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ABSTRACT 

Well inflow control is a major challenge for the oil and gas industry.  Erle 

Haliburton revolutionized well inflow control with his patent for cementing oil wells in 

1921.  Soon after, cement became the accepted material to establish well integrity and has 

been ever since.  Cement is used in all phases of the well life cycle, and it is expected to 

hold indefinitely once set.  Yet based on the nature of cement and the placement 

techniques, flow pathways may develop from improper cementing jobs or from cement 

degradation over time.  Well integrity is especially crucial for wellbore plugging and 

abandonment, since the cement plugs act as barriers to flow for reservoir fluids and 

underground sources of drinking water. Yet large numbers of wells have ‘live annuli’, 

indicating some inflow into the annulus and the large occurrence of such wells provide 

motivation to explore other materials to create wellbore seals. 

The following project provides a qualitative exploration of borosilicate glass for 

inflow control in Berea sandstone.  Glass is a chemically innate material with virtually no 

permeability.  With the ability to manipulate its chemical and mechanical properties, 

there is potential for glass to remedy the degradation seen in cement while forming a plug 

suitable for downhole conditions. 

In this experiment, a sample of borax was melted on the end of a Berea sandstone 

sample.  The project was able to form a borosilicate glass seal to the sandstone core.  The 

permeability of the sandstone decreased by 94.57% from 95.01 mD to 5.16 mD.  The 

glass seal had a plugging factor of 18.49.  While the glass did not seal the sandstone 

completely, the 94.57% reduction in permeability yields promising results for future 

work. 
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1. INTRODUCTION 

 Since inception, the oil and gas industry has been challenged to control well 

inflows, such as maintaining overbalance during drilling, isolating different producing 

formations, and shutting off formation flow completely.   While it was relatively easy to 

weigh up drilling fluids, zonal isolation and shut-off were not readily achieved until 

1921.  According to “Haliburton Cement Wells” (2017), Erle Halliburton demonstrated 

an effective means of cementing casing strings downhole.  His patent for a “Method and 

Means for Cementing Oil Wells,” helped revolutionize how an oil or gas well was 

completed for production, and how wells would ultimately also be abandoned (U.S. 

Patent No. 1369891, 1921).  Figure 1.1 is a typical well construction diagram for a cased 

and cemented onshore well.   

 

 

 

 
Figure 1.1 Schematic Representation of a Cemented Well. (India Cements Ltd, 2017) 
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Each casing string is cemented in the hole, with cement slurry either pumped back 

to surface, to the previous casing shoe, or to a prescribed distance above the producing 

formation.  The cement, coupled with the casing, is expected to create wellbore integrity 

(a pressure and fluid seal) for the life of the well.  As defined by Norsk Sokkels 

Konkuranseposisjon (NORSOK), the Norwegian technology center for business standard 

development in the oil industry, well integrity refers to the application of technical, 

operational and organizational solutions to reduce risk of uncontrolled release of 

formation fluids throughout the life cycle of a well (Standard, 2004).  Cement has also 

been the primary material used to abandon wells when production becomes 

uneconomical.  Typical modern well abandonment requires cement plugs across the 

perforated zone, across any point where a casing string is cut for removal, and at least one 

plug at the top of the well near the surface.  Once abandoned, the cement left in the well, 

including the original cement behind the pipe and the cement plugs placed at 

abandonment, is expected to seal the wellbore indefinitely.  Figure 1.2 depicts common 

well abandonment schematics where cement and mechanical plugs act as barriers to flow 

for potential flow paths.  The schemes cover cases of continuous plugs in an open hole, 

multiple plugs in open and cased holes, and mechanical barriers coupled with cement 

plugs.  Typically, 2-3 plugs are used in a well with one placed near the surface.  If one 

barrier were to fail, multiple barriers help mitigate disasters by providing insurance to 

flow. 

Despite the long history of using Portland cement within wellbores there are many 

limitations to using cement as a wellbore sealing agent.  A brief summary of cements, 
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problems with oil well cementing, and industry advancements in cementing are included 

here as background to the current work. 

 

 

 

 
Figure 1.2 Typical Plug and Abandonment for Various Types of Well Completions 

(Natural Gas Investing, 2017) 

 

 

 

1.1. PORTLAND CEMENT IN OIL AND GAS WELLS 

 Ordinary Portland cement (OPC) was developed by Joseph Aspdin in 1824 by 

burning a blend of limestone and clay together (Schlumberger, 1984).  Its basic 

formulation remains the same, today.  OPC is manufactured by crushing, milling, and 

proportioning the following ingredients: limestone or calcium oxide, silica, alumina, iron, 

and gypsum.  The mix without gypsum is introduced into a rotary kiln to fuse the 

limestone slurry together.  The kiln temperature ranges from 2,600F to 3,000F.  

Afterward, the material formed is known as cement clinker.  After cooling, the clinker is 
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pulverized and blended with gypsum to control the setting time of the cement when water 

is introduced (Arnold et al., 2006).  

 OPC’s first use in an oil well was in 1903 to shut off flow in a water zone.  

Eventually, the American Petroleum Institute (API) standardized the various OPC mixes 

that were emerging at the time for oil and gas usage.  In the US, the American Society for 

Testing and Materials (ASTM) and API are responsible for studying and creating 

specifications for OPC manufacturing.  Yet, ASTM is primarily responsible for 

construction use, while API deals with well cements.  API helped identify specific 

industry required blends for short thickening times and late development of compressive 

strength (Schlumberger, 1984).  These OPC blends became the accepted material for 

P&A for several reasons: availability, ease of placement, high strength, engineered 

durability, and low permeability.  Table 1.1 summarizes common cement classes used in 

oil and gas wells.  Tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium 

aluminate (C3A), and tetracalcium alumino ferrite (C4AF) are special compounds that 

help develop tailored properties for the API classes of cements. 

 

 

 

Table 1.1 Typical Composition and Properties of API Classes of Portland Cement 

(Arnold et al., 2006) 
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 API Classes of Portland cements are manufactured to meet chemical and physical 

standards for use downhole.  Class A cement is intended for use when no special 

requirements are necessary.  Class B cement is used in environments where moderate to 

high sulphate resistance is required.  Class C cement is intended for use when conditions 

require high early strength.  Lastly, both class G and H are intended to be used as basic 

oil well cement.  Although these blends are standardized, additional or corrective 

components such as sand, siliceous loams, pozzolans, diatomaceous earth, iron pyrites, 

and alumina, may be necessary to optimize the cement for a specific job and create what 

is known as specialty cements.  The additives and compositions are monitored closely.  

According to “Cement Composition and Classification” (2015), even minor impurities in 

the raw materials must be taken into account, as they can have significant effect on 

cement performance.  For example, the additions from the coal to heat the kiln can 

impact the final product and its performance.  According to the “Petroleum Engineering 

Handbook, Volume II, Drilling Engineering” (2007), these specialty cements include 

pozzolanic Portland cements, pozzolan/lime cements, resin or plastic cements, gypsum 

cements, microfine cements, expanding cements, refractory cements, latex cements, 

cements for permafrost environments, sorel cements, and cements for carbon dioxide 

(CO2) resistance.”  Such cements help embellish properties such as weight, chemical 

resistance, and temperature thresholds. 

To ensure that well cements possess the myriad of properties and characteristics 

necessary for downhole use, API standardized a number of tests for well cements in its 

publication, “Recommended Practice for Testing Well Cements” (2013).  From the API 

publication, there are tests and apparatus for slurry preparation, slurry density, 
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compressive strength tests, non-destructive sonic testing, thickening time tests, static 

fluid loss tests, operating free fluid tests, permeability tests, rheological properties and gel 

strength, pressure drop and flow regime calculations for slurries in pipes and annuli, artic 

testing procedures, slurry-stability test, and compatibility of wellbore fluids.  The wide 

ranges of tests help exhibit the significance and challenges of engineering cement 

materials and placing them downhole. 

The integrity of cement is expected to extend long after the production stage.  

Well cement is expected to retain wellbore integrity through abandonment without 

degrading or losing its bond to the formation and casing.  Yet, cement has a well-

documented history of failure and degradation.  It can fail at different times of the life 

cycle—well construction, completion, or later in the life—due to various operating 

conditions.  Although oil well cement is designed to endure downhole conditions, there 

are substances and conditions that lead to cement failures with time.  The following 

section will review potential conditions leading to cement failure. 

 

1.2. CEMENT FAILURE IN WELLBORES   

 Achieving good cement placement when the casing is run is important during the 

well construction phase.  A good initial cement job establishes well integrity.  Afterward, 

cement compromise typically results from failure of the cement, cement bond, or the pipe 

(King and Valencia, 2014).  This statement is key in analyzing cement failure as it may 

not be the cement itself that fails.  One must also take nto account the relation between 

the cement with the pipe and with the formation.  Figure 1.3 depicts poor cement 
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placements, due to the casing being eccentric in the wellbore at the time of cementing.  

At present, situations such as these require squeeze cementing to remediate the bond. 

 

 

 

  

Figure 1.3 Effect of Casing Eccentricity on Cement Displacement and Bonding 

(Economides et al., 1998) 

 

 

 

Figure 1.4 shows a forced gas channel was created in a laboratory setting using deviated 

casing (worst case scenario) (Griffith, 1992).  Cementing problems such as these can 

often be spotted with a required mechanical integrity test (MIT), although such tests are 

only required periodically depending on state regulations.   

 

 

 

 
Figure 1.4 Induced Gas Channels in a Deviated, Cemented Well Casing (Griffith, 1992) 
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When studying the cement failures, one must ensure good initial placement of the 

cement slurry.  Afterward, the underlying causes for fluid migration must be considered, 

especially over time.  Issues can develop with the pipe, cement, and cement bond to the 

formation.  Figure 1.5 summarizes the potential pathways for fluid movement in a 

cemented wellbore.  Allowing fluids to move behind pipe can jeopardize underground 

sources of drinking water (USDW). 

 

 

 

 
Figure 1.5 Potential Pathways for Fluid Movement in a Cement Wellbore 

 

 

 

These pathways include: (1) casing/tubing leak into a permeable formation, (2) 

migration along an uncemented annulus, (3) migration along microannuli between the 

casing and cement, (4) migration through poor cement, or (5) migration along 

microannuli between the cement and formation.  Note: the figure is not to scale and is 
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intended to provide a conceptual illustration of pathways that may develop within the 

well.  These pathways are typically first identified by to the emergence of live annuli. 

 

1.3. LIVE ANNULI   

 A live annulus refers to positive pressure detected in the annulus.  Several 

phenomena can be grouped under the general description of a live annulus.  For instance, 

annular pressure buildup (APB) occurs when pressure is generated from the thermal 

expansion of wellbore fluids.  APB is a concern in well integrity as it can cause stress 

loading on cement sheaths and plugs that lead to failure of cement.  Even with good 

cement placement downhole, gas may percolate into the cement before it hardens 

downhole, or the cement may not bond completely with the formation wall, forming a 

microchannel that can ultimately allow fluids to move behind the pipe.  Gas percolation 

is also seen in scenarios of sustained casing pressure (SCP), a phenomenon where there is 

measureable annular pressure at the wellhead that returns after being bled down 

(Technologies C et al., 2012).  SCP can occur early during the cementing operations or at 

any point in the lifetime of the well.  Early signs of SCP include gas bubbling or an 

increase in pressure noted at the surface.  SCP often occurs due to a breach in the annular 

seal between the casing and the formation.  Unlike APB, SCP may have many causes, 

and is not necessarily attributed to pressure changes related to downhole temperature 

fluctuations.   

A study analyzing the Fayetteville shale play to study issues related to SCP in 

hopes of determining methods of remediation and prevention (Technologies C et al., 

2012).  Annular surface pressure (ASP) differs from SCP in that it is an annular pressure 
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that has not been shown to be sustainable.  In other words, ASP is a single data point at a 

specific time in the development of the Fayetteville shale well.  Information was gathered 

for approximately 75 wells developed from 2006-2013.  Of these 75 wells, 86.7% 

exhibited some sort of annular surface pressure (ASP) at some point.  These wells were 

drilled during a 6 month period in 2013.  Of these wells, 49.8% had ASP prior to 

hydraulic fracturing.  Watters noted that 37% of wells had ASP after stimulation and that 

48% of wells that exhibited ASP experienced a change (increase or decrease) in ASP 

magnitude after stimulation.  Watters concluded that ASP occurs by two mechanisms: 

classic gas migration after cementing and stress induced, long term gas flow.  Short term 

migration is seen after a few hours or days of cement slurry placement.  Short term 

migration is controlled by pressure differential between the initial hydrostatic pressure 

and formation pressure, fluid loss from the cement to the formation, and volume loss 

during hydration.  Long term migration appears weeks after slurry placement and is 

governed by weakness in the mechanical properties of cement, poor mud removal before 

the cement job, shrinkage of the set cement, damage to the cement sheath due to 

subsequent well operations, or some type of long term degradation method.  The scope of 

this study did not continue monitoring pressure beyond abandonment.  Yet, one must 

consider the long term potential for fluid migration when considering development of 

annular pressure with time as downhole pipes and cements age. 

 

1.4. OBJECTIVE   

 The overarching objective of this project is to find a material other than cement, 

that could potentially seal a sandstone formation, and prove to be more durable.  The 
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work specifically investigates the introduction of borax to a sandstone core, with the 

application of heat, to form a borosilicate glass, either as a coating to the sand face of the 

core or within the pore space of the core.  Selecting the correct heating temperature, 

saturation method, and permeability determination are all important objectives of the 

project.  
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2. MEANS FOR CEMENT FAILURE 

 King and Valencia (2014) summarized that well integrity failures and plug and 

abandonment failures result from mechanical issues with the cement, the cement bond to 

the formation or piping, and the piping itself.  A significant statement in the paper cites 

that the presence of annular pressure does not equate outright well integrity failure.  

Though, a live annulus may bring about concerns of well integrity.  It is beneficial to 

study the mechanisms that drive the cause of annular pressure.  These include both 

mechanical and chemical mechanisms. Mechanical effects include both temperature and 

pressure, while chemical effects cover acids, gases, salts, and bacteria.  To organize the 

means for potential cement failure, the section will be divided into subsections that are 

attributed to de-bonding and methods that are attributed to cement degradation. 

 

2.1. FLOW PATHWAY DEVELOPMENT 

 Over time, the system will witness various thermal cycles that will have an effect 

on cement sheath integrity.  Reservoir temperatures are primarily governed by the 

geothermal gradient of the Earth’s mantle.  Geothermal gradients vary from 0.6F to 

1.6F per 100 ft (Dowdle, 1975).  Given the ever emerging technology to drill deeper 

wells, it is not uncommon to encounter reservoirs that have high pressure/high 

temperature conditions (HPHT) at depths of thousands of feet.  As the exploration of 

conventional sources decline, the industry faces a growing number of HPHT wells above 

10,000 psi and 300F.  During treatment and production, downhole temperatures are 

prone to fluctuations.  Warm reservoir fluids flowing up the tubing, coupled with friction, 

heat up the system.  Treatments, such as acidizing, inject and circulate cool fluids 
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downhole and lower the system’s temperature.  In colder drilling climates such as those 

found in Canada, permafrost is a major factor.  Temperature fluctuations from the 

seasons cause the ground to freeze and thaw.  With these various temperature conditions, 

it takes several months for the well to reach equilibrium (Bellarby, 2009).  This statement 

also extends to well abandonment when cement slurries are placed.  As the cement takes 

weeks to cure, it may experience temperature fluctuations during that time. 

 A study conducted by Andrade et al. (2015) noted the cement sheath integrity 

during thermal cycling.  They examined debonding between cement-casing, cement-rock, 

and the voids and cracks within the cement after such cycling.  As a result, paths develop 

in the annulus that provides a potential means for oil and gas flow.  The sample was set at 

500 psi and an ambient temperature of ~16C.  A single cycle had a thermal plate with a 

ramp mode of 1.5C/min set to 130C and held at that temperature for 4 hours.  The ramp 

mode was then set to -1/min for 4 hours.  The ramp mode was reset to 1.5C/min to 

ambient temperature.  The experiment featured a cement sheath sample bound to 

Saltwash North sandstone and one bound to Mancos shale.  Figure 2.1 shows a 3D 

generated computed tomography (CT) image of the Saltwash North sandstone’s 

debonded/void volumes and cracks that were initially present, ones that formed after 1 

cycle, and ones that formed after 10 cycles.  The pathway development seen in the 

sandstone were far greater than that seen in the shale.  Andrade et al. (2015) explains that 

this is attributed to the higher stiffness provided by the shale.  The Young’s modulus of 

the shale is considerably higher than that for the sandstone, which enhances the cement 

sheath resistance towards debonding and shear failures.  In both samples, cement 

debonding to the casing was minimal.  The largest contribution of fatigue came from the 
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initial thermal cycle rather than subsequent ones.  Andrade et al. (2015) found that such 

integrity is difficult to maintain over time and is a cause for annular pressure and leaking 

issues as wells age (Kellingray, 2007 and Vignes and Aadnoy, 2008). 

 

 

 

 
Figure 2.1 Saltwash North Sandstone Computed Tomography (CT) Sample: 3D images 

of debonded/void volumes, from before thermal cycles, after cycle 1, and after cycle 10. 

(Andrade et al., 2015) 

 

 

 

Similar to its temperature counterpart, pressure cycles have also proven to 

compromise well integrity.  Casing expansions caused by excessive casing pressure have 

shown to create radial stress cracks in the annulus (Goodwin, 1992).  Goodwin (1992) 

cycled pressure from 0 psi to 10,000 psi in 2,000 psi increments.  Between each 

increment, the pressure was dropped back down to 0 psi.  The study conducted by 

Goodwin (1992) showed promising results for the ability of low compressive strength 

(500 psi to 1,000 psi) and ultra-high compressive strength (>12,000 psi) cement to 
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withstand pressure cycling.  Goodwin’s study found that circumferential force from 

excessive temperature and pressure causes diametrical and circumferential casing 

expansion.  This expansion creates a shearing force at the cement-casing interface, 

causing failure at the cement-casing interface or radial fracturing of the cement sheath. 

Another pressure study was conducted by Jackson and Murphey (1993).  They 

conducted laboratory experiments to understand casing-cement-formation behavior 

downhole with respect to gas flow.  The experiment set up both a build up and a 

drawdown cycle where the casing pressure was increased and held for 10 minutes and 

dropped down to the base pressure of 1,000 psi.  The pressures tested were in 2,000 psi 

increments starting from 2,000 psi to 10,000 psi.  For the build up test, flow was only 

detected during the bleed off portion for the 8,000 psi and 10,000 psi levels.  Flow was 

not detected for the buildup portion of any of the peaks pressure levels; this included 

8,000 psi and 10,000 psi that was seen for the drawdown.  For the drawdown experiment, 

the base casing pressure of 10,000 psi was lowered in stages, to values of 8,000 psi, 6,000 

psi, 4,000 psi, 2,000 psi, and below 1,000 psi.  After each stage, the pressure was raised 

once again to the base pressure of 10,000 psi.  A pressure differential across the cement 

was held at 100 psi.  For the drawdown, little flow was noted until the casing pressure 

dropped below 3,000 psi.  At this stage, a 100 psi differential was enough to cause flow 

across the 3 ft cement sheath.  At pressure below 2,000 psi, a pressure differential of 10 

psi was enough to cause flow across the cement sheath.  At this point, the hydrostatic 

pressure within the inside the casing was low enough to allow flow.  The initial hydraulic 

seal was lost when the casing pressure was dropped from 10,000 psi to 4,000 psi.  
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Jackson and Murphey (1996) successfully determined that it was possible to lose a 

hydraulic seal and when that might occur with pressure cycles. 

The experiments in this section summarized laboratory recreations of downhole 

conditions that were successful in creating live annuli from temperature and pressure 

cycles. 

 

2.2. CEMENT DEGRADATION DEVELOPMENT 

Through means of chemical reaction, cement faces several degradation 

mechanisms.  In this section, exposure to various reactants such as acids, gases, ions, and 

microbes will be explored to determine their role in compromising zonal isolation.  This 

section will look at various manners that degrade cement’s physical properties. 

Matrix acidizing works to stimulate the well by fracturing or dissolving damage to 

enhance productivity.  Such treatments expose perforation cement to hydrochloric acid 

(HCl) or hydrofluoric acid (HFl) which affect cement integrity.  While playing a factor in 

cement degradation, P&A would primarily face conditions concerning carbon dioxide 

(CO2) and sour gas (H2S) instead. 

 CO2 is a major reactant with cement for wells involving CO2 injection.  CO2 

reacts with the cement to form a layer of calcium carbonate (CaCO3).  According to 

Laudet et al. (2011), the carbonation layer progresses at a slow pace into the cement 

sheath at a rate of about 73 mm/year.  Laudet et al. (2011) found that the carbonation 

front evolves linearly with time.  While a reaction is noted, it has not been proven to be a 

driving force for loss of well integrity.  Though studies are ongoing, the changes in 

permeability, porosity, and mechanical strength were all minimal.  The reaction occurs to 
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such an extent that still allows for proper isolation suggesting the cement sheath can still 

adequately contain wellbore fluids.  In regards to H2S exposure, literature suggests the 

need to examine the dual interaction of CO2 and H2S in the system.  Lecolier et al. (2006) 

has explored the strong impairment seen in H2S exposure alone.  Lecolier et al. (2006) 

found an increase in porosity and mechanical weakening of their cement.  Lecolier et al. 

(2006) commented on the highly acidic conditions (< pH 4) of the experiment along with 

the time scale.  Lecolier et al. (2006) believed that further studies must be conducted on a 

longer time scale that fit downhole conditions better to truly understand the extent of the 

cement change.  Zeng et al. (2016) noted that a combination of CO2 and H2S accelerated 

the corrosion process, the reduction of strength and permeability wee more serious than 

the individual contributions from either reactant alone.  Further experiments may be 

required to explore the relationship between CO2 and H2S compositions with cement over 

time.  Yet, these studies provide an understanding of the changes in mechanical 

properties of cement due to these interactions. 

Aside from gases, chloride degradation is a source of failure that must be 

considered for oil well cement.  While curing in brine, the sodium (Na+) ions are 

adsorbed on the calcium silica hydrate (C-S-H) surface.  The adsorption decreases the 

Ca/Si mole ratio of the cement as Calcium (Ca2+) ions are displaced and precipitated with 

the chloride (Cl-) ions to form calcium chloride (CaCl2).  This alteration of the Ca/Si 

mole ratio transforms the cement properties that it was originally intended to embody.   

 While the seawater consists of about 3.5% salinity on average, produced water 

can range from 0 to 30%.  A study conducted by Gowthaman et al. (2016) analyzed the 

effects of salinity on oil well cement.  In this study, the samples were cured in different 
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NaCl concentrations (0-30%) with various curing periods (7-45 days).  The study used 

uniaxial compressive strength (UCS) tests to measure the resulting Young’s modulus.  As 

a control, samples were also cured in distilled water.  Figure 2.2 depicts the UCS data 

comparing the resulting Young’s modulus over time with a given salinity level. 

 

 

 

 
Figure 2.2 Variation of Uniaxial Compressive Strength with Salinity Level (Gowthaman 

et al., 2016) 

 

 

 

Looking at the cement cured in distilled water (0%), there is an increase in UCS 

after 7 days of curing from 39 MPa.  After 14 days, there is little change in the UCS as it 

hovers around ~52 MPa.  Looking at the 7 day data for the other salinity levels, the UCS 

decreased with increased salinity levels.  For 10%, 20%, and 30% salinity respectively, 

the UCS was about 36 MPa, 32 MPa and 30 MPa after 7 days of curing.  For the trials 

cured in NaCl, the UCS peaked at 14 days.  Moving forward for each salinity 
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concentration, the UCS dropped for 28 days and 45 days of curing compared to the 7 day.  

The magnitude of the UCS drop increased for the samples cured in higher salinity.  The 

hydration process dominates the initial 14 days of curing, but after continued aging, the 

NaCl degradation becomes more notable.  This paper shows the impact of brine on the 

cement strength, a very important consideration for the construction of injection, oil, and 

gas wells. 

An area unexplored within the oil industry is the role of bacteria in the 

degradation process of cement.  Known as microbiologically induced deterioration 

(MID), bacteria pose a threat to well integrity when considering the life of the well long 

after the initial P&A.  Unlike chemical degradants, bacteria can exist within the cement 

regardless of the presence of fractures or flow pathways for fluids.  The effects of MID 

are being studied for various structures above ground but not in wellbores or the effects 

on downhole cement integrity.  MID stems from acid producing bacteria which exist in 

the environment and degrade cement components that are necessary for its structural 

integrity (Wei et al., 2013).  Further studies may reveal MID concerns for well integrity 

over the long term with current OPC practices.  
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3. WELLBORE PLUG AND ABANDONMENT  

 Well plug and abandonment refers to all operations and materials used to abandon 

and secure a wellbore. In general, well abandonment currently focuses on placing cement 

plugs inside the casing string of a well, and sometimes cutting and removing some of the 

old casing.  A more detailed examination of P&A is included here, because the 

experimental work performed may have the highest potential for application there.   

 Millions of abandoned oil and gas wells exist across the United States.  These 

wells have received increasing attention from researchers concerned about their integrity 

during hydraulic fracturing (Jackson, 2014), the level of methane emissions from these 

wells (Kang, et al., 2016), and durability of these wells cement for CO2 storage (Wigand 

et al., 2009).  Many of these wells were abandoned decades ago, when abandonment 

standards were less rigorous.  Wells abandoned in the last two decades have been subject 

to strict regulatory standards, overseen by each state or governing body. 

 Orphan wells are wells abandoned by an operator, most commonly because the 

operator ceases to exist prior to plugging its wells.  These wells become the responsibility 

of the state for plugging.  Like all abandoned wells, orphan wells may include older wells 

or newer wells.  Orphan wells that are plugged by the state typically comply with modern 

plugging standards.   

 In the United States today, all wells are subject to P&A regulation at the state 

and/or federal level.  These regulations promote healthy, safe, and sustainable practices 

for the oil and gas industry.  Fundamentally, P&A seeks to prevent the migration of fluids 

in overlying permeable zones by creating barriers that eliminate flow pathways.  These 

permeable zones contain fluids such as fresh drinking water, brine, and hydrocarbons.  
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Regulatory well construction practices protect groundwater and hamper the movement of 

unwanted fluids to the surface, bottom hole, and seafloor.  Failed well integrity induces 

risks such as contamination of groundwater and leakage of oil and gas to the surface, sea, 

or atmosphere.  To seal these formations, the oil and gas industry has used ordinary 

Portland cement throughout the last century.   

 Well plugging for abandonment can be divided into three different stages: 

preliminary activities, plugging, and plug evaluation.  This section will briefly describe 

each stage to give an overview of the practices currently employed to abandon wells. 

 

3.1. PRELIMINARY CEMENTING ACTIVITIES 

Before cementing, two major activities are necessary for a successful P&A.  First, 

downhole equipment must be removed from the wellbore.  This can be achieved by either 

using existing drilling or conventional workover rigs to pull out equipment such as 

production tubing, downhole pumps, and packers.  If such tools cannot be retrieved, 

alternative means must be taken on for that given situation.  For example, milling is an 

alternative if downhole equipment becomes irretrievable. 

 Post-tool removal, the wellbore must be cleaned out of fill, scale, and other 

debris.  Circulation fluid is used to catch debris and flow the material to the surface.  

Additional tools such as junk baskets or magnetic debris subs may be necessary to help 

clear the wellbore of anything the circulation fluid could not remove.  Such actions are 

necessary to help limit contamination of the cement slurry. 
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3.2. PLUGGING TECHNIQUES 

 Cement plugging is a technique utilized in the oil and gas industry for well 

closure.  For P&A, zonal isolation and well abandonment are the primary purposes for a 

cement plug (Rogers, 2006).  Governing bodies require multiple plugs (both cement and 

mechanical) in case one were to fail in order to safeguard against fluid flow.  Fields and 

Martin (1997) report that typically three plugs are required.  The placement of these plugs 

includes the area around the perforation level, at mid depth (in particular over any casing 

cuts), and a surface plug at shallow depth.  Greater or fewer plugs may be used depending 

on the formation, wellbore, number of fluid zones, and state regulation.  Current well 

plugging practices use three major methods for plug placement:  the balanced plug 

method, the dump bailer method and the two-plug method.   

3.2.1. Balanced Plug Method or Displacement Method.  The balanced plug

method places a drill pipe or piece of tubing at the desired depth.  A cement slurry is 

pumped through the tubular and placed on top of a mechanical device set below the point 

of plugging or fluid left in the bottom of the well.  The mechanical device can be 

something such as a bridge plug, while the fluid can be mud.  The slurry is pumped until 

the level of the cement is equal to that inside the casing.  Once equal, the tubing is pulled.  

Figure 3.1A depicts the balance plug method.  The technique is used widely due to its 

simplicity.  Yet, concerns with this method lie in limiting contamination, especially when 

using a viscous plug.  To prevent migration of the cement slurry, there must be a solid 

base material at the bottom of the well to hold the slurry in place. 
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3.2.2. Dump Bailer Method.  According to Schlumberger (2017), a dump 

bailer is a tool used to place small volumes of cement in a wellbore.  For the dump bailer 

method, the tool holds a volume of cement slurry that is run downhole and placed atop a 

permanent bridge plug.  The bailer is opened by touching the bridge plug or opened 

electronically.  Cement escapes the tool by raising it.Since the slurry is held stationary in 

the bailer, special considerations must be made for gelation and instability during the 

descent.  The tool is easy to control and use, but it is limited by the size of the dump 

bailer.  The balance plug and dump bailer methods are depicted in Figure 3.1B. 

 

 

 

 

Figure 3.1 Plug Methods.  A) Shows the Balance Plug Method.  B) Shows the Dump 

Bailer Method (Global IEA, 2009) 
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3.2.3. Two-Plug Method.  This method is the most difficult yet the most 

beneficial to accurately place the plug with the least amount of contamination.  

According to IEA Greenhouse Gas R&D Programme (2009), the two plug method uses a 

special plugging tool that comprises a bottom hole landing collar installed at the lower 

end of the drill pipe, an aluminum tail pipe, a bottom wiper plug (carrying a dart), and a 

top wiper plug.  Figure 3.2 shows the progression of cementing plugging using the two 

plug method. 

 

 

 

 
Figure 3.2 Two Plug Method (Nelson and Guillot, 2006) 

 

 

 

The application of cementing plugs enables the effective separation of the cement 

slurry from other fluids, reducing contamination and maintaining predictable slurry 

performance. The bottom plug is launched ahead of the cement slurry to clean the drill 

pipe and to minimize contamination from fluids inside the casing prior to cementing. A 

diaphragm in the plug body ruptures by increased pump pressure to allow the cement 

slurry to pass through after the plug reaches the landing collar. The top plug is pumped 

behind the cement slurry to isolate the cement from the displacement fluid. This plug has 



 25 

a solid body that provides positive indication of contact with the landing collar and 

bottom plug through an increase in pump pressure. The top plug then prevents cement 

from flowing up into the tubing string, meanwhile permitting reverse circulation. The 

drill pipe is pulled up until the lower end of the tail pipe reaches the calculated depth for 

the top of the cement plug.   

 

3.3. PLUG EVALUATION 

 After the operator sets a cement plug downhole, tests must be conducted to ensure 

that the plug was placed at the proper depth and supports zonal isolation.  The plug can 

be verified by tagging the top surface, pump pressure testing, or swab testing. 

To tag the plug, a drill pipe, wireline, work string, or tubing is run downhole.  Tagging 

allows an accurate measurement of the plug placement.  Conversely, it applies a 

concentrated load at the tip of the tool place on the plug.  Also, friction and buoyancy 

must be considered when lowering the tool for calculations.  Tagging only verifies the 

surface depth and condition of the plug.  Good results may be misleading as poor 

integrity below the plug surface may come with time. 

 The pump pressure tests consist of applying pump pressure from surface with the 

wellbore full of incompressible fluid.  After increasing pressure, the surface gauges are 

monitored and must maintain pressure for a specified period of time (typically 15 to 30 

minutes).  This method provides accurate data for how well the plug can maintain 

pressure at that point in time.  If the plug does not hold pressure, the operator must 

remediate the plug.  However, after the initial testing, cement can degrade and alter plug 

performance.  
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 Swabbing is another method to determine zonal isolation.  A swab is run 

downhole to reduce pressure above the wellbore by removing fluids such that it is lower 

than the pressure gradient below the plug.  The idea is that if the plug is holding, no 

additional fluids should enter the wellbore, and the swabbed fluid level should be 

constant.  Hence, fluid levels and pressure are monitored to determine zonal isolation.  

Swabbing is time consuming compared to other methods but may be a preferred method 

in some cases. 

 

3.4. STATISTICS OF WELL INTEGRITY AND WELL BARRIER FAILURE 

 It is difficult to find an exact value for well failure given the various factors 

involved in cement degradation, geological differences, well age, and completion design.  

Additionally, there is a lack of published data and follow up inspection on wells after 

abandonment to allow for exact failure rates.  Jackson (2014) analyzes the integrity of oil 

and gas wells through a survey of published data to conclude values for well integrity 

failure.  To analyze the rates, one must first define well integrity failure.  Using King and 

King’s (2013) definition, well integrity failure results in all barriers failing such that a 

pathway develops enabling leakage into the surrounding environment.  The term ‘well 

barrier failures’ refers to individual or multiple barriers failing but not resulting in a 

detectable leak.  Brufatto et al. (2003) analyzed 8,000 offshore wells in the Gulf of 

Mexico.  They found that 11-12% of wells developed SCP.  In comparison, Watson and 

Bachu (2009) reported 3.9% of 316,000 wells in Alberta had SCP.  Ingraffea et al. (2014) 

studied 41,381 conventional and unconventional oil and gas wells drilled from 2000-2012 

in the Marcellus region.  Ingraffea et al. (2014) found a 1.0% well barrier failure in 
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conventional wells and 6.2% in unconventional wells.  Ingraffea et al. (2014) also divided 

the wells into newer (2009-2012) and older (2000-2009) wells to determine if newer 

wells were any safer.  According to Jackson (2014), intuitively, one would believe that 

older wells would have more time to develop leaks or for leaks to be detected.  With 

better materials, stricter regulations, and greater understanding of the geologic formation 

with time, there is much support for this idea.  Yet, Ingraffea et al. (2014) suggested 

otherwise.  Barrier failure for unconventional wells occurred in 9.8% of wells from 2000-

2008 compared to 9.1% in wells from 2009-2012 for wells found in northeast 

Pennsylvania.  Yet, in other areas of Pennsylvania, the older wells had a failure rate of 

1.5% compared to 1.9% for the younger wells.  Some explanations for this difference 

may involve greater oversight or hydraulic fracturing in this period.  In this study, the 

newer wells faced more inspections.  Also, with increased rates of hydraulic fracturing, 

more failures may be caught and more failures may be likely to occur in these parts of 

Pennsylvania. 

 Given the number of wells drilled in history and the wells that must be drilled to 

meet oil and gas demands for the future, well integrity will remain an essential part of 

industry operations.  With the varying rates of failure and degradation methods that act 

over time, statistically, it is possible for barrier failure to evolve into well integrity 

failure.  Also, one must consider other impacts, such as hydraulic fracturing in nearby 

wells.  The concern with multi-stage hydraulic fracturing is that the fractures created may 

propagate into an abandoned well with inadequate cement, and allow fluids to move 

upward and contaminate underground sources of drinking water (USDW).  Another 

concern is ‘frac hits’.  Frac hits describes inter-well communication where an offset well 
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or lateral is affected by the hydraulic fracturing of a new treatment in a nearby lateral.  

Frac hits are known to be violent occurrences that have been known to damage 

production tubing, casing, and even wellheads (Jacobs, 2007).  Such damage transfers 

force to the cement sheaths and plugs of both parent and abandoned wells. 

 Well plugging is often viewed by operators as a task that provides little benefit to 

the company’s treasury.  Yet, properly plugged wells can save the company money from 

leakage in a field candidate for technology development.  Also, it prevents cross 

contamination into other fields or loss of pressure for water floods or CO2 floods which 

merits higher hydrocarbon recovery.  The science behind P&A materials and methods has 

been quite stagnant.  Given the initial conception of the idea and development of 

plugging methods and cement blends, P&A as a practice has remained relatively 

unchanged compared to other facets of the industry.  

 Based on the issues related to wellbore cementing, there is strong motivation for 

researchers to investigate using alternate methods of creating seals downhole.  

Development of new well plugging materials and methods may not only provide for more 

robust well construction but, depending on new technology, could cut costs over time for 

operators.  There is no doubt that cementing technology has great room for research and 

development, and that any materials that improve on the current limitations of OPC 

would lead to significant benefits. 
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4. GLASS AS A PLUG MATERIAL 

 This project explores the potential of glass as an alternative P&A material instead 

of cement.  Glass has been investigated and demonstrated for subsurface nuclear waste 

storage.  Glass demonstrates excellent compressive strength and has virtually no 

permeability.  In addition to these properties, varying composition, processing methods, 

and applying special finishes may introduce or alter a myriad of desired attributes.  Thus, 

it is possible to create a glass highly suited for a given application based on thermal, 

chemical, and mechanical properties.  

 The research investigates a preliminary premise for glass as a valid material to 

eliminate flow in sandstone reservoirs or in combination with sand to form a wellbore 

plug.  The project is unique in that a glass is formed in situ with the formation.  In this 

survey, the permeability and durability of glass with the formation were prime concerns. 

  

4.1. GLASS 

 Most glasses have a combination of properties not seen in other materials.  

Chemically durable and abrasion resistant, soda lime silicate glasses are expected to 

remain clear after years of exposure to the changing seasons and weather.  Additionally, 

there is little surprise when ancient vases and containers are unearthed after thousands of 

year unchanged by the test of time (Phillips, 1960).  With such broad capabilities, glass 

stands justified to be considered as a material in the oil and gas industry for its use as a 

plug. 
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4.2. GLASS PROPERTIES AND DESIGN 

 The most remarkable aspect of glass is the ability for its properties to be varied.  

In the following sections, properties that merit glass as a suitable plug will be considered.  

Sand is the main raw material for the most common glass, soda lime silicate.  The three 

primary ingredients of soda-lime-silica glass are sand, soda ash, and limestone.  Yet, 

there are other glasses that contain boron that have special properties not obtainable from 

the soda-lime-silica family.  The principal raw materials are mixed in various 

combinations to form other kinds of glasses.  Other materials such as fining agents, 

coloring or decolorizing materials, oxidizing or reducing agents, and so on may be added 

to create these various glasses.  The final mixture of batch may be quite complex as an 

almost infinite variety of compositions can be produced.  The fundamental steps in glass 

manufacturing are thoroughly mixing in the proper proportions of ingredients, melting at 

a high temperature, and then rapidly cooling (Phillips, 1960).  This project forms 

borosilicate and borate glasses from a reaction of sandstone and borate. 

4.2.1. Borosilicate Glass.  Looking specifically at the reaction for this  

experiment, borosilicate glass is being formed.  According to Phillips (1960) in 1915, 

Corning Glass Works introduced the first of a whole group of borosilicate glasses under 

the trademark ‘Pyrex’.  These glasses revolutionized the concept of what glass can do.  

Borosilicate glasses have roughly three times the heat shock resistance of ordinary lime 

or lead glass, are usually far superior in chemical stability, and have excellent electrical 

properties.  As a result, these glasses were used where glass was never used before at the 

time.  Such uses included: industrial piping, centrifugal pump impellers, seals to low 

expansion metals, and household cooking utensils.  Eventually, borosilicate glass found 
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its way into the laboratory as glassware.  It provided an immeasurable improvement over 

lime glasses in all types of laboratory ware. 

 Like SiO2, boron trioxide (B2O3) is a network glass former.  Compared with soda-

lime-silicate glasses, glasses that contain boron along with silica in a specific 

composition show an improvement in chemical and electrical properties with greatly 

decreased coefficient of expansion.  These properties come with a moderate increase in 

melting temperature (Phillips, 1960).  Given its high chemical durability, these 

borosilicate glasses prevent chemical attack and corrosion.  Also, the low thermal 

expansivity allows the glass to withstand constant and repeat thermal cycling as 

demonstrated from cooking and laboratory work.  These properties provide an excellent 

base to explore its potential as a plug for zonal isolation.  Given the flexible composition 

of glass, these properties can be altered further to optimize its use as a plug.  There are 

many borosilicate glass compositions other than Pyrex.  A wide range of glass 

compositions can produce varying properties across a spectrum.  Such compositions can 

be tailored to more desirable properties.   

4.2.2. Thermal Properties.  Of the thermal properties, specific heat, thermal  

conductivity, and coefficient of expansion, the coefficient of thermal expansion (CTE) is 

of major interest.  Coefficient of expansion is the fractional change in length per unit 

change in temperature.  It can be manipulated into a low value to give the glass thermal 

endurance, while being large enough to withstand internal stresses.  For binding and 

sealing purposes in the wellbore, the glass’s coefficient of expansion can be adapted to 

better match the surrounding formation.  Since the project utilizes an in situ reaction, it is 

more likely that a composition gradient would be formed.  This would yield a transition 
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across the materials from one coefficient to another.  A smooth transition could help 

eliminate interfacial debonding from expansion and shrinkage due to thermal and 

pressure cycles. 

 The thermal expansion coefficient is controlled by the bond strength between the 

ions, the field strength of the respective ions, and the number of non-bridging oxygen 

atoms present.  These factors are also interrelated such that altering the ratio of non-

bridging oxygens would further change the bond strengths and/or the field strength 

present within the glass network.   

 For borate glasses, an anomaly occurs where the addition of alkali decreases the 

CTE, and then increases again when the alkali concentration reached a certain limit.  The 

critical concentration varies from 15-30% depending on the study (Hubert and Faber, 

2014).  Unlike silicate glasses, the CTE increased linearly with the addition of alkalis due 

to the formation of non-bridging oxygens (NBO), the breaking of bridging oxygens (BO) 

by turning Si-O bonds and turning them into NBOs.  For borate glasses, the addition of 

alkali contributes to the formation of four-fold coordinate boron.  Increasing the alkali 

concentration eventually decreases the four-fold coordinated boron concentration and 

NBOs form on the silica-like tetrahedra.  Four fold-coordinated boron bring better 

network connectivity within the glass and thus decrease the CTE.  The higher alkali 

content encourages the formation of NBOs and initiate depolymerization of the network 

and thus increase the CTE (Hubert and Faber, 2014). 

 With alkalis such as Li, Na, K, Rb, and Cs, the decrease in CTE is larger for 

smaller ions.  This phenomenon is explained by the difference in cation field strength.  
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Lower field strength cations tend to favor the formation of NBOs that depolymerize the 

network and increase CTE. 

 

4.3. MECHANICAL PROPERTIES 

 The strength of glass is a topic that has been subject to great investigation.  Given 

its wide use, it is necessary to explore its capabilities to determine safe working 

conditions.  Yet, most of the research lacks the proper scope to identify the many 

variables necessary to draw a proper conclusion.  Phillips (1960) compared the question 

“How strong is glass?” to “How fast is an automobile?”.  When considering the speed of 

the automobile, it would be appropriate to consider the type the car, age, maintenance 

history, kind of road, type of gasoline, and so on.  Due to varying factors such as glass 

composition, surface imperfections (where fractures propagate), or handling, it is may be 

more appropriate to consider a range of possibilities for a particular case. 

 Theoretical estimates of the strengths of glasses are usually based on the premise 

controlled by the strength of silicon-oxygen bonds.  Calculating the forces required to 

rupture these bonds in fused SiO2 leads to theoretical strength calculations.  Yet surface 

flaws increase stresses in the glass and decrease the strength of the material.  According 

to Eagan and Swearengen (1978), “Additionally, phase separation, devitrification, 

changes in coordination number or bond strength, or changes in the susceptibility of the 

crack tip to environmental attack could each induce departures from the idealized 

relation.”  However, substituting B2O3 for SiO2 increases the elastic modulus and strength 

of the glass.  In addition, one can further modify the B:Na ratio to study the elastic 

modulus and fracture toughness.  A study by Eagan and Swearengen (1978) found that 
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for borosilicate glasses, an optimum B:Na ratio of 0.67 had a 50% increase in strength 

than the best aluminosiliate glass (both containing 60% SiO2).  Though the strength of 

glasses is difficult to determine due to a number of factors, one can take into account 

special modifiers and glass composition to create tailored properties. 

 

4.4. CHEMICAL PROPERTIES 

 Phillip defines chemical durability by resistance to the corroding effects of water, 

atmospheric agencies, and of aqueous solutions of acids, alkalis, and salts.  Within the 

realm of materials, glass ranks highly in chemical resistance.  There properties are 

governed by composition.  Due to the possible compositions, attack by water, acids, and 

alkaline solutions can be prevented to provide good durability by selecting the proper 

glass after careful consideration.  After reviewing the chemical degradants of cement, 

glass is capable of withstanding attack by acids, gases, and salts.  The use of glass for 

chemical and pharmaceutical purposes demonstrates such possibilities.  Yet, glasses are 

not always designed to be chemically durable.  For example, biomedical use of glasses 

sometimes requires a soluble glass that dissolves in certain conditions or after a given 

time period. 

 Comparing the Na2O-2B2O3 glass to the Na2O-B2O3-SiO2 glass, the addition of 

Si-O bonds that help inhibit hydrolysis from water in the glass.  Thus, the borate network 

only glass is more susceptible to hydrolysis and more soluble in water.  A composition 

higher in Si-O bonds would help decrease the solubility in water.  Although the silicate 

improves the durability Bunker (1994) found that silicate glasses with boron have the 

highest durability when a certain ratio of B:Na.  According to Bunker (1994), “The role 
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of network structure and chemistry in borosilicate leaching can be illustrated by 

considering glasses having a fixed silica content and systematically varying the 

Na20/B2O3 content. In sodium-rich glasses, most Na+ is associated with non-bridging 

oxygens, and the dissolution of the glass mirrors that of simple sodium silicate glass. As 

Na2O decreases and B2O3 increases, all boron initially enters the silicate network as 

tetrahedral borate groups, decreasing the mole fraction of sodium associated with non-

bridging oxygens and decreasing dissolution rates.” 
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5. LITERATURE REVIEW 

 An extensive literature review was conducted related to creating glass linings in 

the wellbore, prior to adopting the experimental work described in this thesis. After 

undertaking the experimental work, the nuclear waste literature was consulted. Hence the 

literature review is categorized into two main topics, waste storage and rock melting, and 

provides examples studies in these areas.  There is an additional section on currently 

developing technology for drilling that covers work with relevant knowledge without 

direct application.  Waste storage explores the realm of glasses and their role in storing 

wastes for nuclear, oil, and gas. The topic of rock melting has been explored to reinforce 

boreholes in place of casing.  The glassy material left behind from rock melting helps 

answer questions and suggest further research into the area of glass as a plug.  The 

developing drilling technology section covers work involving laser and plasma drilling.  

Although the application of the work is different, there are pieces of knowledge that may 

be useful for this project. 

 

5.1. GLASS FOR WELLBORE WASTE STORAGE 

 Lowry et al. (2015), explores the idea of utilizing thermite, a material that gives 

off a highly exothermic reaction when ignited, to form an in-situ self-sintered ceramic 

plug from the surrounding formation.  Although the original publication targeted 

boreholes for nuclear waste disposal, the project has evolved for application within oil 

and gas, geothermal, CO2, and nuclear boreholes.  For the initial nuclear application, 

Lowry et al. (2015) sought to find a plug that could be placed at depths of up to 16,000 ft.  

The plug must perform under high hydrostatic and lithostatic pressures in high mineral 
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content water, and at elevated temperatures due to the geothermal gradient.  The 

conventional nuclear plug methods rely on hydrated cements used in the oil industry.  

Yet, there is an emphasis placed on the performance requirement for nuclear waste 

disposal on the scale of thousands of years.  With controlled studies, Lowry et al. (2015) 

was able to create plugs with compressive strengths as high as 100 MPa (about three 

times the strength of well cement) and fluid permeability as low as 100 µD.  The plugs 

possessed the corrosion durability and service temperatures of ceramic matrices.  With 

adjustments to the basic formula, additives can modify the final material so that is 

exhibits attractive structural, sealing, and corrosion properties.  The strength was 

achieved within 1 day of forming the ceramic, which outpaces the current setting time of 

cement. 

 Another interesting area of research lies in glass vitrification.  There are many 

publications on the topic of vitrification of nuclear waste.  Ojovan et al. (2007) provides 

an excellent overview and introduction to the idea of vitrification.  Vitrification is the 

transformation of a substance into glass.  In the nuclear waste fixing, transforming 

nuclear waste into glass is a widely studied topic.  Such a feat would convert nuclear 

waste into a highly durable and chemically inert state.  Ojovan et al. (2007) explores 

vitification into borosilicate glass for its chemical durability or leaching resistance. 

 Vitrifications studies show borosilicate glass proves to be an attractive material 

for its chemical durability.  Due to the long half-life of nuclear waste, viritifcation 

addresses the potential for the introduction of radioactivity into the biosphere via water 

by controlling the leach rates.  Such explorations help further support the use of 

borosilicate glass as a plug for oil and gas usage. 
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Manaktala (1992) conducts a thorough assessment of borosilicate glass as a high 

level waste form.  When manufacturing waste glasses, there are several considerations 

that can carry over for the scope of this project.  There is often a compromise between 

chemical durability, ease of manufacturing, and economic considerations.  Sodium and 

lithium have strong influence on the viscosity of the melt.  Depending on the molar ratio, 

the use of sodium and lithium together can be more effective than their individual 

contributions alone.  In addition, Al, Ca, Mg, Zn, and Ti are also added in the form of 

oxides to adjust viscosity.  The overall formulation comprises of glass formers, modifiers, 

and intermediates with the high-level waste (HLW) oxides.  According to Manaktala 

(1992), “the structural framework of the glass is provided by the SiO4 tetrahedra.  The 

silicate tetrahedra were bonded together by sharing ionic-covalent bridging oxygen 

bonds.  Other multivalent species, such as B3+, Fe2+, Fe3+, rare earths, and actinides were 

also bonded within the network by bridging oxygen bonds.  Low valence ions such as 

Na+, Cs+, Sr2+, etc. were bonded into the network by sharing various nonbridging oxygen 

bonds depending upon the size of the ion.”  These additives can be useful for the 

purposes of this research project in how they can affect the glass properties. 

 

5.2. ROCK MELTING IN WELLBORES 

One of most extensive rock melting research projects, the Subterrene program, 

was conducted by the United States government in the 1970s.   Goff et al. (1994) reviews 

and summarizes this research.  The premise of the project was to electrically heat a 

graphite or molybdenum penetrator to melt a hole as it pushed through rock.  As the 

molten material cooled, it consolidated into a glass lining.  Figure 5.1 depicts the 
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penetrator to create the glass lining.  This glass lining reinforces the borehole to prevent 

collapse and to minimize crossflow and lost circulation. 

 

 

 

 
Figure 5.1 Schematic Representation of the Penetrator (Goff, 1994) 

 

 

 

 The motivation behind this research was to revolutionize how geothermal wells 

were created.  This project was meant to serve as a proof of concept experiment and 

demonstrate that a rock melting tool was capable of forming boreholes in a variety of 

rock types.  Also, it was meant to demonstrate the feasibility and competiveness the 

method in relation to common mechanical drilling techniques. 

 The program was able to create over 20 vertical and horizontal holes ranging from 

2.5 cm to 10 cm in diameter and up to 30 m in length.  The rock types ranged from 

granites, basalts, tuffs, to unconsolidated sands and soils.  However, the rate of 
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penetration was 1 m/hr.  This rate was not enough to compete with conventional methods 

which averaged 3 m/hr to 6 m/hr.  The rock melt consolidated in situ into an 

impermeable, potentially strong glass lining that could alleviate hole collapse and isolate 

the well from permeable zones.  Such work has potential for niche areas where cementing 

or casing operations are expensive with conventional drilling.  For the purpose of this 

project, the Subterrene program is a proof of concept for the potential of glass as a means 

for zonal isolation.  The project spoke about modifications to rock melting drilling to 

introduce reagents and thinners into the melt to increase rate of penetration and glass liner 

properties. 

The Subterrene project published a great deal of information about its potential 

usage and the preliminary work done as a proof of concept.  Yet after the program was 

halted, no further research was conducted or published.  Li et al. (2015) published a paper 

with a similar idea to the Subterrene program.  Although the research presented by Li et 

al. (2015) provides a clouded and odd study to mending a borehole wall, its value lies in 

the creation of a sheath of glassy material through insertion of a heating element into a 

rock sample.  The element relied on heating at a conical tip to melt the rock into a molten 

material.  Cooling of this molten rock leaves behind a glassy sheath that is integral to the 

rock along the element’s path of travel.  Figure 5.2 shows the results from granite and soil 

penetration.  Outside of the proof of concept, the paper does not provide much more for 

the scope of knowledge.  One aspect that is not described in detail is the formation of this 

glass sheath from rock formulations created by the researchers.  The individuals sought to 

create a shale-like composition.   
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Figure 5.2 Experimental Glass-like casing: A) Top view of granite penetrated at 700C.  

B) Angled view of granite penetrated at 700C.  C)  Top view of soil penetrated at 700C.  

D)  Side view of soil penetrated at 700C (Li et al., 2015) 

 

 

 

Li et al. (2015) tested various compositions of raw material (RM), aluminum, and 

quartz.  RM was provided by a manufacturer known as Zhuhai Xuanyang Limited, but 

the components of the raw material were otherwise not described further.  Yet, the 

experiments proved the idea of drilling and support for even shale formations.  This idea 

opens up the possibility for glass bonding to a formation in both conventional and 

unconventional formations.  Given the experiments with granite and soil, it proved 

possible to penetrate through several different types of formations as well to form a 

lining. 
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5.3. ALTERNATIVE DEVELOPING DRILLING METHODS 

 It should be noted that there is a body of literature related to lasers and electric 

plasma.  Although this technology may provide insight as to how glass forms with in situ 

melting in a wellbore, the literature focuses on drilling related aspects of the work.  Other 

publications describe the use of plasma torches downhole for hydraulic fracturing and the 

abandonment efficiency improvement for casing removal during P&A. 

 Graves et al. (2002) conducted a study on the effects of reservoir rock strength 

and mechanical properties after undergoing temperatures induced by high power lasers.  

Graves et al. (2002) used the chemical oxygen-iodine laser (COIL) developed by the US 

Airforce.  The study used 5 rocks: two Berea sandstones and three reservoir samples; 

Ratcliff limestone, Mesaverde shaly sandstone, and a Frontier shale.  The rocks 

properties were measured before the experiment.  Using thin section with a point-count 

technique, the mineral percentage was determined for each rock.  X-ray diffraction 

(XRD) was then conducted to confirm mineralogy results.  Scanning electron microscopy 

(SEM) was used to quantify the thermal effects of the laser.  Porosity, permeability, 

thermal conductivity, and strength analysis were also conducted before the laser 

treatment for comparison purposes. 

 The experiment found that the thermal conductivity, the quantity of heat 

transmitted through a unit volume in a unit time, was significant.  A higher thermal 

conductivity will lead to a wider range of temperature distribution and therefore greater 

changes as demonstrated by the behavior of sandstone and limestone.  Also mineralogy 

plays an important role to rock changes during lasing.  Micro-fractures tend to develop in 

quartz, clays will dehydrate, and limestones will disassociate at temperatures of 1,100C 
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or greater.  At 573C, quartz grains will expand by 0.45% of their original size and 

contract upon cooling (Fraser, 2005).  For a sample with low void space, the expansion 

causes full grain contact and a situation where the grains have no place to expand.  This 

will result in micro-fractures, which also increases the void space.  Micro-cracks also 

form during cooling of the grains.  This was proven by the high quartz content sandstone 

that had microfractures after lasing while the limestone, with no quartz, had none.  

Although not discussed in the Graves et al. (2002), the limestone should have dissociated 

and loss strength after lasing.  The Mesaverde shaly sandstone with the least void space 

had the greatest change in properties due to the formation of cracks in the thin section 

when it previously had none.  Also, dehydration of clays results in an increase in the void 

space of rocks.  Smectite clay collapses and dehydrates at 550C.  From the samples 

analyzed, Frontier shale has the largest clay percentage, and it also saw the largest 

increase in porosity.  Thus mineralogy plays an important role in fracture formation.  

Clays contain chemically bonded hydroxyls and at high temperatures when dissociated, 

the water vapor escapes.  This increases the volume and pressure in the pore and can 

cause fractures.  These changes in void space may or may not change permeability, but 

they will ultimately affect calculated porosity and elastic moduli.   

 To summarize the work of Graves et al. (2002), the lasers increase porosity and 

permeability.  The increase was more significant for high thermal conductivity 

sandstones but less with low thermal conductivity limestone.  The strength of the rocks 

was reduced in all the rock samples due to the formation of fractures.  The porosity and 

permeability changes were summarized into two categories: development of macro- and 

micro-fractures and the temperature effects on mineralogy (dehydration or expansion of 
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minerals).  Near the hole, the sandstone and limestone showed an increase in 

permeability.  Yet, the low thermal conductivity limestone showed no change away from 

the hole due to the lack of heat transfer.  Also since clays contain water, subjecting them 

to high temperature will induce the escape of vapor that increases the volume and 

pressure in the pores to cause fractures. 

 These results will be significant for future studies.  Although a laser was the heat 

source for this sample, the changes in reservoir rock strength and mechanical properties 

must be taken into consideration for well integrity.  Other heat sources would cause 

similar effects in the near wellbore region due to thermal conductivity.  Since the 

formation-plug bond is a potential area for failure, the ability to manipulate such effects 

can be beneficial for zonal isolation work. 

 As of late, a great body of work exists for the potential of plasma torches in the oil 

industry.  The focus lies in its use for hydraulic fracturing (Bazargan et al., 2014), 

drilling, and milling (Kocis et al., 2015).  Based on the thermal conductivity effect to 

cause fractures and increase void space as previously discussed (Graves et al., 2002), 

Bazargan et al. (2014) takes advantage of this effect by forming macro- and micro-

fractures in rock samples.  The Bazargan et al. (2014) experiment looks to model and 

simulate such effects in hopes of utilizing it to facilitate hydraulic fracturing in the 

wellbore.  For zonal isolation, these results are unwanted due to the increased 

conductivity of the reservoir.  The work by Kocis et al. (2015) takes the technology in 

another direction with drilling and milling.  In comparison to hard rock (conventional 

rotary) drilling, the plasma technology relies on thermal characteristics of the rock 

(boiling point, melting point, and thermal conductivity) to determine rate of penetration 
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(ROP) instead of mechanical properties as seen in hard rock drilling.  The modes of 

disintegration possible are distinguished by plasma temperature: spallation, melting, and 

evaporation.  Looking at the melting portion of disintegration, Kocis et al. (2015) 

analyzes spin-off technology.  Well stability enhancement is briefly mentioned as a 

plasma tool creates a vitrified layer in the wellbore which may serve as a ‘temporary 

casing’ since its mechanical properties are insufficient for long-term use.  The researchers 

mention the possibility of in-situ casing creation from additive layering of metal powder 

on the walls of the well to enhance stability.  They also bring up its potential for borehole 

repair of existing wells.   

 Looking at body of work available for these mentioned alternative drilling 

methods, the thermal effect of high temperatures on rock must be taken in account.  In 

terms of well integrity for this project, it brings about valuable results such as a vitrified 

layer in the wellbore.  Yet, it is a double-edged tool in that the potential for fracture 

formation, mechanical weakening of the formation, increased permeability, and increased 

porosity call for careful planning and research to properly conduct research. 
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6. PROJECT DESCRIPTION 

This project explores the possibility of borosilicate glass as a wellbore sealing 

material in Berea sandstone cores.  The project reacts borax (Na2B4O7·10H2O) directly 

with sandstone (SiO2) cores by melting a borax pellet on the end of a core saturated with 

borax.  An investigation of the best melting temperature was conducted on smaller 

sandstone discs to determine the core reaction temperature. 

The experiments include core flooding to determine if a change in permeability 

occurs.  The permeability of the unreacted core was compared to that of the reacted core, 

to quantify any changes in permeability as a result of the glass formation in the core.  

This section details the experimental work conducted in the research. 
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7. EXPERIMENTAL SETUP 

 The following section provides a description of the setup and equipment used in 

the research.  The equipment used included a Thermolyne 1200ºC Muffle furnace, a 

Denver Fire Clay dish to hold Almatis tabular alumina (14-28 mesh), the Berea core, and 

borax (Sodium Tetraborate Decahydrate Fisher Sci S246-212, 99% purity) pellet (Figure 

7.1), a diamond blade (for cutting), a container for boiling and saturating the core, and a 

permeability core flooding apparatus. 

 

 

 

 
Figure 7.1 Sandstone with the Borax Pellet Ready for the Furnace 
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7.1. PERMEABILITY MEASUREMENT APPARATUS 

The core flooding apparatus used in this work is shown in Figure 7.2.  The 

apparatus consists of a fluid container, syringe pump, pressure gauges, and a 2” core 

holder.  Fluid travels from a container through a pump where it was then flooded through 

a core.  The core was held in place by a core sleeve which provides confining pressure 

from a radial force.  The pump was set to flow at a constant rate for the fluid inlet.  A 

gauge was set at the core sleeve inlet to measure the fluid entry pressure.  The confining 

pressure was set above the entry pressure to ensure that flow occurs through the core 

sample and not around it.  Since the outlet was unconfined, there was no need to measure 

the atmospheric outlet pressure.   

 

 

 

 

Figure 7.2 Core Flooding Apparatus 

 

 

 

The core flooding measurement was based on the linear form of Darcy law 

(Equation 1).  In Equation 1, the variables q, k, A, P, , and L respectively, are flow rate 

(ml/min), permeability (mD), cross-sectional area (cm2), pressure (psi), viscosity (cp), 

and length (cm). 
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𝑞 =
𝑘𝐴𝛥𝑃

𝜇𝐿
 ( 1 ) 

 

𝑘 =
𝑞𝜇𝐿

𝐴Δ𝑃
 ( 2 ) 

 

 

 

 By rearranging Equation 1, Equation 2 gives a direct relationship to determine the 

permeability from the flow rate, fluid viscosity, pressure differential across the core, 

cross sectional area, and length of the medium.  All factors of Equation 2 were known, 

except entry pressure which must be measured experimentally to determine permeability.  

The exit pressure was atmospheric, so the value of P was equal to that of the fluid entry 

pressure. 

Darcy law was used to measure the permeability of the sandstone core.  To use 

the Darcy equation, one of the assumptions is that the porous medium is 100% saturated 

with a given fluid.  To saturate the sample, the core was placed in vacuum chamber to 

remove the air from the pore spaces.  A 1% solution of brine (NaCl) was drawn into the 

chamber while under a pump to maintain the vacuum pressure and displace any residual 

air.  The incoming brine fills the pore spaces to satisfy the assumption for Darcy law of 

100% saturation. 

 

7.2.  SATURATING CORES WITH BORAX  

 To introduce borax into the sandstone pores, the sample was boiled in a 27 wt. % 

solution of borax.  By gas expansion through heating, air escaped the pores.  The gases 

occupying the pore spaces were then displaced by the borax solution.  Boiling occurred 
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over the span of 5 hours to ensure proper penetration and saturation.  After boiling, the 

sandstone core was dried in an oven at 110ºC to vaporize the water.  The process worked 

to deliver borax into the pore spaces and produce a dry sandstone sample.  When the 

water was vaporized, the solute (borax) remained in the voids of the Berea sandstone 

core. 
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8. EXPERIMENTAL PROCEDURES 

  A Berea sandstone core was used for the research project. The sample was first 

analyzed using XRD to determine mineralogy.  The permeability of the unreacted 

sandstone core was measured according to the procedures outlined in Section 7.1.  After 

measuring the unreacted core permeability, a series of melting experiments were 

conducted to determine how the melted borax covered the end of the core and the nature 

of the glass product formed.  Thin sandstone discs were cut.  These discs were placed into 

a furnace with a pressed (made from ~500 lb-f) borax pellet on top as seen in Figure 7.1.  

Looking at Figure 8.1, the ternary diagram describes the potential products of the 

reaction.  Na2O-2B2O3 (the phase produced when borax is dehydrated) has a melting 

temperature of about 743ºC.  Looking at the isotherm lines, there is a decrease in 

temperature moving inward (following the red arrow) on the diagram.  The heavy curving 

lines that cross this region are liquidus lines.  The lines move downward in temperature 

and there are intersections of these lines—peritectic then eutectic points.  The lowest 

temperature where some liquid can be formed is the eutectic, which is something below 

600ºC in this reaction.  Here, the reaction can potentially begin to form liquid in some 

localized area of the specimen despite being below the melting point of Na2O-2B2O3, 

743ºC.  Since the phase diagram is in equilibrium, it was unknown how long it the 

kinetics require to reach that point.  Thus, the reaction becomes a kinetics versus 

equilibrium problem.  The melting experiments were conducted below the melting point 

of Na2O-2B2O3 starting at 700ºC.  Each program gradually brought up the temperature 

and examined in case the kinetics were fast enough to obtain a melt at lower 

temperatures.  
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Figure 8.1 System Na2O-B2O3-SiO2 (Morey, 1951) 

 

 

 

The sandstone discs were reacted at various temperatures to help identify the best 

peak temperature and hold time, to form a glass on the end of the core.  After cooling the 

discs, the samples were cut in half to evaluate the depth of penetration of the borax-

sandstone reaction.  The reaction formed a glass layer that sat atop the sand face and 

glass that penetrated into the pore spaces below the sand face. To remove any dehydrated 

and unreacted material, the samples were soaked in deionized water.  Comparing the 

Na2O-2B2O3 glass to the Na2O-B2O3-SiO2 glass, the addition of Si-O bonds help inhibit 

hydrolysis from water in the glass.  Thus, the borate glass is more susceptible to 

hydrolysis and more soluble in water.  A composition higher in Si-O bonds characteristic 

of all silicate glasses would help address the solubility in water. 

After determining a proper reaction temperature, the goal of the project was to 

form glass inside of the reacted sandstone core in addition to forming a glass seal at the 
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end of the core.  Afterward, the permeability of the reacted core was measured to see how 

the seal may have reduced permeability and prevented flow. 

 

8.1. X-RAY DIFFRACTION (XRD) 

The Berea sandstone’s mineralogy and clay content were analyzed using a 

PANalytical X’Pert Multipurpose Diffractometer with a Cu x-ray source.  Phase analysis 

was performed utilizing PANalytical X’Pert HighScore software, version 2.2e. 

 

8.2. UNREACTED CORE PERMEABILITY MEASUREMENT 

To measure the permeability of the unreacted core, the sample was first placed in 

an oven at 110C for 24 hr to vaporize any liquid in the pores.  The sample was then 

weighed to find the dry weight and brine-saturated weight using the procedures listed in 

Section 7.1.  The core sample was placed under a pump vacuum for 6 hours before a 1% 

brine solution was introduced into the chamber.  The sample then remained pressurized at 

12 psi for an additional 12 hr.  The sample was removed from the chamber (assumed to 

be 100% saturated with brine) and weighed once again to obtain a brine saturated weight.  

The difference between the brine saturated weight and the dry core weight denotes the 

fluid volume or mass within the sample.  This volume was used to determine the pore 

volume and interconnected porosity by also using the core’s bulk volume. 

After brine saturation, the sample was placed into the core sleeve with a confining 

pressure of 500 psi.  A 1% brine solution was pumped through the core at flow rates from 

6 ml/min to 2 ml/min.  The entry pressure was measured and recorded until a stable value 
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was given for the respective flow rate.  The stable entry pressure was recorded for each 

flow rate and used to determine respective permeability values from Darcy law. 

 

8.3. REACTION TEMPERATURE DETERMINATION 

To determine a suitable reaction temperature, preliminary tests were done to study 

the durability of the glass formed.  Sandstone approximately 2 inches in diameter and 0.5 

inches in thickness were cut and placed into a furnace.  Individual 1” diameter borax 

pellets around 4.5 g were pressed with ~500 lb-f and placed on top of the discs before 

running the furnace.  The product before and after the furnace treatment can be seen in 

Figure 8.2 for the 1000C treatment temperature. 

 

 

 

 
Figure 8.2 1000C Temperature Determination Experiment.  A) Before placing the 

sample in the furnace.  B) The glass formed after the furnace 
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The furnace was heated directly to a peak temperature at a rate of 5 C/min.  The 

discs were held at their respective temperatures for 5 hr and then allowed to cool 

naturally to room temperature within the furnace.  These experiments were raised to a 

peak temperature of 700C, 715C, 725C, 800C, 850C, 900C, and 1000C.  Table 8.1 

summarizes these trials. 

 

 

 

Table 8.1 Temperature Determination Programs 

Peak Temperature 

(C) 

Ramp Rate 

(C/min) 

Hold Time 

(hours) 

700 5 5 

715 5 5 

725 5 5 

800 5 5 

850 5 5 

900 5 5 

1000 5 5 

 

 

 

 After cooling, the discs were cut to analyze the depth of the borax penetration and 

the stability of the glass.  The samples were soaked in deionized water at room 

temperature (~25ºC) for 12 hr and studied under the microscope to for empirical 

evaluation of the solubility in water.  In addition, the 1000C sample was studied using 

scanning electron microscopy (SEM) with energy dispersive microcopy (EDS).  The 

1000C peak temperature formed the most stable glass and the temperature program was 

used to react the borate with the full Berea sandstone core to form a glass seal. 
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8.4. GLASS CORE REACTION 

To prepare the core sample for the glass reaction, the unreacted core was first 

saturated using the boiling method described in Section 7.2.3.  The core was boiled in a 

27 wt. % solution of borax for approximately 5 hours.  After the saturation, the sample 

was weighed and placed into a 110C oven.  The sample was weighed periodically until 

no change in weight was found to ensure dryness.  The sample spent a total of 5 days in 

the oven.  The value was taken to be the dry post-saturated weight. 

 Then, a borax pellet of about 5 g was pressed and placed on the sand face of the 

upright core in the furnace.  The furnace ramped to 725C at a rate of 3C/min where it 

was held for 1 hr.  It was then ramped to 1000C at a rate of 3C/min where it was held 

for 5 hr and allowed to cool naturally within the furnace to room temperature.  Unlike the 

sandstone disc, the core was ramped at 3C/min instead of 5C/min.  Since the core was 

larger, ramping it slower could mitigate cracks from thermal stresses.  The sample was 

held at 725C before it was brought to 1000C to ensure that the system was in thermal 

equilibrium.  There was also potential for more water to be trapped in the core than in the 

disc.  Upon vaporization, gas expansion would induce greater stresses in the sample.  A 

slower ramp rate helped alleviate potential mechanisms for cracks and fractures. 

 

8.5. REACTED CORE PERMEABILITY MEASUREMENT 

  After the reacted core was removed from the furnace, it was placed into the core 

holder with a confining pressure of 500 psi.  Unlike the original permeability procedure, 

this core sample was dry and did not undergo the brine saturation step.  A 1% brine 

solution was pumped through the sample.  The flow rate was set to 6 ml/min and the 
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pressure was monitored until flow could be noted at the fluid outlet.  After, the core was 

placed in a dryer at 110C for 24 hr and then saturated using the vacuum method with a 

1% solution of brine.  Core permeability was then measured with a wet, brine-saturated 

core with flow rates from 6 ml/min to 2 ml/min.   
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9. RESULTS 

 The following section reviews the findings from the experimental work. 

 

9.1. MINERALOGY 

 The XRD results can be seen in Figure 9.1.  The XRD yielded 96 wt. % of quartz 

and 4 wt. % of kaolinite. 

 

 

 

 

Figure 9.1 Berea Sandstone XRD 
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9.2. TREATMENT DETERMINATION BY DISSOLUTION 

At the temperatures tested in Table 8.1, the borax was not able to melt completely 

until 725C.  Between 800C, 850C, and 900C, there was visually observed difference 

noted among the quality of the glass formed on the end of the disc.  To help draw a clear 

comparison by qualitative analysis, only the 725C, 850C, and 1000C samples will be 

analyzed and compared.  In this section, the samples of different peak temperatures were 

analyzed with a Leica S8 APO microscope mounted with a Leica EC3 camera after 

soaking the sample in distilled water at 25C in 4 hr intervals. 

Figure 9.2 is a representation of the sandstone disc after heat treatment.  The disc has 

been cut to provide a cross-section to visualize the thickness of the glass product and the 

penetration depth. 

 

 

 

 
Figure 9.2 Sandstone Disc Cross Section View 

 

 

 

 Figure 9.3 shows the disc top view (A through D) and corresponding cross-

section views (E-H) at 0, 4, 8 and 12 hours of soak time in room temperature deionized 

water for samples reacted at 725C.  As shown, there was clear formation of glass on the 

sand face and a reaction below the sand face for the 725C reaction.  The reaction layer 

can be noted by the opaque layer above and the white layer below the grains.  Based on 
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the properties of sodium borate, the less reacted and less durable glass will be more 

soluble in water after the thermal treatment.  Borate units are susceptible to electrophilic 

as well as nucleophilic attack and can be hydrolyzed in both acids and bases (Bunker, 

1994).   

 

 

 

 
Figure 9.3 725C Water Dissolution Test.  The top row depicts a top view of the glass.  

A) 0 hr B) 4 hr C) 8 hr D) 12 hr.  The bottom row depicts a cross section view of the 

glass reaction.  E) 0 hr F) 4 hr G) 8 hr H) 12 hr 

 

 

 

Comparing the 0 hr column (Figure 9.3A and 9.3E) and 4 hr columns (Figure 

9.3B and 9.3F), there was a noticeable dissolution occurring at the surface.  The surface 

of the 0 hr photo exhibits noticeable cracks due to thermal stresses from cooling.  The 4 

hr surface photo reveals dissolution occurring inward from these cracks as more fractures 

have formed and further widened.  The 4 hr cross sectional image shows recession in 

border defining the reaction’s penetration depth. The 8 hr (Figure 9.3C and 9.3G) and 12 
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hr of dissolution (Figure 9.3D and 9.3H) photos, the same trend was noted.  The surface 

glass dissolved further, leaving behind small islands in the 8 hr photo, and by the 12 hr 

photo, the surface glass has almost completely dissolved.  Looking at the cross section of 

the 8 hr photo (Figure 9.3G), the penetration depth was similar to that of Figure 9.3E.  

The photo was taken in a portion where there was greater initial penetration into the 

sandstone.  By the 4 hr mark, the recession was less than that seen in the 0 and 2 hr due to 

its initial starting point.  Looking at the 12 hr cross section, there was a distinct border 

separating the penetration of the glass reaction and the natural, unreacted sand grains.  

The white color of the glass was the most faded here, but the penetration border was the 

most distinct.  Figure 9.4 gives various depths of penetration for the glass reaction and 

the thickness of the top layer on the sand face to compare 0 hr in deionized water to 12 

hr.   

 

 

 

 
Figure 9.4 725ºC Glass Thickness.  A) Cross section at 0 hr.  B) Cross section at 12 hr.  A 

and B use different scales 
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The surface layer dissolved from an approximate thickness of about 1.7 mm to 

about 0.5 mm.  While the penetration depth was uneven, the maximum degree of 

penetration receded from about 4.8 mm to 4 mm.  Considering the maximum depth of 

penetration, the recession trend was further supported by measurement and color density. 

Figure 9.5 shows the disc top view (A-D) and corresponding cross-section views 

(E-H) at 0, 4, 8 and 12 hours of soak time for samples reacted at 850C.  Comparing 

Figure 9.5’s top views (A-D) with the respective top view of Figure 9.3A-D, the surface 

glass quality of the 850C samples was greater than that of the 725C.  The layer was 

clearer with fewer fractures.  Going from 0 to 12 hr in Figure 9.5, the surface fractures 

widen, but the surface layer remains after the 12 hours of dissolution (unlike the 725C 

where it disappears completely).  Looking specifically at the 12 hr surface in Figure 

9.5D, a degree of opaqueness develops as the surface begins to dissolve. 

 

 

 

 
Figure 9.5 850ºC Water Dissolution Test.  The top row depicts a top view of the glass.  

A) 0 hr B) 4 hr C) 8 hr D) 12 hr.  The bottom row depicts a side view of the glass 

reaction.  E) 0 hr F) 4 hr G) 8 hr H) 12 hr 
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 For Figure 9.5’s bottom row depicting the penetration, the glass was of higher 

durability also.  There was no noticeable fading or receding as seen in the 725C reaction.  

Yet, one should note the penetration was quite uneven and shallower than that seen on the 

725C reaction for some parts.  The penetration for the 850C reaction was quite uneven.  

Figure 9.6 has a surface thickness of about 1.4 mm at 0 hr and 1.2 mm at 12 hr.  In Figure 

9.6A, the maximum depth of penetration was 6.8 mm and the minimum depth was 2.0 

mm at 0 hr.  Looking at Figure 9.6B, the maximum depth was about 5.9 mm and 

minimum was about 1.8 mm.  The recession trend was also noted here but to a lesser 

degree as there was less of a difference between the maximum and minimum depth after 

12 hr in water. 

 

 

 

 
Figure 9.6 850ºC Glass Thickness.  A) Cross section at 0 hr.  B) Cross section at 12 hr 

 

 

 

 Figure 9.7 shows the core end view (A-D) and corresponding cross-section views 

(E-H) at 0, 4, 8 and 12 hours of soak time in distilled water for samples reacted at 
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1000C.  Comparing the glass in Figure 9.7 for the 1000C reaction to results shown in 

Figures 9.3 and 9.5, the 1000C was the most stable.  Stress fractures incurred during the 

cooling process can be on the surface of each sample shown in Figure 9.7A-D.  Yet after 

even 12 hours in water, the glass showed no sign of further dissolution or development of 

new cracks.  An interesting note was the formation of relatively large (1 mm) bubbles in 

this reaction that were not present in either of the other two sets of samples prepared at 

725C and 850C.   

 

 

 

 
Figure 9.7 1000ºC Water Dissolution Test.  The top row depicts a top view of the glass.  

A) 0 hr B) 4 hr C) 8 hr D) 12 hr.  The bottom row depicts a side view of the glass 

reaction.  E) 0 hr F) 4 hr G) 8 hr H) 12 hr 

 

 

 

There was some type of gas escaping the pores at this temperature coupled with a 

lowered glass viscosity that allows for the large bubble formation.  At the peak 

temperature, all the water should have already been vaporized.  Looking at the glass layer 
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below the sand face in Figure 9.7E-H, the penetration was quite even throughout.  Also, 

the glass shows no sign of color fading or penetration recession.  The penetration was not 

as deep as that seen in the 850C reaction, but it was distributed more evenly.  The color 

density of the glass formed for the 1000C reaction was higher than that of the 725C and 

850C from the white color. 

Figure 9.8 depicts the glass thickness for the 1000ºC reaction.  The surface 

thickness was about 0.4mm at 0 hr and 0.5 mm at 12 hr.  Since the starting and end points 

for the measurement were marked by eye, there was a potential source for human error in 

these measurements. 

 

 

 

 
Figure 9.8 1000ºC Glass Thickness.  A) Cross section at 0 hr.  B) Cross section at 12 hr 



 66 

The increased thickness may be due to a thicker portion at that section of the 

specimen or an error with the starting and end points for the marks.  The maximum 

penetration depth at 0 hr was about 4.9 mm and the minimum was about 2.5 mm.  After 

12 hr, the maximum was about 4.5 mm and the minimum was about 2.7 mm.  Although 

the section spent time in water and the maximum depth marks follow the recession trend 

noted in other samples, the sign of elongation due to errors can be seen as promising.  At 

best, these values can represent minimal or almost no recession.  Based on the durability 

and penetration depth distribution, the selected reaction peak temperature was 1000C for 

the full core reaction of the study. 

 

9.3. SEM-EDS RESULTS 

 This section analyzes the glass reaction in a semi-quantitative manner using 

energy dispersive spectroscopy (EDS) from the sodium content in the reacted sample.  

Only the EDS for the 1000C sample will be reported since it was determined to be the 

preferred reaction temperature.  The EDS measurement for the 725C and 850C reaction 

yielded similar results and denoted the same trend as seen by the 1000C sample.  The 

EDS was studied qualitatively to detect a trend in the oxygen, sodium and silicon content.  

Sodium was not present in the Berea sandstone.  The sodium was introduced by the 

borax.  The silicon came from the SiO2 from quartz in the Berea sandstone sample.  

Figure 9.9 from left to right depicts the EDS for the sandstone, sandstone-glass interface, 

and glassy product from the reacted borax.  Examining three elements oxygen (O), 

sodium (Na), and silicon (Si), a simple trend can be noted.  The oxygen was abundant in 

all three frames.  Moving from the grains, to the interface, and then to the glass, the 
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sodium content increases.  Conversely, the silicon content decreases moving from the 

sandstone, to the interface, and then to the glass. 

 

 

 

 
Figure 9.9 1000ºC EDS Spectra Readings 

 

 

 

The SEM photo from Figure 9.10A reveals a cross sectional image of the glass 

that formed on the sand face.  Figure 9.10B reveals a cross sectional image that includes 

the glass-sandstone interface and sandstone grains.  Figure 9.10B was positioned such 
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that the surface glass was not shown.  The very top of Figure 9.10B captures the where 

the sand face begins where the Na2O-2B2O3 melt enters the formation.  Moving 

downward from the top of Figure 9.10B, there should be the glass reaction product, glass 

interface, and then sand grains layer. 

 

 

 

 
Figure 9.10 1000ºC SEM Cross Section Image.  A) Upper Glass Layer. B) Reacted 

Glass-Grain Interface 
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9.4. UNREACTED CORE MEASUREMENTS 

 Data gathered for the unreacted core is summarized in Table 9.1. 

 

 

 

Table 9.1 Unreacted Core Measurements 

Dry Weight (g)  539.73 

Brine Saturated Weight (g) 587.00 

Length (cm) 12.00 

Diameter (cm) 5.01 

Cross-sectional Area (cm2) 19.71 

Bulk Volume (cm3) 236.56 

Pore Volume (cm3) 47.27 

Porosity (%) 0.20 

 

 

 

The difference in the dry versus brine saturated core weight gave a pore volume, 

47.27 cm3.  Given the bulk volume derived from the volume measurement of the core, the 

fraction between the pore volume and bulk volume, 236.56 cm3, equals a porosity of 

about 20%.  Using the viscosity, area, and length data for a given flow rate, Table 9.2 was 

created to determine the permeability of the core sample with Darcy Law (Equation 2).  

The variance among each permeability measurement was quite small with a 2.46 standard 

deviation.  The average permeability measurement was 95.01 mD for the core sample. 
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Table 9.2 Unreacted Permeability Determination 

Brine Injection 

q (ml/min) ∆P (psi) K (mD) 

2 3 99.42 

3 4.7 95.19 

4 6.4 93.21 

5 7.9 94.39 

6 9.2 97.26 

Permeability Average 95.01 mD 

STD 2.46 

 

 

 

9.5. REACTED CORE MEASUREMENTS 

A core weighing 539.73 g was saturated in a 27 wt. % solution of borax.  The 

difference between the dry weight and the borax saturated weight was 51.37 g—the 

weight of the borax solution occupying the pore space.  An estimate yields that 

approximately 13.87 g of borax was deposited into the pore space since 27% of the 

solution comprised of borax.  After 5 days in a 110ºC oven, the core weighed 550.50 g, 

and it was assumed to be dry.  The weight increased by 10.77 g.  A borax pellet was 

placed on this sample and run with the 1000ºC program determined from Section 9.2.   

After the glass formation reaction, the reacted core was flooded with a solution of 1% 

brine to determine a pressure value where flow can be noted.  The reacted core was not 

saturated and was placed into the core sleeve dry.  Flow was noted at 24 psi.  Looking at 
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Table 9.3, the brine saturated glass core had its permeability measured.  The standard 

deviation between the permeability measurement was miniscule at 0.07.  The measured 

permeability was 5.16 mD.  Comparing it to the original, the average permeability, 5.16 

md, yielded a 94.57% reduction from the unreacted sandstone permeability, 95.01mD.   

 

 

 

Table 9.3 Reacted Permeability Determination 

Brine Injection 

q (ml/min) ∆P (psi) K (mD) 

2 56.5 5.28 

3 85.5 5.23 

4 115.4 5.17 

5 144.6 5.16 

6 175.5 5.10 

Permeability Average 5.16 mD 

STD 0.07 

 

 

 

 Table 9.4 summarizes the pressure differentials of both the unreacted and reacted 

core flooding experiments, along with a computed plugging factor.  The plugging factor 

represents the ratio of the new pressure differential to the old pressure differential as seen 

in Equation 3.   
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Table 9.4 Plugging Factor Determination 

q (ml/min) 

∆P (psi) 

Reacted 

∆P (psi) 

Unreacted 

Plugging 

Factor 

2 56.5 3.0 18.83 

3 85.5 4.7 18.19 

4 115.4 6.4 18.03 

5 144.6 7.9 18.30 

6 175.5 9.2 19.08 

Average Plugging 

Factor 18.49 

STD 0.45 

 

 

 

The plugging factor is defined as the post reaction pressure divided by the pre-

reaction pressure.  The plugging factor of 18.49 means that the system requires 18.49 

times the old pressure to exhibit the same flow rate.  The experiment yielded average 

value of 18.49 for the plugging factor and 0.45 as the standard deviation.   

 

 

 

𝑃𝑙𝑢𝑔𝑔𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝛥𝑃𝐹𝑖𝑛𝑎𝑙

𝛥𝑃𝐼𝑛𝑖𝑡𝑖𝑎𝑙
  ( 3 ) 

 

 

 

 After the permeability experiment, the reacted core was cut to examine the depth 

of penetration for the glass reaction as seen in Figure 9.11.  Figure 9.11A is a picture of 

the unreacted core, and Figure 9.11B is an end view of the core sand face.  Figure 9.11C 

depicts the penetration depth of the borax pellet ranging from about 1.4 mm to 2.5 mm. 
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Figure 9.11 1000ºC Reacted Core Sections.  A) Side of the unreacted Berea sandstone 

core  B) Top view of the unreacted sandstone.  C) Transverse cross section of the borax 

pellet reacted core end.  D) Medial cross section flow experiment.  E)  Transverse cross 

section opposite the pellet reacted end 

 

 

 

Since the permeability of the reacted core was tested, the glass cap dissolved from 

exposure to the brine solution.  No measurement for the thickness was determined for the 

upper glass layer covering the sand face in 9.11C.  Figure 9.11D is a cross sectional 

image of the core end opposite to the borax pellet reaction end.  A glass reaction occurred 

here due to the saturation in a borax solution.  The depth of penetration varies from about 

0.5 mm to 1.1 mm.  Figure 9.11E is a medial cross section to examine the lateral 

penetration depth.  The penetration depth varies from about 0.9 mm to 3.5 mm.  The 

borax was deposited laterally into the core saturating the sample by boiling in borax.   
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As shown in Figure 9.12, the reacted core formed a solid seal on the sand face. 

 

 

 

 
Figure 9.12 1000ºC Reacted Core. A) Angled View. B) Top View 

 

 

 

Figure 9.12B shows very few cracks aside from a curve fracture in the shape of a half 

circle around part of the glass face.  Unlike the disc from Figure 9.7, no large bubbles 

formed.  Since the core was ramped at a slower rate and held at 725C before reaching 

the peak temperature of 1000C, the product may not resemble that of the sample from 

Figure 9.7.  The change in program may have caused the viscosity of the melt form 

Figure 9.12 to be lower, allowing gas to escape from solution.  Also unlike the surface 
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glass layer seen in Figure 9.7B, the glass layer in Figure 9.12B was soft to feel.  The top 

most glass layer was most likely Na2O-2B2O3 glass containing no or very little SiO2. 

The highly soluble glass was removed by water dissolution.  Unlike the 725C disc in 

water, a hard solid layer of glass remained.  The glass in Figure 9.11C dissolved glass 

layer on the sand face no longer had a soft feel. 
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10. DISCUSSION 

 Amongst the three studied temperatures (725C, 850C, 1000C), a glass coating 

that penetrated into the sandstone core, with variable composition was formed.  The 

product had a gradient with increasing SiO2 content closer to the formation.  Figure 10.1 

provides an alternative view of the reaction. 

 

 

 

 
Figure 10.1 1000ºC Reaction Profile 

 

 

 

From dissolutions over a given time period, the glass thickness on the surface and 

the penetration depths were studied.  There was evidence that the top layer was simple a 

sodium borate glass (without silica) while the penetrated Na2O-2B2O3 melt reacted to 

form a borosilicate glass.  This theory was the most plausible in the 725C reaction due to 

the complete dissolution of the top layer.  Looking at the 850C and 1000C reaction, 

both top layer and penetrated layer were almost completely undissolved after 12 hr in 

deionized water.  This suggest a more durable glass formed.  Looking at the EDS for the 

1000ºC specimen, some quality of silicon was detected in each of the three layers.  This 

was notable particularly in the glass layer at the surface.  The pellet placed on top was 
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borax, that contains no silicon.  The silicon EDS reading suggest that even the top layer 

reacted with silica from the sandstone.  Moving into the interface and sandstone grains, 

one can note the decreasing sodium content.  Since the source of sodium originated from 

the borax pellet, it was expected to see this decrease, as one moves from the top glass 

layer, through the interface, into the natural sandstone sample.  Since the silicon 

originates from the sandstone grains, it was more surprising to see it in present in the top 

glass layer suggesting a reaction between the two (even away from the source of silicon).  

Comparing the 12 hr surface of the 850C and 1000C, the 850C developed an opaque 

sheen as the surface began to dissolve away.  Such a phenomenon was not witnessed in 

the 1000C, further supporting the strong durability of the formed glass in both the upper 

and lower layer.  Thus, 1000C was the choice for the experiment’s peak hold 

temperature. 

 The SEM image from Figure 9.10 proved to be somewhat difficult to analyze.  

Since the pieces were not polished, it was challenging to differentiate the glass layer from 

the sandstone grains.  The Figure 9.10A was taken quite close to the surface of the profile 

to ensure that it was centered on the glass.  Note the conchoidal fractures from cutting the 

piece that were characteristic of glass fracturing.  Looking at Figure 9.10B provides a 

challenge.  The spherical grains and filamentous connections make it challenging to 

denote the exact area of the glass to sand grain interface.  Polishing the samples would 

help visualize these areas better for future reference. 

 The reacted core underwent a 94.57% permeability reduction from the original 

sandstone sample measurement.  Although the formed glass did not prevent flow 

completely, the large reduction in permeability was promising and yields potential for 



 78 

future study.  The glass seal that formed on the pellet side of the core created a semi-

permeable medium.  Due to the cracking from thermal expansion shrinkage, the glass 

seal may lose some integrity during its initial formation process.  Images from Figure 

9.12 depict a soft finish to the glass face unlike that seen in the glass disc reactions for 

temperature determination.  The reaction for the core was run at a slower ramp rate with a 

hold time at 725C and 1000C to increase the reaction time.  This helped ensure that the 

core larger system heat thoroughly.  This change in the program may attribute to the 

difference in glass quality, as the glass layer saw dissolution for the core top surface but 

not the disc.  One can note the formation of a borosilicate glass within the formation itself 

below the sand face.  It was difficult to quantify the respective seal contributions from the 

surface glass to the penetrated glass.  Yet, the results provide evidence that glass can be 

formed with the sandstone grains and form a durable bond and material. 

 Looking at the samples in Figure 9.11C, the penetration of the Na2O-2B2O3 melt 

into the sample was quite shallow as it varied from 1.4 mm to 2.5 mm.  Although 2.5 mm 

was not deep, the glass formation contributed to almost a 95% reduction in the 

permeability.  The top glass layer on the core could not be measured.  The sample was 

exposed to water and the soft glass dissolved leaving behind a thin layer that could not be 

measured like the disc samples.  Looking at Figure 9.4A, 9.6A, and 9.8A, the top glass 

layer’s thickness decreased as the maximum hold temperature increased.  Respectively, 

the thicknesses were 1.7 mm, 1.4mm, and 0.4mm before soaking in water. If the glass top 

was thicker on the core, the glass on top would likely contain less silica and be more 

soluble.  This trend held true with the dissolution studies.  Given the dissolution results of 

the core, it was more likely that the glass thickness was closer to 1.7 mm rather than 0.4 
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mm.  Figure 9.11D and 9.11E show the depth of penetration of the Na2O-2B2O3 laterally 

into the core and into the bottom end (opposite to the pellet reacting face).  This borax 

was introduced from boiling in a 27 wt. % solution.  The greatest penetration varied from 

0.5 mm to 3.5 mm.  Although it was estimated that a sample of about 10.77 g of borax 

was deposited into the sample, this lack of penetration deeper into the sample suggests 

that the borax solution did not saturate the sample completely. 

The plugging factor averaged 18.49 for the reacted core.  This plugging factor is a 

useful quantification outside of permeability to determine the folds of increase in the 

pressure required to see flow through the core.  This measurement provides a means to 

compare the effectiveness of other plugs and other glass reactions in the future. 
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11. CONCLUSION 

 This work explored the possibility of glass as a plugging material in sandstones, 

with a view toward applying the method as an abandonment material for wells in the oil 

and gas industry.  Utilizing a simple approach of placing borax on a sandstone core, the 

project forms a layer of borosilicate glass with a gradient composition on both the surface 

of the core and in its near surface pore space.   Conclusions of this study: 

I. The experiment successfully formed a glass that was both fused to and part of the 

sandstone formation sample. 

II. The glass formed on both the sand face and sides of the core with relatively 

shallow penetration of 1.4 mm to 2.5 mm into the sand face. 

III. The experiment was successful in reducing the permeability of the sandstone by 

about 95% for an average permeability of 5.16 md. 

IV. Although a fully impermeable seal was not created, the large reduction in 

permeability is encouraging and suggests additional work. 
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12. FUTURE WORK 

 The foremost area to move forward in lies with the permeability alteration of the 

glass.  To create a plug that reduces the permeability by virtually 100%, the project must 

explore manners to form a more solid seal that penetrated further and more uniformly 

into the formation sample.  One can investigate saturating the core using a vacuum 

method.  Other possibilities may include boiling for longer periods of time to better 

achieve 100% borax solution saturation.  Yet, the porosity structure of the sample may be 

a limiting factor instead of time spent boiling.  Keeping in mind the literature review and 

similar projects already conducted, utilizing a heating element with raw glass materials 

has potential to form a thicker layer with deeper penetration due to creation of molten 

material. 

 Looking at the glass properties itself, the glass composition was not explored in 

detail for this project.  By altering the composition of the raw material to balance the 

reaction, one can achieve more desirable coefficients of expansion that better transition 

into the formation’s coefficient and reduce the likelihood of fractures or debonding.  

Looking at the phase diagram, borax in contact with the sandstone allows a glass to be 

formed at a lower temperature than the melting point of Na2O-B2O3. Soda ash alone 

would lower the melting temperature, but the glass product has with poor durability.  

Exploring a range of compositions (families) of borosilicate glasses could yield desirable 

properties for a plug.  Other silicate based glass compositions may melt at a reasonable 

temperature and produce durable glasses.  This project studies glass formation in a 

sandstone formation.  There is opportunity to explore other formation types which would 

create different types of glasses depending on the minerology.  The mechanisms and rate 
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of glass degradation under wellbore conditions opens the door to a world of possibilities.  

Varying the heat, pH, presence of various ions, gases, and chemicals, in addition to 

thermal and pressure cycles, are all directions to take this project.   

A more thorough experiment can be conducted to study the mechanical and 

chemical properties of the formed glass.  The projected explored permeability and water 

solubility.  Further studies can be conducted to explore the glass properties and its 

behavior in the pore space, bound to the formation, and how outside forces can impact 

the material. 
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