  There were 72.1% males and 27.9% females. 

For race, the data consisted of 78.5% Caucasian, 9.5% African American/African, and 

12% other races. Most subjects (73.6%) had a GCS score of 15 upon arrival to the 

emergency department, while 22.7% had a score of 14 and 3.7% had a score of 13.  The 

majority of subjects (67.8%) had an Injury Severity Score less than or equal to 15 and 

most (57.1%) did not have an abnormal CT scan.  

Not all subjects were included in all analyses due to incomplete genotype and/or 

outcome data.  Sample sizes and summary statistics for each SNP (overall and by 

genotype) are provided in the demographic analysis results in the Supplemental Data 

(Appendix) along with p-values corresponding to the tests for differences between 

genotypes.  Only three SNPs exhibited a statistically significant difference (p<0.05) on a 

demographic/clinical variable between genotype groups.  Age was significantly different 

between the variant allele carriers and non-carriers for APOE and rs17759659 (BCL2 
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gene), while arrival GCS differed between the genotype groups for rs6311(HTR2A gene). 

These variables were included as covariates in the linear mixed models for those SNPs.   

All SNPs in Table 1 met the HWE assumption with the exception of rs1800497 in 

the ANKK1 gene (p=0.044).  However, this SNP was included in the analysis to compare 

against the results in (John K. Yue, 2015 ).  After checking the linear mixed model 

assumptions, it was determined that the TMT (B/A ratio) needed a natural logarithmic 

transformation.  Assumptions were met for this outcome after applying the 

transformation.  The model assumptions for all other outcome assessments were met and 

no extreme outliers were identified.  

After running the linear mixed models, the FDR adjusted p-values using the BH 

method were first examined (controlling the FDR at 5%) for the 𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 and 

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 effects from model (1).  No outcomes for any SNP had significant results for 

the 𝑇𝑖𝑚𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 interaction.  This indicates that there were no significant 

associations between the genotypes tested and the rate of change in mTBI outcomes over 

time.  One SNP, rs11604671 (in the ANNK1 gene), had significant results for the 

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 effect on some outcomes.  Results for all SNPs, outcomes, and model effects 

are available in the Supplemental Data (Appendix). 

The rs11604671 genotype was significant for three outcomes, WAIS Sum of 

Scale, WAIS Percentile, and WAIS Composite.  Table 2 shows the averages, standard 

deviations, and total number of participants per genotype group of the rs11604671 SNP 

for all three WAIS measures.  Summaries are provided overall and at the six- and twelve-

month post-injury time points.   
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Table 2. Significant WAIS results for G allele absence/presence in rs11604671. 

WAIS Sum Scaled  G allele absent G allele present P-value of genotype  

Sample Size 43 190 
0.033 

Mean (SD) 22.33 (5.47) 19.84 (6.10) 

  6 months (n=31) 6 months (n=157) 

  
Mean (SD) 22.45 (5.58) 19.75 (5.74) 

  12 months (n=21) 12 months (n=99) 

Mean (SD) 22.14 (5.42) 19.99 (5.58) 

 WAIS Percentile G allele absent G allele present P-value of genotype  

Sample Size 42 188 
0.033 

Mean (SD) 61.50 (26.74) 48.06 (29.81) 

  6 months (n=31) 6 months (n=157) 

  
Mean (SD) 62.35 (25.82) 47.21 (28.64) 

  12 months (n=21) 12 months (n=99) 

Mean (SD) 60.24 (28.64) 49.41 (31.67) 

 WAIS Composite G allele absent G allele present P-value of genotype  

Sample Size 42 188 
0.033 

Mean (SD) 106.37 (14.97) 99.64 (16.40) 

  6 months (n=31) 6 months (n=157) 

  
Mean (SD) 106.22 (15.44) 99.22 (15.44) 

  12 months (n=21) 12 months (n=99) 

Mean (SD) 106 (14.84) 100.29 (17.88) 

 

To visualize the difference between the G allele presence and absence in the 

rs11604671 SNP, side-by-side boxplots were created for WAIS Sum Scaled, WAIS 

Percentile, and WAIS Composite (Figure 2).  These results show lower average (and 

median) WAIS scores across the board when the G allele is present for the rs11604671 

SNP (in the ANKK1 gene).  Higher scores indicate better cognitive ability post injury in 

adults.  This indicates that the presence of the variant G allele is significantly associated 

with poorer WAIS series outcomes after mTBI. 

Six different SNPs (rs1800497, rs4938016, APOE, rs17759659, rs6265, and 

rs1799971) exhibited a significant time effect for at least one outcome. There were 
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significant decreases over time on BSI in all six SNPs. The APOE and rs17759659 SNPs 

also showed significant increases over time on GOSE and SWLS, while rs4938016 

showed a significant increase on GOSE only.  In all cases, the direction of the change was 

indicative of improvement over time. The APOE and rs17759659 SNPs also showed 

significant age effects on GOSE and WAIS outcomes. Older individuals had decreased 

performance on these assessments. Although not the primary tests of interest, these 

results highlight the ability of the linear mixed model to yield results that are consistent 

with trends that would be expected based on previous literature.  

 

Figure 2. Side-by Side boxplots for WAIS Sum of Scale (left), Percentile (middle), and 

Composite (right) by G allele presence (group 1)/absence (group 0) for rs11604671. 
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5. CONCLUSION 

 

5.1. DISCUSSION AND CONLUSIONS  

This study evaluated the relationship between 10 SNPs on 7 mTBI outcomes at 2-

3 post-injury time points using a robust modeling framework (Figure 1) that employed a 

linear mixed model approach. Little to no studies have completed modeling on multiple 

time points for mTBI outcomes for several SNPs.  This study showed that it is possible to 

use linear mixed models to identify genotypes associated with differences in a patient's 

recovery over time.  Although no significant time by genotype effects were found, the 

model is a promising starting point for mTBI clinical longitudinal data.  Since the time 

points investigated for most outcomes in this study indicate prolonged recovery at 6- and 

12-months post-injury, it is possible that most patients will not have large changes so long 

after a mild injury.  Investigating changes from an earlier time point (1-3 months post-

injury) to the 6-month time point may be more informative.  

When testing for overall genotype effects with the mixed model, one SNP (rs11604671) 

that is located in the ANKK1 gene showed significant associations with certain mTBI 

outcomes (WAIS series).  In this case, the variant allele carrier exhibited poorer 

outcomes.  Previous studies have also found associations between SNPs located in the 

ANKK1 gene (which is involved in dopamine transmission) and TBI certain outcomes 

(John K. Yue, 2015 ), (Yue JK W. E.-A., 2017). These findings suggest that further 

investigations on SNPs located in the ANKK1 gene provide a promising path forward in 

better understanding genetic associations with mTBI outcomes.     
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5.2. LIMITATIONS AND FUTURE WORK 

A limitation of the study was that the study sample consisted of mostly Caucasian 

males, so it is difficult to draw conclusions to a broader diverse population. It should also 

be noted that due to the observational nature of the study, any significant associations are 

not considered causal. Although the demographic/clinical analysis attempts to identify 

and address any potential imbalance between genotypes on key variables, there could be 

additional confounding variables that were not considered. A further limitation is the 

relatively small sample size and the large number of missing data for the twelve-month 

follow up outcome measures.  Although the linear mixed model does utilize all the 

available data and works well when data are missing at random, using a larger data set 

with more complete data and more diverse patients could improve the generalizability of 

the conclusions.  Additionally, this study was limited to the available SNPs and outcomes 

in the TRACK-TBI Pilot data.  The modeling framework presented in this study could be 

used as a motivation for applying linear mixed models in future research on a wider range 

of SNPs and outcome assessments collected at strategic post-injury time points.   
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SECTION 

 

2. CONCLUSION 

 

This thesis was motivated by the potential of utilizing linear mixed models to support 

a genetic association analysis with longitudinal data collected from mild traumatic brain 

injury (mTBI) outcomes. To accomplish this, a multi-step modeling framework was 

employed to ensure a robust analysis. First, demographic and clinical variables were 

evaluated for differences between genotype groups using t-tests and chi-squared tests to 

determine if any variable should be considered a covariate in the linear mixed model. It 

was determined that age and GCS score influenced genotypes for three of the candidate 

single nucleotide polymorphisms (SNPs) being analyzed. The assumption of Hardy 

Weinberg equilibrium (HWE) was checked for each SNP and linearity, constant variance, 

and normality were assessed for the linear mixed models. It was determined that one SNP 

should be removed due to violating HWE and one outcome, the trail making test (TMT) 

ratio (B/A), should have a natural logarithmic transformation applied to meet the model 

assumptions. Linear mixed models with multiple testing corrections for the tests of 

interest were then run for each SNP and outcome to determine the significance of 

genotypic associations with longitudinal data on mTBI outcomes.  

For this study, the focus of the linear mixed modeling was on testing the 

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 and 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∗ 𝑇𝑖𝑚𝑒 interaction effects to determine the association 

between the outcome and the genotype.  No interaction terms were significant, indicating 

that no significant differences between genotypes were found with respect to the rate of 

recovery on different outcomes. However, one SNP (rs11604671), located in the ANKK1 
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gene, was found to have a significant association with all three-assessment metrics from 

the Weschler Adult Intelligence Scale (WAIS) fourth edition Processing Speed Index 

(PSI), with the variant allele carrier showing poorer outcomes. These results suggest that 

not all SNPs have the same effects on outcome measurements of an mTBI and not all 

outcomes have the same importance for clinical studies.  It was shown that the WAIS 

series for PSI could have potential to be more impactful when looking at specific genetic 

variants located in the ANKK1 gene.   

 Though not the primary tests of interest, the linear mixed model also allows 

testing for a significant time and covariate effect (when a covariate is present). There are 

six SNPs with at least one significant time effect. GOSE and SWLS increase over time 

and BSI decreases over time, all moving in the preferred direction showing improvement 

over time.  Two SNPs whose models included the age covariate showed significance for 

GOSE, WAIS sum of scaled, and WAIS composite. An additional outcome, WAIS 

percentile, had a significant age effect for rs17759659. In all cases where age was 

significant, older individuals had poorer performance. Although this was not the focus of 

the study, these significant results highlight that the linear mixed models yield results that 

are consistent with previous literature (outcomes improve over time and are worse for 

older individuals). The p-values and coefficients for all time and covariate effects can be 

found in the Appendix. 

The key findings in the paper section of this thesis demonstrate the possible 

benefits for using a linear mixed model approach to analyze mTBI longitudinal data. The 

proposed approach shows that linear mixed models could help future research for genetic 

evaluation on outcome measurements collected over time and have the potential to detect 
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differing rates of recovery between genotypes.  Although the results only showed a small 

amount of significance, future research can explore the implementation of linear mixed 

modeling on larger datasets with fewer missing values at earlier time points post-injury.  

Furthermore, using data collected on mTBIs will help the performance of neurological 

studies when comparing genotypes in other diseases, leading to relationships with TBIs 

and other diseases.  
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APPENDIX 

 

 

The demographic analysis results for each SNP are provided in Tables A.1-A.10 

below. For each table, results are shown for all individuals in the study sample (overall) 

as well as by genotype group (variant allele absent vs. present). Means and standard 

deviations are given for quantitative variables (age and education years). Counts and 

percentages are given for all other variables, which are categorical. The p-value is also 

provided for testing differences between the genotype groups.  The sample sizes for each 

group are provided in the column heading. Note that there are differing numbers of 

missing observations for each variable, so the sample sizes for each variable will differ 

slightly from the overall sample size in each table. There was only a small amount of 

missingness, with at most 7 missing observations for any individual variable and SNP.  

The linear mixed model results for each SNP are provided in Figures A.1-A.3 

below. Figures A.1 and A.2 provide results for 3 SNPs and Figure A.3 gives results for 4 

SNPS. Results for each of the 10 SNPs include coefficient (Coef) estimates with their 

standard errors (SE), the original (raw) p-value, and the adjusted FDR p-value (adj) for 

the Time*Genotype (interaction), Genotype, Time, and Covariate (if one was included in 

the model) effects for the linear mixed model of each of the 7 outcomes. The coefficients 

and standard errors were also provided for the intercepts of each model. The sections are 

colored by the model effect: light yellow for interaction (Genotype*Time), blue for 

Genotype, green for Time, and orange for Covariate. The bold yellow highlighted values 

represent all significant effects where the FDR-corrected p-value is <0.05.   
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Table A.1. Demographic analysis results for rs1800497. 

rs1800497 

  

Overall  

(𝑛 = 329) 

T Absent 

(𝑛0 =182) 

T Present 

(𝑛1 =147) p-value 

Age (years)     0.1586 

Mean, SD 42.41, 6.34 41.13, 17.36 43.69, 15.32 

         

Sex    0.2767 

Male 234 (72.00%) 124 (69.27%) 110 (75.34%) 

Female 91 (28.00%) 55 (30.73%) 36 (24.66%) 

         

Education (years)   0.6896 

Mean, SD 13.97, 2.84 14.03, 2.89 13.90, 2.79 

         

GCS    0.9294 

13 12 (3.69%) 7 (3.93%) 5 (3.40%)   

14 73 (22.46%) 41 (23.03%) 32 (21.77%) 

15 240 (73.85%) 130 (73.03%) 110 (74.83%) 

         

ISS Score    0.8336 

≤15 221 (67.79%) 122 (67.03%) 99 (68.75%) 

>15 105 (32.21%) 60 (32.96%) 45 (31.25%) 

         

Race / Ethnicity   0.9024 

White 255 (78.46%) 142 (79.33%) 113 (77.40%) 

Black / African 

American 31 (9.54%) 16 (8.94%) 15 (10.27%) 

Other 39 (12.00%) 21 (11.73%) 18 (12.33%) 

         

CT    0.1804 

Abnormal 139 (42.77%) 83 (46.37%) 56 (38.36%) 

Normal 186 (57.06%) 96 (53.63%) 90 (61.64%) 
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Table A.2. Demographic analysis results for rs4938016. 

rs4938016 

  

Overall 

(𝑛 =232) 

C Absent 

(𝑛0 = 100)  

C Present 

(𝑛1 =132) p-value 

Age (years)     0.8035 

Mean, SD 43.09, 17.24 42.77, 16.75 43.34, 17.72  

          

Sex    0.3822 

Male 163 (71.18%) 67 (67.68%) 96 (73.85%) 

Female 66 (28.82%) 32 (32.32%) 34 (26.15%) 

          

Education (years)   0.4842 

Mean, SD 13.92, 2.89 14.07, 3.00 13.8, 2.77 

          

GCS    0.2516 

13 8 (3.49%) 1 (1.01%) 7 (5.38%)   

14 49 (21.39%) 22 (22.22%) 27 (20.77%) 

15 172 (75.11%) 76 (76.77%) 96 (73.85%) 

          

ISS Score    0.6731 

≤15 151 (65.65%) 67 (67.68%) 84 (64.12%) 

>15 79 (34.35%) 32 (32.32%) 47 (35.88%) 

          

Race / Ethnicity   0.0949 

White 183 (79.91%) 79 (79.80%) 104 (80.00%) 

Black / African 

American 20 (8.73%) 5 (5.05%) 15 (11.54%)   

Other 26 (11.35%) 15 (15.15%) 11 (8.46%) 

          

CT    0.1521 

Abnormal 98 (42.61%) 48 (48.48%) 50 (38.17%) 

Normal 132 (57.39%) 51 (51.52%) 81 (61.83%) 
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Table A.3. Demographic analysis results for rs11604671.  

rs11604671 

  

Overall 

(𝑛 =233) 

G Absent 

(𝑛0 =43)  

 G Present 

(𝑛1 =190) p-value 

Age (years)   0.7908 

Mean, SD 43.09, 17.39 43.74, 17.58 42.94, 17.20 

          

Sex    1 

Male 164 (71.30%) 30 (71.43%) 134 (71.28%)   

Female 66 (28.70%) 12 (28.57%) 54 (28.72%) 

          

Education (years)   0.1044 

Mean, SD 13.93, 2.89 14.60, 2.93 13.77, 2.84   

          

GCS    0.6956 

13 8 (3.48%) 1 (2.38%) 7 (3.72%)  

14 49 (21.30%) 11 (26.19%) 38 (20.21%) 

15 173 (75.22%) 30 (71.43%) 143 (76.06%) 

          

ISS Score    0.7771 

≤ 15 152 (65.80%) 27 (62.79%) 125 (66.49%)   

> 15 79 (34.20%) 16 (37.21%) 63 (33.53%) 

          

Race / Ethnicity   0.9516 

White 184 (80.00%) 35 (83.33%) 149 (79.26%) 

Black / African 

American 20 (8.70%) 3 (7.14%) 17 (9.04%)   

Other 26 (11.30%) 4 (9.52%) 22 (11.70%)   

          

CT    0.5616 

Abnormal 98 (42.42%) 20 (47.62%) 78 (41.27%) 

Normal 133 (57.58%) 22 (52.38%) 111 (58.73%) 

 

 

 

 



59 
 

 
 

 

Table A.4. Demographic analysis results for APOE.  

APOE  

  

Overall 

(𝑛 =329) 

𝜀4 Absent 

(𝑛0 =247) 

𝜀4 Present 

(𝑛1 =82) p-value 

Age (years)   0.0045 

Mean, SD 42.28, 15.98 40.83, 16.67 46.59, 15.28 

          

Sex    0.1204 

Male 234 (72.00%) 169 (69.55%) 65 (79.27%) 

Female 91 (28.00%) 74 (30.45%) 17 (20.73%) 

          

Education (years)   0.3616 

Mean, SD 13.98, 2.83 14.06, 2.86 13.73, 2.79 

          

GCS    0.3427 

13 12 (3.69%) 11 (4.53%) 1 (1.22%)   

14 74 (22.77%) 57 (23.46%) 17 (20.73%) 

15 239 (73.54%) 175 (72.02%) 64 (78.05%) 

          

ISS Score    0.7301 

≤ 15 221 (67.79%) 168 (68.02%) 53 (67.09%) 

> 15 105 (32.21%) 79 (31.98%) 26 (32.91%) 

          

Race / Ethnicity   0.8958 

White 255 (78.46%) 189 (77.78%) 66 (80.49%) 

Black / African 

American 31 (9.54%) 23 (9.47%) 8 (9.76%)   

Other 39 (12.00%) 31 (12.76%) 8 (9.76%)   

          

CT    0.767 

Abnormal 105 (32.21%) 79 (31.98%) 26 (32.91%) 

Normal 221 (67.79%) 168 (68.02%) 53 (67.09%) 
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Table A.5. Demographic analysis results for rs17759659. 

rs17759659 

  

Overall 

(𝑛 =231) 

G Absent 

(𝑛0 =113)  

 G Present 

(𝑛1 =118) p-value 

Age (years)     0.0207 

Mean, SD 43, 17.18 40.32, 17.41 45.63, 16.95 

          

Sex    0.5747 

Male 159 (70.04%) 81 (72.97%) 79 (68.7%) 

Female 68 (29.96%) 30 (27.03%) 36 (31.3%) 

          

Education (years)    

Mean, SD 13.92, 2.87 13.72, 3.04 14.17, 2.69 

         

GCS    0.5586 

13 8 (3.52%) 5 (4.51%) 3 (2.61%)  

14 49 (21.59%) 26 (23.42%) 23 (20%) 

15 171 (75.33%) 80 (72.07%) 89 (77.39%) 

         

ISS Score    0.954 

≤15 149 (65.64%) 72 (65.45%) 77 (65.81%) 

>15 78 (34.36%) 38 (34.55%) 40 (34.19%) 

         

Race / Ethnicity   0.7581 

White 181 (79.74%) 86 (77.48%) 94 (81.74%) 

Black / African 

American 22 (9.69%) 11 (9.91%) 9 (7.83%) 

Other 24 (10.57%) 14 (12.62%) 12 (10.43%) 

          

CT    0.3551 

Abnormal 96 (41.92%) 43 (38.39%) 53 (45.30%) 

Normal 133 (58.08%) 69 (61.61%) 64 (54.70%) 
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Table A.6. Demographic analysis results for rs6265. 

rs6265 

  

Overall 

(𝑛 =231) 

A Absent 

(𝑛0 =148) 

A Present 

(𝑛1 =83) p-value 

Age (years)   0.7389 

Mean, SD 43, 17.49 42.71, 16.88 43.53, 18.10 

          

Sex    0.7481 

Male 162 (71.05%) 106 (72.11%) 56 (69.14%) 

Female 66 (28.95%) 41 (27.89%) 25 (30.86%) 

          

Education (years)   0.3785 

Mean, SD 13.92, 2.81 14.04, 3.01 13.7, 2.61 

          

GCS    0.7594 

13 8 (3.51%) 6 (4.08%) 2 (2.47%)   

14 49 (21.49%) 33 (22.45%) 16 (19.75%) 

15 171 (75%) 108 (73.47%) 63 (77.78%) 

          

ISS Score    0.947 

≤15 151 (65.94%) 97 (66.44%) 54 (65.06%) 

>15 78 (34.06%) 49 (33.56%) 29 (34.94%) 

          

Race / Ethnicity   0.4929 

White 182 (79.82%) 117 (79.59%) 65 (80.25%) 

Black / African 

American 20 (8.77%) 15 (10.2%) 5 (6.17%) 

Other 26 (11.40%) 15 (10.2%) 11 (13.58%) 

          

CT    0.3524 

Abnormal 97 (42.36%) 58 (39.73%) 39 (46.99%) 

Normal 132 (57.64%) 88 (60.27%) 44 (53.01%) 
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Table A.7. Demographic analysis results for rs4680. 

rs4680  

  

Overall 

(𝑛 =327) 

Met Absent 

(𝑛0 =94) 

Met Present 

(𝑛1 =233) p-value 

Age (years)   0.7328 

Mean, SD 42.38, 16.12 42.71, 15.17 42.04, 17.07 

          

Sex    0.755 

Male 233 (72.14%) 68 (73.91%) 165 (71.43%) 

Female 90 (27.86%) 24 (26.08%) 66 (28.57%) 

          

Education (years)   0.29 

Mean, SD 14.04, 2.95 14.24, 3.16 13.84, 2.74 

          

GCS    0.58 

13 12 (3.69%) 5 (5.43%) 7 (3.03%)  

14 73 (22.46%) 20 (21.74%) 53 (22.94%) 

15 240 (73.85%) 67 (72.83%) 171 (74.03%) 

          

ISS Score    0.9743 

≤ 15 219 (67.80%) 63 (68.48%) 156 (67.53%) 

> 15 104 (32.20%) 29 (31.52%) 75 (32.47%) 

          

Race / Ethnicity   0.4943 

White 253 (78.33%) 68 (73.91%) 185 (80.09%) 

Black / African 

American 31 (9.60%) 11 (11.96%) 20 (8.66%)   

Other 39 (12.07%) 13 (14.13%) 26 (11.26%)   

          

CT    0.9055 

Abnormal 139 (43.03%) 41 (44.09%) 98 (42.61%) 

Normal 184 (56.97%) 52 (55.91%) 132 (57.39%) 
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Table A.8. Demographic analysis results for rs6277. 

rs6277 

  

Overall 

(𝑛 =233) 

T Absent 

(𝑛0 =88) 

T Present 

(𝑛1 =145) p-value 

Age (years)   0.9645 

Mean, SD 43.09, 17.11 43.02, 16.51 43.13, 17.71 

          

Sex    0.2976 

Male 164 (71.30%) 66 (75.86%) 98 (68.53%) 

Female 66 (28.70%) 21 (24.14%) 45 (31.47%) 

          

Education (years)   0.6924 

Mean, SD 13.93, 2.90 13.83, 3.02 13.99, 2.7 

          

GCS    0.3842 

13 8 (3.48%) 4 (4.60%) 4 (2.80%)   

14 49 (21.30%) 22 (25.29%) 27 (18.88%)   

15 173 (75.22%) 61 (70.11%) 112 (78.32%)   

          

ISS Score    1 

≤15 152 (65.80%) 58 (65.91%) 94 (65.73%) 

>15 79 (34.20%) 30 (34.09%) 49 (34.27%) 

          

Race / Ethnicity   0.7971 

White 184 (80.00%) 68 (78.16%) 116 (81.12%) 

Black / African 

American 20 (8.70%) 9 (10.34%) 11 (7.69%) 

Other 26 (11.30%) 10 (11.49%) 16 (11.19%) 

          

CT    0.3489 

Abnormal 98 (42.43%) 33 (37.93%) 65 (45.14%) 

Normal 133 (57.58%) 54 (62.07%) 79 (54.86%) 
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Table A.9. Demographic analysis results for rs6311. 

rs6311 

  

Overall 

(𝑛 =230) 

T Absent 

(𝑛0 =79)  

T Present 

(𝑛1 =151) p-value 

Age (years)   0.237 

Mean, SD 43.05, 16.98 41.28, 15.99 44.04, 17.97 

        

Sex    0.5632 

Male 164 (72.25%) 52 (68.42%) 109 (73.65%) 

Female 63 (27.75%) 24 (31.58%) 39 (26.35%) 

          

Education (years)   0.2072 

Mean, SD 13.93, 2.87 13.84, 2.81 13.95, 2.93 

          

GCS    0.0145 

13 7 (3.08%) 6 (7.89%) 1 (0.68%)   

14 48 (21.15%) 14 (18.42%) 34 (22.97%) 

15 172 (75.77%) 56 (73.68%) 113 (76.35%) 

          

ISS Score    0.5338 

≤15 150 (65.79%) 47 (61.04%) 100 (67.57%) 

>15 78 (34.21%) 30 (38.96%) 48 (32.43%) 

          

Race / Ethnicity   0.1977 

White 182 (80.18%) 61 (79.22%) 119 (80.41%) 

Black / African 

American 20 (8.81%) 10 (12.99%) 10 (6.76%) 

Other 25 (11.01%) 6 (7.79%) 19 (12.84%)  

          

CT    0.3615 

Abnormal 96 (42.10%) 37 (46.84%) 59 (39.60%) 

Normal 132 (57.89%) 42 (53.16%) 90 (60.40%) 
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Table A.10. Demographic analysis results for rs1799971. 

rs1799971 

  

Overall 

(𝑛 =330) 

G Absent 

(𝑛0 =246)  

G Present 

(𝑛1 =84) p-value 

Age (years)   0.6915 

Mean, SD 42.52, 16.73 42.09, 16.27 42.95, 17.18 

          

Sex    0.6363 

Male 235 (72.09%) 176 (72.73%) 59 (70.24%) 

Female 91 (27.91%) 66 (27.27%) 25 (29.76%) 

          

Education (years)   0.4153 

Mean, SD 13.96, 2.84 13.90, 2.89 14.13, 2.78 

          

GCS    1 

13 12 (3.68%) 9 (3.72%) 3 (3.57%)   

14 74 (22.70%) 55 (22.73%) 19 (22.62%) 

15 240 (73.62%) 178 (73.55%) 62 (73.81%) 

          

ISS Score    0.7372 

≤15 221 (67.79%) 166 (68.03%) 55 (67.07%) 

>15 105 (32.21%) 78 (31.97%) 27 (32.93%) 

          

Race / Ethnicity   0.9225 

White 256 (78.53%) 189 (77.78%) 67 (80.72%) 

Black / African 

American 31 (9.51%) 24 (9.88%) 7 (8.43%) 

Other 39 (11.96%) 30 (12.35%) 9 (10.84%) 

          

CT    0.6568 

Abnormal 140 (42.94%) 107 (43.85%) 33 (40.24%) 

Normal 186 (57.06%) 137 (56.15%) 49 (59.76%) 

 

 

 

 

  



 

 
 

 

Figure A.1. P-values and coefficients for each SNP by outcome and model effect. Part 1 – results for 3 SNPs. 
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Figure A.2. P-values and coefficients for each SNP by outcome and model effect. Part 2 – results for 3 SNPs. 
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Figure A.3. P-values and coefficients for each SNP by outcome and model effect. Part 3 – results for 4 SNPs.
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