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ABSTRACT

When electromagnetic waves propagate through random dielectric media, they scat-

ter in a predictable, deterministic way. The process is also fully reversible. If one sends an

exiting wave backward through the same material, it will converge back to its original form

and location in the same amount of time it took to originally propagate through the material.

Due to this predictability, a great deal of research has went into studying these scattering

processes in multimode fibers, diffusers, biological tissues, and other media. Scientists

have turned random scattering material into focusing lenses, image transmitters, and highly

transmitting media by controlling the impinging wavefronts with Spatial Light Modulators

(SLMs).

The purpose of this work is to determine whether or not there is “one size fits

all" impinging waveform which, assuming nothing is known about the material, is your

best bet for maximum transmission. If such a waveform existed, researchers would no

longer need to measure the materials’ transmission matrix, optimize waveforms, measure

complex interference patterns, or invasively embed local sensors into the system. Using

a combination of iterative feedback and transmission matrix approaches, we devised an

algorithm which computed this average wavefront for several different systems, concluding

that the best average transmission takes place when maximum flux is placed upon the path

of least resistance, similar to electronic conduction.
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1. INTRODUCTION

1.1. WAVE PROPAGATION IN FREE SPACE AND IN WAVEGUIDES

Plane Waves. A wave front can be defined as the locus of points in space which are

all identical in their phase of oscillation. The simplest three-dimensional wave is the plane

wave, which travels in a direction perpendicular to the wave-fronts. The one dimensional

wave equation describing it is well known

∂2ψ

∂t2 = v2 ∂
2ψ

∂z′2
. (1.1)

Figure 1.1. Plane Wave Moving Along The z′ Axis.
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Equation 1.1 is a partial differential equation of second order. For the axes pictured

in Figure 1.1, it has the well known solution ψ = ψ0 cos(ωt − kz′ + φ). This is a wave

propagating in the z′ direction with a phase velocity v equal to ω/k. Each wavefront is a

geometrical surface in the x’-y’ plane with a phase equal to ωt− kz′+φ, which is a constant

everywhere in that plane.

�

�

�

�

�

�

��

Figure 1.2. Plane Waves Moving Along z′ Axis.

The Wave Vector k. A plane wave can be chosen to propagate in an arbitrary

direction. We will now express the same wavefront ψ = ψ0 cos(ωt − kz′ + φ) in the new

coordinate system x, y, z as displayed in Figure 1.2. Let the position point P be represented

by the vector ®r = x x̂ + yŷ + zẑ, where x̂, ŷ, ẑ are the unit vectors along each axis. The

wavefront can now be expressed as ψ = ψ0 cos(ωt − k(®r · ẑ′)+φ). This follows from the fact

that z′ = r cos(θ) = ®r · ẑ′, where θ is the angle between ®r and ẑ′. Now we will manipulate

the k(®r · ẑ′) term as

k(®r · ẑ′) = (k ẑ′) · ®r . (1.2)
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The product k ẑ′ is a vector lying in the propagation direction ®z′ having a magnitude

equal to k = ω/v. This vector ®k is called the wave vector. Now we can rewrite the plane

wave as follows

ψ = ψ0 cos(ωt − ®k · ®r + φ)

= ψ0 cos(ωt − (kx x + kyy + kzz) + φ)
(1.3)

where ®k = kx x̂ + ky ŷ + kz ẑ and k =
√

k2
x + k2

y + k2
z . The terms kx, ky, kz are equal to the

number of radians of phase change per unit displacement along the x, y, and z axes. Thus

the absolute value of | ®k | is related to the wavelength as 2π/λ.

The Three Dimensional Wave Equation. The three dimensional wave equation is

very similar to its one dimensional counterpart Equation 1.1. It can be written in Cartesian

coordinates as (Bekefi and Barrett, 1977)

∂2ψ

∂t2 = v2
(
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2

)
= v2∇2ψ (1.4)

where ∇ is the gradient operator and ∇2 is the Laplace operator. As a quick exercise, we

will verify that Equation 1.3 is indeed a solution to Equation 1.4. First doing the time

derivative we arrive at ∂2ψ/∂t2 = −ω2ψ. Next we take the spatial derivatives and arrive at(
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2

)
= −

(
k2

x + k2
y + k2

z

)
ψ. Putting it all together

ω2ψ = v2
(
k2

x + k2
y + k2

z

)
ψ. (1.5)

Noting that (vk)2 = ω2, we see that the equation balances correctly. Equation 1.5 is known

as the dispersion equation.
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�

�

�
�

�

Figure 1.3. A Rectangular Waveguide. The electric field vector is oriented along the y axis.

ARectangularWaveguideAnd ItsModes. Throughout thiswork, wewill be studying

the transmission of plane waves through dielectric media sandwiched inside of a waveguide

(Bekefi and Barrett, 1977), so it is worth our time to go over wave transmission in a

waveguide. In this section we will discuss the rectangular waveguide depicted in Figure

1.3.

First off, assume that the mode of propagation has an electric field vector that is

entirely along the y axis, ®E = Ey ŷ, and that it is uniform in the y direction. According

to the boundary conditions, Ex must be zero at the top (y = b) and bottom (y = 0) of the

waveguide, and Ey = 0 at both of the sides x = 0 and x = a. Considering ®E is entirely in

the y direction, we have no problems with Ex = 0 at y = 0 and y = b, but in the x-direction

there are many periodic functions available to us, so we will let Ey be proportional to some

unknown function g(x). Also, since this wave will be traveling along the z-axis, it will

also be proportional to exp(iωt − ikzz), where kz is the propagation constant of the wave,
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another quantity which we must determine. So we can now write,

Ey = g(x)ei(ωt−kz z) (1.6)

Ey must also be a solution of the three-dimensional wave equation

∂2Ey

∂x2 +
∂2Ey

∂y2 +
∂2Ey

∂z2 =
1
c2
∂2Ey

∂t2 . (1.7)

Inserting Equation 1.6 into Equation 1.7 and doing a bit of manipulation, we arrive

at the following,

[
∂2g

∂x2 +
(ω

c

)2
g − k2

zg

]
ei(ωt−kz z) = 0. (1.8)

Equation 1.8 can only be satisfied if the term in square brackets is zero.

∂2g

∂x2 +

[(ω
c

)2
− k2

z

]
g = 0. (1.9)

This differential equation has a simple solution.

g(x) = A cos(kx x) + B sin(kx x)

kx = ±

√(ω
c

)2
− k2

z .

(1.10)

Considering our boundary conditions earlier, we know that Ey must equal zero at

x = 0 and x = a, so the same must apply to g(x). This means that the constant A must

be zero, and that kx = mπx/a, where m is a positive integer. Now g(x) = B sin(mπx/a).

Putting it all together, and remembering that the electric field is a real physical quantity, we

arrive at:

Ey = E0y sin(mπx/a) cos(ωt − kzz)

k2
z =

(ω
c

)2
[
1 −

(mπc
ωa

)2
] (1.11)
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Analysis of this equation shows that there exists a maximum mmax =
ωa
πc
=

a
λ/2

.

1.2. DETERMINISM OF WAVE PROPAGATION AND SHAPING TECHNIQUES

When an electromagnetic wave propagates through a medium containing random

scatterers, such as that found within a disordered dielectric medium, the wave output

will often look completely random, lacking any recognizable pattern (Goodman, 2010).

However, this sort of process is not actually random. Random implies that one cannot know

the outcome and that one can only predict the result with a given probability, such as drawing

a card from a deck. In this case, it’s more proper to say that the outcome is complicated and

difficult to predict, yet it is deterministic (Freund, 1990; Kramer, 1996). Given a system

of scatterers and a wavefront impinging on a system, there is only one way that the light

will scatter throughout the material each and every time. Not only this, the process is also

reversible. If you send the scattered waves back through the material from wherever they

emerged, they will converge back to their original source. This is a consequence of the fact

that the wave equation is of the second order in time, so that reversing time in any solution

is automatically a solution (Beenakker, 1997; Fink, 1997).

Over the last fifty years, much research has gone into studying these scattering pro-

cesses, giving scientists a great deal of control of these electromagnetic waves in multimode

fibers, diffusers, biological tissue, and other mediums (Mosk et al., 2012). It turns out that if

one can create and control the impinging wavefront, a seemingly random scattering material

can act as a focusing lens, transmit images, or evenmake a scatteringmedium transmit 100%

of the incident light (Mosk et al., 2012). These wavefronts are created using a technique

called wavefront shaping, and are achieved using devices called Spatial Light Modulaters

(SLMs). These devices can rapidly produce arbitrary wavefronts by manipulating liquid

crystal technology by computer.
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Now that we have a method of creating the impinging wavefront, the next question

becomes how to determine the correct wavefront for our particular goal. Say we desire the

wavefront with the maximal transmission through a material, or we wish to use the material

as a lens and focus our waves to a particular point. How would one go about determining

the needed wavefront? In general, there are three different methods. The first technique

relies on iterative feedback schemes (Vellekoop, 2015; Vellekoop and Mosk, 2007). You

place a feedback sensor at the position of the desired focus, and you keep modifying the

wavefront using the SLM and computer software algorithms, optimizing and tweaking until

you finally find the proper wavefront. This method is frequently used to quickly focus light

at a particular location through a material. The second technique is called digital optical

phase conjugation (Fink et al., 2000; Yaqoob et al., 2008). It uses interferometry to measure

light scattered within the material, and these patterns are used to send light back through

the material using a SLM, essentially reversing the scattering process. This is possible

because wave propagation is completely reversible. This technique can produce images

in the sub-millisecond scale, making it applicable to imaging biological tissue, though it

requires coherent light sources for proper reversal. A third category of techniques relies on

what’s called the transmission matrix (Popoff et al., 2010, 2011). A transmission matrix

treats the medium as a black box, relating an incoming wave and the scattered wave. To find

this matrix, one must measure the scattered light’s amplitude and phase, making it also rely

on interferometry. This can be difficult experimental work, so to simplify matters, there

have been computational algorithms devised which can infer phase from a pair of spatial

intensity measurements.
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1.3. GOALS AND MOTIVATION

The central purpose of this work is to determine whether or not there is “one size

fits all" waveform which, assuming you know absolutely nothing about the system, is your

best bet for maximum transmission. If such a waveform exists, it could save one from

much of the experimental complications of measuring the transmission matrix, optimizing

waveforms, introducing local sensors, or making complicated interference measurements.

To pursue this goal, we will be utilizing two of the three wave shaping techniques just

discussed. First we will be simulating wave propagation through thousands of random

dielectric waveguides using a computational library called KWANT (Groth et al., 2014).

This library will allow us to compute the transmission matrix for each of these systems, and

we will then use these, along with an iterative computational algorithm, to find a universal

wavefront which has maximum average transmission throughout all systems.
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2. SCATTERING MATRIX FORMALISM

As has been previously mentioned, the KWANT system was used to perform many

of the calculations involved in this project. Kwant uses the scattering-matrix formalism for

its internal bookeeping, so this section’s purpose is to introduce the reader to this approach.

2.1. HISTORY AND APPLICATION OF SCATTERING MATRIX FORMALISM

The earliest beginnings of the scattering matrix date back to 1937 when John

Archibald Wheeler used it to describe the physics of light nuclei in his paper “On the

Mathematical Description of Light Nuclei by the Method of Resonanting Group Structure"

(Wikipedia, 2018a). A unitary matrix of coefficients was used to connect “the asymptotic

behaviour of an arbitrary particular solution [of the integral equations] with that of solutions

of the standard form", but the technique was never developed fully (Wikipedia, 2018a).

A few years later in 1940, Werner Heisenberg developed this same technique,

independently, when tackling divergence problems in quantum field theory. Today the

S-Matrix shows up in many areas including conformal field theory, integrable systems,

quantum field theory, and string theory. For example, in high energy physics, we need to

compute the probability of different outcomes in scattering problems. The scattering matrix

relates the incoming particles with the probabilities that they will transform into different

outgoing particles with different energies (Beenakker, 1997; Wikipedia, 2018a).

In optics, the scattering matrix is directly related to another technique called the

“transfer-matrix" method. This method exploits the fact that when using Maxwell’s equa-

tions, there are very simple continuity conditions for the electric and magnetic fields at

the boundaries between media. If one knows the fields before a particular medium layer,

using a simple matrix operation, one can know the fields at the end of the layer. Even more

conveniently, these layers “stack", so if you put a number of different layers of material
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together, you simply do a series of matrix multiplications to compute the total transfer

matrix for the entire system. There are then simple mathematical operations which convert

this transfer-matrix into the reflection and transmission components, which can be used to

create the scattering matrix (Wikipedia, 2018b; Yeh, 2005).

So as can be seen, the scattering matrix approach is used in many areas of mathe-

matics and physics.

2.2. MATHEMATICAL FORMALISM AND PROPERTIES

For us, the primary goal of this formalism is to relate the incoming flux waves

impinging on the system with those scattered waves which transmit through the system.

This is done using matrices and vectors. The incoming and outgoing flux waves are

both represented by vectors, where the vector components are expansion coefficients in a

particular set of basis waves. These basis waves are illustrated in blue in Figure 2.1. But

how exactly is a wave’s “flux" defined? In this formalism, the sum of the squared magnitude

of the wave vector’s components represent its flux.

Incoming Flux = φ(in) =
∑

n

|C(in)n |
2 = | ®C(in) |2

Outgoing Flux = φ(out) =
∑

n

|C(out)
n |2 = | ®C(out) |2

(2.1)

Next off, incoming and outgoing wave vectors are related by a scattering matrix,

whose components represent the transmission and reflection of each incoming mode, from

the left and the right. As for notation, (l) and (r) represent waves from the left and the right,

and (+) an (-) correspond to right-moving and left-moving waves.
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Figure 2.1. A Two-Dimensional Scattering System Inside A Waveguide.

®C(out) = Ŝ ®C(in)

where: ®C(in) =
©­­«
®C+l
®C−r

ª®®¬ , ®C(out) =
©­­«
®C−l
®C+r

ª®®¬
Ŝ =

©­­«
r̂ t̂′

t̂ r̂′

ª®®¬
(2.2)

Within the scatteringmatrix Ŝ, rmn corresponds to reflection amplitudes for incoming

modes from the left, r′mn are from the right. Likewise, tmn are transmission amplitudes for

incoming modes from the left, and t′mn are from the right. In Figure 2.1, the basis waves

are simple sin() waves of the form Xn(y) =

√
2
W

sin(
nπy
W
). Note that this scattering matrix

is primarily a bookkeeping tool, where the medium is a black-box, which says that if you

excite this system with a certain wavefront, it will transmit and reflect in such and such a

way. It doesn’t tell us how, or why, but just that it does.
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Two quantities which are of particular interest are the total transmission, as well as

total reflection. They are computed from sums of the transmission and reflection matrix

elements.
Tn =

∑
m

|tmn |
2

Rn =
∑

m

|rmn |
2

(2.3)

The n subscript designates the transmission or reflection of “channel" n. What does this

mean? It is worth discussing briefly. Each entry within the transmission and reflection

matrix has a direct physical meaning. In particular, the squared magnitude of each matrix

element represents a wave flux percentage. For example, entry t12 designates the amount

of the input wave’s basis mode 2 contribution that makes it into the output wave’s mode 1

contribution. Likewise, the entry tmn designates the amount of the input wave’s basis mode

n contribution that transmits through the system into the mode m contribution of the output

wave. The exact same idea applies to the reflection matrix. So, if one sums over all modes

n, remembering that these are flux percentages, one gets the total transmission or reflection

of an input mode n in the total output wave.

Since understanding this point is crucial to understanding this project, let’s do a very

simple example. Say we are examining the transmission of a simple wave through a 2D

disordered system, similar to that shown in Figure 2.1. Wewill represent our impinging input

wave, as well as the output wave, as some simple linear combination of Xn(y) functions, just

like in the figure, where each basis function has a different spatial frequency. For simplicity,

we’ll only use three basis functions. We’ll call the amplitudes of the input wave I1, I2, I3,

and the output wave’s amplitudes O1,O2,O3. So the input and output waves, along with the

transmission matrix, look like this.

©­­­­­«
O1

O2

O3

ª®®®®®¬
=

©­­­­­«
t11 t12 t13

t21 t22 t23

t31 t32 t33

ª®®®®®¬
©­­­­­«
I1

I2

I3

ª®®®®®¬
(2.4)



13

To further illustrate, let’s expand this out into a set of equations.

O1 = t11I1 + t12I2 + t13I3

O2 = t21I1 + t22I2 + t23I3

O3 = t31I1 + t32I2 + t33I3

(2.5)

As can be seen in the equations, I1, which is the input wave’s mode one contribution,

gets distributed into O1,O2,O3 according to the weights t11, t21, t31. This is a physical wave,

and considering there’s no absorption or gain, this influx must go somewhere, either being

transmitted through or reflected. A certain percentage of this wave flux goes into O1, a

certain percentage into O2, and a certain percentage into O3. This sum must equal the total

amount of the input wave’s mode one that was transmitted into the output wave, somewhere,

somehow. Do this exact same process for reflection. If you sum the squared amplitudes

of t11, t21, t31 and r11,r21,r31, you have to get 1, or 100%, because this input wave’s I1

contribution had to go somewhere, either into the transmitted or reflected wave, distributed

among the corresponding output transmission and reflection vector weights.

As was mentioned earlier, in this project we’re examining scattering within lossless

systems contained within a waveguide, so the wave must either be transmitted or reflected

without absorption or gains; therefore there must be a conservation of wave flux. This leads

us to the following equations, which our discussion earlier should justify:

Tn + Rn = 1∑
n

(Tn + Rn) = N

where Tn =

N∑
m=1
|tmn |

2 and Rn =

N∑
m=1
|rmn |

2

(2.6)
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If one sums over all channels,
∑

n Tn, one is left with the total transmission T . Just

as a side note, when examining electron scattering in quantum mechanical systems, there is

similar quantity called the conductance, typically denoted by G, which only differs from to

the total optical transmission by a constant, G =
(
2e2

h

)
T (Eric Akkermans, 2011).

Before moving on, it must be noted that in lossless systems, the scattering matrix

must always remain unitary. This is important because later on we will devise an algorithm

to optimize transmission by computing a new set of optimal basis functions, but in doing

so we must always ensure that our transformation matrix also remains unitary. Why? We

must retain a conservation of flux. This can be proven very easily.

Incoming Flux = Outgoing Flux

φ(in) = φ(out)

| ®C(in) |2 = ®C(in)† ®C(in) = | ®C(out) |2 = ®C(out)† ®C(out)

(2.7)

Now if we substitute in ®C(out) = Ŝ ®C(in) and ®C(out)† = ®C(in)†Ŝ†, we arrive at

®C(in)†(Ŝ†Ŝ − 1) ®C(in) = 0, implying that Ŝ†Ŝ = 1, or that the scattering matrix Ŝ is uni-

tary.
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3. RELATIONSHIP BETWEEN EM AND QM

As was mentioned in the introduction, the simulations used in this project relied

on computations provided by the KWANT system, which is a quantum transport library.

However, the focus of this research project is the optimal transmission of electromagnetic

waves by manipulating optical wave-fronts impinging on a disordered medium. So the

question becomes: How can a quantum mechanics library be used to solve a problem in

optics? The key is to focus on only one particular component of the electric or magnetic

field, say the z-component of ®E . When doing so, the general form of the electromagnetic

wave equation and the Schrodinger equation become one and the same. The purpose of

this section is to show this relationship, first by deriving the electromagnetic wave equation

fromMaxwell’s equations, and then directly showing that this equation has the same general

form as Schrodinger’s equation.

3.1. DERIVATION OF THE ELECTROMAGNETIC WAVE EQUATION

In our simulations, electromagnetic waves will be traveling through inhomogenous

dielectric mediums. A dielectric material is an electrical insulator that can be polarized

by electric fields. In a conductor, these fields would cause charge to flow across the

material. However, in a dielectric material, the passing electric field causes the material’s

internal electron clouds to slightly shift their average equilibrium positions. These shifts

create fields within the material itself which only partially cancel the electromagnetic wave

passing through it. This internal resistance to forming an electric field within the material

is called the permittivity. In our experiments, what varies from place to place within the

medium is the electrical permittivity. With all that said, our theoretical model begins with

Maxwell’s equations, source-free, in a linear, frequency independent dielectric medium,
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with a const dielectric permittivity ε = constant.

∇ · ®E = 0

∇ · ®B = 0

∇ × ®E = −
∂ ®B
∂t

∇ × ®B = µε
∂ ®E
∂t

(3.1)

Next we take the curl of the curl equations, assuming ε and µ are constants,

∇ × (∇ × ®E) = −
∂

∂t
(∇ × ®B) = −µε

∂2 ®E
∂t2

∇ × (∇ × ®B) = µε
∂

∂t
(∇ × ®E) = −µε

∂2 ®B
∂t2

(3.2)

Finally we utilize the vector identity ∇ × (∇ × ®V) = ∇(∇ · ®V) − ∇2 ®V remembering

that ∇ · ®E = ∇ · ®B = 0 to arrive at the familiar electromagnetic wave equations.

µε
∂2 ®E
∂t2 − ∇

2 ®E = 0

µε
∂2 ®B
∂t2 − ∇

2 ®B = 0
(3.3)

3.2. SCHRODINGER’S EQUATION AND THE EM WAVE EQUATION

We will now demonstrate that Schrodinger’s equation takes on the same form as

the electromagnetic wave equation, specifically when we relate stationary quantum states

to monochromatic optical states. Let us begin with Schrodinger’s equation.

(
®p2

2m
+ V(®r)

)
ψ(®r, t) = i~

∂ψ(®r, t)
∂t

(3.4)
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Ifwe consider only stationary stateswithwell defined real energy E = ~ω and time-evolution

exp(−iωt), we will arrive at the time-independent Schrodinger equation (TISE).[
∇2 −

2m
~2
(V(®r) − E)

]
ψ(®r) = 0

where
∫

d®rψ∗m(®r)ψn(®r) = δmn

(3.5)

Note that the energy eigenstates ψn(®r, t) form a complete basis of states.

The electromagnetic wave Equation 3.3 can be written in the same form as the

TISE if we consider solutions of the form ®E(®r, t) = ®Eω(®r) exp(−iωt), and limit ourselves to

one specific component of the electric or magnetic field, say Ez. However, a complication

arises when solving this problem. The curl operator is not Hermitian when the dielectric

permittivity function ε(®r) varies from place to place, so the electric field must be properly

rescaled. We instead consider solutions of the form ®φw(®r) =
√
ε(®r) ®Ew(®r). Plugging this

into the electromagnetic wave Equation 3.2 we find:

1√
ε(®r)
∇ ×

[
∇ ×

®φw(®r)√
ε(®r)

]
=
ω2

c2
®φw(®r) (3.6)

These eigenstates ®φw(®r) also form a complete basis of states, and we arrive at a new

orthogonality relationship for the electric field:

∫
d®r ®φm(®r) ®φn(®r) =

∫
d®rε(®r) ®Em(®r) ®En(®r) = δmn (3.7)

If we apply the same vector identity as before, ∇×(∇× ®K) = ∇(∇ · ®K)−∇2 ®K , and remember

that ∇ · ®E = 0, we arrive at an electromagnetic wave equation of the same form as the TISE.

[
∇2 −

ω2

c2 (1 − ε(®r)) +
ω2

c2 )

]
®Ew(®r) = 0 (3.8)
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As can be seen, Equations 3.5 and 3.8 have an identical structure. By setting ε(®r) = 1 and

the potential V(®r) = 0, one can find the constant Elight =
(~ω)2

2mc2 which can be used to relate

the quantum mechanical potential in the TISE to the dielectric permittivity in the EM wave

equation V(®r) = Elight(1 − ε(®r)). Both equations support plane-wave solutions of the form

ψE (®r) = ψw(®r) = ψk,wexp(i®k · ®r − iωt), where the wave-vector ®k is related to the frequency

ω by ‖®k ‖ = k = ω
√
εε0µ0 =

nω
c

and n is the index of refraction.

3.3. DISCRETIZATION OF THE WAVE EQUATION

In the previous sections we explored how Schrodinger’s wave equation is identical

in structure to the electromagnetic wave equation. However, before we move on, we must

briefly discuss some minor considerations one must deal with when these equations are

discretized and solved with a computer. This changes how some of the variables relate to

one another, so we will now workout the exact relationship between grid size, permetivitty,

potential, energy, etc., under these new conditions.

We want to solve the Maxwell’s equation in 2D for the tranverse modes,

[
∇2 + k2ε(x, y)

]
Ez(x, y) = 0, (3.9)

where k = w/c is the frequency. When discretized (with central difference) on a square

lattice with grid size ∆h, this becomes

1
∆h2

(
ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j

)
+ k2εi,jψi,j = 0, (3.10)

where ψi,j = Ez(i∆h, j∆h), εi,j = ε(i∆h, j∆h).

In comparison, KWANT solves the Anderson model, which on a 2D square lattice

is

t
(
ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1

)
+ Vi,jψi,j = Eψi,j, (3.11)
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where t is the hopping rate, Vi,j is the on-site potential, and E is the energy.

We see that Equation 3.10 and Equation 3.11 are equivalent if we make the change

of variables such that

(k∆h)2 εi,j − 4 =
1
t

(
Vi,j − E

)
. (3.12)

There are multiple ways to satisfy Equation 3.12. For simplicity, here we impose

that in the free space (both on the left and on the right of the scattering region), Vi,j = 0 and

εi,j = 1. Then we have

(k∆h)2 = 4 − E/t

εi,j = 1 +
Vi,j/t

4 − E/t

(3.13)

In particular, if Vi,j = d · fi,j where −1 < f < 1 is a random variable with zero mean,

then εi,j = 1 + εscafsca with εsca = (d/t)(4 − E/t).
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4. A COMPUTATIONAL EXPERIMENT WITH A DISORDERED DIELECTRIC
WAVEGUIDE

The primary emphasis of this project is to compute an optimal wave-front which

will maximize the transmission through a randomly disordered dielectric medium. With

this goal in mind, we’ll begin by briefly discussing the KWANT system itself, which was

the computational library used to do the scattering matrix computations, and then we will

give a brief description of the system we simulated within KWANT; this will also include

a description of KWANT’s basis functions and their average transmission since this will

be important to understanding our final results. Next we will discuss eigenchannels, which

are optimal wave-front solutions for individual disordered systems that can exhibit nearly

100% transmission. Then we explore a procedure to optimize the average transmission of

a computed wave-front for a large number of randomly disordered systems. This method

will utilize a transformation matrix to perform a change of basis, and then we will optimize

the average transmission of these basis functions throughout all systems in the ensemble.

Finally we will discuss the results obtained.

4.1. KWANT SIMULATION PACKAGE

KWANT is a free, open source Python package, focusing on numerical calculations

of tight-binding models, particularly for quantum transport. It is frequently used to simulate

metals, graphene, topological insulators, with the goal of studying phenomena such as the

quantumHall effect, superconductivity, spintronics, molecular electronics, andmany others.

KWANTwas developed by an international community of scientists, receiving funding from

many international scientific organizations including the US Office of Naval Research, the

European Research Council, the Netherlands Organisation for Scientific Research NWO

(formerly NWO/FOM), the French National Agency for Research (ANR), and many others.
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4.2. DESCRIPTION OF THE SYSTEM

The first systemwe will be working with is not unlike that discussed in the scattering

matrix formalism. It is illustrated in Figure 4.1.

Figure 4.1. A Disordered Dielectric Slab. We used L = 1000,W = 300.

As one can see, this dielectric slab is contained within a waveguide. In the intro-

duction, the modes of a waveguide were worked out, and as one might expect, the KWANT

solutions can be resolved into a sum of waveguide modes. In this new case, the dielectric

medium is 2D, defined in the x, y plane; the x-axis is the long axis of the waveguide and is

the direction of wave propagation, the y-axis is the shorter aspect of the waveguide, and the

z-axis comes up out of the page; we are examining the Ez component. Our solutions are of

the general form

Xn(y) =

√
2
W

sin(nπy/W)

ψω(x) =
N∑

n=1

C
+
α,nXn(y)

eik(x)n x√
k(x)n

+ C−α,nXn(y)
e−ik(x)n x√

k(x)n


(4.1)

N =
ωW
cπ

k(x)n =

√
ω2

c2 − (nπ/W)
2,

(4.2)
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where C+α,n denotes the amplitude of the right moving waves and C−α,n denotes the amplitude

of the left moving waves. Xn(y) is the transverse mode profiles, similar to Equation 2.4.

This system was defined in KWANT, and the the slab itself was divided into a grid

of integer step-size 4h = 1; a random potential was assigned to each point according to the

formula V = d · random(−1,1), where d = 0.44 and random(−1,1) is a function which

returns a value between −1 and 1. An ensemble of systems of this type were generated,

each filled with this disordered potential; the system parameters were carefully selected

in order to ensure that we remained within the optical diffusive regime, a domain where

photons travel through the material without being absorbed, instead undergoing repeated

scattering events which change their path direction. The d value in particular was chosen

so that within our ensemble of systems, each system’s dimensionless conductance had a

g ≈ 6−7, where g = (π/2) N
l
L
and l is the transport mean free path. The dimensions of the

waveguide were W = 300, L = 1000 and the number of modes chosen was N ≈ 100, where

N ≈
1
π

kW , and we specifically chose k = 1. For the diffusive regime, we desire kl � 1,

N � 1, l � L, and g � 1. In our case, kL ≈ 1000 � 1, and l ≈ 414h � L = 1000,

clearing satisfying all the conditions discussed above. KWANT computed the scattering

matrices for each individual system and transmission was analyzed.

Let us briefly take a look at some of these basis functions and how theywere indexed.

For this dielectric slab system, KWANT used N = 99 different basis functions, indexed

0 − 98, each of which were real valued Xn(y) waves of varying spatial frequency. The

real-part of the function is illustrated in blue and the imaginary part in orange in Figure

4.2. As one decreases in the index n, the spatial frequency increases, eventually becoming

so large that that the spatial discretization is not adequate, leading to what appears to be an

sine outer-envelope, but this is simply an artifact of finite discretization.
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4.3. NUMERICAL ANALYSIS OF THE TRANSMISSION MATRICES

The scattering matrices for 2,000 different randomly disordered slabs were com-

puted, and the transmission matrices tmn were recorded. The absolute magnitude squared

of each matrix element Tmn = |tmn |
2 was taken, and then an average, denoted as 〈...〉, was

computed over all 2,000 of the systems. 〈Tmn〉 is illustrated in Figure 4.3.

As was discussed in the scattering matrix formalism, the sum of the n’th column of

thismatrix is the transmission of channel n. Just so that we don’t get lost in the formalism and

jargon, we’re talking about the the total average wave flux transmission of each individual

KWANT basis wave-front Xm(y) through the different slabs. Figure 4.3 shows how Xn(y)

is transmitted into Xm(y) to the right. The highest transmission coefficient 〈Tmn〉 is from

n = 1 into m = 1 and the lowest is from n = N into m = N . Transmission of each channel

is illustrated in the next plot in Figure 4.4a, while a rescaled display of the same results is

found in Figure 4.4b, where the red-dotted line, ρ(µ) = µ + 4b, with 4b = 0.818, is the

predicted results from Radiative Transfer Theory (RTT) (Yamilov, 2008).

As one can see, on average, less than 10% of the wave flux is transmitted through

to the other side of the slab, regardless of the Xn(y) function used, and this transmission

greatly decreases for high spatial frequencies. Remember, the lower the index (equal to

N − n), the higher the spatial frequency. This is counter intuitive, but it is how KWANT

indexes its basis functions.

4.4. EIGENCHANNELS: OPTIMAL WAVEFRONTS FOR A SINGLE SYSTEM

As indicated in the scattering formalism, if we know the scattering matrix for a given

system, for any arbitrary impinging wavefront we can compute the waveform that will be

transmitted alongwith its totalwave-flux transmission. What ifwewished tomathematically
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compute the optimal wave-front which would have maximal transmission? How would we

go about this? This can be done by performing a singular value decomposition on the

transmission matrix.

To begin, we recall that the input and output waveforms are related by the scattering

matrix, though if one desires, one can focus solely on the transmission by focusing attention

on the transmission submatrix alone.

®C+r = t̂ ®C+l (4.3)

Next we perform a singular value decomposition on the transmission matrix.

®C+r = Ûτ̂
1
2 V̂† ®C+l (4.4)

The matrices Û and V̂ are both unitary matrices whose values are complex. The

matrix τ̂ is a rectangular diagonal matrix whose entries are real and non-negative, and are

referred to in mathematics as the singular values of the transmission matrix. This means

that these diagonal entries are the square-roots of the eigenvalues of t̂†t̂ or t̂ t̂†. That’s why

this matrix is written as τ̂ 1
2 and not just τ̂.

Now if one uses the i’th column of V̂ for the input ®C+l , this excites what is called the

i’th “eigenchannel" of the system. But why are these particular waveform inputs so special?

First note that V̂†V̂ = Î, where Î is the identity matrix. Let us consider what happens if we

multiply V̂† by a vector consisting of a column of V̂ . We will get the following,
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V̂†



i′th

column

o f

V̂


=



0
...

0

1

0
...

0



, (4.5)

where the 1 will be located in the i’th index of the column vector. So let’s apply this

technique to our system.

®C+r = Û


τ

1/2
1

. . .

τ
1/2
n


V̂†



i′th

column

o f

V̂


(4.6)

Now this further simplifies to the following

®C+r = Û


τ

1/2
1

. . .

τ
1/2
n





0
...

0

1

0
...

0



(4.7)

Taking this one step further, it becomes quite clear why this important.
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®C+r = Û



0
...

0

τ
1/2
i

0
...

0



(4.8)

If we now square ®C+r we come to most revealing step.

| ®C+r |
2 = ®C+†r

®C+r =
[
0 . . . τ1/2

i . . . 0
]

Û†Û



0
...

τ
1/2
i
...

0


= τi (4.9)

Let us analyze our result. In short, for the i’th eigenchannel, τi · 100% is the channel’s

percentage of wave-flux transmission. The i’th column of the Û matrix tells us how this

wave-flux is distributed to the different components of the output vector, but the total

transmission is τi · 100%. As stated before, these τi values are always real, positive,

and less than or equal to 1. The typical values of τi are illustrated in Figure 4.5. As

can be seen in Figure 4.5b, the average transmission for the n’th eigenchannel follows a

τi ≈ 1/cosh2(C ·(g/N)·i) curve, which is standard throughout optical and quantum transport

literature (Davy et al., 2015; Yuli V. Nazarov, 2009).

In practice, when using various computational matrix libraries to perform the sin-

gular value decomposition, the τi values are arranged in descending order. So the early τi

values, such as τ1, τ2, τ3, etc., will be very close to 1, if not 1 exactly. This means that if you

stimulate the early eigenchannels, you will get nearly, if not perfect, 100% transmission.
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But remember, as one moves down the list, the τi values decrease, and toward the end can

get close to 0, meaning they have very poor transmission. For this reason, the early, highly

transmitting eigenchannels are called “open", and the later, low transmitting eigenchannels

are called “closed".

So what do these eigenchannel wavevectors look like? Do you they have some sort

of easily identifiable pattern? For example, say we take 500 different randomly generated

dielectric slab systems, and we compute the first eigenchannel for each system. If we were

to place all of these waveforms side by side, would we notice any similarities? Let’s do

that and see. We’ll create a heatmap where the entries of each column represents the

square magnitudes of the vector components of the first eignenchannel. In other words,

all of the column entries are the contributions of the different Xn(y) basis waves for each

eigenchannel. Let’s take a look.

From a cursory look at Figure 4.6, it doesn’t look like there’s any sort of simple

pattern to the highly transmitting eigenchannels. The systems are random and it looks like

the top eigenchannel for each system is just as random. Maybe it wouldn’t hurt to also look

at the next eigenchannel in just the same way?

Once again, there is no obvious pattern. From Figure 4.6 and Figure 4.7, it looks

like the highly transmitting eigenchannels are different for each system. So, if we are hoping

to create a highly transmitting wavefront which will transmit through all 500 systems in our

ensemble with nearly perfect transmission, it appears that we’re probably out of luck. Each

system seems to need its own custom tailored wavefront to get nearly perfect transmission.

However, maybe there is a wavefront which is still better than randomly exciting the system?

Maybe there is some strange shaped wavefront that could still give us something like an

average of 10% transmission across all systems? But if such a wavefront exists, how could

one go about computing it? Also, would it have anything to do with the all of these systems’

eigenchannels? These are the questions we will attempt to address in the following section.
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Figure 4.2. KWANT Basis Functions. Notice that higher spatial frequency is with lower
indices, not higher indices, this being a convention in the KWANT package.
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5. FINDING THE UNIVERSAL OPTIMAL WAVEFRONT

The real question we’d like to explore in this section is whether or not there is

some complicated, special universal wavefront which gives a substantial enhancement of

transmission no matter which system we try to send it through. Assume we know nothing

about the system we’re dealing with; is there some special wavefront which will always

be our best bet? Mathematically speaking, we’re asking for a wavefront that would have

the highest average transmission, after attempting to send it through an extremely large

collection of uncorrelated disordered systems. Considering what we saw with the top

eigenchannels for each system, it was hard to see a pattern, but we will let a computer

algorithm uncover potential patterns.

5.1. A HINT: AVERAGE OVER ALL TOP EIGENCHANNELS

Before we resort to an algorithmic approach to this problem, let us think about all we

have learned so far in the previous sections and make an educated guess. For each system

individually, there are a handful of top eigenchannels which individually give nearly perfect

transmission. So if we’re sending a wavefront through an ensemble of 2,000 different

random systems, what if we just averaged the top eigenchannels and used that as our input

vector? The question is, since these top eigenchannels were so random looking, will we see

any pattern? Let’s take a look! We know that the eigenchannels are simply the columns

of the V̂ matrix, so let’s compute 〈|V̂ni |
2〉, the average |V̂ni |

2 over 2,000 different randomly

disordered systems. The i’th column of this picture will be the averaged i’th eigenchannel

over 2,000 different systems. What is Figure 5.1 telling us?

5.1.1. A Look At The Worst Transmitting Averaged Eigenchannels. If we look

at 〈|Vni |
2〉, the worst transmitting eigenchannels, particularly columns i = 85 − 98 ≈ N , we

see a large amplitude spot in the top-right corner. This represents very large contributions



34

20 40 60 80

i

10

20

30

40

50

60

70

80

90

N
 -

 n

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Figure 5.1. 〈|Vni |
2〉 Averaged Over 2000 Realizations.

from the first ten or so basis functions Xn(y) with n ≈ N . Now refer back to Figure 4.4,

where we saw the average transmission of the KWANT basis functions over thousands of

realizations. These basis functions with the highest spatial frequency, had with the worst

average transmission of all the basis functions. So the worst average eigenchannels utilize

components which have the worst average transmission. Makes sense.

5.1.2. A Look At The Best Transmitting Averaged Eigenchannels. Now let’s

examine the best transmitting averaged eigenchannels, specifically columns i = 0 − 10 of

Figure 5.1; we see a dark spot in the top-left corner, meaning eigenchannels with the highest

transmission avoid these high spatial frequency, low transmitting basis functions. So a

pattern emerges. However, it’s not so clear that there’s any other pattern, at least at a glance.
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The most we can say is they avoid high spatial frequency basis functions, and seem to use

contributions from the other basis functions, particularly n ≈ 1 − N/2, relatively equally.

Still, there might likely be another pattern. If the best averaged eigenchannels are avoiding

the basis functions with low average transmission, it’s likely that they’re going to have high

contributions from the basis functions with the highest average transmission. But if that

were the case, wouldn’t we see another bright spot at the bottom-left corner of Figure 5.1?

No, not actually. While basis function 98 (n = 1) has the highest average transmission, it

doesn’t differ all that much from basis functions 60−97. Their average transmission ranges

from 0.072 to 0.076, which is only a 5.3% difference overall. Compare this to the first 10 or

so basis functions, which have average transmissions in the range of 0.040 to 0.055, which

is a much greater percent difference. It’s not surprising that the top average eigenchannels

would utilize all the best transmitting basis components, which can come from any of the

60 − 98 range, considering their overall average transmission is nearly the same. Also,

another hint, note that the higher transmitting eigenchannels are utilizing components with

lower spatial frequency.

5.2. A THOUGHT EXPERIMENT

To appreciate the above results, let’s propose a simple thought experiment. To devise

a simple, iterative computational algorithm to find a wavefront with optimal transmission

through a very large number of randomly disordered systems, we begin with a random input

wavevector and just keep making small random variations to the basis weights; with each

tiny change, reevaluate the average wave-flux transmission, and check whether or not that

change increased the transmission. If that change increased transmission, we keep it, if

it did not, we discard it. (Note: we’d also have to make sure your weights were properly

normalized too. After all, it wouldn’t make sense if transmission exceeded 100%!) What

would such an algorithm converge to? Since each system is random, would there any room

for optimization at all? For an individual system, as one would probably guess, it would
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eventually find an input vector which is a linear combination of the most highly transmitting

eigenchannels, leaving it with nearly perfect transmission. But what if we’re averaging over

500 or even 10,000 different systems? Will this algorithm find anything? Would there be

some complicated wavefront which will find its way through all systems with an appreciable

enhancement in transmission? This simple thought experiment gives the general idea of

what we’ll be doing with our algorithm, but our approach is a bit more sophisticated, and it

will require bit more mathematics to prepare us for the final algorithm to be used. We will

now go over this additional mathematics in the following subsection.

5.3. SOME MATHEMATICAL FORMALISM NEEDED TO COMPUTE THE UNI-
VERSAL WAVEFRONT

The goal of this section is to devise a computational algorithm which will give

us an incoming wavefront with optimal transmission through a system, or collection of

systems. We will accomplish this by first transforming the original basis functions (the

Xn(y) =

√
2
W

sin(nπy/W) waves) into some other form using a unitary transformation

matrix. After this transformation is complete, we will then reevaluate the transmission

of each new transformed basis function and compute a “cost" function which will be a

weighted sum of the average transmission of the new basis functions throughout all systems

being considered. We will then optimize this cost function, and the first basis function in

this new transformed basis will have the highest transmission.

We begin by transforming the transmission matrix using a unitary transformation

matrix Â.

Â† Â = ÂÂ† = Î

ˆ̃t = Ât̂ Â†

®̃C = Â ®C

®̃C+r = ˆ̃t ®̃C+l

(5.1)
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In this notation, the tilde represents the transformed mathematical object. The matrix A

must always remain unitary because, as noted prior, this unitarity represents a conservation

of wave-flux. The original basis functions end up being transformed as follows.

ψ̃i(®r) =
N∑

n=1
Ainψn(®r) (5.2)

Therefore, the newly transformed i’th basis function is a linear combination of the old basis

functions, using the i’th row of Â as the transformation weights. All wavefunctions are to

be transformed in this way.

Now we must discuss transmission in this new basis, and how we will compute the

cost function which we will be optimizing. The transmission of the new i’th basis function

now becomes the sum of the squared magnitude of all the i’th column entries within the

newly transformed transmission matrix.

T̃i =

N∑
m=1
|t̃mi |

2 (5.3)

Our cost function is a weighted sum of the average transmission of all the new basis

functions across all systems being considered.

4 =

N∑
n=1

(
1

n + 1

)
〈T̃n〉 (5.4)

As will be discussed in a moment, our algorithm will be randomly changing entries in the

transformation matrix Â, and then reevaluating transmission, along with this particular cost

function. In the following we motivate our specific choice of cost function and also discuss

other potential approaches, such as a simultaneous optimization of all channels.

In the scattering matrix formalism, we went to great lengths to stress wave-flux

conservation. This is just as important when we change to a new basis. The flux of an

incoming wavefront must either be transmitted or reflected, in any basis. This is reflected
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in the next equation.

Tn + Rn = T̃n + R̃n = 1 (5.5)

for any n. So if we sum over all channels, we arrive at the following.

T + R =
N∑
n

(Tn + Rn) = T̃ + R̃ =
N∑
n

(T̃n + R̃n) = N (5.6)

In other words, the sum of the total transmission and total reflection of all channels remains

constant. Wewill nowprove that the total transmission and total reflectance also individually

remain constant.

Tr(t̂†t̂) =
∑
ab

t∗abtba =
∑
ab

|tab |
2 = T

Tr( ˆ̃t† ˆ̃t) = Tr(Ât̂† Â† Ât̂ Â†) = Tr(Ât̂†t̂ Â†) = Tr(ÂÂ†t̂†t̂) = Tr(t̂†t̂) = T

(5.7)

Therefore, if we do a transformation which increases the transmission of one particular

channel, it must be accompanied by a reduction in the transmission of the other(s). The

same applies to reflectance. With this inmind, whenwedo a basis transformation to optimize

the transmission of the first few new channels, we in turn decrease the transmission of the

other channels. Considering that the total transmission available to all channels is T , our

cost function is designed to maximize the transmission of the first few channels, at the

expense of later channels.

5.4. THE ALGORITHM FOR COMPUTING AN OPTIMAL WAVEFRONT

In this section we will quickly outline of the actual algorithm used to compute an

optimal wavefront with maximal transmission.
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General Algorithm

Loop over each row of the transformation matrix Â, one at a time

Randomly select an entry Ani = anieiφni within the row

Make a slight modification to Ani as follows:

⇒ with probability 1/2: ani → ani · (1 + δ)

⇒ with probability 1/2: φni → φni + δ · π

Make sure A remains unitary using the QR technique listed below

Recompute the “Cost" function

⇒ If this change increases the “Cost" function, keep the change

⇒ If this change decreases the “Cost" function, discard it.

Continue looping over all rows as long as the “Cost" function is increasing

As mentioned in the algorithm, the matrix Â was kept unitary by using a QR factor-

ization algorithm, listed below. This algorithm allows one to make changes to Â, yet still

retain unitarity and the general structure of any changes made. This algorithm is listed as

the actual Python code used.

Making Sure Transformation Matrix Remains Unitary

def makeMat r i xUn i t a ry (A)

Q,R = np . l i n a l g . q r (A)

R = abs ( np . d i a g ( np . d i a g (R) / abs ( np . d i a g (R ) ) ) )

re turn np . matmul (Q,R)
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This algorithm was run so long as the “Cost" function was increasing. Once the

algorithm converged very close to the maximal “Cost" value, we then saved the transforma-

tion matrix. We verified that this algorithm converged to the same unique (up to a constant

phase factor) solution by doing multiple convergence runs.

5.5. RESULTS FOR A SINGLE SLAB SYSTEM

In this section we will go over the results the optimization algorithm found for the

dielectric slab system within a waveguide (Figure 2.1). The convergence results are shown

in Figure 5.2.
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Figure 5.2. A comparison of maximal transmission. Blue symbols signify the best com-
puted waveform transmission. Red symbols signify the best original basis function X1(y)
transmission. In orange is the average transmission of all basis waveforms.
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In this Figure, the bottom axis designates the number of randomly disordered systems

that were averaged over and the vertical axis is the maximum transmission found. The blue

symbols signify the average transmission of the best computed wavefront found by the

algorithm, the red symbols are the average transmission of the best original basis function

(in this case the Xn(y)wavewith longest wavelength, X1(y)), and the orange line signifies the

average of the average transmission of all basis functions combined, which never changes,

even during our transformation. We observe that for a small number of systems, the

algorithm can find some optimal wavefront which has much superior transmission. If you

need to penetrate through five or ten systems, some complicated wavefront exists which

will give you something like 20 − 50% transmission, no problem. For a single system it

can find nearly perfect transmission with Ti = max[τi] ≈ 1. However, as more and more

systems are taken into account, the best wavefront’s transmission decreases monotonously,

but it remains bound from below. After averaging over thousands of different systems, the

best wavefront possible, in the case of systems structured like that found in Figure 4.1, is a

simple X1(y) wavefront with the longest wavelength (n = 1). The question remains, why is

this the case? That is what we will discuss in the next section.
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6. CONCLUSIONS

6.1. INTERPRETATION OF RESULTS

Here we would like to find an intuitive explanation as to why, when averaging over a

very large number of different systems, the highest transmitting (on average) basis function

converges to the Xn(y) with the longest wavelength. This result was obtained in Figure 4.4

as well as Figure 5.2.

Any waveguide mode can semiclassically be represented as a superposition of two

bouncing modes with the same k‖ and opposite ±k⊥. Each of these plane waves has a

propagation vector ®k, which (in 2D) has two components, k⊥ which is directed normal to

the system, and k‖ which is parallel to the system. This is illustrated in Figure 6.1.

���
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Figure 6.1. The ®k vector. Optimal average transmission occurs when ®k is directed nearly
perpendicular to the surface.

We know that in the limit k∆h→ 0 that k⊥ =
√

k2 − k2
‖
, and that k‖ increases as one

increases the spatial frequency of the parallel basis functions. We also know the maximum

average transmission occurred every time we maximized k⊥, hence also minimizing k‖ . So
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it seems that in order to obtain the best transmission, we need to make sure our wavefront

is incident near normal to the surface one is trying to transmit through, but what is special

about normal incidence?

The central idea is that the highest transmitting path is the one with the least

resistance; for the system we just considered, this path is where ®k is directly perpendicular

to the surface. As awaveformmakes its way through this disorderedmaterial, it is constantly

being scattered, and the more scattering we have, the greater the chance that the wave flux

will turn around and reflect instead of transmit. As one adds a parallel component to ®k,

we are taking a longer path through the disordered material and decreasing the average

transmission. This is easily seen in Figure 6.1. So the key idea is not necessarily normal

incidence, though in many systems this will be the case; it is about first identifying the

path of least resistance for the particular system, and then directing maximium wave-flux

intensity onto that path. We will further reinforce this conclusion in the next section.

6.2. IMPLICATIONS

Let’s examine another system, illustrated in Figure 6.2, this time with a “hole" in

the dielectric layer. What makes this system special is that “normal incidence" and “path

of least resistance" routes are fundamentally different here. The random dielectric slab

material was generated the same as before, only this time we leave an open hole from

y = −12 to y = 12. If our former conclusion is correct, the path of least resistance will be

to direct the wave flux through the “hole" in the material. Remember, our computational

algorithm starts off completely random, with no preference for any wave-front in particular.

After searching through countless wavefronts, the optimal solution found by the algorithm

is illustrated in Figure 6.3. You can see that its intensity is all directed into the “hole", the

path of least resistance. It is also instructive to look at the average waveform generated

from this computed pulse wavefront, averaged over thousands of systems. This is illustrated

in Figure 6.4. As the light propagates through the “hole", it generally stays within the crack
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Figure 6.2. A dielectric slab with a hole in the center.
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Figure 6.3. The Optimal Wavefront For Maximal Transmission Through The Hole.
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(the path of least resistance) but slowly diffuses into the surrounding material when coming

into contact with the “hole" walls. One can easily imagine that this same idea could be

applied to any sort of hole or crack. As a final remark we expect that this work will stimulate

further effort to find “universal" (disorder-independent) wavefronts which can be used for

more efficient transmission of waves through scattering media without sophisticated search

of optimized wave fronts.
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