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ABSTRACT

Switching is not an uncommon phenomenon in practical systems and processes,
for examples, power switches opening and closing, transmissions lifting from low gear
to high gear, and air planes crossing different layers in air. Switching can be a disaster
to a system since frequent switching between two asymptotically stable subsystems may
result in unstable dynamics. On the contrary, switching can be a benefit to a system since
controlled switching is sometimes imposed by the designers to achieve desired performance.
This encourages the study of system dynamics and performance when undesired switching
occurs or controlled switching is imposed. In this research, the controlled switching
is applied to an estimation process and a multivariable Iterative Learning Control (ILC)
system, and system stability as well as system performance under switching are investigated.
The first article develops a controlled switching strategy for the estimation of a temporal
shift in a Laser Tracker (LT). For some reason, the shift cannot be measured at all time.
Therefore, a model-based predictor is adopted for estimation when the measurement is not
available, and a Kalman Filter (KF) is used to update the estimate when the measurement is
available. With the proposed method, the estimation uncertainty is always bounded within
two predefined boundaries. The second article develops a controlled switching method for
multivariable ILC systems where only partial outputs are measured at a time. Zero tracking
error cannot be achieved for such systems using standard ILC due to incomplete knowledge
of the outputs. With the developed controlled switching, all the outputs are measured in a
sequential order, and, with each currently-measured output, the standard ILC is executed.
Conditions under which zero convergent tracking error is accomplished with the proposed
method are investigated. The proposed method is finally applied to solving a multi-agent

coordination problem.
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SECTION

1. INTRODUCTION

Switching is commonly observed in many systems and processes, for instance,
vehicle transmission systems transitioning from low gear to high gear, light switches turning
on and off, dynamics changing when airplane crossing different layers in air, and controller
switching for a robot from position control to force control etc. Depending on sources of
occurrence, switching may occur as the result of the nature of a process, or is intentionally
created by a designer. The occurrence of switching could be a disaster to the system. For
example, when two asymptocially stable subsystems are switched between each other very
frequently, the resulting system may become unstable [1]. On the contrary, switching may
be a benefit to the system. For example, a single continuous feedback controller cannot
guarantee the asymptotic stability of an inverted pendulum. Asymptotic stability, however,
is possible by switching the controller between an ‘energy-injection’ based controller and
a locally linearized controller around the equilibrium point [1]. The performance of a
switched system also depends on the switching signal or reset mapping, a mechanism that
determines when and how the subsystems are switched. This thesis is devoted to studying the
switching behaviours in an estimation process and in mutivariable Iterative learning Control
(ILC) systems, and to designing proper switching signals to achieve desired estimation and
controlling performances.

Paper I develops a controlled switching strategy for the estimation of a temporal shift
in a measurement device known as a Laser Tracker (LT), and investigates the estimation
performance under switching. An LT can continuously measure a 3D point and is well
known for its high accuracy and fast data collection. However, some LTs currently in

service have temporal shift issues which contaminate the measurements [2]. In order to



eliminate this effect, the temporal shift needs to be measured or estimated. Due to the
conflict between normal operation and shift measurement, two estimators, i.e., a Kalman
Filter (KF) and a model-based predictor, are adopted for estimation. The KF is active for
estimation when the shift measurement is available, whereas the predictor is active when
the LT is in normal operation. A switching signal is designed to control the LT to be in
normal operation or to measure the shift. By appropriately designing the switching signal,
the estimation uncertainty is bounded within two predefined boundaries. This is essentially
the hysteresis switching with the two boundaries representing the switching surfaces.

In Paper II, controlled switching is designed for multivariable Iterative Learning
Control (ILC) systems where only partial output channels can be measured at a time. For
such systems, zero tracking error cannot be accomplished with the standard ILC due to
the incomplete knowledge of the outputs [3, 4]. In order to achieve zero tracking error,
a switching method is brought into the system such that the all the output channels are
measured but in a sequential order, and with each measured output channel, the standard
ILC is executed. It is shown in the paper that if the ILC controller and the switching signal
are properly designed, then zero tracking error would be achieved as the switching action
continues.

Since the foundations for Paper I and Paper II are Kalman Filtering (KF) and Iterative
Learning Control (ILC), the basics of KF and ILC are introduced in Section 2 and Section
3, respectively. The readers are suggested to have an overview of these sections before
proceeding to Paper I and Paper II, provided that they do not have previous knowledge in

the fields.



2. KALMAN FILTERING

2.1. BACKGROUND

Kalman Filtering (KF), since it was invented by R. E. Kalman [5] in 1960, has
grown as the most popular tool for optimal state estimation for non-stationary processes.
It has found applications in a wide range of areas such as navigation and control [6, 7],
target tracking [8], and data fusion [9] etc. The very first Kalman filtering paper [5]
investigated the optimal estimation problem for linear stochastic systems. Its nonlinear
version, known as the Extended Kalman Filter (EKF), investigated the optimal estimation
problem for nonlinear stochastic systems by linearizing the estimation process around
approximate points. Since the EKF relies heavily on linearization, high nonlinearities in
the system may deteriorate EKF performance. In order to deal with the situation where the
linearization fails, Unscented Kalman Filter (UFK) was developed [10]. Note that although
different versions of the Kalman filtering technique may have different algorithms, the basic
principles behind them are identical, i.e., the final estimation is acquired by trading off a
model predicted value and the measurement, along with which the estimation covariance is
minimized and given. In the rest of this section, we introduce the KF basics for discrete-time
linear systems, in the sense that this is the foundation for Paper I in this thesis. The readers

are referred to [11, 12] for details about EKF and UKF.

2.2. KALMAN FILTERING BASICS

Consider a Discrete-Time (DT) Linear-Time-Invariant (LTI) stochastic system

Xri1 = Fxp + Gug + w,
2.1)

yi = Hx +v,



w~(0,Q),

v ~ (0,R),
where x denotes the system state, u the input, y the output, and w and v the process noise
and the measurement noise, respectively. The random variables w and v are assumed to
be Gaussian with the covariances Q and R, respectively, which provide the information
about how much the nominal model, i.e., when w = 0, is trusted and how accurate the
measurement is. The goal of KF is to obtain optimal estimation of X, i.e., with minimized
uncertainty, using the stochastic information embedded in w and v. At each time instant
k, the KF estimation consists of two stages. The first stage is known as prediction, during
which the estimation is performed based on the nominal model and the estimate at the

previous one time step, i.e.,

%, = F&; + Guy, (2.2)

P, =FP{F +Q (2.3)

where X~ denotes the a priori estimate with the covariance P~, and X" denotes the a

posteriori estimate with the covariance P*. The second stage is known as the correction

stage, during which the estimate obtained in the prediction stage X, , , is adapted by the

k+1
measurement yi. to produce the corrected estimate f(; b0 1€
K =%, + Kt (er —HE, ), 2.4
Kis1 =P H'[HP,, H" +R]™', (2.5)
P., = (- K P, . (2.6)

where Ky is the gain matrix or weighting matrix which balances the relative importance
between the measurement y; | and the a posteriori estimate f(; 1 The gain matrix Ky is

obtained by minimizing the covariance P}, as in a recursive least-mean-square filter [13],



and, thus, the name of optimal estimation is defined. Note that both the a priori estimate

o— +

X and the a posteriori estimate X 1] are estimates of the state x;,1. However, due to the

+

incorporation of the measurement information into X |,

. A+ .
the uncertainty of X;_, is less than

that of X,

+1» and, thus, more trustful. The mathematical justification for this conclusion is

discussed in Paper I in this thesis.

The KF algorithm (2.2 - 2.6) is initialized by
&+ = E[xo), P} = E[(X} — x0)*]. 2.7)

The choices of X and P depend on how much information is known priori about the
initial state of the system. A sufficient large P{ is expected if not much trust is paid to X;.
Under certain conditions, the estimation uncertainty P; will converge to some constant P,
which is known as the steady-state estimation uncertainty. The convergence of P} and the
converged value P, rely only on Q and R. Although Q and R characterize the stochastic
properties of the process noise w and the measurement noise v, in practice, they are more
often used as tuning parameters to make a tradeoff between the smoothness of the estimate
and the transient performance of Pj. If R weights greater than Q, then the estimation
has more confidence in the measurement, and, thus, the estimation is more noisy, but P;
converges fast to P{,. On the contrary, if Q weights larger than R, then the estimate X is
more smooth. In this case, however, PZ converges slower to PZ, or even worse, PZ may
fail to converge if Q is too large. Note that the convergence of P} and the converged value
P_, are independent of Pj. However, the choice of P affects the monotonicity of P}. If
Pg > P, then monotonic decrease is achieved. Details on this aspect are discussed in
detail in Paper I in this thesis since this property is used to develop a KF-based switching

algorithm in the same paper.



3. ITERATIVE LEARNING CONTROL

3.1. BACKGROUND

The concept of Iterative Learning Control (ILC) appeared in academia in the early
1980s when a series of independent studies were published [14, 15, 16]. As its name
implies, ILC aims at improving the performance of systems which execute the same task for
multiple times. Common information are embedded into the history of previous executions
of the task, which can be learned by ILC to iteratively reduce the error. Although ILC was
initially invented for robotics manipulators [14, 15, 16], through years of development, ILC
finds its applications in a wide range of areas, such as wafer stage [17], inkjet printer [18],
nano-positioning system[ 19, 20], laser metal deposition [21], multi-agent coordination [22,
23], etc. For more applications and overview of ILC, the readers are referred to surveys
[24, 25],

In tracking a reference, the basic tracking performance of a system is typically
guaranteed by a feedback controller. When a task is executed for multipl times, the repeatable
disturbances, however, cannot be utilized by the feedback controller, which is a waste. ILC is
a feedforward control technique which is often built over the overall closed-loop framework.
The dynamics of an ILC system can be considered in two domains, i.e., the time domain
and the iteration domain, as is shown in Figure 3.1. The iteration-domain dynamics is
characterized by the axis perpendicular to the screen, whereas the time-domain dynamics
by that in the screen. An initial input ug[k] to the system results in the error in the initial
iteration, i.e, ep[k]. This error is then learned by ILC through a learning process, the result
of which is used to adapt the input up[k] to generate the input in the next iteration, i.e.,

u1[k]. This process is repeated indefinitely until the error converges to some desired values.
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Figure 3.1. Illustration of iterative learning control in time domain and iteration domain.

As for all iterative algorithms, convergence is the most important performance to
evaluate an ILC system. Lucky for us, through years of development, concepts and theories
regarding to convergence have been well established, including convergence, asymptotic
convergence and monotonic convergence. The other evaluations of an ILC system perfor-
mance include converged error, robustness and convergence rate. These performances may
contradict with each other, for instance, high robustness may be achieved in the price of
large converged error. In practice, therefore, tradeoffs are made among these performances
by tuning a learning function and a filtering function.

This section provides a literature review of ILC basics, performance evaluations
and ILC design, for instance, time-domain and frequency-domain representations of ILC
systems, key concepts such as convergence, asymptotic convergence and monotonic con-
vergence, as well as the conditions under which they are achieved. In the end, we offer some
practical considerations in ILC design and implementation. It is expected that this section
could provide basic understandings of ILC to the readers, and thus be helpful to guide the

readers through the second paper in this thesis.



3.2. ILC BASICS

Consider a Discrete-Time (DT) Single-Input-Single-Output (SISO) Linear-Time-

Invariant (LTI) dynamic system
yjlk] = P(z)u;[k] + d[k], (3.1

where k denotes the time step, u and y respectively, denote the control input and system
output, d denotes the disturbance signal, P(z) denotes the system transfer function [24]
where z refers to the forward time-shift operator. The subscript j denotes the iteration
index and the absence of j in d[k] indicates that the disturbance is repeated over every
iteration. The system P(z) is assumed to be stable and have relative degree of 1. If it is
not stable, a feedback controller can be applied and P(z) would represent the closed-loop
dynamics in that case. It is emphasized here that P(z) maps an input sequence to an output
sequence, rather than mapping a single sample in the input sequence to another sample in
the output sequence. The repeated disturbance signal d[ k] not only incorporates the output
disturbance, but captures the effects of repeated input disturbance and repeated nonzero

initial conditions as well. For instance, consider the system

Xj[k + l] = AX][k] + Bl/tj[k]

(3.2)
yilk] = Cx;[k]
Substituting X[k + 1] = zx[k] into (3.2) and with some manipulations, we get
yilk] = C(zI - A)"'Bu;[k] + CA*Bx[0]. (3.3)
— ——
P(2) d[k]

Given a desired output y4[k], the tracking error in the j® iteration is

ejlk] = —P(z)u;[k] + 6[k], (3.4)



where 6[k] = y4[k] — d[k]. In practice, a repeated process contains finite time duration in

each iteration. Denote with N the length of time in each iteration. Then,

ujlk] = (i[O us[1) -, us(N = D)},
e[kl = {e;[1].¢[2] -+ . e;(N)},

where the one-step delay is caused by the one relative degree in P(z).
Iterative Learning Control is to modify the input u; iteration by iteration by learning

previous errors through an update algorithm. A widely used first-order ILC algorithm is

uj1lk] = Q(2)(u;[k] + zL(2)e;[k]), (3.5)

or equivalently,

ujr1lk] = Q(2)(u;[k] + L(z)ej[k + 1), (3.6)

where ¢;[k] = y;[k] — d[k], O(z) is a filtering function to select learning bandwidth and
L(z) is a learning function. Most commonly, Q(z) is a low-pass filter since the repeatable
errors mainly distribute in the low-frequency range, whereas the modeling uncertainties and
the measurement noise mainly happen in the high-frequency range. It is reported in [20]
that a band-pass filter may have a better performance in the case that non-repeatable errors
occur in the low-frequency range due to nonlinearity.

In order to have an insight of how ILC is implemented on a real system, an illustration
of a plug-in type ILC is depicted in Figure 3.2, where G(z) denotes the plant to be controlled
and C(z) denotes a feedback controller. The controller C(z) guarantees a basic tracking
performance when the ILC is not in effective, whereas the ILC improves this tracking
performance iteratively. The ‘memory’ shown in Figure 3.2 stores the error signal and the

feedforward input from the j iteration which are used for input update in the (j + 1)
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G(z)

Figure 3.2. Illustration of a plug-in type ILC system.

iteration. Ideally, the size of the ‘memory’ is N. In practice, however, the learning function
L(z) and the filtering function Q(z) might be non-causal, and, thus, the ‘memory’ size need
to be altered for implementation. For the system shown in Figure 3.2, if the ILC is disabled,
then

ejlk] = —=P(z)ujlk] + S(z)(r[k] — d[k]), (3.7

olk]

where
G(z) 1

PO =16 97 Tremce

(3.8)
The tracking error is in the same form of the equation (3.4), and, thus, all ILC properties,
theories and designs apply.

3.3. REPRESENTATIONS OF ILC SYSTEMS

To facilitate the performance analysis and the design of the ILC system (3.1) and
(3.5), time-domain representations and frequency-domain representations are introduced.
3.3.1. Time-domain Lifted System Representation. The one-relative-degree DT

LTI transfer function P(z) can be expanded through long division as

PR)=piz 4+ ppz i+ +pyz N+, (3.9)
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where the sequence {py};. | refers to the weighting sequence [26] or Markov Parameters
[27] of P(z). In the case that P(z) is obtained from a state-space representation as in 3.3,
pr = CA*"'B. In ILC, the output sequence {y;[k]}"_, can be acquired by the convolution

of the truncated weighting sequence, i.e., {px }ivzl, and the input sequence {u;[k] kN:‘OI plus

N

the output sequence {d[k]};"_,.

This process can be represented in a matrix framework,
known as lifted system representation, by stacking each signal over its time duration and

the weighting sequence in a convolution matrix, i.e.,

yill] P1 0 ... 0 u;[0] d[1]
2 ... 0 1 d|2
| ol |
Yi[Nl| |pv pn-t oo prif |wiN - 11| |dIN]
—— ———
Yj P u; d

The error dynamics (3.4) in lifted system representation is accordingly defined, i.e.
€; :—Pllj +A, (3.11)

where ; = [e;[1],¢;[2],-- -, ¢;[N]]" and A = [6[1],6[2], -, 6[N]]".
The lifted system representation allows the construction of a more general learning
algorithm than (3.6), i.e.,

Ui = Q(llj + Le]'), (3.12)

where Q and L are full-rank filtering matrix and learning matrix of appropriate sizes, re-
spectively, and are to be designed. In the case that the learning algorithm takes the form of

(3.6), then
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q  g-1 .- g-(N-1) b 11 ... Loy
q1 q -+ 4-(N-2 h b ... L.n=2
Q= Y L= M2 (3.13)
[N-1 gn-2 .. G0 | N1 2 oo o
where {qk}sz_—l(N—l) and {lk}sz_—l(N—l) are truncated sequence of the weighting sequences

{qk}i_. and {li};2 ., respectively, and

1 2

Q(Z):"'+6]-2Z2+q_1z+q0+q1z_ + @7+,

(3.14)
L(Z) =+ l_222 +1l_ 17+ + llz_l + 122_2 4+

Note that different from P(z), Q(z) and L(z) can be non-causal functions since their input
are taken from the previous iteration which are available. In particular, if Q(z) and L(z) are
casual, then Q and L degrade to lower triangular matrices.

3.3.2. Frequency-Domain Representation. The z-domain representation of sys-

tem dynamics (3.1) is obtained by applying z-transformation on both sides of (3.1), i.e.,

Yi(z) = P(2)U;(2) + Dj(2), (3.15)

where

Ui(z) = » u;[k]z7%, (3.16)

e

>~
Il

0

and Y;(z), Dj(z), A(z) and E;(z) are defined accordingly. Similarly, the z-domain represen-

tation of the learning algorithm (3.5) is

Uj(z) = Q(2)(U}(2) + zL(2)Ej(z)). (3.17)

The frequency-domain representations of the system dynamics (3.1) and the learning
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algorithm (3.5) are obtained by substituting z = ¢~/¢ into (3.15) and (3.17), respectively,

ie.,

Yi(w) = P(ej“’)Uj(w) + Dj(w), (3.18)

Uj(w) = Q(e’)Ujs1(w) + e/ L(e!*)Ej(w)). (3.19)

Note that P(z) can be regarded as the z-transformation of the infinite weighting
sequence { pk},‘z"zl. Therefore, the z-domain representations (3.15) and (3.17), and thus the
frequency-domain representations (3.18) and (3.19), assume infinite length of time in each
iteration. This can be seen by setting N — oo in the time-domain lifted system (3.10).
Apparently, this contradicts with the reality that each iteration occurs for only finite length
of time. Despite of this contradiction and the difficulty in implementation [28], frequency
domain ILC system is considered as an approximation of its time-domain counterpart.
Further, the ILC performance analysis, especially the robustness analysis, is more easily to

be carried out in the frequency domain than the time domain.

3.4. ILC PERFORMANCE

As an iterative algorithm, ILC must be evaluated for its convergence, the convergent
state and the transient behavior. Further, since some ILC design methods are based on a
nominal system model, the robustness of ILC to modeling inaccuracies is also critical.

3.4.1. Convergence and Asymptotic Convergence. Convergence is the most fun-
damental requirement for an iterative algorithm. Convergence of the ILC algorithm (3.12)
indicates that the control sequence {u; }}?‘;0 converges to some finite constant vector. In

regarding to convergence, there are two definitions.

Definition 1. [Convergence] The system (3.1) controlled with the ILC algorithm (3.12) is

said to be convergent if Ju,, € RN such that [29]
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lim |ju; — ue|| = 0. (3.20)
Jj—o00
Definition 2. [Asymptotic Convergence] The system (3.1) controlled with the ILC algorithm
(3.12) is said to be asymptotically convergent if it is convergent, and when Q(z) = 1, [29]
lim |e;|| = 0. (3.21)
]—)00
Asymptotic Convergence is a more strict definition than Convergence, in the sense
that if Q(z) = 1, Asymptotic Convergence implies that the error converges to zero whereas
Convergence only implies that the error is convergent but not necessarily to zero. Conditions
under which Asymptotic Convergence is achieved are stated in Theorem 1 and Theorem 2

in terms of time domain and frequency domain, respectively.

Theorem 1. The system (3.1) controlled with the ILC algorithm (3.12) is Asymptotically

Convergent if and only if
p(QI-LP) <1 (3.22)

where p(A) denotes the spectral radius of a matrix A.

Theorem 2. The system (3.1) controlled with the ILC algorithm (3.5) is Asymptotically
Convergent for N = oo if

10(2)(1 = zL(2)P(2)ll < 1. (3.23)

Further, if Q(z) and L(z) are causal, then Asymptotic Convergence is also achieved for finite

N.

Theorem 2 provides an insight in understanding the role of Q(z) in the ILC system.
By assigning small values to Q(z) in the frequency range where (1 — zL(z)P(z)) is greater
than one, the robustness of the system to modeling uncertainties is increased. Note that

Convergence is regarded as the Asymptotic Convergence in some literature, and, conse-
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quently, (3.22) is considered as a necessary and sufficient condition for Convergence. It is
emphasized here that this is inappropriate, since the necessary and sufficient condition for
Convergence allows equality in (3.22), as is shown in Paper Il in this thesis.

If the ILC system is Asymptotically Convergent, then it is possible to obtain the

convergent error analytically, i.e., [24]

ew = [I-P[I-QI-LP)]'QL]JA (3.24)

for the lifted system, and

1-0(z)

Ew(z) = 1 -02)[1 - zL(z2)P(2)]

A(z) (3.25)

for the z-domain system. It is straightforward to observe that in either case, a prerequisite
to achieve zero convergent zero is to remove the filtering function, i.e., Q = I or Q(z) = 1.
Although Q(z) = 1 is adopted in many references since L(z) itself can provide sufficient
robustness for the system, in practice, Q(z) < 1 for certain frequencies to either filter out
the modeling uncertainties and noise or pass errors in frequencies of interest. Consider an

ideal low-pass filter with cutting-off frequency €, then

_ Ale’®) w<Q
Eo(e/?) = . (3.26)

0 w > Q

3.4.2. Monotonic Convergence. The Asymptotic Convergence guarantees that the
error is convergent, in particular, converges to zero if Q(z) = 1. However, it is possible that
the error becomes unrealistically large before reaching the convergent state. This undesired
behavior is called transient growth and is commonly observed in the ILC systems. To

avoid this issue, monotonic convergence is preferred when designing an ILC system. The
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monotonic convergence is defined as

lleje1 — ewoll, < 71 [lej — el (3.27)

for the lifted system, and

|Ej+1(2) - Ej(2)|, <72||Ej(2) - Ej(2)]|. (3.28)

for the z-domain system, where 0 < y;, < 1 is the convergence rate. These two definitions
imply that the distance between the tracking error and the convergent error is monotonically
decreasing as the iteration index increases. In order to achieve monotonic convergence, it
is sufficient to have

QU -LP)|l; <1 (3.29)

for the lifted system, and

10(2)(1 = zL(2)P(2)|le < 1 (3.30)

for the z-domain system. It is emphasized here that the conditions (3.29) and (3.30) are
only sufficient. In other words, it is possible that monotonic convergence is still achieved
while these conditions are violated. To have a deeper insight in transient growth analysis,
the readers are referred to [30]. Further, note that the z-domain monotonic convergence
condition (3.30) is identical to the stability condition (3.23). It is remarked here that when
Q(z) and L(z) are causal the condition (3.30) provides both Asymptotic Convergence and
monotonic convergence independent of N [24].

3.4.3. Robustness. A critical issue in ILC is robustness, i.e., whether a system
remains Asymptotic Convergent subject to plant perturbations, or even more stringent,
whether it remains monotonically convergent subject to plant perturbations. As shown in
[24], when L(z) is causal, it is always possible to choose a sufficiently small [y such that the

Asymptotic Convergence condition (3.22) remains satisfied even though P is uncertain and
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Q = L This conclusion, however, may not hold when L(z) is noncasual, and, further, robust
Asymptotic Convergence does not imply robust monotonic convergence. The introduction

of the filtering function Q(z) helps resolve this issue. Consider the uncertain plant
P(z) = P(2)(1 + W(2)K(2)), (3.31)

where P(z) is the nominal plant model, W(z) is the known and stable weight function, and
K(z) is unknown and stable with ||K(z)||., < 1. It is proposed in [24] that the ILC system

(3.1), (3.6), (3.31) remains monotonically convergent if

y = |0(e/)|[1 — e/ L(e/*)P(e/)|

W(e'®)| < : SRR
el < — e B

, WE [—-m, ), (3.32)

where y denotes the convergence rate. The condition (3.32) implies that the robustness
is increased by assigning small values to Q(e/®) at high frequencies where modeling
uncertainties occur. Note that when Q(z) and L(z) are noncausal, the condition (3.32) only
ensures robust monotonic convergence for N = oo. Despite of this issue, we recommend
that the same condition may still be used in practical ILC design. The condition (3.32) may
help find an initial bandwidth for Q(z), which is tuned to achieve better performance later.

3.4.4. Considerations of Noise and Non-repeatable Errors. The filtering func-
tion Q(z) has more functionality than simply increasing the robustness of the ILC system.
In fact, it is commonly used in isolating the repeatable disturbances from non-repeatable
disturbances [20], the latter of which prevents the error converging to e, obtained assuming
only repeatable disturbances in the ILC system. Note that the noise and non-repeatable
errors do not affect the robustness of the ILC system, provided they are bounded. The
effect of noise and non-repeatable disturbances are now discussed in a plug-in type ILC

framework as shown in Figure 3.3.
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Figure 3.3. Plug-in type ILC system incorporating measurement noise and non-repeatable
disturbances.

Comparing to the ILC system in Figure 3.2, the system in Figure 3.3 incorporates the
measurement noise n; and a non-repeatable disturbance d; which are iteration-dependent.

When ILC is disabled, the error signal e;[ k] is as follows:

ejlk] = —P(2)u;[k] + S(2)(r[k] = d[k] = d;[k]) + T(z)n;[k] (3.33)

= —P(2)u;[k] + 6[k] =S(z)d;[k] + T(z)n;[k], (3.34)

non—repeatable

where P(z) and S(z) are defined in (3.8), and

G(2)C(2)
T(z) = ———————. 3.35
When ILC is enabled, the error signal e;[k] is as follows:
ej =Q(1 - PL)ej—1 + (1 - Q)S(r —d)=S(d; + Qdj-1) +T(n; — Onj-1), (3.36)

repeatable non—repeatable noise

where the arguments z and k are dropped for compactness. It is observed from the equation
(3.36) that the effects of non-repeatable disturbances and noise are accumulated if Q = 1,

whereas only current non-repeatable disturbance and noise appear if Q = 0. It is also
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observed that if Q = 1 and the non-repeatable part as well as the noise are suppressed
close to zero, then the error will converge close to zero. This suggests a way of designing
Q and the feedback controller C(z). An appropriate Q is expected to pass all repeatable
disturbances while filtering out the non-repeatable and noise, and a good feedback controller
C(z) is expected to suppress the sensitivities of non-repeatable disturbances and noise. The
design process may need a few iterations of back-and-forth tuning to maximize the tracking

performance.

3.5. ILC DESIGN

The objective of ILC design is to acquire the appropriate learning function L(z)
and filtering function Q(z) such that the repeatable disturbances are rejected. The learning
function L(z) determines the convergence rate whereas the filtering function Q(z) affects the
robustness and converged error, and it filters out the non-repeatable disturbances and noise,
which, as discussed above, cannot be learned by ILC. These components are suppressed
by the feedback controller C(z). This section summarizes three popular techniques in
designing the learning function L(z), i.e., PD-type design, model-inversion design and
Linearly Quadratic (LQ) optimization design.

3.5.1. PD-Type Design. The PD-type learning law gets its name since there is a
proportional term and a derivative term in the law. The very first ILC paper [14] utilized
a continuous-time D-type learning law, which may fail when the initial conditions for the
output and the reference are not identical. The PD-type learning law resolves this issue
by introducing a proportional term and is the most widely used learning law [24] due to
its simplicity in design and implementation. The PD-type learning law does not rely on
an accurate system model and generally contains only two parameters. A discrete-time

PD-type learning law is as follows:

uj+1[k] = I/tj[k] + kpej[k + 1] + kd(ej[k + 1] — e][k]) (337)
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It is straightforward that Asymptotic Convergence is achieved with PD-type learning
law (3.37) if |1 - pi(k, + kd)| < 1. Further, robust asymptotic convergence is guaranteed
with sufficiently small k, + k; if p; is known and its perturbation is bounded. It is,
however, very difficult to achieve monotonic convergence by simply tuning k, and kg4,
which is more artistic than scientific. The most applicable approach to achieving robust
monotonic convergence is to use a low-pass filter in combination with the learning law
(3.37). As is observed from (3.30), it is always possible to find a filtering function Q(z)
such that the monotonic convergence (3.30) is satisfied. Although the introduction of Q(z)
increases robustness, filters out non-repeatable disturbances and noise, and is helpful in
accomplishing monotonic convergence, it may increase the convergent error. The lower the
bandwidth of Q(z), the larger the convergent error. Therefore, it is recommended to tune
the bandwidth of Q(z) in combination with k, and k, to obtain good transient performance
and low convergent error. The survey [24] suggests starting with a safe bandwidth and
tuning k, and k, to obtain good transient behaviour, and varying the bandwidth afterwards
to obtain low convergent error.

3.5.2. Model-Inversion Design. The goal of ILC is to generate an open-loop signal
that approximately inverts the system dynamics through the learning function L(z) to track
the reference. The most straightforward design of L(z) is to directly invert the system model,

i.e.,
1

L(z) = y—5—,
() sz(z)

(3.38)

where P(z) is the nominal model of the system P(z) and y determines the convergence
rate. The multiplication of P(z) by z in the denominator is to make L(z) proper and thus

physically realizable. In lifted system representation, (3.38) is expressed as follows:

L =yP!. (3.39)

The model-inversion design provides fast convergence rate, in the sense that if P(z) = P(z)
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and Q(z) = 1, the error converges to zero after one iteration. In practice, however, mod-
eling uncertainties are inevitable. This approach, therefore, rely heavily on the modelling
accuracy. Lucky for us, the introduction of Q(z) in the learning algorithm can reduce the
sensitivity to modeling uncertainties. Further, a smaller y can also compensate the effect
of modeling uncertainties, but in the cost of slow convergence. In addition, a smaller y
can also reduce the amount of noise transmitted to the control. This enables increasing the
bandwidth of Q(z) so that the convergent error is reduced.

Note that both (3.38) and (3.39) assume that P(z) is a minimum system. In the case
that P(z) is non-minimum, L(z) contains unstable poles. In this case, we separate L(z) into
a stable part and an unstable part, and the unstable part is realized in the negative direction
of time. This realization of L(z) is called stable-inversion of P(z). The details of this
approach are found in [19, 31].

3.5.3. Linearly Quadratic Optimization. The Linearly Quadratic (LQ) optimiza-
tion design is conducted in the lifted system framework. The goal of this approach is to

minimize a cost function. A unified cost function is as follows[24]:
J= e]T.+1QLer+1 + 5u?+1RLQ(5llj+1 + U?HSLQIIJ'H, (3.40)

where 6u;;; = u;;; — u; is the input change from the jth iteration to the (j + 1)th iteration,
Qo is positive definite, Ry and S are positive semi-definite. In some literature, e.g.,
[32], the cost function does not contain the the penalty term on the control input, i.e.,
Sro =0and

J= e;+1QLer+1 + u;+ISLQUj+1. (3.41)

A disadvantage of this cost function is that the minimum convergent error cannot be reached
due to the offset in the input [33]. In order to resolve this issue, another cost function is
proposed in [34], i.e.,

J = eJT.HQLerH + 5ll]r+1RLQ5llj+1. (342)



22

Minimization of the cost (3.42) with the constraints (3.11) and (3.12) results in optimal

learning function and optimal filtering function

Lopr = (PTQoP + R10) '"PTQLo, Qupr = L (3.43)

It is shown in [34] that with L = L.;p and Q = Qp, monotonic convergence is achieved,

and the convergence rate vy is bounded, i.e.,

1

Y < TQ(P)’ (3.44)

where o (P) denotes the smallest singular value of P. Although in the absence of the filtering
function Q, the LQ optimization design (3.43) still guarantees the robustness of the ILC
system to high-frequency modeling uncertainties to some extent [33]. To incorporate more
complex structured modeling uncertainties in the LQ optimization design, the readers are
referred to [33].

3.5.4. Recommendations for ILC Design. So far we have introduced the ILC
algorithm, evaluation of the performance of an ILC system, as well as three popular methods
in designing an ILC system. In this section, we offer some practical considerations for ILC
design. As mentioned above, ILC is intended to mitigate only the repeatable disturbances
appearing in the system. Any non-repeatable disturbances and noise entering the learning
algorithm may weaken the power of ILC. This suggests a Q(z) that prohibits the non-
repeatable disturbance and noise from being learned by the ILC algorithm. If the non-
repeatable disturbance is insignificant and thus can be ignored, then Q(z) is simply set to
a low-pass filter, which suppresses the noise as well as increases the robustness. A more
practical solution for this case is to run the system for several iterations and learn from
the averaged signal. This allows a higher bandwidth in the low-pass filter, and, thus, lower
converged error can be attained. If both non-repeatable disturbance and noise are significant,

then a band-pass filter may work better. Further, in order to improve the overall tracking
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performance, the feedback controller C(z) may be redesigned to mitigate the non-repeatable
error. In order to achieve this goal, repeatable and non-repeatable errors need to be defined.
One such method is presented in [20], in which the repeatable-to-nonrepeatbale (RNR)
ratio is measured by averaging the error over several iterations and taking the FFT of the
average. High RNR ratio implies repeatable errors are dominant, and, thus, the frequency
range of this part is the bandwidth of Q(z). Low RNR ratio implies nonrepeatable errors
are dominant, and, thus, C(z) is redesigned to mitigate errors in this frequency band. Once
L(z) is obtained, e.g., using model-inversion design, the ILC can be executed. It might be
useful to perform back and forth the RNR analysis and ILC execution in order to improve

the combined performance of the feedback controller C(z) and the ILC.
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ABSTRACT

Laser Trackers (LTs) are useful metrology tools for quickly accquiring accurate
3D position measurements of a target over long ranges (e.g., up to 100 m). These tools
often employ an Absolute Distance Meter (ADM) which is known to have a temporal
measurement shift arising from the internal thermal effect. The measured radial distance
of a regular target can be compensated by subtracting from it the ADM shift. However, for
many LTs currently in service the ADM shift cannot be acquired when an LT is in Operation.
In this work, an estimate of the ADM shift is adopted for radial distance compensation when
an LT is in Operation. A Switched Estimation (SE) algorithm is proposed to evaluate the
validity of the estimate. The SE algorithm leverages the estimation uncertainty given by
a Modified Kalman Filter (MKF) and confines the estimation uncertainty within a pair of
predefined boundaries. When the estimation uncertainty reaches the upper bound, a regular

Kalman Filter (KF) is adopted to calibrate the ADM shift estimate, during which the LT is
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directed to measure the ADM shift. Once the uncertainty reaches a lower bound, the LT
is redirected to be back in Operation. Obviously high estimation accuracy, consequently
high compensation accuracy, conflicts with high operation productivity. A tradeoff can be
made by selecting an appropriate pair of boundaries. A numerical method is given for the
selection of proper boundaries by creating a selection map. Experimental results show that
with the proposed SE algorithm, the maximum variation of the radial distance measurement
is reduced by more than 70% while the operation productivity is kept at 93.02%.

Keywords: Laser Tracker, ADM shift, Kalman Filter, switched estimation, RTS smoother

1. INTRODUCTION

A Laser Tracker (LT) is a portable, 3D coordinate-measuring instrument that is
widely used for large-scale measurements, optical alignment, reverse engineering and the
calibration of industrial robots and machine tools [1, 2, 3, 4, 5]. An LT can track a target,
often a Spherically Mounted Retroreflector (SMR), and determine its position in spherical
coordinates. This is accomplished by sending a laser to the target and reflecting it back.
The light is guided by a gimbaled beam-steering mechanism on the LT when the target is
moving. The azimuth angle, 6, and the elevation angle, ¢, to the target are recorded by two
optical angular encoders on the gimbal mechanism. The distance from an LT to a target, /,
often referred to as radial distance, is typically measured by an Interferometer (IFM) or an
Absolute Distance Meter (ADM), both of which are inside the LT.

Although an LT can operate in either IFM or ADM mode, or both, the focus here is
on the ADM mode, which is used to automatically measure multiple fixed targets. However,
a ‘shift’ is known to occur when using the ADM mode. It was found in [6] that the temporal
instability of the ADM circuit resulted in a maximum variation of 5 mm when measuring
at a fixed distance of approximately 1 m. This is because an ADM directly measures the
absolute distance of a target to the LT using techniques such as frequency modulation and

time-of-flight [7, 8]. Regardless of the measurement technique, it measures an analog value
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(e.g., phase shift, time duration) with high precision [9]. Therefore, small variations in the
response of the analog sensor (e.g., optical fiber) and electronics, which may result from
internal temperature variations in an LT [9], can cause significant variations in the computed
distance (i.e., the radial distance). This is referred to as the ADM shift. Note that the ADM
shift’s effect on radial distance measurements is independent of the position of the target
being measured.

Consider a multi-target measurement experiment shown in Figure 1a. Targets 1 ~ 4
are rigidly attached on a concrete ground at fixed distances to the LT. Target O is fixed at
the LT home position, which is located on the LT at a predetermined distance to the ADM.
In the experiment, the LT automatically measures every target in a repeated sequence for
approximately 24 h. Defining a complete measurement of all five targets as one cycle, the
LT dwells on each target for 2s within a cycle and dwells for 30 s between two consecutive
cycles. From the authors’ experience, 2 s is the minimum dwell time needed to ensure
successful measurements when the LT is redirected from one target to another target. The
30 sis also an empirical value such that slowly varying property of the ADM shift is captured

while not leading to a large volume of measurement data. The environmental temperature

target 0 Laser —
(home ‘ ' tracker £
position) ® h . / é
27 -
//////’:’/ -g
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Floor PO/ =
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/,/’, P target 1 =
//j/ target 2 Plastic Block E
,é{/ c (glued on the floor) 5 T
7 @ target 3 0
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Q’ target 4 0 5 10 15 20 25
| time (hr)
(a) (b)

Figure 1. (a) Multiple-targets measurement experimental setup (A =~ 990 mm, B ~ 1954
mm, C = 2950 mm and D = 3968 mm are distances from the LT to targets 1, 2, 3 and 4,
respectively). (b) Resulting distance variation when measuring each target.
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remains stable (i.e., the maximum variation is within +1 °C) such that the expansion and
contraction of the concrete ground are negligible. Manufacturer suggested warm-up and
calibration are conducted prior to the measurements such that the initial measurements are
assumed to be unaffected by the ADM shift. Figure 1b depicts the variation of the measured

radial distance, which is

ori(t(i, j)) = ri(2(i, ) — ri(2 (i, 1)), (1

where r refers to the radial distance measurement, ér refers to its variation relative to the
initial measurement, i refers to the target index, j refers to the cycle number and #(i, j) is the
time when the i'" target is measured in the j" cycle. A maximum distance variation of 0.246
mm is observed in Figure 1b, which is 24.6 times the specified measurement accuracy 0.01
mm. Itis also observed that every or;(¢(i, j)) changes in a nearly identical way, regardless of
the target distance to the LT. It is concluded from [10] that the observed distance variation
is dominated by the ADM shift. Hence, or;(t(i, j)) is used to approximate the ADM shift
measurement.

The existence of a significant ADM shift severely diminishes measurement accuracy.
Methods such as “symmetric design” are studied in literature for ADM shift compensation
[9, 11, 6]. By measuring a reference target located at a known fixed distance, the ADM
shift can be acquired and used to counteract its effect on the radial distance measurement
of a target. Some LTs currently in service use a target at the home position as the reference
target. We refer to this target as the reference and the targets elsewhere as the regular targets.
When an LT is accessing regular targets, we say that it is in Operation. An LT, however,
cannot simultaneously measure the reference and be in operation. One solution is to access
the reference first, and consequently the ADM shift, and then use this value for radial
distance compensation in the subsequent operations. However, the problem is that this may

result in a large difference between the actual ADM shift and the ADM shift that is used for
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radial distance compensation, in the sense that the ADM shift is continuously changing. We
denote the latter as “ADM shift estimate”. To maintain accuracy, the ADM shift estimate
needs to be regularly calibrated to be as close as to the actual ADM shift. If a significant
fraction of time is spent on calibrating the estimate, the operation productivity will be
diminished. On the other hand, if the ADM shift estimate is calibrated less frequently, then
larger errors may occur, resulting in inaccuracy of the compensated radial distance.

This motivates the authors to develop a Switched Estimation (SE) algorithm to
balance the operation productivity and the ADM shift estimation accuracy, or equivalently
the compensated radial distance measurement accuracy. The SE algorithm utilizes an
estimator which can evaluate the estimation uncertainty in addition to producing an adequate
estimate. Suitable estimators for this purpose include the Kalman Filter (KF) and the Hy
filter. The KF is the most commonly used filter for dynamic system state estimation
and provides a systematic way to weight trust in model versus trust in the measurements.
Therefore, in this paper, the SE algorithm utilizes a KF for estimation. The algorithm
confines the estimation uncertainty within a pair of predefined boundaries. By tuning
different boundaries, desired productivity and estimation accuracy are achieved.

The rest of this paper is organized as follows. Section 2 introduces the basics of the
KF and a Modified Kalman Filter (MKF) on which the SE algorithm is based. Section 3
presents the SE algorithm for general Linear Time-Invariant (LTI) stochastic systems. In
Section 4, an ADM shift model is constructed, and the SE algorithm is then applied to the
ADM shift estimation and to the LT radial distance measurement compensation. In the end,

Section 5 summarizes the paper.

2. KALMAN FILTER AND MODIFIED KALMAN FILTER

A Switched Estimation (SE) algorithm is developed in this paper based on a Modified
Kalman Filter (MKF). Before introducing the SE algorithm, in this section we introduce

the MKF and the Kalman Filter (KF).
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2.1. KALMAN FILTER

For a Linear Time-Invariant (LTI) Discrete-Time (DT) dynamic system

Xi+1 = Fxp + Guk + Wy

vi = Hxg +vg
, (2)
wi ~ N(0,Q)

vk ~ N(O,R)

where X respectively yy refer to the system state vector and output at the time instant k, wy,
respectively v; denote process uncertainty and measurement noise, which are assumed to
be Gaussian with covariance Q and variance R respectively, the KF generates optimal state
estimates X; and optimal output estimates y; by recursively executing a prediction stage

and a correction stage. In the prediction stage, the KF executes the equations

A — _ A+
- _ +T
i1 = FPLF +Q, 4
where f(; L1 18 the a priori estimate of X;;; with estimation error covariance matrix P; 1

The estimation in this stage is a pure predictor based on system model without considering
the measurements. In the correction stage, such an estimate is improved by executing the

equations

ﬁZH = X+ Kir1 (er1 —HX ), (&)
K+ = P, H'[HP, H +R]™", (6)
24.1 =I- Kk+1H)P;+1 > (7

Jre1 = HE, 8)
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where ﬁ; .1 is the a posteriori estimate of Xy, with estimation error covariance matrix
P;_,. The variable Ky, is the Kalman gain leveraging the relative importance between

the measurement and the pure predictor estimate. The overall KF algorithm (3) - (8) is
initialized by a pair of user-defined values for XA(J)r and P.

Note that the matrix P (denoting either P;_ or P}) is a symmetric positive definite
matrix. Its diagonal elements represent the variances of the estimation uncertainties of
the corresponding states. Denote by m(Py) a measure of the covariance matrix P;. Two
commonly used measures are the trace of Py, i.e., tr(P;), and the determinant of Py, i.e.,
det(Py). In this paper, we use tr(Py) for m(Py) and refer to it as the estimation uncertainty
for simplicity. It is shown in [12] that the inequality tr(P}) < ¢r(P;) is always true, which
implies that the correction stage always reduces the estimation uncertainty relative to the
previous prediction stage. This property is useful in the development of SE strategy in the

sequel.

2.2. MODIFIED KALMAN FILTER

The KF requires successful measurements in the correction stage to improve esti-
mation accuracy. In practice, however, measurement data may be missing. For instance,
unreliable communications may result in random measurement loss, which is common in
large sensor networks [13, 14]. Further, as in the ADM shift problem studied in this work,
ADM shift measurements are not available when the LT is in Operation (i.e., not measuring
the reference target at the home position). Thus, the KF needs to be modified to account for
this situation. A Modified Kalman Filter (MKF) has been proposed in [15] and is widely
used to resolve the issue of missing measurements in a KF implementation. The MKF
adopts the same equations as the KF in the prediction stage, whereas in the correction stage

it executes the following equations

ﬁk+l = ﬁ;.'_l + Kk+1(yk+1 - Hﬁ];.‘.])a )
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Kist = i1 P H [HPL H + R i = 0,1, (10)
PZ+1 = (I_Kk+1H)P;+1a (11)
Jre1 = HE] . (12)

where 7, refers to the Measurement Availability Indicator (MAI) with 1 indicating the
measurement is available at time instant k + 1 and O indicating it is not. Note that the MKF
utilizes only the prediction when the measurement is not available and behaves as a regular
KF when the measurement is available.

Depending on the properties of the missing measurements, 7+ could be either
random or deterministic. In the case of unreliable communication, the measurement loss
is random and thus 7x4; is random. In this case, n;+; cannot be predicted offline and only
statistical analysis can be performed [13]. On the other hand, in the case of the ADM shift
estimation problem studied in this work, the MAI is used as an on/off switch which could be
computed offline prior to implementation. The MAl is turned on by setting 7;+; = 1, which
forces the LT to measure the ADM shift, whereas by setting 77x+1 = 0, the LT is forced to be
in operation. This process is referred to as a Switched Estimation (SE) strategy. We would
discuss the SE broadly for general LTI DT stochastic systems in the next section and apply

it to LT radial distance compensation later.

3. SWITCHED ESTIMATION STRATEGY

A Switched Estimation (SE) algorithm, based on the MKF given above, is now
developed. The SE algorithm utilizes an upper bound U and a lower bound L to constrain
the MKF estimation uncertainty within between them. When the estimation uncertainty
reaches the upper bound, the MAI is turned on, whereas when it reaches the lower bound,
the MAI is turned off. We first discuss the propagation of the MKF estimation covariance,

and then present the SE algorithm in detail.
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3.1. PROPAGATION OF MKF ESTIMATION ERROR COVARIANCE

The one-step recursive expressions for the estimation error covariance matrix, i.e.,

+ . . . A+ .
P, of the a posteriori estimate X, | given by MKF are

P!, =(I- (FP;F' + QH'(H(FP;F" + QH' + R)"'H)(FP;F" +Q),(n = 1), (13)

P, =FP/F +Q,(n=0), (14)

for MAI turned on, i.e., 7x+1 = 1, and turned off, i.e., n = 0, respectively. The equation
(13) is essentially the one-step recursive equation of a regular KF and has the same property
as the Discrete Riccati Equation (DRE) [12]. The equation (14) is the Discrete Lyapunov
Iteration (DLI) which characterizes the estimation uncertainty of a pure predictor. There

are two extreme situations:

1. The MAI is always turned on.
In this case, measurements at every time instant are successfully processed, and, thus,
the MKF works as a regular KF. The KF is stable and eventually provides an optimal
estimate with constant estimation covariance provided the two conditions are satisfied

[12, 16]

a. (R%H, F) is detectable,

b. (F, L) is stabilizable,

where L is any square matrix such that LL” = Q. This indicates P} eventually converges
to a constant matrix P¥, as long as (l1a) and (1b) are satisfied. The converged solution
PZ, is independent of the initial value Py selected. Further, if P} is initialized greater
than P(, ie., PJ > P, (meaning that P — P, is non-negative), which is common in
practice due to incomplete knowledge of the initial condition, then P} will monotonically

decrease to PY, [16], i.e.,
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Pj>--->P 2P/, >--->P, and klisz:P:o (15)
V k > 0. The inequality (15) implies that
tr(Pg) > - = tr(P)) 2 tr(Py, ) = - > tr(P), (16)

where tr(P}) is a measure of the estimation covariance matrix P} and represent the

estimation uncertainty as mentioned above.

The convergent solution P, of the recursive equation (13) when the MAI is always turned
on can be obtained by iteratively running equations (4), (6) and (7). Alternatively, it can

also be acquired by solving P_, for the Discrete Algebraic Riccati Equation (DARE)

P_ = FP_F’ — FP_H' (HP_H' + R)"'HP_F’ + Q, (17)

and substituting P_ to equation (6) and subsequently equation (7).

. The MAI is always turned off.

In this case, the MKF works as an open-loop predictor and the DLI characterizes its
estimation uncertainty. The DLI has a unique symmetric positive definite convergent
solution if and only if F is stable [17], i.e., all eigenvalues of F lie strictly inside the unit
circle, and this solution is independent of the initialization matrix Pj. This indicates
that the MKF eventually provides an estimate having a constant uncertainty even if the
measurement is not available, provided that the system model is accurate enough. Note
that the convergent solution given by equation (13) is less than the convergent solution
given by equation (14), measured in trace. To differentiate, we denote the former one by

P and the latter one by P{, 1, ;. Then,

+
00,ARE’

tr(P:o’ ARE) < tr(P:O’DLI). (18)
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This is straightforward by noticing that equation (13) results in a regular KF while
equation (14) results in a pure predictor, and that for a regular KF, the estimation
uncertainty given by the correction stage is always no greater than that given by the
prediction stage, i.e., tr(P}) < tr(P}). On the other hand, if F has at least one eigenvalue
with magnitude greater than one, then P} given by the DLI (14) will eventually become
infinite, i.e.,

tr(PLprp) = kh_r)rc}o tr(P}) = oo. (19)

Further, in the case that F is marginally stable, the DLI (14) may have a convergent
solution, which could happen when Q has zeros on its diagonal. In practice, however,
modeling uncertainties cannot be avoided, and, thus, Q always has positive elements
on its diagonal. Consequently, the same result (19) is obtained for marginally stable

systems.

Therefore, no matter how F is structured, the estimation uncertainty given by the
pure predictor (14) when the MALI is always turned off eventually exceeds that given by the
regular KF (13) when the MAI is always turned on. This property is used in the development

of the SE algorithm.

3.2. SWITCHED ESTIMATION STRATEGY

A Switched Estimation (SE) strategy is developed in this section. In general, the
SE strategy switches the estimation process between the regular KF and the pure predictor
mentioned above by controlling the MAI to be on and off using an SE algorithm. The
SE algorithm utilizes an upper bound U and a lower bound L to constrain the estimation
uncertainty tr(P;) within between them. When #7(P) reaches the lower bound, the MAI

is turned off, and, thus, the pure predictor (14) is executed. This estimation continues until
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tr(P}) reaches the upper bound. The MAL is then turned on and the regular KF is executed
such that tr(P}) is reduced. This process continues until the overall estimation process is

terminated. An illustration of this strategy is depicted in Figure 2.

| |
- | Initial Calibration | Prediction ' Recalibration
(P "> )

MAI Off

Figure 2. Illustration of the Switched Estimation strategy.

Figure 2 shows the case for which F is a scalar with magnitude one. Otherwise, the
shape of tr(P}) relative to k needs to be modified appropriately. The SE strategy consists
of three stages, i.e., the Initial Calibration stage, the Prediction stage and the Recalibration
stage. The monotonic decrease of the estimation uncertainty #r(P}) is ensured by satisfying
the conditions discussed in Section 3.1. The term calibration is used because during the
whole estimation process the state estimate X; is periodically calibrated. In the Prediction

stage, X7 is given by the pure predictor

%7, = F} + Gu, (20)

which is obtained by combining equations (3), (4), and (9) - (11) with ; = 0. Once the es-
timation uncertainty reaches the upper bound U, the MAI is turned on and X} is recalibrated
using the regular KF, until tr(PZ) reaches the lower bound L. After U and L are selected,
the SE strategy can be implemented, and the time instants kg, k| and k, are automatically

determined which represent the time when the MAI is turned off and on respectively. The
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method to select U and L is discussed in the next section. The SE algorithm is presented in
Algorithm 1. Note that in Algorithm 1, the variable f is controlled by user. When f = 0,

the overall process is terminated.

Algorithm 1: Switched Estimation Algorithm

1 Initialization: P}, X7, m =1, k=0, f = 1;
2 while f = 1do

3 while tr(P}) > L do

4 k1 = 1

5 Execute equations (3),(4), and (9) - (12);
6 k=k+1;

7 end

8 while 17(P}) < U do

9 Nk+1 = 0;

10 Execute equations (3),(4), and (9) - (12);
11 k=k+1;

12 end

13 end

3.3. SELECT U AND L

The upper bound U and the lower bound L set boundaries for the estimation un-
certainty, and, thus, characterize the estimation accuracy. Further, as mentioned above, the
time instants ko, k1 and k, depend on the values of U and L. Motivated by the ADM shift
estimation problem studied in this work, we define the operation productivity p such that

ki — ko
Cka—ko

p 1)
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Note that p € (0, 1). High productivity and high estimation accuracy cannot be acquired at
the same time. Therefore, a tradeoff needs to be made. This section describes the constraints
that U and L need to satisfy and provides a method to determine U and L to achieve desired
productivity while the estimation accuracy is not diminished much.

In the Initial Calibration stage and the Recalibration stage, to ensure that the lower

bound L is successfully reached, a valid L needs to satisfy

L > tr(PY, ). (22)

where tr(P[, ,.p) is defined previously as the trace of the converged solution to equation
(13). In the Prediction stage, in the case that F is stable, as discussed in Section 3.1, the
estimation uncertainty propagates to a constant value tr(P:o, py)- In this case, therefore, a
valid U needs to satisfy

U < tr(P% ) (23)

On the other hand, when F is marginally stable or unstable, it is only required that U < oo.

Therefore, when F is stable, we require that

tr(P;’ARE) <L<U*c< ”(P;,Du)- (24)

When F is marginally stable or unstable, we require that

tr(PY, qzp) < L < U < oo, (25)

The remaining task is to select proper values of U and L such that a desirable
trade off between high productivity p and estimation accuracy is obtained. This requires
solving equation (14) for k; — ko using L and U as the initial and terminal conditions,
respectively, and equation (13) for k» — k; using U and L as the initial and terminal

conditions, respectively. However, neither from equation (13) nor from equation (14) can
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P; be expressed explicitly as a function of k, and, thus, analytical solutions for k; — ko and
k> — ki do not exist. Therefore, the effect of U and L on p will be investigated numerically
by creating a selection map. Note from Algorithm 1 that the entire history of the estimation
uncertainty ¢7(P}) can be acquired prior to the measurement event by running Algorithm1
offline without updating equations (3), (5) and (8). Consequently, k; — ko and k> — ko can
be computed by counting the number of time instants in the corresponding stage for each
given pair of U and L, which in turn results in a p through equation (21). With this method
and given a range of U, e.g., U € [U, U], for each U we can plot p with respect to L for
L € [L, L], thus, creating a selection map. A selection map will be constructed in Section

4.3.2 based on an ADM shift model.

3.4. RTS SMOOTHING

The SE algorithm estimates the state x; using the measurement data up to time
instant k. It cannot use future data if the estimation is conducted in process. However, in
the case that the data can be post-processed after all of the measurements have been taken,
it is possible to use ‘future’ data to improve the accuracy of previous estimates by filtering
them backwards in time. Denote the final time instant of the entire measurement process by
k r. The state estimate and output estimate obtained by post-process filtering are denoted by
Xk |k » and J ., respectively. The estimation error covariance matrix of Xk , is denoted by
Pyk,. A commonly used forward-backward filter known as the RTS Smoother (RTSS) was
presented by Rauch, Tung and Striebel [12], which is used in this work to compute X,

and is obtained as follows[18, 12]:
a) Implement the SE algorithm and store the data x;, x;’, P, and P} Vk € {0,..., k/}.

b) Initialize the estimate Xy, » and the error covariance matrix Py, .

Kijk, = Xy (26)
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Pkf|kf = sz. 27)
¢) Update the estimate Xy« » by recursively executing the equations
Sk =PIF (P, )7, (28)
P, = Pr = Si(Py,, - Pk+1|kf)S£, (29)
Kijky = X + St Rirtjk, — Ky s (30)
Yk, = HRpg,p- (31)

Note that unlike the KF, the post-process RTSS updates the estimate X, backwards in
time, i.e., k = {k r=Lkr=2..., O}. The estimation improvement due to smoothing can

be seen from [12]

P; — Py, = Pr(Py +Py) ' Py, (32)

where Pj, defined in [12], represents the estimation covariance of a backward filter and,
thus, is symmetric positive definite. Consequently, (P} — Pyx,) is positive definite and

tr(PZ) - tr(Pk|kf) > 0.

4. EXPERIMENTAL VALIDATION

The proposed SE algorithm is now applied to estimate the ADM shift and to com-
pensate the LT radial distance measurements. As shown in Figure 2, ADM shift estimate
is calibrated in the Initial Calibration stage and the Recalibration stage. In the Prediction
stage, the estimate is given by the pure predictor (20) and used to compensate for the LT
radial distance measurement. The LT does not measure ADM shift in the Prediction stage,

Instead, it measures the regular SMRs as commanded. As mentioned above, the LT is
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said to be in Operation in this stage. Since the SE algorithm utilizes a dynamic system
model, we introduce an ADM shift model which is acquired through the standard system

identification method.

4.1. ADM SHIFT MODEL

To facilitate the application of the SE algorithm, an empirical dynamic model is
constructed to describe the ADM shift. As mentioned above, the ADM shift is driven by
the internal temperature changes of an LT. Since the design of the electronics and optics
is proprietary and there is no clear input that drives the system, a time-series model is

constructed, i.e.,

Xi+1 = Fxp + wy,

vk = Hxg + vy,
(33)

Wi ~ N(09 Q)»

vk ~ N(O, R),

where X is the state vector, y denotes the ADM shift measurement, w and v, respectively,
are Gaussian process and measurement noise with covariance matrices Q and variance R.
The system parameters, i.e., the matrices F, H, Q and R are identified through a system
identification method in MATLAB System Identification Toolbox.

To perform the system identification, an experiment was conducted to collect the
ADM shift measurements, which is shown in Figure 3. In th