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ABSTRACT

Critical experiments are used by nuclear data evaluators and criticality safety en-

gineers to validate nuclear data and computational methods. Many of these experiments

are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy

range of interest. Traditionally, a parameter sweep is conducted over a set of experimental

variables to find a configuration that is critical and maximally sensitive. As additional

variables are added, the total number of configurations increases exponentially and quickly

becomes prohibitively computationally expensive to calculate, especially using Monte Carlo

methods.

This work presents the development of a particle swarm optimization algorithm to

design these experiments in a more computationally efficient manner. The algorithm is then

demonstrated by performing a two-dimensional and three-dimensional optimization of a

uranium-molybdenum and plutonium-molybdenum critical experiment, respectively.

The two-dimensional and three-dimensional optimizations on average performed

35x and 3277x faster than the parameter sweep method, respectively. This corresponds to

a 5.6 day and 2,314 day reduction in computation time.



iv

ACKNOWLEDGMENTS

First, I would like to thank my advisor Dr. Alajo for his guidance and the trust he

placed in me when I came to him with this idea. I do not think I would’ve been able to

make this work with anyone else as my advisor. Your first principles approach allowed to

me make decisions with confidence.

I would also like to thank all of NEN-2 at Los Alamos, especially my mentors

Dr. Nicholas Thompson, Dr. Rene Sanchez and Noah Kleedtke. I feel especially lucky

to get to work on the most incredible experiments with the some of the smartest, kindest

people I’ve ever met. I have felt nothing but welcomed. Nick, thank you for answering

my endless questions, pushing me to do my best, and encouraging me to continue my

education. I could not ask for a better mentor. Rene, thank you for responding to my cold

email and taking a chance on me by inviting me to join the group. Noah, thank you for your

insight into graduate school and all of the valuable feedback you’ve given me on papers and

presentations, you have been an extremely reliable friend and mentor.

Most importantly, I want to thank my family. Your support and encouragement has

taken me to places of awe and wonder in my pursuits, academic and otherwise. Thank you

for the telescopes and microscopes, helmets and crampons, and drum sticks and sheet music

over the years.

Lastly, I would like to thank my grandparents: Jerome and Sondra Kostelac and

Richard and Marceline Desko, to whom this work is dedicated. I have always felt my

passion for science was nurtured by you.



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. CRITICALITY EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2. NCERC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. BENCHMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. SENSITIVITY ANALYSIS OF CRITICAL EXPERIMENTS . . . . . . . . . . . . . . . . 4

1.4. MOLYBDENUM BENCHMARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2. Molybdenum Nuclear Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.3. U-Mo Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.4. Spent Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.5. Structural Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. PROJECT OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. MONTE CARLO MODELLING AND SENSITIVITY ANALYSIS . . . . . . . . . . . . . 10

2.1. MONTE CARLO N-PARTICLE TRANSPORT CODE. . . . . . . . . . . . . . . . . . . . . . . 10

2.2. ADJOINT-BASED SENSITIVITY K-EIGENVALUE COEFFICIENT . . . . . . 11

2.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Nuclear Data Sensitivity Analysis with MCNP. . . . . . . . . . . . . . . . . . . . . . . . 12



vi

2.3. CONVENTIONAL CRITICAL EXPERIMENT DESIGN . . . . . . . . . . . . . . . . . . . . 12

3. PARTICLE SWARM OPTIMIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. MATHEMATICAL DEFINITION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. ANALYTICAL EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1. Rosenbrock Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2. Rastrigin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. MCNP-PSO ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. INITIALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. SEARCH SPACE SAMPLING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3. INPUT GENERATION AND EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4. MOVING PARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5. CONVERGENCE CRITERIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. MOLYBDENUM CRITICAL EXPERIMENT OPTIMIZATION . . . . . . . . . . . . . . . . 34

5.1. OPTIMIZATION OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2. URANIUM MOLYBDENUM CRITICAL EXPERIMENT. . . . . . . . . . . . . . . . . . . 35

5.2.1. Comet Vertical-Lift Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2. Reference Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3. Search Space and Swarm Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3. PLUTONIUM MOLYBDENUM CRITICAL EXPERIMENT. . . . . . . . . . . . . . . . 40

5.3.1. Planet Vertical-Lift Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2. Reference Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.3. Search Space and Swarm Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1. URANIUM MOLYBDENUM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



vii

6.1.1. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2. Epithermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.3. Unresolved Resonance Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2. PLUTONIUM MOLYBDENUM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.2. Epithermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.3. Unresolved Resonance Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDICES

A. URANIUM REFERENCE GEOMETRY MCNP6.2 INPUT . . . . . . . . . . . . . . . . . . . . 63

B. PLUTONIUM REFERENCE GEOMETRY MCNP6.2 INPUT . . . . . . . . . . . . . . . . . . 73

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



viii

LIST OF ILLUSTRATIONS

Figure Page

1.1. Molybdenum Sensitive Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2. Bias in Molybdenum Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. 95Mo Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. One Dimensional Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Two Dimensional Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Three Dimensional Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. 2-D Rosenbrock Function with Low Cognitive Weight Swarm. . . . . . . . . . . . . . . . . . . . 21

3.2. 2-D Rosenbrock Function with Low Social Weight Swarm . . . . . . . . . . . . . . . . . . . . . . . 22

3.3. 2-D Rosenbrock Function with High Inertial Weight Swarm . . . . . . . . . . . . . . . . . . . . . . 23

3.4. 2-D Rosenbrock Function with Tuned Weight Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5. 2-D Rastrigin Function with Low Cognitive Weight Swarm . . . . . . . . . . . . . . . . . . . . . . 25

3.6. 2-D Rastrigin Function with Low Social Weight Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7. 2-D Rastrigin Function with High Inertial Weight Swarm. . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8. 2-D Rastrigin Function with Tuned Weight Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1. Random (a) and LHS (b) Sampled Search Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. Algorithm for Updating Particle Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1. Comet Assembly with Zeus Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2. Uranium Fuel Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3. Plan and Profile View of Stacked Fuel Units in Copper Reflector . . . . . . . . . . . . . . . . . 39

5.4. Planet Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5. Plutonium Fuel Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6. Plan and Profile View of Stacked Fuel Units in Polyethylene Reflector . . . . . . . . . . . 42

6.1. Uranium Thermal Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2. Uranium Molybdenum Thermal 𝑘eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



ix

6.3. Uranium Molybdenum Thermal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4. Uranium Epithermal Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5. Uranium Molybdenum Epithermal 𝑘eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6. Uranium Molybdenum Epithermal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.7. Uranium URR Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.8. Uranium Molybdenum URR 𝑘eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.9. Uranium Molybdenum URR Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.10. Plutonium Molybdenum Thermal 𝑘eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.11. Plutonium Thermal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.12. Plutonium Thermal Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.13. Plutonium Molybdenum Epithermal 𝑘eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.14. Plutonium Epithermal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.15. Plutonium Epithermal Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.16. Plutonium Molybdenum URR 𝑘eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.17. Plutonium URR Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.18. Plutonium URR Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



x

LIST OF TABLES

Table Page

1.1. Stable Molybdenum Isotope Capture Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1. Energy Ranges of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2. Uranium Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3. Uranium Swarm Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4. ZPPR Plate Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5. ZPPR Plate Cladding Thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6. Plutonium Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7. Plutonium Swarm Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1. Uranium Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2. Plutonium Optimization Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



1. INTRODUCTION

1.1. CRITICALITY EXPERIMENTS

Since the dawn of nuclear engineering, criticality experiments have served an inte-

gral and irreplaceable role in the advancement of the field. From validating nuclear data

and computational modeling methods to establishing subcritical operating limits, these ex-

periments provide data that serves as a reality check for engineers and scientists. Before

the development of high performance computing and modern stochastic and deterministic

approaches to modeling critical systems, criticality experiments were used to determine the

critical masses of fissionable material. Today many critical experiments are used to validate

nuclear data and neutron transport methods. By changing the geometry, moderators, or

reflectors, an experimenter can create a critical system in different neutron energy regimes.

1.1.1. A Brief History. Criticality experiments in the United States can trace their

roots to the Manhattan Project in the 1940’s. The first critical mass measurements of highly

enriched uranium and plutonium were conducted in Los Alamos, New Mexico [1] [2]. After

World War II other critical experiment groups were formed outside of Los Alamos. At their

peak in the 1970’s there were critical experiment groups at Los Alamos Scientific Laboratory

(later Los Alamos National Laboratory), Oak Ridge National Laboratory, Brookhaven

National Laboratory, Lawrence Radiation Laboratory (later Lawrence Livermore National

Laboratory), Battelle Pacific Northwest Laboratory, and the Rocky Flats Plant [3]. By the

year 2000, due to heavier reliance of computational methods and rising security costs, many

critical experiments groups in the United States and around the world had ceased operations

[3].

In 2004 after over 50 years of operations, the Los Alamos Critical Experiments

Facility (LACEF) ceased operations and began to move its fissile material inventory and

critical assemblies from Tecnical Area 18 (TA-18) at Los Alamos to the Device Assembly
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Facility (DAF) located in the Nevada National Security Site (NNSS), formerly known as the

Nevada Test Site [4]. At the time, LACEF was the only facility in the United States capable

of providing criticality safety demonstrations, hands-on experience in handling special

nuclear material, and characterization of multiplying systems [4]. By 2011 operations

resumed at the DAF under a new name: the National Criticality Experiments Research

Center (NCERC) [5].

1.1.2. NCERC. As of 2022, NCERC is the sole remaining general-purpose critical

experiments facility in the United States. NCERC maintains the infrastructure, expertise,

personnel, and fissile material inventory to conduct an array of subcritical through prompt

supercritical experiments. Many of the experiments conducted thus far in its decade

long existence are performed to validate neutron cross section data, aid in microreactor

development and support criticality safety studies [5].

NCERC operates four critical assemblies: Planet, Comet, Flattop, and Godiva IV.

Planet and Comet are light duty and heavy duty vertical lift assemblies respectively[6] [7].

In 2018 Comet was used to test the Kilowatt Reactor Using Stirling TechnologY (KRUSTY)

reactor, the first ground test of a nuclear reactor for space applications by the United States

since 1965 [8]. Flattop consists a fissile core of material placed on a pedestal surrounded

by a one metric ton natural uranium reflector and is commonly used for benchmarking and

replacement measurements [9]. Finally, Godiva IV is a fast burst assembly composed of

approximately 65 kg of highly enriched uranium (HEU) and is often used for studies of

super prompt critical behavior as well as irradiations and demonstrations [10].

In addition to critical assemblies, NCERC also performs hand stacking operations

with subcritical masses of nuclear material known radiation test objects (RTOs). RTO oper-

ations are typically in support of nonproliferation, treaty verification, safeguards, emergency

response, and criticality safety studies. Unlike critical assembly operations, these configu-

rations are created by hand and have multiplications from near 1 to about 20 (𝑘eff = 0.95)

[11].
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1.2. BENCHMARKS

Well documented, high quality criticality experiments can go onto become bench-

marks. Benchmarks support nuclear data and criticality safety communities by supplying

integral cross section data that can be used in validation efforts. These benchmarks are

compiled in the International Criticality Safety Benchmark Evaluation Project (ICSBEP)

handbook [12]. The ICSBEP handbook was started in 1992 by the United States Department

of Energy and later in 1995 became an international project. Currently, the handbook is

managed by the OECD (Organisation for Economic Co-operation and Development) NEA

(Nuclear Energy Agency) and has seen contributions from 22 countries. The handbook

consists of over five thousand subcritical, near critical, and critical experiments that have

been performed around the world. As part of these evaluations, the precise geometries and

material compositions of the experiment is recorded. These experiments can then be mod-

eled by different computer simulations to evaluate their performance and estimate biases in

computation tools and biases in nuclear data.

Benchmarks also provide integral neutron cross section data, or how a materials neu-

tron cross section behaves over a continuous energy range. Differential cross sections on the

other hand, are a material’s cross section at discrete energies. Differential measurements

are typically made at particle accelerators where precise neutron energies can be measured

or by using time-of-flight methods at nuclear reactors beamports. Differential cross sec-

tion data is compiled into nuclear data libraries such as the Evaluated Nuclear Data File

(ENDF) database [13]. The differential data can then be validated by modeling benchmark

experiments in codes such as Monte Carlo N-Particle® Code Version 6.21 (MCNP®6.2)

and observing the differences between experimental and computational results.

1MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National Security, LLC,
manager and operator of Los Alamos National Laboratory. Any third party use of such registered marks should
be properly attributed to Triad National Security, LLC, including the use of the designation as appropriate.
For the purposes of visual clarity, the registered trademark symbol is assumed for all references to MCNP
within the remainder of this paper.
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Criticality experiments can be designed such that their effective neutron multipli-

cation factor (𝑘eff) is sensitive to a certain material’s cross section, meaning small changes

in the cross section have pronounced effects on the 𝑘eff of the system. This is particularly

useful for nuclear data validation efforts where a small inaccuracy in the differential data

can be essentially amplified by the system when comparing experimental and computational

results. This helps to identify compensating errors in nuclear data.

1.3. SENSITIVITY ANALYSIS OF CRITICAL EXPERIMENTS

Sensitivity analysis can be described as the study of how small changes in the inputs

of a model can be attributed changes in its output. In the context of benchmarks, the sen-

sitivity analysis of nuclear data is used to understand how different nuclide-reactions pairs

contribute to changes in 𝑘eff . This is useful before and after the experiment is actually per-

formed. As mentioned previously, experimenters can intentionally design critical systems

to be sensitive to certain materials, energies, and reactions. Then, after the experiment is

performed and a detailed, as built model is created, the difference between experimental

and computational results (the bias) can be attributed to nuclear data inaccuracies.

A common method to establish this relationship is to take the derivative of the

output by some input variable. This derivative-based approach can be derived for different

numerical simulations [14]. The ratio between the ratio of change in these values is known

as the "sensitivity coefficient" [14]. For a integral benchmark, the sensitivity of 𝑘eff to some

energy dependent cross section, 𝜎 is:

𝑆𝑘eff ,𝜎 =
𝑑𝑘eff
𝑘eff

𝜎(𝐸)
𝑑𝜎(𝐸) . (1.1)

Different materials and reactions elicit different effects on the magnitude and sign on

this coefficient. For example, a fission interaction will always yield a positive sensitivity as

the increase of the cross section will yield a higher probability of fission for each interaction
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thus increasing the number of neutrons in a generation. Conversely, radiative capture cross

section will always yield a negative number as an increase in the cross section increases the

probability a neutron will be captured, thus removed from the system.

1.4. MOLYBDENUM BENCHMARK

1.4.1. Background. In 2020, Los Alamos National Laboratory (LANL), Y-12 Na-

tional Security Site, and the French Institut de Radioprotection et de Sûreté Nucléaire

(IRSN) submitted a joint integral experiment request proposal to the Department of En-

ergy’s Nuclear Criticality Safety Program (NCSP). The proposal outlined the need for a

series of criticality experiments to help validate differential molybdenum cross section data.

The "Advanced Nuclear Technology" group (NEN-2) at LANL was tasked with designing

and performing these experiments at NCERC.

Upon design and completion of these experiments, the resulting experimental data

will be used to create a new benchmark. This benchmark will be used by nuclear data eva-

lutors to validate differential molybdenum data and will reduce uncertainty in calculations

made by criticality safety engineers.

1.4.2. Molybdenum Nuclear Data. Accurate molybdenum data is essential for

reactor modelling and criticality safety studies. New molybdenum differential cross section

measurements have been made at Rensselaer Polytechnic Institute (RPI) in 2015 and are

presently underway at the Japan Proton Accelerator Research Complex (J-PARC) [15] [16].

Measurements at RPI targeted isotopically pure samples of 95Mo, 96Mo, 98Mo, and 100Mo

between 1 and 620 keV while the measurements at J-PARC are targeting isotopically pure

samples of 95Mo, 96Mo, and 97Mo between 0 and 600 eV. Table 1.1 contains abundance and

cross section data on the stable isotopes of molybdenum [13].

The ICSBEP handbook contains few benchmarks that are sensitive to the molybde-

num cross section. This gives nuclear data evaluators little information to work with when

validating nuclear data of molybdenum. This is especially true in the intermediate and
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Table 1.1. Stable Molybdenum Isotope Capture Cross Sections

92Mo 94Mo 95Mo 96Mo 97Mo 98Mo 100Mo

% Abundance 14.65 9.19 15.87 16.67 9.58 24.29 9.74
𝜎𝑡 (0.0253 eV) [b] 0.020 0.013 14.00 0.595 2.100 0.130 0.199

Resonance Integral [b] 0.966 1.400 118.5 17.53 17.13 6.552 3.903
𝜎 𝑓 (14 MeV) [b] 0.001 0.001 0.001 0.001 0.001 0.001 0.001

thermal neutron energy regions, with two benchmarks sensitive to thermal molybdenum

and only one sensitive to intermediate molybdenum as shown in Figure 1.1 [17]. In addi-

tion to this, many molybdenum benchmarks have large biases between experimental and

computational 𝑘eff results. A few selected ICSBEP molybdenum benchmarks are shown

along with their respective biases between experimental and computational results using

JEFF-3.1.1, JENDL-4.0, and ENDF/B-VII.1 nuclear data libraries in Figure 1.2 [18] [19]

[20].This bias could be a result of low quality benchmarks and/or inaccurate molybdenum

data [21].

This new series of molybdenum critical experiments can be used to provide nuclear

data evalutors with more integral molybdenum data to help validate the new cross section

measurements.

1.4.3. U-Mo Fuels. Many of the first research reactors built by the United States

were designed to operate using highly enriched uranium (HEU). Later in 1978 due to HEU

proliferation concerns, the United States Department of Energy began to work to convert

the existing research reactor fleet to low enriched uranium (LEU) fuel. For many research

reactors this was accomplished by using dispersion fuels (uranium fuel kernels dispersed in

an aluminum matrix) or uranium silicide fuels. For higher power and higher flux research

reactors, a new type of fuel had to be developed. Existing LEU fuels could not provide high

enough uranium densities and melting temperatures to still operate [22].
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Figure 1.1. Molybdenum Sensitive Benchmarks

Since the 1990’s uranium molybdenum (U-Mo) fuels have been the subject of many

irradiation tests to meet this need [22]. Test elements of U-10Mo (LEU, 10wt.% Mo) are

currently being irradiated at the Advanced Test Reactor (ATR) at Idaho National Laboratory

[23]. Upon qualification of this new fuel, the remaining HEU fueled research reactors in

the United States are slated to be converted to low enriched uranium (LEU) U-Mo fuel by

2030 [23].

In addition to research reactors, U-Mo fuels are a contender for space based fission

reactors. The high uranium density of the fuel allows for more compact systems, an

attractive option for space applications where smaller, lower mass systems are cheaper

to launch into space. In 2018 successful tests of the Kilowatt Reactor Using Stirling

TechnologY (KRUSTY) reactor were performed at NCERC. KRUSTY was a prototype

space reactor that used a monolithic U-Mo as fuel [8].
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Figure 1.2. Bias in Molybdenum Benchmarks

1.4.4. Spent Nuclear Fuel. Many isotopes of molybdenum are common fission

products for both U-235 and U-238. 95Mo, a stable isotope of molybdenum, has a fission

yield of 6.54% and 5.12% for U-235 and U-238 respectively in light water reactors. This,

coupled with its strong intermediate capture cross section, makes it one of the 15 most

absorbing fission products in light water reactors [16]. The isotopes total, elastic scattering,

and radiative capture cross sections can be seen in Figure 1.3. For this reason, 95Mo is used

in criticality safety calculations for spent nuclear fuel. Quality nuclear data for intermediate
95Mo is important to decrease the uncertainty in these calculations.

1.4.5. Structural Materials. Molybdenum is a common alloying agent in many

types of stainless steel to improve corrosion resistance and high temperature performance.

Stainless steel type 316 is commonly used core components of nuclear reactors and typically

contains between 2-3% molybdenum. The use of TMZ, a titanium-molybdenum-zirconium

alloy containing >99% Mo, has been demonstrated in molten salt reactors at temperatures

in excess of 1300C [24].
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Figure 1.3. 95Mo Cross Sections

1.5. PROJECT OBJECTIVE

The goal of this work is to present a more computationally efficient way to design

optimized critical experiments than presently used methods.

Subsequent sections provide an overview of the computational techniques to model

and perform sensitivity analysis on critical experiments. Then the conventional method

of designing such an experiment is presented in Section 2.3, followed by a new method,

employing particle swarm optimization. The theory and mathematical description of how

this optimization method functions is presented in Section 3, and is coupled with MCNP6.2

in Section 4. Then in Section 5, a demonstration optimization is carried out to design the

aforementioned molybdenum criticality experiments. The results from this optimization

are then be compared to the conventional critical experiment design method in Section 6.
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2. MONTE CARLO MODELLING AND SENSITIVITY ANALYSIS

2.1. MONTE CARLO N-PARTICLE TRANSPORT CODE

MCNP is a general-purpose Monte Carlo radiation transport that can be used to

perform neutron transport simulations. By sampling and tracking generations of neutrons

as they move and interact in a user-created three dimensional model, the code can calculate

an eigenvalue for the system. As the name implies this is a Monte Carlo (stochastic) method

that uses cross section libraries to determine the probability and how a neutron may interact

with a material [25]. MCNP does not "solve" the transport equation, rather it simulates

the physics that the transport equation describes. For eigenvalue problems a population of

neutrons is sampled and their behavior is simulated from generation to generation until the

process converges to a value. Due to an extensive amount of benchmarking and validation,

MCNP serves as the method of choice for critical experiment designers and most criticality

safety engineers.

To determine the probability a neutron of a given energy will interact with a material

in the model, MCNP uses nuclear data libraries such as ENDF [13]. MCNP uses a free

gas approximations for materials but can also use 𝑆(𝛼, 𝛽) libraries for low energy neutrons

where molecular and crystalline structure can effect neutron scattering [25].

In the benchmarking process, after a critical experiment is performed a high fi-

delity model is created and simulated in MCNP. This model includes precise geometric

dimensions, isotopic makeups of materials, and temperatures. When simulated by MCNP,

the calculated eigenvalue is typically slightly different than the experimental value. The

difference between the two can be attributed to inaccuracies and uncertainties in nuclear

data, as well as uncertainties in model parameters. By designing an experiment such that

it is sensitive to a certain piece of nuclear data, more of this difference can be attributed to

inaccuracies in nuclear data through further analysis.
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2.2. ADJOINT-BASED SENSITIVITY K-EIGENVALUE COEFFICIENT

An adjoint-based k-eigenvalue sensitivity coefficient using a continuous-energy

Monte Carlo radiation transport code was demonstrated and implemented into MCNP6

by Kiedrowski and Brown in 2013 [26]. This capability was verified using comparisons to

analytical solutions, direct density perturbations and comparisons with other software.

2.2.1. Theory. As described in Section 1, the sensitivity coefficient for 𝑘eff and a

cross section 𝜎 of isotope 𝑗 can be expressed as:

𝑆𝑘,𝜎 =
𝑑𝑘

𝑘

𝜎𝑗

𝑑𝜎𝑗

. (2.1)

The differential change in 𝑘 from a differential change in some piece of nuclear data,

can be derived using linear perturbation theory as [26]:

𝑑𝑘 = −⟨𝜓†, (𝑑Σ𝑡 − 𝑑S − 𝜆𝑑F )𝜓⟩
⟨𝜓†, 𝜆2F𝜓⟩

(2.2)

where 𝜓 and 𝜓† are the flux and its adjoint, 𝜆 = 1/𝑘 , Σ𝑡 is the total macroscopic cross

section, S is the integral scattering operator, and F is the integral fission operator [26]. By

combining these equations we can get:

𝑆𝑘,𝜎 =
⟨𝜓†,P 𝑗

𝜎𝜓⟩
⟨𝜓†, 𝜆F𝜓⟩

(2.3)

where P 𝑗
𝜎 is the perturbation operator defined as

P 𝑗
𝜎 = (−𝑁 𝑗𝜎 𝑗 + S 𝑗

𝜎 + 𝜆F 𝑗
𝜎 )𝛿𝑔𝛿𝑧 (2.4)

where 𝑁 𝑗 is the atomic density of isotope 𝑗 , 𝛿𝑔 is equal to one if energy of neutron is within

range 𝑔 and zero otherwise, and 𝛿𝑧 is one if the neutron is within the region 𝑧 and zero

otherwise [26].
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2.2.2. Nuclear Data Sensitivity Analysis with MCNP. As further demonstrated

by Kiedrowski and Brown, MCNP6 can be used to calculate the adjoint-weighted tallies

necessary to solve for the sensitivity coefficient [27].

The KSEN card was added to MCNP6.1 in 2013. The features allows the calculation

of these nuclear data sensitivity coefficients [28]. For cross sections, isotope-reaction pairs

and energy ranges of interest can be specified in the input file:

KSENn XS ISO=ZAID RXN=MT ERG=E0 E1

where ZAID references the isotope, RXN the reaction number, and ERG the energy range

of interest. For example, the coefficient for a systems sensitivity to 238U radiative capture

below 1 eV can be expressed as:

KSEN1 XS ISO=92238.80c RXN=102 ERG=0 0.000001

2.3. CONVENTIONAL CRITICAL EXPERIMENT DESIGN

The most common method to design these critical experiments is by conducting a

parameter sweep. This is entails trying every combination of different experiment dimen-

sions, masses, or concentrations in order to maximize some value, typically the sensitivity

of the system to some piece of nuclear data. These calculations can be made in radiation

transport codes such as Monte Carlo N-Particle Transport Code (MCNP) or SCALE [25]

[29].

For some experiments this approach is quite reasonable. Take for example the most

basic example of a sphere of fissile material surrounded by a polyethylene shell reflector.

The experimenter only has one variable to adjust: only one reflector thickness exists such

that the system is exactly critical. For example, one could simulate the system using every

possible reflector thickness between zero and ten centimeters to the nearest millimeter. This

is shown in Figure 2.1 and yields a total of 100 possible configurations to check.
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Figure 2.1. One Dimensional Example

Now let us consider a similar system but instead with a polyethylene shell followed

by a tungsten shell reflector, two dimensions. What thicknesses of the inner and outer

reflectors yield a critical system? This shown in Figure 2.2. If we were to once again check

every reflector thickness for each shell between zero and ten centimeters to the nearest

millimeter the total number of configurations becomes 1002 or 10,000. Of this total, more

than one critical configuration is likely to exist. We could then select the final choice based

on some other desirable value such as a sensitivity or energy. Depending on the geometry

and accuracy required, 10,000 combinations is still feasible with most modern computers,

even using monte carlo methods, so this may still be a reasonable task to complete using

the "brute force" approach.

Finally let us consider an example with three dimensions. Shown in Figure 2.3 is

a sphere of fissile material surrounded by a shell of borated polyethylene and a shell of

tungsten. What combinations of boron concentration, polyethylene thickness, and tungsten

thickness exist such that the system is critical? Checking concentrations between zero and

10% to the nearest tenth and shell thicknesses between zero and ten centimeters to the

nearest millimeter yields 1003 or 1,000,000 configurations.
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Figure 2.2. Two Dimensional Example

As additional dimensions are added, the total number of combinations increases

exponentially. Even with the aid of modern high performance computing the computation

time will become prohibitively long very quickly.

Depending on the ranges of the dimensions we check, many of these configurations

are deeply subcritical or supercritical. Because of this, much of the computation time will be

spent on configurations that are far from acceptable. Additionally, most modern computers

would not be able to run 1 million monte carlo simulations in a reasonable amount of time.

Is there a more computationally efficient method to identify these critical configurations?

Furthermore, could a method be developed to also identify the most desirable of these

critical configurations based on some other criteria?

This work demonstrates the development and application of an algorithm to pro-

duce these desirable configurations more efficiently than the conventional parameter sweep

method.
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Figure 2.3. Three Dimensional Example
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3. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a stochastic optimization method first proposed

by Kennedy and Eberhart in 1995 [30]. The method was first inspired by how schools of

fish and flocks of birds are able to work together to locate food. For example, rather than

each bird looking bush to bush by itself to find food, each bird in the flock works together

to share information about what is around them to more efficiently find the best bush. This

swarm behavior can be implemented as an algorithm to locate optimal solutions on a search

space.

3.1. THEORY

PSO works to locate the global optimum on the domain of a function. This domain

is referred to as a "search space", where each point can be evaluated for a fitness. The global

optimum, which could be the maximum or minimum of the search space depending on the

goal of the optimization, is said to be the fittest location.

To achieve this, a population (swarm) of candidate solutions (particles) is randomly

sampled throughout the search space. These particles move around the search space

generation to generation until they converge on a point. The particles use a couple of

pieces of information to dictate their movement on the search space. These include their

individual best known and the entire swarms best known location on the search space. Once

the swarm meets a set of user-defined convergence criteria, the algorithm is stopped and the

swarms best known location is used as the optimal solution.

PSO is type of optimization method known as a metaheuristic. This means while it

is not mathematically guaranteed to locate the global optimum of a search space, it requires

very few assumptions about the problem. Unlike other optimization techniques such as
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Newton’s method and gradient descent, PSO does not require a differential form of the

search space to exist, nor an analytical form. It requires no knowledge of the function itself

other than its inputs and outputs.

Applications such as stochastic simulations are great candidates for this kind of

optimization. Such programs like MCNP do not have an analytical description to perform

derivative based optimization techniques.

3.2. MATHEMATICAL DEFINITION

For an n dimensional search space R𝑛, the function to be optimized can be mapped

to a single value 𝑓 : R𝑛 → R. The algorithm begins by sampling S particles at random

locations in the search space for the first generation. The function 𝑓 , takes in the position

of the i𝑡ℎ particle in the k𝑡ℎ cycle in the form of a vector, x𝑘
𝑖
∈ R𝑛.

x𝑘
𝑖 =



𝑑1

𝑑2

...

𝑑𝑛


. (3.1)

Upon calculating the fitness of each initial location, each particles best and the

swarms best known locations are initialized as p1
𝑖

and g1 respectively. For the k𝑡ℎ generation

p𝑘
𝑖

and g𝑘 position vectors are defined similarly to Equation 3.1. Each particle is then given

a velocity that determines its position for the next generation. The velocity vector v𝑘+1
𝑖

, for

the i𝑡ℎ particle in generation k+1 is calculated by the following equation:

v𝑘+1
𝑖 = 𝜔v𝑘

𝑖 + 𝜙𝑟1(p𝑘
𝑖 − x𝑘

𝑖 ) + 𝜌𝑟2(g𝑘 − x𝑘
𝑖 ) . (3.2)
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Random numbers 𝑟1 and 𝑟2, are distributed uniformly in (0,1) and the parameters

𝜔, 𝜙, and 𝜌 are weights used to assign how much importance each term is given and are

empirically tuned by the user. The first term can be thought of as the inertia of the particle

while the second and third terms represent the contributions from the individual particles

best known location and the swarms best known location respectively.

By adding the particles position vector with its newly calculated velocity vector, its

new location can be given as:

x𝑘+1
𝑖 = v𝑘+1

𝑖 + x𝑘
𝑖 . (3.3)

The variables 𝜔, 𝜙, and 𝜌 are known as the inertial, cognitive, and social weights

respectively. Their values have a strong impact on how the swarm behaves over time. The

inertial weight, 𝜔 determines how much the previous velocity will impact the next velocity.

When this number is equal to or greater than one, the swarm will be unable to converge.

The cognitive and social weights, 𝜙 and 𝜌, represent the weight of the acceleration of the

particles towards the p𝑘
𝑖

and g𝑘 values. If the social weight is larger than the cognitive

weight, the particles will trend towards the swarm best more strongly than their individual

best location. If either weight is too large, the particle may skip over the global optimum

point and converge prematurely at a local optima. Similarly, if these weights are too small,

it may take many generations for the swarm to converge.

Depending on the nature of the search space, different weights may cause the swarm

to converge more efficiently. For example, a search space with many local optima will

benefit from an algorithm with a higher cognitive value as this leads to particles exploring

around them more thoroughly, at the cost of a slower convergence. Conversely, a problem

with only one optima (also the global optima) may benefit from a higher social value as this

leads to particles searching in the vicinity of g𝑘 for a better solution.



19

3.3. ANALYTICAL EXAMPLES

3.3.1. Rosenbrock Function. To demonstrate the swarm behavior with different

parameter weights, an example optimization will be conducted on a test function. The

Rosenbrock function, commonly used as a performance test for optimization algorithms,

is a non-linear uni-modal function with a single global minima [31]. In its n-dimensional

form it takes the form of:

𝑓 (x) =
𝑛−1∑︁
𝑖=1

[100(𝑥𝑖+1 − 𝑥2
𝑖 )2 + (1 − 𝑥𝑖)2] . (3.4)

Although PSO algorithms can operate in n-dimensional search spaces, for visual

simplicity this optimization will use Equation 3.4 in its two dimensional form where 𝑛 = 2.

This optimization will attempt to locate the global minimum which is located at 𝑓 (1, 1)

using a variety of different weight combinations to demonstrate their effects on the swarms

behavior over time. To demonstrate the impacts of these weights when taken to the extremes,

a few toy examples are shown below.

Figure 3.1 shows the evolution of a low cognitive weight swarm on the Rosenbrock

function. The swarm was able to locate the valley but not its minimum point. The swarm

converged around 𝑓 (0.7, 0.5) rather than the global minimum at 𝑓 (1, 1). The low cognitive

weight leads to particles to converge quickly without thoroughly exploring the search space.

Figure 3.2 shows the evolution of a swarm with a low social weight. Since the

particles are only attracted to their best known location, they quickly become ’stuck’ at that

point. This is because as contributions from the inertial and cognitive terms of their velocity

decreases from generation to generation the total velocity approaches zero.

Figure 3.3 shows the evolution of a swarm with a inertial weight equal to one. As

mentioned previously, if the inertial weight is equal to or greater than one particles will not

be able to "slow down" as all of the velocity from the previous generation is being added to

the next generations. This prevents the particles from converging.
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Lastly, Figure 3.4 shows the evolution of a swarm with empirically tuned weights.

This combination of weights allowed the swarm to converge on the global minimum at

𝑓 (1, 1). Swarms on search spaces with a single global optima tend to perform better with

higher social weights [32].

3.3.2. Rastrigin Function. To demonstrate the swarm behavior on a search space

with many local optima, an example optimization will be conducted on another test function.

The Rastrigin is a non-linear multi-modal function with many local minima [33]. In its

n-dimensional form it takes the form of:

𝑓 (x) = 10𝑛 +
𝑛∑︁
𝑖=1

[𝑥2
𝑖 − 10 cos 2𝜋𝑥𝑖] . (3.5)

Figure 3.5 shows the evolution of a swarm with a low cognitive weight. The particles

are attracted only to the swarm best and are unable to explore their own best known locations

since 𝜙 is set equal to zero. This caused the swarm to quickly converge on a local minimum

rather than the global. This is particularly an issue for optimizing multimodal functions

such as the Rastrigin function.

Figure 3.6 shows the evolution of a low social weight swarm on the same function.

The lack of any social weight prevents any communication between the particles, causing

the particles to quickly become stuck near their starting positions.

Figure 3.7 shows the evolution of a high inertial weight swarm. As explained

previously, any swarm with an inertial weight equal to or greater than one cannot converge.

The particles retain all of their velocity from the previous generation meaning they can

never slow down.

Lastly, Figure 3.8 shows the evolution of a swarm with empirically tuned weights.

This combination of weights allowed the swarm to converge on the global minimum at

𝑓 (0, 0). For this search space a low inertial weight was found to be effective as it lead to a

lower velocity particle as this helps the particles not skip over the many local minimum of

the Rastrigin function.
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(a) (b)

(c) (d)

Figure 3.1. 2-D Rosenbrock Function with Low Cognitive Weight Swarm
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(a) (b)

(c) (d)

Figure 3.2. 2-D Rosenbrock Function with Low Social Weight Swarm
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(a) (b)

(c) (d)

Figure 3.3. 2-D Rosenbrock Function with High Inertial Weight Swarm
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(a) (b)

(c) (d)

Figure 3.4. 2-D Rosenbrock Function with Tuned Weight Swarm
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(a) (b)

(c) (d)

Figure 3.5. 2-D Rastrigin Function with Low Cognitive Weight Swarm
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(a) (b)

(c) (d)

Figure 3.6. 2-D Rastrigin Function with Low Social Weight Swarm



27

(a) (b)

(c) (d)

Figure 3.7. 2-D Rastrigin Function with High Inertial Weight Swarm
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(a) (b)

(c) (d)

Figure 3.8. 2-D Rastrigin Function with Tuned Weight Swarm
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4. MCNP-PSO ALGORITHM

To apply particle swarm optimization to the design of critical experiments, a MCNP-

PSO coupled algorithm was developed using Python [34], a general-purpose programming

language. The algorithm generates particles on a user-defined search space of experiment

parameters, such as thicknesses or material concentrations, and generates MCNP inputs

based on their location in the search space. MCNP then runs these inputs and each particle’s

fitness is presented as a function of some parameter in its output such as a sensitivity or

energy. As MCNP input and output files can be read by any text editor, Python can be used

to write and inputs and read outputs.

4.1. INITIALIZATION

To begin, the user presents the algorithm with a reference MCNP input file that they

wish to be optimized, the parameters of the input they wish to perturb, and the value that

they want to be optimized. To constrain the search space, the user specifies the range over

which each input parameter can be perturbed (e.g. reflector thickness between zero and five

centimeters).

4.2. SEARCH SPACE SAMPLING

Once the search space has been defined, the next step is to sample locations for

each particle’s initial location. If the swarm size is not sufficiently large, sampling purely

random starting locations can lead to poor coverage of the search space. It has instead been

shown effective to utilize near-random sampling methods. This algorithm uses a statistical

technique known as Latin hypercube sampling (LHS) [35].
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(a) (b)

Figure 4.1. Random (a) and LHS (b) Sampled Search Spaces

For a swarm of 𝑆 particles on a search space of 𝑛 dimensions, each dimension 𝑑𝑛, is

partitioned in to 𝑆 groups. Each of these partitions is randomly sampled one time. Particles

are placed at random combinations of these partitions, this ensures each dimension is evenly

sampled. For a two-dimensional case with a swarm size of six particles, the search space

is partitioned into six columns and six rows. Each row and column is sampled once. An

exampled of a purely randomly sampled and LHS sampled search space is seen in Figure

4.1. The purely randomly sampled space (a) some partitions of the search space are left

unsampled, while all partitions are sampled once in the LHS sampled space (b).

The initial velocities of each particles is set to a vector with a random direction. To

ensure the initial magnitude is does not cause the particle to leave the search space, its value

is selected to be a random number between the upper and lower limits of each dimension

of the search space. The initial velocity of the 𝑖𝑡ℎ particle is notated as v1
𝑖
.
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4.3. INPUT GENERATION AND EVALUATION

Upon sampling the search space, an MCNP input file is created for each particle

location. This is accomplished by altering the reference input file provided by the user.

Once an input is created corresponding to each particle location, they are evaluated in

MCNP. Using the output file from each location, the particles fitness can be determined.

For a candidate solution to be considered as an option for selection it must be near-

critical. Solutions are considered "near-critical" if their 𝑘eff is within 1000pcm (percent

milli-k) of critical. MCNP will calculate the k-eigenvalue of each input using the KCODE

and KSRC source cards. This will provide configurations very close to critical that will

serve as a starting point for further evaluation. As demonstrated in the ICSBEP handbook,

the bias between experimental and computational 𝑘eff can often exceed 1000pcm depending

on the neutron energy spectrum, materials used in the system and other parameters.

With this in mind, the algorithm must rank near-critical systems more fit than

subcritical and supercritical systems. Of the near-critical systems, they must then be ranked

by the optimization parameter of the users choice. For example, this could include an

energy integrated cross section sensitivity using the KSEN card, energy of the average

neutron lethargy causing fission (EALF), or percent of fissions in a given energy range. All

of these values can be determined by MCNP for each particle location.

For example, the fitness of the 𝑖𝑡ℎ particle in the 𝑘 𝑡ℎ generation can be expressed as:

𝑓 (x𝑘
𝑖 ) =


|𝐴| 0.99 ≤ 𝑘𝑒 𝑓 𝑓 ≤ 1.01

−|𝑘𝑒 𝑓 𝑓 − 1| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.1)

where 𝐴 is the value to be maximized.
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4.4. MOVING PARTICLES

Now that we have initialized particles at pseudo-random positions in the search

space, their initial velocities, and have a method of evaluating their fitness, we now must

move them according to Equation 3.2 and 3.3. This process of calculating the new elements

of a particles velocity v𝑖 and position vectors x𝑖 and updating particle bests p𝑖 and the swarm

best g positions is described by Figure 4.2.

Figure 4.2. Algorithm for Updating Particle Velocities

The inertial, cognitive, and social weights as well as the number of particles in the

swarm is also specified by the user. Using knowledge of what the search space may look like

these weights can be tuned to optimize the performance of the algorithm. As demonstrated

in Section 3.3, swarms with high social weights tend to perform better on spaces with a

single global optima, while swarms with higher cognitive weights tend to perform better

on spaces with many local optima. If no assumptions about what the search space can be

made, a conservative approach is to sample more particles.
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The number of particles sampled heavily effects the amount of time it will take the

swarm to converge. This is simply because the more particles there are, the more inputs

MCNP must evaluate per generation. The amount of time it takes to the algorithm calculate

velocity and positions is negligible compared to the amount of time MCNP takes to simulate

the configuration.

4.5. CONVERGENCE CRITERIA

Particles are moved, their positions evaluated, and bests updated until a set of

convergence criteria are met. For this algorithm the swarm is said to be converged if and

only if:

1
𝑆

𝑆∑︁
𝑖=1

𝑓 (p𝑖) > 0.95 𝑓 (g) (4.2)

The means that once the average particle best is within 5% of the swarm best the

algorithm with terminate. At this point, the swarm best location g is taken to be the optimum

location identified by the algorithm on the search space. Depending on the computational

resources or time available, this value can be increased or decreased to achieve a higher or

lower degree of convergence.
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5. MOLYBDENUM CRITICAL EXPERIMENT OPTIMIZATION

5.1. OPTIMIZATION OBJECTIVE

To make a critical experiment valuable to nuclear data evalutors, the system should

be as sensitive as possible to the isotope-reaction pair of interest. As the sensitivity is

energy dependent, we can design different configurations to target different neutron energy

regimes.

The NCSP proposal from Section 1.4.1 specifically mentions the 95Mo radiative

capture cross section as an isotope reaction pair that needs validation due to disagreements

in its cross section between major nuclear data libraries as well as its large effect on 𝑘eff in

some nuclear systems. As discussed earlier, 95Mo has the largest cross section of any stable

isotope of molybdenum and boasts a 5,000 b resonance at 44.5 eV.

To achieve sensitives to all parts of the neutron energy spectrum, three unique critical

configurations with two types of fuel will be used to target different energies of interest.

As shown in Table 5.1, a thermal case (<0.625 eV), an epithermal case (0.625 eV - 2 keV),

and a unresolved resonance region (URR) (2 - 200 keV) will be optimized for both uranium

and plutonium systems. This yields a total of six energy sensitivity optimized critical

configurations the PSO algorithm will produce. The algorithm will use the KSEN card in

MCNP to calculates these energy integrated sensitivities to the 95Mo radiative capture cross

section.

Table 5.1. Energy Ranges of Interest

Range 𝐸𝐿 𝐸𝐻

Thermal 0 eV 0.625 eV
Epithermal 0.625 eV 2 keV

URR 2 keV 200 keV
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The sensitivity of 𝑘eff to the 95Mo capture cross section in different energy ranges

can be expressed by integrating Equation 5.1 over the bounds of that energy range.

𝑆𝑘𝑒 𝑓 𝑓 ,𝜎(𝐸𝐿 ,𝐸𝐻 ) =

∫ 𝐸𝐻

𝐸𝐿

𝑑𝑘𝑒 𝑓 𝑓

𝑘𝑒 𝑓 𝑓

𝜎(𝐸)
𝑑𝜎(𝐸) 𝑑𝐸 . (5.1)

Substituting A for this sensitivity into Equation defines the fitness of each particle:

𝑓 (x𝑘
𝑖 ) =


|𝑆𝑘𝑒 𝑓 𝑓 ,𝜎(𝐸𝐿 ,𝐸𝐻 ) | 0.99 ≤ 𝑘𝑒 𝑓 𝑓 ≤ 1.01

−|𝑘𝑒 𝑓 𝑓 − 1| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.2)

5.2. URANIUM MOLYBDENUM CRITICAL EXPERIMENT

This series of uranium molybdenum critical experiments will be used as an demon-

stration two-dimensional optimization. The results of this optimization will then be com-

pared to the conventional parameter sweep method.

5.2.1. Comet Vertical-Lift Assembly. The Comet assembly will be used to con-

duct the uranium molybdenum critical experiments. This assembly is currently located

at NCERC and operated by Los Alamos National Laboratory. Comet has been used in

hundreds of critical experiments since the 1950’s to support criticality safety and nuclear

data studies [7] [4]. The assembly is composed of a upper stationary and lower movable

platform upon each a subcritical mass is placed. As the lower platform is raised, the two

subcritical masses get closer together, increasing the reactivity of the system.

The upper stationary platform on Comet can accommodate 20,000lbs while the

lower movable platform can accommodate 2,000lbs. This allows experimenters flexibility

to construct a wide arrangement of systems using heavy reflectors, moderators, and fissile

materials.
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An array of nuclear instrumentation including He-3 neutron detectors and compen-

sated ion chambers are used to monitor the neutron population leaking from the system.

Operators can use this information to position the lower platform such that the system is crit-

ical or very slightly supercritical using the reciprocal neutron multiplication method (1/M)

as a function of separation distance. The lower movable platform is able to be positioned

with an accuracy of one mil (one thousandth of an inch).

5.2.2. Reference Geometry. The uranium molybdenum critical experiments will

use Jemima plates as fuel. These are thin HEU metal plates with a diameter of 53.35cm

and a thickness of 3mm. Single Jemima plates will be stacked with polyethylene and

molybdenum plates to create a fuel unit as seen in Figure 5.2. Twelve of these units will be

stacked inside a copper reflector as seen in Figure 5.3. By varying the polyethylene and the

molybdenum plate thicknesses, the neutron energy spectrum of the system can be altered

as well as the sensitivity to the 95Mo capture cross section. This is a similar form to the

Zeus experiments performed on Comet, which went on to become benchmarks [36] [37].

A photograph of the Comet assembly with the Zeus experiments is seen in Figure 5.1. A

generic MCNP input of this reference geometry can be found in Appendix A.

5.2.3. Search Space and Swarm Characteristics. For this optimization the input

parameters for our PSO algorithm, 𝑑1 and 𝑑2, become the polyethylene and molybdenum

plate thicknesses.

The limits of a search space are difficult to select without any a priori knowledge

of the system. It is reasonable to select the lower limits of our dimensions as zero, but

what about the upper limit? Defining an upper limit too low might result in creating a

search space that doesn’t contain the global optima. Although selecting an upper limit too

large leads to the swarm to be sampled over a region of the search space exceedingly far

from the optima, as seen in Equation 3.2, the further a particle is from the swarm best, the



37

Figure 5.1. Comet Assembly with Zeus Experiment

more they are pulled toward it. This means, particles that are sampled in deeply subcritical

or supercritical regions will be strongly attracted towards more near-critical regions of the

swarm space.

The upper limit of the search space for both dimensions will be set to 5.0 cm with

a 0.5 mm resolution. This is equal to 10, 000 possible configurations. If additional critical

configurations are identified outside of this region, these limits can simply be raised and the

algorithm ran again.
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Figure 5.2. Uranium Fuel Unit

Table 5.2. Uranium Search Space

Dimension Min [cm] Max [cm] Partition [cm]

𝑑1 (Polyethylene) 0.0 5.0 0.05
𝑑2 (Molybdenum) 0.0 5.0 0.05

Similarly to the limits, it is difficult to select swarm characteristics without a priori

knowledge. However we can make some deductions using simple assumptions that will

help us make these selections. Knowing that molybdenum acts as a neutron poison, in

general, the thicker the molybdenum, the lower 𝑘eff will be. With that, there should be a

single line of critical configurations that divides subcritical and supercritical. On this line

of critical configurations, configurations with more polyethylene should be more thermal

and ones with less should be faster. As our sensitivity of interest is energy integrated, the

optimal will lay on that critical line depending on what the energy range of interest is. To

one side of the line the system will be too thermal, on the other it will be too fast.
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Figure 5.3. Plan and Profile View of Stacked Fuel Units in Copper Reflector

From this we can assume there will be a single optima on this critical line. We

can further say that the function likely looks something like the Rosenbrock function: a

valley with a single optima. From previous discussion, we know that swarms with higher

social weights tend to perform better on functions with a single global optima. The selected

swarm characteristics for this optimization are seen in Table 5.3.

The results from this optimization are presented in Section 6.1. Knowing the search

space contains a total of 10, 000 possible configurations, we will be able to compare the total

number of configurations checked by the algorithm before it converges. This will allow us

to calculate how much faster the algorithm was than an equivalent parameter sweep would

be.

Table 5.3. Uranium Swarm Characteristics

𝑆 𝜔 𝜙 𝜌

15 0.5 0.6 0.9
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5.3. PLUTONIUM MOLYBDENUM CRITICAL EXPERIMENT

This series of plutonium molybdenum critical experiments will be used as an demon-

stration three-dimensional optimization. This results of this optimization will then be

compared to the conventional parameter sweep method.

5.3.1. Planet Vertical-Lift Assembly. The Planet assembly will be used to conduct

the plutonium molybdenum critical experiments. This assembly is also currently located at

NCERC and operated by Los Alamos National Laboratory. Planet is a vertical-lift assembly

that operates in a similar fashion to Comet. Planet however, is smaller and is commonly

used for lower mass critical experiments [6]. A photograph of the Planet assembly is seen

in Figure 5.4.

5.3.2. Reference Geometry. The plutonium molybdenum critical experiments will

use aluminum stabilized delta phase plutonium plates clad in stainless steel as fuel. These

plates were originally used in the Zero Power Physics Reactor (ZPPR) at Idaho National

Laboratory and are referred to as the ZPPR plates [38]. These plates measure 7.62 cm by

5.08 cm by 0.3175 cm [39]. Similar to the Jemima plates, the ZPPR plates have been used

in many criticality experiments and are geometrically and isotopically well characterized.

Simplified dimensions and the chemical make up of the fuel can be seen in Tables 5.4 and

5.5. A generic MCNP input of this reference geometry can be found in Appendix B.

Table 5.4. ZPPR Plate Specifications

Dimensions (cm) 239Pu (g) 240Pu (g) 241Pu (g) 242Pu (g) 241Am (g) Al (g)

7.62 x 5.08 x 0.3175 98.98 4.716 0.208 0.0049 0.2482 1.128

Table 5.5. ZPPR Plate Cladding Thicknesses

Front (cm) Back (cm) Sides (cm) Top and Bottom (cm)

0.0305 0.1474 0.0508 0.2985



41

These plates will be stacked in a 6 by 4 array, which in total measures about 30 cm

by 30 cm. On top of this layer of fuel a molybdenum and a polyethylene plate of similar

area will be stacked. Similar to the uranium configurations, this stacking of fuel makes up

a single fuel unit and the molybdenum and polyethylene thicknesses will served as the 𝑑1

and 𝑑2 dimensions for our optimization. The stack of fuel units will be surrounded by a

polyethylene reflector. The thickness of this reflector in the axial and radial directions will

serve as the 𝑑3 dimension for this optimization. The fuel unit and fuel stack can been seen

in Figures 5.5 and 5.6.

Figure 5.4. Planet Assembly

5.3.3. Search Space and Swarm Characteristics. For this optimization the in-

put parameters for our PSO algorithm, 𝑑1, 𝑑2, and 𝑑3, become the polyethylene plate,

molybdenum plate, and reflector thicknesses respectively. As discussed previously, a two-

dimensional optimization should yield a single critical line. Therefore, we can assume that

this three-dimensional optimization will yield a critical surface. Each point on this surface

represents a combination of our three dimensions that yields a critical configuration. Once
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Figure 5.5. Plutonium Fuel Unit

Figure 5.6. Plan and Profile View of Stacked Fuel Units in Polyethylene Reflector

again, the algorithm will work to identify a point on this surface that maximizes the sensitiv-

ity to the 95Mo capture cross section in a given energy range. The limits of the search space

can be seen in Table 5.6 and contains 4, 000, 000 possible configurations. Once again, if

additional critical configurations are identified outside of the search space, the dimensions

in Table 5.6 can be increased accordingly.



43

Table 5.6. Plutonium Search Space

Dimension Min [cm] Max [cm] Partition [cm]

𝑑1 (Polyethylene) 0.0 10.0 0.05
𝑑2 (Molybdenum) 0.0 2.5 0.05
𝑑3 (Reflector) 0.0 20.0 0.05

Similar to the previous optimization, this search space should also contain a single

global optima. For this reason the same inertial, cognitive, and social weights will be used

as the previous optimization. Since this search space is larger than previous, a swarm of 25

particles will be used. The swarm characteristics for this optimization can be seen in Table

5.7.

Table 5.7. Plutonium Swarm Characteristics

𝑆 𝜔 𝜙 𝜌

25 0.5 0.6 0.9
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6. RESULTS

6.1. URANIUM MOLYBDENUM

The swarm evolutions for the thermal, epithermal, and URR uranium optimizations

are shown in Figures 6.1-6.9. Generation 1 shows the swarms initial positions with random

velocity vectors as black arrows. Each particle is assigned a color: if 𝑘eff is above 1.01 it

is red, if below 0.99 blue, and if in between it is green (near critical). All of the positions

in between the particles on the search space are given a color based on their 𝑘eff by linearly

interpolating data in between the particles. As the swarm evolves, this contour data is

continuously re-interpolated as more positions on the search space are evaluated.

Similarly, the sensitivity plots show the evolution of the swarm and plots each

particle’s color depending on their 𝑘eff . The contour of the sensitivity plot is the energy

integrated sensitivity calculated by MCNP at that location. Once again, data is linearly

interpolated for positions in between particles on the search space and is updated each

generation.

Markers are kept where ever a particle has been in a previous generation, while

particle’s locations from the most recent generation are shown with their velocity vectors.

A summary of optimized dimensions, sensitives, convergence performance, and

improvement when compared to the conventional parameter sweep method can be seen in

Table 6.1. The total number of possible configurations in the search space is 10,000. The

improvement metric represents factor of decrease between 10,000 and the total number of

configurations the algorithm evaluated before converging.

6.1.1. Thermal. The thermal swarm evolution can be seen in Figure 6.2. Upon

completion of the 15th generation, the convergence criteria defined in Section 4.5 was met

as seen in Figure 6.1. The swarm converged at a point on the critical line where the thermal

sensitivity was highest as shown in Figure 6.2. From the interpolated 𝑘eff data it can be
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Table 6.1. Uranium Optimization Results

Energy Range 𝑑1[cm] 𝑑2[cm] 𝑘eff 𝑆eff,𝜎 Generations Total Inputs Improvement

Polyethylene Molybdenum ±[𝑝𝑐𝑚] 95Mo(n,𝛾)

Thermal 3.30 1.25 1.00870±40 -0.0341±0.001 15 225 44.45x
Epithermal 1.05 2.55 1.00199±36 -0.0713±0.0009 12 180 55.56x

URR 0.30 1.50 0.99907±28 -0.0382±0.0003 30 450 15x

seen that initially as the polyethylene plate thickness increases, molybdenum plate thickness

must also be increased in order to keep the system critical. In this region the system is

under-moderated. Past a polyethylene plate thickness of around 1.5 cm, this trend reverses

and molybdenum plate thickness must be decreased in order to keep the system critical. In

this region the system is over-moderated.

Figure 6.1. Uranium Thermal Convergence

When additional polyethylene is added to an over-moderated system the average

neutron energy decreases more and more. This puts more neutrons in our energy region of

interest. However, since molybdenum must be removed to maintain criticality the sensitivity

to the 95Mo capture cross section will eventually begin to decrease. This can been seen in

the interpolated sensitivity plots in Figure 6.3.
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(a) (b)

(c) (d)

Figure 6.2. Uranium Molybdenum Thermal 𝑘eff
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(a) (b)

(c) (d)

Figure 6.3. Uranium Molybdenum Thermal Sensitivity
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6.1.2. Epithermal. The epithermal swarm evolution can be seen in Figures 6.5

and 6.6. Upon completion of the 12th generation, the convergence criteria was met as seen

in Figure 6.4. Since this swarm is populated on an identical search space as the thermal

optimization the, same critical line was identified. The location on this critical line that the

swarm converges was be different our energy range is interest is now higher than previous

(0.625 eV - 2 keV), therefore a system with a harder spectrum becomes necessary. The

swarm converges at a location on the critical line with less polyethylene than the previous

optimization.

The convergence point was on the left half of the critical line, where the system

is under-moderated. In this region, the addition of polyethylene must be countered by

the addition of molybdenum to keep the system from becoming supercritical. As seen in

Figures 6.5 and 6.6, the initial particle locations did not sample the upper left corner of the

search space very well. If the optimal point was located in that region, the swarm would

likely take longer to converge. To prevent this, more particles could be sampled.

Figure 6.4. Uranium Epithermal Convergence
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(a) (b)

(c) (d)

Figure 6.5. Uranium Molybdenum Epithermal 𝑘eff
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(a) (b)

(c) (d)

Figure 6.6. Uranium Molybdenum Epithermal Sensitivity
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6.1.3. Unresolved Resonance Region. The URR swarm evolution can be seen in

Figures 6.8 and 6.9. Compared to the previous two optimizations, this swarm took about

twice as many generations in order to converge as seen in Figure 6.7. This can be at least

partially attributed to the fact the optima the swarm converged on was located on the edge

of the search space where no particles were initially sampled. Due to the poor sampling

in this area, the swarm took longer to converge. To combat this, more particles could be

sampled.

The position the swarm did converge on was further to the left on the critical line

than the thermal and epithermal cases. This is as expected since the less polyethylene, the

harder the neutron spectrum. For this high energy case, a higher sensitivity may be achieved

using a different moderator. By atom fraction, polyethylene is two-thirds hydrogen. With

an atomic mass of just one, neutrons scatting off the hydrogen can be thermalized out of

our energy range of interest (2 -200 keV) in only a few scatters.

Figure 6.7. Uranium URR Convergence
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(a) (b)

(c) (d)

Figure 6.8. Uranium Molybdenum URR 𝑘eff
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(a) (b)

(c) (d)

Figure 6.9. Uranium Molybdenum URR Sensitivity
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6.2. PLUTONIUM MOLYBDENUM

The swarm evolutions for the thermal, epithermal, and URR plutonium optimiza-

tions are shown in Figures 6.10, 6.13, and 6.16. Each dot represents a location a particle

has been. Each dot is once again assigned a color: if 𝑘eff is above 1.01 it is red, if below

0.99 blue, and if in between it is green (near critical).

From this 𝑘eff data a critical surface is interpolated for each optimization seen in

Figures 6.11, 6.14, and 6.17. Each point on this surface represents a location on the search

space where a critical system exists according to this interpolation. The color on the surface

represents the sensitivity to the 95Mo capture cross section for the given energy range.

A summary of optimized dimensions, sensitives, convergence performance, and

percentage improvement when compared to the conventional parameter sweep method can

be seen in Table 6.2. The total number of possible configurations in the search space is

4,000,000. The improvement metric represents factor of decrease between 4,000,000 and

the total number of configurations the algorithm evaluated before converging.

Table 6.2. Plutonium Optimization Results

Energy Range 𝑑1[cm] 𝑑2[cm] 𝑑3[cm] 𝑘eff 𝑆𝑘eff ,𝜎 Generations Total Inputs Improvement

Polyethylene Molybdenum Reflector ±[𝑝𝑐𝑚] 95Mo(n,𝛾)

Thermal 3.75 1.40 20.00 0.99412±22 -0.0673±0.0006 49 1,225 3265x
Epithermal 1.80 1.55 13.45 1.00954±25 -0.0573±0.0005 42 1,050 3810x

URR 0.85 1.15 10.35 0.99517±25 -0.0130±0.0011 58 1,450 2758x

6.2.1. Thermal. The thermal swarm converged upon the completion of the 49th

generation as seen in Figure 6.12. When only looking at the polyethylene and molybdenum

dimensions, we see a familiar relationship in Figure 6.10. Initially, as the polyethylene

thickness increases, more molybdenum can be accommodated and at a certain point when

the system becomes over-moderated the opposite becomes true. Similarly to the uranium

thermal optimization, the swarm converged on a configuration that is over-moderated.

The swarm converged on a location with a reflector thickness of 20.0 cm, the maximum
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value for the search space. The thicker the reflector, the fewer neutrons are leaked and

the more molybdenum can be accommodated. This relationship can be seen in Figure

6.11, as reflector thickness increases more and more molybdenum can be introduced while

maintaining criticality. Since the energy range of interest for this sensitivity optimization

is 0 - 0.625 eV, even very thermal neutrons will contribute to this sensitivity. As we will

see in the following optimizations, this trend does not hold true for higher energy ranges of

interest.

6.2.2. Epithermal. The epithermal swarm converged upon the completion of the

42nd generation as seen in Figure 6.15. Similarly to the uranium epithermal optimization,

the swarm converged on a slightly under-moderated. Unlike the previous optimization the

reflector thickness was found to be 13.45 cm. Although the system can accommodate more

molybdenum as the reflector thickness increases, the average neutron energy decreases.

This contributes to less sensitivity to our energy range of 0.625 eV to 2 keV. This causes the

swarm to seek a reflector thickness that allows the most molybdenum without causing too

much softening the energy spectrum.

6.2.3. Unresolved Resonance Region. The URR swarm converged upon the com-

pletion of the 58th generation as seen in Figure 6.18. As expected, the swarm converged

on an under-moderated location on the critical surface and with a reflector thickness of

10.35 cm. As our energy range of interest (2 keV - 200 keV) is higher than the previous,

the polyethylene plate and reflector thicknesses decrease. The algorithm must perform a

balancing act when identifying a reflector thickness. Too thick and the returning neutrons

will be thermalized past our energy range of interest, too thin and less molybdenum can be

accommodate by the system, decreasing the sensitivity.
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(a) (b)

(c) (d)

Figure 6.10. Plutonium Molybdenum Thermal 𝑘eff
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Figure 6.11. Plutonium Thermal Sensitivity

Figure 6.12. Plutonium Thermal Convergence
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(a) (b)

(c) (d)

Figure 6.13. Plutonium Molybdenum Epithermal 𝑘eff
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Figure 6.14. Plutonium Epithermal Sensitivity

Figure 6.15. Plutonium Epithermal Convergence
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(a) (b)

(c) (d)

Figure 6.16. Plutonium Molybdenum URR 𝑘eff
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Figure 6.17. Plutonium URR Sensitivity

Figure 6.18. Plutonium URR Convergence
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7. CONCLUSIONS

A new method of identifying optimal critical configurations was presented. This

method used a PSO-MCNP coupled algorithm and was demonstrated on a series of two and

three-dimensional molybdenum critical experiments. On average the algorithm performed

35x faster for a two-dimensional and 3277x faster for a three-dimensional optimization

than the traditional parameter sweep method. Each simulation took on average 50 seconds

to evaluate, this corresponds to 5.6 days and 2,314 days in computational time saved

respectively. Since the total number of configurations increases exponentially as more

dimensions are added, this algorithm will perform more and more efficiently compared to

the parameter sweep method as problems get more complex.

Unlike the optimizations performed in this work, the search space may not always

be free of local optima. In cases where there are, additional tuning of the inertial, cognitive,

and social weights will become necessary to prevent premature convergence to one of these

local optima.

Future efforts on this project may include implementing "adaptive" parameter weight

selection [40]. This would allow the algorithm to automatically determine the most optimal

parameter weights as the swarm evolves, allowing for more efficient swarm convergence.
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1TWO-DIMENSIONAL URANIUM REFERENCE GEOMETRY

2c d_1 = 0.1 cm

3c d_2 = 0.1 cm

4c

5c ===============================================

6C CELL CARDS

7c ===============================================

8c

9c UNIT 1 of 12

1020 3 -10.2 -11 195 -196 imp:n=1 $ Molybdenum

1121 2 -0.93 -11 196 -197 imp:n=1 $ Polyethylene

1222 1 -18.7 -11 197 -198 imp:n=1 $ Jemima

1323 2 -0.93 -11 198 -199 imp:n=1 $ Polyethylene

1424 3 -10.2 -11 199 -200 imp:n=1 $ Molybdenum

15c

16c UNIT 2 of 12

1725 3 -10.2 -11 200 -201 imp:n=1 $ Molybdenum

1826 2 -0.93 -11 201 -202 imp:n=1 $ Polyethylene

1927 1 -18.7 -11 202 -203 imp:n=1 $ Jemima

2028 2 -0.93 -11 203 -204 imp:n=1 $ Polyethylene

2129 3 -10.2 -11 204 -205 imp:n=1 $ Molybdenum

22c

23c UNIT 3 of 12

2430 3 -10.2 -11 205 -206 imp:n=1 $ Molybdenum

2531 2 -0.93 -11 206 -207 imp:n=1 $ Polyethylene

2632 1 -18.7 -11 207 -208 imp:n=1 $ Jemima
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2733 2 -0.93 -11 208 -209 imp:n=1 $ Polyethylene

2834 3 -10.2 -11 209 -210 imp:n=1 $ Molybdenum

29c

30c UNIT 4 of 12

3135 3 -10.2 -11 210 -211 imp:n=1 $ Molybdenum

3236 2 -0.93 -11 211 -212 imp:n=1 $ Polyethylene

3337 1 -18.7 -11 212 -213 imp:n=1 $ Jemima

3438 2 -0.93 -11 213 -214 imp:n=1 $ Polyethylene

3539 3 -10.2 -11 214 -215 imp:n=1 $ Molybdenum

36c

37c UNIT 5 of 12

3840 3 -10.2 -11 215 -216 imp:n=1 $ Molybdenum

3941 2 -0.93 -11 216 -217 imp:n=1 $ Polyethylene

4042 1 -18.7 -11 217 -218 imp:n=1 $ Jemima

4143 2 -0.93 -11 218 -219 imp:n=1 $ Polyethylene

4244 3 -10.2 -11 219 -220 imp:n=1 $ Molybdenum

43c

44c UNIT 6 of 12

4545 3 -10.2 -11 220 -221 imp:n=1 $ Molybdenum

4646 2 -0.93 -11 221 -222 imp:n=1 $ Polyethylene

4747 1 -18.7 -11 222 -223 imp:n=1 $ Jemima

4848 2 -0.93 -11 223 -224 imp:n=1 $ Polyethylene

4949 3 -10.2 -11 224 -225 imp:n=1 $ Molybdenum

50c

51c UNIT 7 of 12

5250 3 -10.2 -11 225 -226 imp:n=1 $ Molybdenum

5351 2 -0.93 -11 226 -227 imp:n=1 $ Polyethylene
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5452 1 -18.7 -11 227 -228 imp:n=1 $ Jemima

5553 2 -0.93 -11 228 -229 imp:n=1 $ Polyethylene

5654 3 -10.2 -11 229 -230 imp:n=1 $ Molybdenum

57c

58c UNIT 8 of 12

5955 3 -10.2 -11 230 -231 imp:n=1 $ Molybdenum

6056 2 -0.93 -11 231 -232 imp:n=1 $ Polyethylene

6157 1 -18.7 -11 232 -233 imp:n=1 $ Jemima

6258 2 -0.93 -11 233 -234 imp:n=1 $ Polyethylene

6359 3 -10.2 -11 234 -235 imp:n=1 $ Molybdenum

64c

65c UNIT 9 of 12

6660 3 -10.2 -11 235 -236 imp:n=1 $ Molybdenum

6761 2 -0.93 -11 236 -237 imp:n=1 $ Polyethylene

6862 1 -18.7 -11 237 -238 imp:n=1 $ Jemima

6963 2 -0.93 -11 238 -239 imp:n=1 $ Polyethylene

7064 3 -10.2 -11 239 -240 imp:n=1 $ Molybdenum

71c

72c UNIT 10 of 12

7365 3 -10.2 -11 240 -241 imp:n=1 $ Molybdenum

7466 2 -0.93 -11 241 -242 imp:n=1 $ Polyethylene

7567 1 -18.7 -11 242 -243 imp:n=1 $ Jemima

7668 2 -0.93 -11 243 -244 imp:n=1 $ Polyethylene

7769 3 -10.2 -11 244 -245 imp:n=1 $ Molybdenum

78c

79c UNIT 11 of 12

8070 3 -10.2 -11 245 -246 imp:n=1 $ Molybdenum
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8171 2 -0.93 -11 246 -247 imp:n=1 $ Polyethylene

8272 1 -18.7 -11 247 -248 imp:n=1 $ Jemima

8373 2 -0.93 -11 248 -249 imp:n=1 $ Polyethylene

8474 3 -10.2 -11 249 -250 imp:n=1 $ Molybdenum

85c

86c UNIT 12 of 12

8775 3 -10.2 -11 250 -251 imp:n=1 $ Molybdenum

8876 2 -0.93 -11 251 -252 imp:n=1 $ Polyethylene

8977 1 -18.7 -11 252 -253 imp:n=1 $ Jemima

9078 2 -0.93 -11 253 -254 imp:n=1 $ Polyethylene

9179 3 -10.2 -11 254 -255 imp:n=1 $ Molybdenum

92c

931000 4 -8.96 -300 (11:255:-195) imp:n=1 $reflector

941001 0 300 imp:n=0 $graveyard

95c EOCC

96

97c ===============================================

98C SURF CARDS

99c ===============================================

100c UNIT 1 of 12

101195 pz -5

102196 pz -4.9

103197 pz -4.8

104198 pz -4.5

105199 pz -4.4

106c

107c UNIT 2 of 12
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108200 pz -4.3

109201 pz -4.2

110202 pz -4.1

111203 pz -3.8

112204 pz -3.7

113c

114c UNIT 3 of 12

115205 pz -3.6

116206 pz -3.5

117207 pz -3.4

118208 pz -3.1

119209 pz -3.0

120c

121c UNIT 4 of 12

122210 pz -2.9

123211 pz -2.8

124212 pz -2.7

125213 pz -2.4

126214 pz -2.3

127c

128c UNIT 5 of 12

129215 pz -2.2

130216 pz -2.1

131217 pz -2.0

132218 pz -1.7

133219 pz -1.6

134c
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135c UNIT 6 of 12

136220 pz -1.5

137221 pz -1.4

138222 pz -1.3

139223 pz -1.0

140224 pz -0.9

141c

142c UNIT 7 of 12

143225 pz -0.8

144226 pz -0.7

145227 pz -0.6

146228 pz -0.3

147229 pz -0.2

148c

149c UNIT 8 of 12

150230 pz -0.1

151231 pz -0.0

152232 pz 0.1

153233 pz 0.4

154234 pz 0.5

155c

156c UNIT 9 of 12

157235 pz 0.6

158236 pz 0.7

159237 pz 0.8

160238 pz 1.1

161239 pz 1.2
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162c

163c UNIT 10 of 12

164240 pz 1.3

165241 pz 1.4

166242 pz 1.5

167243 pz 1.8

168244 pz 1.9

169c

170c UNIT 11 of 12

171245 pz 2.0

172246 pz 2.1

173247 pz 2.2

174248 pz 2.5

175249 pz 2.6

176c

177c UNIT 12 of 12

178250 pz 2.7

179251 pz 2.8

180252 pz 2.9

181253 pz 3.2

182254 pz 3.3

183c

184c extra surfaces

18510 so 200

18611 cz 26.67

18713 pz -19.42

188255 pz 3.4
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189256 pz 17.82

190300 BOX -44.1452 -44.1452 -20

19188.29 0 0

1920 88.29 0

1930 0 37.82

194c

195c EOSC

196

197c ===============================================

198c DATA CARDS

199c ===============================================

200c

201KCODE 10000 1.0 30 530

202KSRC 0 0 -4.001

2030 0 -3.001

2040 0 -2.001

2050 0 0.001

206c ===============================================

207c Materials

208c -----------------------------------------------

209C HEU, rho=18.7g/cc

210c -----------------------------------------------

211M1 92235.80c 0.93 92238.80c 0.07

212c

213c -----------------------------------------------

214C Moderator

215c -----------------------------------------------
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216c Polyethylene , rho=0.93g/cc

217M2 6000.80c -0.856284 1001.80c -0.14371

218MT2 h-poly.80t

219c

220c -----------------------------------------------

221C Interstitial

222c -----------------------------------------------

223C Molybdenum , rho=10.22g/cc

224M3 42092.80c 0.1465 42094.80c 0.0919

22542095.80c 0.1587 42096.80c 0.1667

22642097.80c 0.0958 42098.80c 0.2429

22742100.80c 0.0974

228c

229c -----------------------------------------------

230C Reflector

231c -----------------------------------------------

232c Copper, rho=8.96g/cc

233M4 29063.80c 5.7213E-02

23429065.80c 2.5501E-02

235c

236c Material cards from:

237c "Compendium of Material Composition Data

238c for Radiation Transport Modeling"-PNNL

239c

240KSEN2 XS ISO=42095.80c MT=102 ERG = 0.002 0.2
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1THREE-DIMENSIONAL PLUTONIUM REFERENCE GEOMETRY

2c d_1 = 0.1 cm

3c d_2 = 1.0 cm

4c d_3 = 1.0 cm

5c ===============================================

6C CELL CARDS

7c ===============================================

8c Fuel

9c -----------------------------------------------

101 1 -15.1443 &

11( 103 -104 107 -108 105 -106): &

12( 109 -110 101 -107 105 -106): &

13( 109 -110 108 -102 105 -106): &

14(-111 110 -107 105 -106): &

15(-112 108 110 105 -106): &

16(-113 -109 -107 105 -106): &

17(-114 108 -109 105 -106) &

18u=1 imp:n=1

19c -----------------------------------------------

20C ZPPR Cladding

21c -----------------------------------------------

222 2 -7.9 &

23(201 -204 205 -210 211 -216)

24(-202:203:-206:209:-212:215) u=1 imp:n=1

254 0 #1 #2 u=1 imp:n=1

26c -----------------------------------------------
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27C Tray

28c -----------------------------------------------

295 0 201 -204 205 -210 211 -216 u=2 imp:n=1

306 0 #5 u=2 imp:n=1

317 0 201 -204 205 -210 211 -216

32trcl = (2.37963 3.8807065 0)

33lat=1 u=3 imp:n=1

34fill=-3:4 -2:3 0:0

352 2 2 2 2 2 2 2

362 1 1 1 1 1 1 2

372 1 1 1 1 1 1 2

382 1 1 1 1 1 1 2

392 1 1 1 1 1 1 2

402 2 2 2 2 2 2 2

41c

42701 0 #7 u=3 imp:n=1

43c

44770 0 -510 u=5 imp:n=1

45780 0 510 u=5 imp:n=1

46c -----------------------------------------------

47C Molybdenum

48c -----------------------------------------------

499 4 -10.22 -510 u=4 imp:n=1

50781 0 510 u=4 imp:n=1

51772 0 -510

52lat=1 u=10 imp:n=1

53fill= -1:4 -6:1 0:0
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545 5 5 5 5 5

555 4 4 4 4 5

565 4 4 4 4 5

575 4 4 4 4 5

585 4 4 4 4 5

595 4 4 4 4 5

605 4 4 4 4 5

615 5 5 5 5 5

62c

63782 0 #772 u=10 imp:n=1

64873 0 -42 fill=10 u=8 imp:n=1 $Fills Layer with Moly

65802 0 -1 fill=3 u=8 imp:n=1 $Fills Layer with fuel

66808 0 #802 #873

67u=8 imp:n=1

68c

69c translations for fuel units

70101 0 -40 trcl=(0 0 0.000000) fill=8 imp:n=1

71102 0 -40 trcl=(0 0 1.397561) fill=8 imp:n=1

72103 0 -40 trcl=(0 0 2.795122) fill=8 imp:n=1

73104 0 -40 trcl=(0 0 4.192683) fill=8 imp:n=1

74105 0 -40 trcl=(0 0 5.590244) fill=8 imp:n=1

75106 0 -40 trcl=(0 0 6.987805) fill=8 imp:n=1

76107 0 -40 trcl=(0 0 8.385366) fill=8 imp:n=1

77108 0 -40 trcl=(0 0 9.782927) fill=8 imp:n=1

78109 0 -40 trcl=(0 0 11.18048) fill=8 imp:n=1

79110 0 -40 trcl=(0 0 12.57804) fill=8 imp:n=1

80111 0 -40 trcl=(0 0 13.97561) fill=8 imp:n=1
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81112 0 -40 trcl=(0 0 15.37317) fill=8 imp:n=1

82c

83c -----------------------------------------------

84C Moderator

85c -----------------------------------------------

86999 5 -0.93 -99

87#101 #102 #103 #104 #105 #106

88#107 #108 #109 #110 #111 #112

89imp:n=1

90c -----------------------------------------------

91C Graveyard

92c -----------------------------------------------

93998 0 99 imp:n=0

94

95c ===============================================

96C SURF CARDS

97c ===============================================

98c ----- Pu, Tray, and Moderator surfaces --------

99c

1001 rpp -15.31927900 15.31927900

101-15.31927900 15.31927900

102-0.14878050 0.148780500

103c

10442 rpp -15.31927900

10515.31927900

106-15.31927900

10715.31927900
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1080.148780500

1091.1487805

110c

111510 rpp -15.31927900 -7.717059000

11210.251979 15.31927900

1130.148780500 1.1487805

114c

11540 rpp -15.319279000 15.319279000

116-15.319279000 15.319279000

117-0.148780500 1.1487805

118c

119c reflector

12099 rpp

121-16.42 16.42

122-16.42 16.42

123-1.15 17.52

124c -----------------------------------------------

125c Cladding

126c -----------------------------------------------

127201 px -2.530729

128202 px -2.287083795

129203 px 2.287083795

130204 px 2.530729

131C -----------------------

132205 py -3.8128575

133206 py -3.7846635

134209 py 3.7846635
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135210 py 3.8128575

136C -----------------------

137211 pz -0.148780500

138212 pz -0.1205865

139215 pz 0.1205865

140216 pz 0.148780500

141c -----------------------------------------------

142C Fuel

143c -----------------------------------------------

144101 1 px -2.21972

145102 1 px 2.21972

146103 1 py -3.71221

147104 1 py 3.71221

148105 1 pz -0.10668

149106 1 pz 0.10668

150c -----------------------------------------------

151C Misc Surfs

152c -----------------------------------------------

153107 1 px -1.58472

154108 1 px 1.58472

155109 1 py -3.07721

156110 1 py 3.07721

157111 1 c/z -1.58472 3.07721 0.635

158112 1 c/z 1.58472 3.07721 0.635

159113 1 c/z -1.58472 -3.07721 0.635

160114 1 c/z 1.58472 -3.07721 0.635

161
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162c ===============================================

163c DATA CARDS

164c ===============================================

165mode n

166kcode 100000 1.0 10 110

167ksrc 1 10 0

168tr1 0.0 -0.0724535 0.0

169c

170c ===============================================

171c Materials

172c -----------------------------------------------

173C Pu

174c -----------------------------------------------

175m1 94239.80c -98.8640 94240.80c -4.6950

17694241.80c -0.0276 94242.80c -0.0050

17795241.80c -0.4049 92235.80c -0.1622

17892236.80c -0.0284 93237.80c -0.0270

17902004.80c -0.0037 13027.80c -1.1584

180c

181c -----------------------------------------------

182C Cladding

183c -----------------------------------------------

184C TYPE 304 SS, rho=8.00g/cc

185m2 6000.80c -0.000400 4000.60c -0.005000

18615031.80c -0.00023 16000.60c -0.000150

18724000.50c -0.190000 25055.80c -0.010000

18826000.50c -0.701730 28000.50c -0.092500



81

189c

190C Aluminum, rho=2.6989g/cc

191m3 13027.80c -1

192c

193c -----------------------------------------------

194C Interstitial

195c -----------------------------------------------

196C Molybdenum , rho=10.22g/cc

197M4 42092.80c 0.1465 42094.80c 0.0919

19842095.80c 0.1587 42096.80c 0.1667

19942097.80c 0.0958 42098.80c 0.2429

20042100.80c 0.0982

201c

202c -----------------------------------------------

203C Moderator

204c -----------------------------------------------

205c Polyetheylne , rho=0.93g/cc

206M5 1001.80c -0.143716 6000.80c -0.856284

207MT5 h-poly.80t

208c

209c Material cards from:

210c "Compendium of Material Composition Data

211c for Radiation Transport Modeling"-PNNL

212c

213c Adapted from IER-532

214c

215KSEN2 XS ISO=42095.80c MT=102 ERG = 0.000000625 0.1
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