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ABSTRACT 

 

Cervical cancer is one of the most deadly cancers faced by women. It is the 

second leading cause of cancer death in women aged 20 to 39 years. In order to detect 

cancer at early stages, pathologists analyze the epithelium region from the cervical 

histology images. These histology images have a pre-cervical cancer condition called 

cervical intraepithelial neoplasia (CIN) determined by pathologists. This study deals with 

automating the process of epithelium detection and epithelium CIN classification in 

digitized histology images. For epithelium detection, the objective is to detect epithelium 

regions in microscopy images from non-epithelium regions and background. 

convolutional neural networks, both shallow and deep networks are used for epithelium 

detection. The highest epithelium detection accuracy of 98.84% is obtained using transfer 

learning on VGG-19 architecture, pre-trained on the ImageNet dataset. For CIN 

classification, the epithelium region is divided into 5 segments along the medial axis and 

patches from each segment were used for training the deep learning model. Vertical 

segment level classification probabilities from deep learning model are obtained and 

further classified using SVM, LDA, MLP, logistic and RF classifiers. The highest image 

level accuracy obtained is 77.27% for MLP classifier using voting. 



iv 

 

 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor, Dr. R. Joe Stanley, for providing me the 

opportunity to work in his lab and allowing me to pursue my research interests.  I am 

grateful for his continuous support, funding, and guidance throughout my graduate 

program. I would like to thank Haidar Ali Mubarak for sharing his ideas and helping me 

out when I hit a roadblock. I express my deep gratitude for the time he spent with me 

during my graduate program. I would also like to thank my committee members Dr. Kurt 

Kosbar and Dr. William V. Stoecker. 

I would like to thank my mother K .N Lakshmi and my family for the moral and 

financial support throughout my graduate program. 

The National Library of Medicine (NLM) supported this research. 

 



v 

 

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ............................................................................................ vii 

LIST OF TABLES ............................................................................................................. ix 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

2. EPITHELIUM DETECTION IN CERVICAL HISTOLOGY IMAGES .................. 3 

2.1. OVERVIEW ....................................................................................................... 3 

2.2. RELATED WORK ............................................................................................. 3 

2.3. EPITHELIUM DETECTION ALGORITHM .................................................... 4 

2.4. PREPROCESSING ............................................................................................. 5 

2.5. DATASET .......................................................................................................... 8 

2.6. CONVOLUTIONAL NEURAL NETWORKS .................................................. 8 

    2.7. IMPLEMENTATION OF THE DEEP LEARNING MODEL ......................... 13 

2.8. TRANSFER LEARNING ................................................................................. 15 

2.9. RESULTS ......................................................................................................... 15 

2.10. EPITHELIUM DETECTION IN A SINGLE SVS IMAGE .......................... 15 

2.11. FALSE DETECTION ..................................................................................... 19 

3. CERVICAL INTRAEPITHELIAL NEOPLASIA (CIN) CANCER                                                   

gbCLASSIFICATION .................................................................................................. 24 

 



vi 

 

 

3.1. OVERVIEW ..................................................................................................... 24 

3.2. PREPROCESSING ........................................................................................... 26 

3.3. DATASET ........................................................................................................ 29 

3.4. DEEP LEARNING MODEL ............................................................................ 29 

3.5. DATA FUSION USING FEATURES FROM CNN MODEL ........................ 30 

3.6. IMPLEMENTATION OF THE MODEL ......................................................... 31 

         3.7. CATEGORICAL CROSS ENTROPY LOSS .................................................. 31 

3.8. RESULTS ......................................................................................................... 33 

 3.8.1. Classification Accuracy Using Leave-one-out Approach. ..................... 33 

 3.8.2. Patch Level CIN Classification. ............................................................. 33 

4. CONCLUSION ........................................................................................................ 38 

BIBLIOGRAPHY ............................................................................................................. 39 

VITA…... ………………………………………………………………………………...42 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

LIST OF ILLUSTRATIONS 

 

               Page 

Figure 2.1 Epithelium detection algorithm ......................................................................... 4 

Figure 2.2 Histology slide at 0.4x zoom and resized for display purpose .......................... 5 

Figure 2.3 Block containing intra-epithelium region .......................................................... 6 

Figure 2.4 Sample epithelium patch ................................................................................... 7 

Figure 2.5 Sample non-epithelium patch ............................................................................ 7 

Figure 2.6 Convolution operation ..................................................................................... 12 

Figure 2.7 Intra epithelium detection on a single svs image part1 ................................... 16 

Figure 2.8 Confidence map of intra-epithelium detection on a single svs image part1 .... 17 

Figure 2.9 Intra epithelium detection on a single svs image part2 ................................... 17 

Figure 2.10 Confidence map of intra-epithelium detection on a single svs image part2.. 18 

Figure 2.11 Intra-epithelium detection on a single svs image part3 ................................. 18 

Figure 2.12 Confidence map of intra-epithelium detection on a single svs image part3.. 19 

Figure 2.13 Misclassified as the non-epithelium patch example1 .................................... 19 

Figure 2.14 Misclassified as the non-epithelium patch example2 .................................... 20 

Figure 2.15 Misclassified as the non-epithelium patch example3 .................................... 20 

Figure 2.16 Misclassified as the non-epithelium patch example4 .................................... 21 

Figure 2.17 Misclassified as the epithelium patch example1 ........................................... 21 

Figure 2.18 Misclassified as the epithelium patch example2 ........................................... 22 

Figure 2.19 Misclassified as the epithelium patch example3 ........................................... 22 

Figure 2.20 Misclassified as the epithelium patch example4 ........................................... 23 



viii 

 

 

Figure 3.1 Shows an example of different CIN grades from the segmented images ........ 24 

Figure 3.2 Algorithm steps for digitized histology image analysis .................................. 25 

Figure 3.3 Epithelium and non-epithelium region from histology slides ......................... 26 

Figure 3.4 Epithelium region extracted from histology slides .......................................... 26 

Figure 3.5 Epithelium region with orientation .................................................................. 27 

Figure 3.6 Epithelium region divided into 5 segments for CIN classification ................. 27 

Figure 3.7 Epithelium segment divided into top, middle and bottom parts ...................... 28 

Figure 3.8 Chunks generated from the segment ............................................................... 28 

 



ix 

 

 

LIST OF TABLES 

 

               Page 

Table 2.1 Details of the patches from svs slides ................................................................. 9 

Table 2.2 Details of the deep learning model ................................................................... 14 

Table 2.3 Accuracy of the deep learning model ............................................................... 16 

Table 2.4 Performance metrics for classification ............................................................. 16 

Table 3.1 CNN architecture .............................................................................................. 32 

Table 3.2 Classification accuracy using different methods .............................................. 34 

Table 3.3 CIN classification accuracy using MLP classifier ............................................ 35 

Table 3.4 Confusion Matrix for 66 Image dataset using 66 MLP classifier ..................... 35 

Table 3.5 Patch accuracy at the top, middle, and bottom layers ....................................... 36 

Table 3.6 Patch accuracy for CIN grades at the top, middle, and bottom layers .............. 37 

 



 

 

1. INTRODUCTION 

 

Cervical cancer is one of the most deadly cancers faced by women; in fact, it is 

the second leading cause of cancer death in women aged 20 to 39 years. The number of 

cases reported in 2017 is 12,820 [1]. Papanicolaou (Pap) test is used for screening 

cervical cancer and its precursor lesions. In this test, a biopsied cervical tissue histology 

slides are used to estimate the extent of cancer. These histology images are interpreted by 

expert pathologists [2]. Pathologists seek to detect cervical intraepithelial neoplasia 

(CIN), which is a pre-malignant condition for cervical cancer. Intra-epithelium region is 

the region of interest for pathologists for determining the CIN grades.  A cervical biopsy 

is classified as normal (no CIN lesion) or one of three CIN grades: CIN1 (mild 

dysplasia), CIN2 (moderate dysplasia), or CIN3 (severe dysplasia) by identifying the 

atypical cells in the epithelium by the visual inspection of histology slides [3]. So far this 

epithelium detection is done manually by pathologists in large svs histology slides. The 

dimensions of the images (height x width) obtained from these slides are typically in the 

range of >20000x30000 and < 90000x70000. Figure 2.2. shows a cervical histology slide 

at 0.4x zoom and resized for display purpose. Due to these large sizes of the images, 

detecting the intra-epithelium is time-consuming as the slides often come with zoom 

levels of 20x and the area of the intra-epithelium region is very less when compared to 

the non-epithelium and white background, which is usually associated with these images. 

The research presented here is about automating this tedious process, which in turn 

simplifies the workflow for epithelium CIN discrimination. Section 2 presents research 

for epithelium detection and Section 3 provides algorithms developed for epithelium CIN 
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classification cervical cancer classification. Figure 2.3. shows a block which contains an 

intra-epithelium region. Figure 3.6. shows the intra-epithelium segmented from the block 

and further divided into 5 segments along the medial axis for CIN classification. Figure 

3.1. shows an example of different CIN grades from these segmented images.  
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2. EPITHELIUM DETECTION IN CERVICAL HISTOLOGY IMAGES 

 

2.1. OVERVIEW 

In this Section, research is presented for epithelium detection from digitized 

cervical histology slide images.  Conventionally, the epithelium region is manually 

cropped and segmented from histology slide images, which has been the basis for many 

studies [16], [17], [18], and [19]. This research presents a novel approach for detecting 

the epithelium in histology slide images that can be used to extract the epithelium region, 

which would eliminate the epithelium region-cropping step required in previous studies 

[16], [17], [18], and [19]. The algorithm for epithelium detection from digitized histology 

slide is shown in Section 2.3.  

 

2.2. RELATED WORK 

Convolutional neural networks (CNN) are very efficient in object 

recognition/classification, segmentation. The success of these CNN can be seen in the 

large-scale image and video recognition [4][5][6] on Image Net [7] challenge. These 

CNN feed on large data and identify low-level to high-level features from the images. 

The advent of graphical processing units (GPU) has facilitated the cause. Before the 

advent of CNN, features are extracted manually and traditional machine learning 

algorithms like support vector machines (SVM), logistic regression, random forest (RF) 

etc., are applied for the classification purposes. The main issue here is that different 

domains need specific handcrafted features. CNN does not need features to be extracted 

manually, instead, they use filters and convolve them with the images to extract the 
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features. The weights of filters are updated during the training process. Deep CNN [6] 

have been successful in further improving the accuracy. Apart from object recognition, 

the CNN has been successful in the biomedical Images. In [8], various use cases are 

given for biomedical images like nuclei and epithelium segmentation, mitosis in cells 

using CNN, specifically AlexNet[4]. This research explores methods to detect the intra-

epithelium using various CNN architectures, comprising of both shallow and deep CNN. 

 

2.3. EPITHELIUM DETECTION ALGORITHM 

The algorithm for epithelium detection is presented in Figure. 2.1. The steps of 

this algorithm are presented in greater detail in the following sections. 

 

 

Figure 2.1 Epithelium detection algorithm 

Read svs slides

Read the base image

Extract 1000x1000 RGB patches

Resize patches to 250x250 RGB patches

Label patches in to two classes

Eliminate white background patches

Data augmentation

Train using deep learning model

Test based on training weights

Map the patches to original svs slide 
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2.4. PREPROCESSING 

Preprocessing of data is crucial in biomedical image processing. In this work, the 

dataset is created by extracting the patches from the raw scan scope virtual slides (svs). 

Most of the preprocessing for this work is performed using sklearn [9] libraries. Open 

slide [10] library is used to read the images from the svs slides. Dimensions of images are 

typically in the range above 20000x30000 and below 90000x70000. For example, In 

Figure 2.2. a sample slide image is shown. The base image that can be obtained using this 

svs slide has the dimensions 38333x42064.  

 

 

 

Figure 2.2 Histology slide at 0.4x zoom and resized for display purpose 
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Figure 2.3 Block containing intra-epithelium region 

 

In this work, a base image for every svs slide is considered and patches of 

1000x1000 are extracted from these base images. Non-overlapping patches are 

considered for this work and the patches are extracted along the length and the breadth of 

the svs slide. For instance, 1600 patches are obtained from the image in Figure 2.2. after 

ignoring the patches with low information. These 1000x1000 RGB patches are resized to 

250x250 RGB patches and are given as input the network. The input 250x250 patches, 

which contain the epithelium, are labeled as the epithelium patch and the ones containing 

non-epithelium or white background are labeled as the non-epithelium patch. Figure 2.4. 

shows the sample epithelium patch and Figure 2.5. shows the sample non-epithelium 

patch. These biomedical images are usually associated with large white background, such 

patches can be ignored by setting a threshold. The threshold can be obtained either by 

taking average of the RGB values of the epithelium, non-epithelium, and white 

background regions, or by converting the images in to grey scale, taking average of grey 
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images and setting 0.8 as a threshold. Thereby we can eliminate the images above 

threshold as background images.  

 

 

 
 

Figure 2.4 Sample epithelium patch 

 

 

 
 

Figure 2.5 Sample non-epithelium patch 
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2.5. DATASET 

The number of svs images that were considered for training is 50. For validation 

and testing, the number of svs images that were considered is 26. The svs slides are 

chosen such that the training svs slides are obtained in the year 2013, the validation and 

testing slides were obtained during 2015. Sets of patches are used for training, validation, 

and testing. Since the images have a lot of non-epithelium regions, the resulting dataset is 

skewed towards non-epithelium class. So, data augmentation is performed using data 

augmentor [11] for the epithelium patches. Augmentation techniques like the rotation of 

the image (90,180,270), image flip (horizontal and vertical), random cropping of the 

image with 90% of the region cropped are used. The number of patches generated for 

training data set is 41680, of which epithelium patches are 21839 and non-epithelium 

patches are 20841. The number of patches generated for validation data set is 8300 of 

which epithelium patches are 3000 and non-epithelium patches are 5300. The number of 

patches generated for testing data set is 8327, with 3131 patches containing at least some 

section of the epithelium region, and 5196 patches that do not contain any epithelium 

region. Table  2.1 provides the svs files used for generating this dataset. All of these svs 

files were obtained from the Pathology Department at the University of Oklahoma Health 

Sciences Center in collaboration with National Library of Medicine.  

 

2.6. CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks are successful because they try to mimic the 

functionality of the visual cortex of the brain. They are basically an extension of neural 
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networks which use convolution operation in place of general matrix multiplication in 

their layers.  

 

Table 2.1 Details of the patches from svs slides 

Svs 

slide 

Number of patches from the svs 

slide for training 

Number of patches from the svs 

slide for validation and testing 

1  307  

2  2002  

3  571  

4  170  

5  300  

6  992  

7  265  

8  495  

9  153  

10  314  

11  1132  

12  1225  

13  244  

14  539  

15  99  

16  253  

17  1144  

18  827  

19  537  

20  80  

21  191  

22  152  
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Table 2.1 Details of the patches from svs slides (Cont.) 

23  159  

24  289  

25  218  

26  756  

27  77  

28  447  

29  130  

30  189  

31  135  

32  94  

33  1179  

34  383  

35  1080  

36  446  

37  112  

38  108  

39  283  

40  116  

41  182  

42  277  

43  370  

44  502  

45  1195  

46  584  

47  924  

48  204  

49  976  

50  370  
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Table 2.1 Details of the patches from svs slides (Cont.) 

51   
908 

52   1180 

53   81 

54   672 

55   816 

56   674 

57   1101 

58   386 

59   190 

60   648 

61   268 

62   803 

63   791 

64   1560 

65   805 

66   21 

67   16 

68   7 

69   39 

70   57 

71   23 

72   40 

73   24 

74   25 

75   62 

76   59 
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If we use a two-dimensional image I(i,j) and two-dimensional kernel K(m,n),can 

be defined as below. Figure 2.6 shows the convolution operation performed on an image. 

Notice that based on the number of filters the depth of the input to the next layer 

increases. Filter size affects the size of the input to the next layer. Several Convolution 

layers are stacked for a deep learning CNN with filters of varying sizes, hen by 

maxpooling layers and followed by a fully connected neural network. Both shallow and 

deep learning CNN are considered for the classification of epithelium and non-epithelium 

patches.  

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)𝑛𝑚      (2.1) 

Below are the four different architectures considered for this purpose. 

a) 5 layer CNN 

b) 8 layer CNN 

c) VGG-19 (FC -1024) 

d) VGG -19 (FC-500) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.6 Convolution operation 
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2.7. IMPLEMENTATION OF THE DEEP LEARNING MODEL 

 

This work is implemented in Python 3.6 using Keras [12]framework with 

Theano[13] as backend. The training dataset is taken as a numpy array and fed to the 

model.  The hyperparameters used for CNN8 model are as follows. 

a) Batch size= 32  

b) Epochs=100.  

c) Loss= binary cross entropy 

d) Optimizer= RMS prop 

e) Learning rate=1e-5 

f) Zero padding  

The layer details and the filter sizes are described in Table 2.2. For instance, 

Conv3-64 indicates that 64 filters of 3x3 sizes are used. Dropout (0.1) indicates the 

probability of neurons that are dropped each time for training the network. This helps to 

avoid overfitting and acts as a regularization technique for neural networks. Similarly, the 

rest of the table can be interpreted.  

Since the problem under consideration is binary classification, binary cross entropy loss 

is used to represent the network and this loss is optimized to solve the problem. The loss 

equation is a below. 

𝐿𝑜𝑠𝑠 =  −(𝑦𝑙𝑜𝑔 (𝑝)  + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝))     (2.2) 

Equation 2.2 Binary cross entropy loss 

Where y is the binary indicator 0 or 1 

p is the predicted probability 
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Table 2.2 Details of the deep learning model 

Architecture of the models 

5 layer CNN 

(5 weight layers) 

8 layer CNN 

(8 weight layers) 

VGG-19 (FC -

1024) 

(19 weight layers) 

VGG -19 (FC-500) 

(19 weight layers) 

Input image(250x250 RGB patch) 

Conv3-32 

 

Conv3-32 

Conv3-32 

Conv3-64 

Conv3-64 

Conv3-64 

Conv3-64 

Maxpool 

Conv3-32 

 

 

Dropout(0.1) 

Conv3-128 

Conv3-128 

Conv3-128 

Conv3-128 

Maxpool Maxpool 

 

Conv3-64 

 

Conv2-64 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Maxpool 

 

 

FC-64 

 

 

 

Dropout(0.2) 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Maxpool 

Dropout(0.5)  

Conv2-128 

 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

FC-1 Maxpool Maxpool 

Sigmoid Dropout(0.3) FC-1024 FC-500 

 FC-100 Dropout 

 Dropout(0.5) FC-1024 FC-500 

 FC-100 FC-1 FC-1 

 FC-1 
Sigmoid 

 Sigmoid 
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2.8. TRANSFER LEARNING 

The number of parameters for the deep CNN is huge in the order of millions. For 

instance, the VGG network has ~30 million parameters to train the network. So this 

requires very high computational cost, in order to overcome this transfer learning is used, 

whereby a pre-trained network on a different/ similar dataset is used and the weights are 

trained for our dataset by freezing some layers of the network. This works because the 

initial layers in the CNN detect the low-level features in the image like edges, curves etc. 

These low-level features are common to most of the problems that we consider. In this 

work, the VGG-19 fully connected (FC 1024) network, which is trained on the Imagenet 

dataset is used for transfer learning. The first 5 layers are frozen and the rest of the layers 

are trained by the epithelium dataset. 

 

2.9. RESULTS 

The validation results for the various models are as below; the highest accuracy 

obtained from the validation data set is 98.84%. The number of epochs used for training 

all the architectures is 100. The weights for this model are taken and the highest accuracy 

obtained for the test data is 98.82%. The Tables 2.3, 2.4 describes the performance 

metrics for classification like accuracy, precision, recall and F-score.  

 

2.10. EPITHELIUM DETECTION IN A SINGLE SVS IMAGE 

To validate the intra-epithelium detection, we considered a single svs image as in 

Figure 2.2. and detected the intra-epithelium regions as highlighted. The below Figures 

2.7-2.12 are zoomed in, vertically flipped images of Figure 2.2. This shows the region of 
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interest is detected and their corresponding confidence map, which is helpful for the 

pathologists to identify the epithelium region. 

 

Table 2.3 Accuracy of the deep learning model 

Models Validation Accuracy Test Accuracy 

CNN-5 91.63% 89.25% 

CNN-8 96.84% 92.02% 

VGG-19(FC 1024) 98.68% 98.82% 

VGG-19(FC 500) 98.84% 98.76% 

 

 

Table 2.4 Performance metrics for classification 

Models TP FP FN Precision Recall F-score 

CNN-5 7433 377 517 0.9517 0.9350 0.9433 

CNN-8 7664 288 375 0.9638 0.9534 0.9585 

VGG-19(FC 1024) 8230 23 74 0.9972 0.9911 0.9941 

VGG-19(FC 500) 8224 43 60 0.9948 0.9928 0.9938 

 

 

 

 

Figure 2.7 Intra epithelium detection on a single svs image part1 
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Figure 2.8 Confidence map of intra-epithelium detection on a single svs image part1 

 

 

Figure 2.9 Intra epithelium detection on a single svs image part2 
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Figure 2.10 Confidence map of intra-epithelium detection on a single svs image part2 

 

 

Figure 2.11 Intra-epithelium detection on a single svs image part3 
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Figure 2.12 Confidence map of intra-epithelium detection on a single svs image part3 

 

2.11. FALSE DETECTION 

Below patches, as shown in Figures 2.13-2.16, were falsely detected as the non-

epithelium region. The reason for misclassification could be due to staining of the 

histology slide, narrow cross section of epithelium region and small size of nuclei. 

 

 

 

Figure 2.13 Misclassified as the non-epithelium patch example1 
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Figure 2.14 Misclassified as the non-epithelium patch example2 

 

 

 

Figure 2.15 Misclassified as the non-epithelium patch example3 
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Figure 2.16 Misclassified as the non-epithelium patch example4 

 

Below patches, as shown in Figures 2.17-2.20, were falsely detected as the 

epithelium region. The primary reason for these misclassifications could be due to 

minimal presence of nuclei in the patches. 

 

 

Figure 2.17 Misclassified as the epithelium patch example1 
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Figure 2.18 Misclassified as the epithelium patch example2 

 

 

Figure 2.19 Misclassified as the epithelium patch example3 
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Figure 2.20 Misclassified as the epithelium patch example4 
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3. CERVICAL INTRAEPITHELIAL NEOPLASIA (CIN) CANCER 

CLASSIFICATION 

 

3.1. OVERVIEW 

Cervical cancer detection in early stages is crucial for its treatment. With the 

advent of digitization of the medical field, biomedical image analysis is playing a crucial 

role in assisting the pathologists in cervical cancer assessment. In this research, cervical 

intra-epithelial neoplasia (CIN), a pre-cancerous condition, is used for digitized histology 

image analysis of the epithelium region. This work focusses on automating the 

epithelium region analysis process to serve as a diagnostic aide for pathologists for 

improving CIN assessment capability. Figure 3.2 shows the algorithm for digitized 

histology image analysis used in this CIN classification study. In this work, CIN 

classification is performed on a 117 digitized histology image dataset, which was 

manually extracted from .svs files from Table 2.1. For epithelium classification, the CIN 

categories include Normal, CIN1, CIN2, CIN3 as illustrated in Figure 3.1. Earlier 

research [15][16] focused on splitting the epithelium region into 10 vertical 

partitions(segments) along the medial axis for individual vertical partition CIN 

classification which is fused for whole epithelium image for the CIN classification. 

 

 

Figure 3.1 Shows an example of different CIN grades from the segmented images 
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Figure 3.2 Algorithm steps for digitized histology image analysis 

Extract epithelium 
regions from svs slide

Segment the epithelium 
region in to 5 segments 

Divide each segment in 
to top, middle, and 

bottom layers 

Extract 32x32 RGB 
patches from each layer

Train using deep 
learning model

Test based on training 
weights

Obtain class for each 
patch

Generate 12 features 
from each segment 

using class of patches

Classify 12 features from 
each segment, obtain 

segment class and 
probability

Datafuse segment 
probabilites to obtain 20 

features for image

Classify the image using 
classifers on 20 features 

Classify the image using 
voting on each segment
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3.2. PREPROCESSING 

Deep learning requires more data (typically in the order of thousands) for training 

the network. From the 117 epithelium images in the dataset, preprocessing operations are 

performed to generate the input data for the deep learning network. In generating the 117 

epithelium image dataset, the preprocessing operations consist of extracting the data, 

epithelium region from the raw svs histology slides as shown in Figure 3.3. 

 

 

Figure 3.3 Epithelium and non-epithelium region from histology slides 

   

The epithelium region is masked out and only epithelium region is extracted since 

it is the region of interest. Since these are biomedical images, the orientation of the 

epithelium region is not uniform in the images as shown in Figure 3.4. 

 

 

Figure 3.4 Epithelium region extracted from histology slides 
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In order to bring a standard form to the data, the images are oriented horizontally 

as shown in Figure 3.5. 

 

 

Figure 3.5 Epithelium region with orientation 

 

The medial axis for these images in the epithelium region is determined based on 

the algorithm from [15] and is shown by the blue line in Figure 3.6. Orthogonal segments 

from this medial axis are generated and each image is split into 5 segments as shown in 

Figure 3.6. based on the method from[15].    

 

 

                     

 

Figure 3.6 Epithelium region divided into 5 segments for CIN classification 
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Each segment is further split in to top, middle and bottom regions of equal size as 

shown in Figure 3.7. The whole segment is also shown in the below figure. 

 

 

Figure 3.7 Epithelium segment divided into top, middle and bottom parts 

 

Patches/chunks of size 32x32 are extracted from these segments as shown in 

Figure 3.8. These are used for training the deep learning model.  

 

 

Figure 3.8 Chunks generated from the segment 
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3.3. DATASET 

The dataset used for CIN classification is from 117 Images. The number of 

segments that are generated from these images is 585 with 5 segments obtained from 

each image. The patches from the top, middle, and bottom segments are generated and 

these patches are used for training the network. Based on the images they correspond to, 

the patches are split into 5 folds. So, 5 fold cross validation is performed. At any given 

point in time, four folds are used for training and the remaining fold is used for testing 

purpose.  The data is split evenly between the folds based on the images. The number of 

32x32 RGB  patches generated in the top segment is 40321, the number of 32x32 RGB  

patches generated in the middle segment is 59627, the number of 32x32 RGB  patches 

generated in the bottom segment is 40420. 

 

3.4. DEEP LEARNING MODEL 

The deep learning model used for the prediction is specified in the Table3.1. It has 

two convolution layers with 32 filters of size 3x3 for extracting the features of the images 

using convolution operation. It is followed by maxpooling layer to identify the maximum 

feature contributed in the filter size of 2x2 from the convoluted image.  It is followed by 

then the dropout layer with a probability of 0.1 for better regularization and to prevent the 

overfitting of the network, then one convolution layer with 64 filters of size 2x2 followed 

by a maxpooling layer of size(2,2). It is followed by one more convolution layer with 128 

filters of size 2x2 followed by a maxpooling layer of size (2,2), then dropout layer with a 

probability of 0.2. It is then followed by two fully connected dense layer with 500 
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neurons with dropout layer with a probability of 0.3, followed by the 4 neurons for the 

prediction of the classes.  

 

3.5. DATA FUSION USING FEATURES FROM CNN MODEL  

The classification results from the CNN model obtained are at the patch level, 

each patch is classified into either normal, CIN1, CIN2, or CIN3. In order to obtain the 

classification at the image level, the following data fusion technique is used. Calculating 

the patch level accuracy for the entire vertical segment gives 12 feature vectors for each 

vertical segment.  As illustrated in Figure 3.7 each vertical segment is divided into 3 

layers (top, middle, and bottom). The overall classification of these layers into each of the 

four classes is calculated from the below equation.  Therefore, each layer gives four 

probabilities corresponding to each class, which in turn gives 12 features for the entire 

vertical segment. These 12 features from all the vertical segments of the images are used 

for further classification of vertical segments to obtain the vertical segment level 

accuracy using leave one image out approach. Here the features from all the images 

segments except one image are used for training, the left out image segments are used for 

testing. The classifiers like SVM [20], MLP [21], LDA [22], Logistic, RF [23] classifiers 

are used for this purpose. Once this segment level classification is done, we have the 

prediction class for each segment and their prediction probabilities for each segment. 

These prediction classes at the segment level are used as a basis for a voting scheme, 

where the max number of segments classified into one class is taken as the overall image 

classification. The four prediction probabilities from each vertical segment corresponding 

to 20 features for a single image, as there are 5 vertical segments. These 20 features are 
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further used for training the above-mentioned classifiers to obtain the image level 

accuracy. 

𝑃𝑟𝑜𝑏(𝑥 = 𝑐𝑙𝑎𝑠𝑠|𝑙𝑎𝑦𝑒𝑟 𝑦) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛  𝑙𝑎𝑦𝑒𝑟 𝑦
      (3.1) 

Equation 3.1 Probabilities of the layer corresponding to the four classes 

 

3.6. IMPLEMENTATION OF THE MODEL 

This work is implemented in Python 3.6 using Keras [12] framework with 

Theano[13] as the backend software. The patches from the top, middle and bottom layers 

are fed to three networks with the architecture mentioned in Table 3.1 The training 

dataset for each of the layers is taken as a numpy file and given as input to the model. 

The hyperparameters used for CNN model are as follows. This architecture uses 5- fold 

cross-validation. 

a) Batch size= 500  

b) Epochs=300  

c) Loss= categorical cross entropy 

d) Optimizer= Adam 

e) Learning rate=1e-5 

f) Zero padding 

 

3.7. CATEGORICAL CROSS ENTROPY LOSS 

Since the problem under consideration is multi-classification, categorical cross 

entropy loss is used to represent the network and this loss is optimized to solve the multi- 
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class classification problem. The loss equation is given in Equation 3.2 . Table 3.1 

contains the CNN architecture and parameters used in the training process. 

 

𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑜,𝑐𝑙𝑜𝑔𝑝𝑜,𝑐
𝑀
𝑐=1    (3.2) 

Equation 3.2 Categorical cross entropy loss 

M is the number of classes 

Where y is the binary indicator 0 or 1 

p is the predicted probability observation o is of class c 

 

Table 3.1 CNN architecture 

Layer type Layer 

properties  

Input Size 

(3,32,32) 

Convolution 32 filters, 

size (3,3) 

Convolution 32 filters, 

size (3,3) 

Max pooling Size (2,2) 

Dropout 0.1 

Convolution 64 filters, 

size (2,2) 

Max pooling Size (2,2) 

Convolution 128 filters, 

size (2,2) 

Max pooling Size (2,2) 

Dropout 0.2 

Dense 500 Neurons 

Dropout 0.3 

Dense 500 Neurons 

Dense 

(output) 

4 Neurons 
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3.8. RESULTS 

The classification is performed after data fusion of probabilities obtained from 

CNN model. The classification results using segment level and at the image level using 

both voting scheme and using 20 feature vectors is tabulated below. For testing, 

classification is performed using leave one out image strategy using support vector 

machines(SVM), linear discriminant analysis(LDA), multi-layer perceptron(MLP), 

logistic and random forest(RF) classifiers. The best image accuracy obtained is 77.27% 

for MLP classifier using voting. 

3.8.1. Classification Accuracy Using Leave-one-out Approach. The 

classification accuracy using different datasets is shown in Tables 3.2 and 3.3. The 90-

image dataset is a subset to of 117-image dataset used in [15], the dataset was created by 

excluding the images in which vertical segment cannot be divided into three layers as 

they contain thin epithelium. The 66-image dataset used for comparison are the same 

images used in [16] which is also a subset of the images from the 117-image dataset. The 

highest accuracy obtained for the 10 segments approach in [16] is 77.27%, which is the 

same as the highest accuracy obtained using 5 segments. 

3.8.2. Patch Level CIN Classification. The patch level CIN classification for the 

top, middle, and bottom layers is tabulated in Tables 3.5 and 3.6. The fully trained model 

accuracy is based on the weights obtained at the end of the training, the best model 

accuracy is based on the weights obtained at the lowest loss while training. These results 

specify the accuracy of the patch, whether that is correctly classified as Normal, CIN1, 

CIN2, and CIN3. The confusion matrix for the 66-image dataset using MLP classifier is 

provided in Table 3.4. 
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Table 3.2 Classification accuracy using different methods 

 SVM LDA MLP Logistic RF 

Using all the images in the dataset(117 Images) 

Segment  Accuracy 62.45% 64.62% 62.82% 61.37% 61.19% 

Image accuracy 

(Voting) 
63.25% 66.67% 66.67% 61.54% 61.54% 

Image Accuracy  

(20 Features)  

59.83% 63.25% 61.54% 59.83% 58.12% 

Leaving images with less information (90 Images) 

Segment  Accuracy 64.22% 64.00% 64.89% 62.89% 60.22% 

Image accuracy 

(Voting) 

68.89% 68.89% 67.78% 62.22% 63.33% 

Image Accuracy  

(20 Features)  

72.22% 58.89% 58.89% 60.00% 65.56% 

Using  66 image dataset 

Segment  Accuracy 69.09% 70.61% 72.73% 70.30% 70.61% 

Image accuracy 

(Voting) 

71.21% 74.24% 77.27% 71.21% 74.24% 

Image Accuracy  

(20 Features)  

68.18% 68.18% 63.64% 74.24% 75.76% 

Using only top and middle layers of 66 image dataset 

Segment  Accuracy 70.91% 70.61% 69.39% 69.70% 68.79% 

Image accuracy 

(Voting) 

74.24% 75.76% 74.24% 71.21% 74.24% 

Image Accuracy  

(20 Features)  

66.67% 68.18% 68.18% 68.18% 69.70% 
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Table 3.3 CIN classification accuracy using MLP classifier 

Using MLP Classifier Normal CIN1 CIN2 CIN3 

Using all the images in the dataset(117 Images) 

Segment  Accuracy 84.85% 21.50% 49.02% 72.79% 

Image accuracy (Voting) 95.12% 21.74% 54.55% 70.97% 

Image Accuracy  

(20 Features)  

90.24% 8.70% 36.36% 80.65% 

Leaving images with less information (90 Images) 

Segment  Accuracy 93.33% 7.06% 46.67% 75.45% 

Image accuracy (Voting) 97.22% 5.88% 53.33% 77.27% 

Image Accuracy  

(20 Features)  

88.89% 11.76% 20.00% 72.73% 

Segment  Accuracy 93.13% 17.78% 56.67% 75.38% 

Using  66 image dataset 

Image accuracy (Voting) 96.88% 33.33% 58.33% 76.92% 

Image Accuracy  

(20 Features)  

87.50% 11.11% 41.67% 61.54% 

Segment  Accuracy 96.88% 0.00% 51.67% 66.15% 

Using only top and middle layers of 66 image dataset 

Image accuracy (Voting) 100.00% 0.00% 75.00% 61.54% 

Image Accuracy  

(20 Features)  

90.63% 22.22% 50.00% 61.54% 

 

 

Table 3.4 Confusion Matrix for 66 Image dataset using 66 MLP classifier 

  Normal CIN1 CIN2 CIN3 

Normal 31 1 0 0 

CIN1 5 3 1 0 

CIN2 1 1 7 3 

CIN3 0 0 3 10 
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Table 3.5 Patch accuracy at the top, middle, and bottom layers 

Fold Top layer (fully trained model) Top layer (best model) 

  Training Validation Testing Training Validation Testing 

1 75.85% 50.45% 67.60% 75.75% 50.32% 68.02% 

2 80.96% 47.05% 54.36% 79.34% 47.85% 57.06% 

3 77.50% 49.65% 75.13% 76.34% 48.38% 76.03% 

4 77.04% 50.41% 78.05% 76.51% 50.53% 78.03% 

5 76.76% 78.15% 47.29% 76.76% 78.65% 48.24% 

Average 77.62% 55.14% 64.49% 76.94% 55.15% 65.48% 

Standard 

Deviation 
0.02 0.12 0.12 0.01 0.12 0.11 

 

 

Fold 
Middle layer(fully trained 

model) 
Middle layer (best model) 

  Training Validation Testing Training Validation Testing 

1 74.52% 46.56% 38.47% 68.41% 41.71% 55.20% 

2 78.73% 50.05% 49.93% 76.34% 48.83% 53.93% 

3 73.88% 46.87% 58.91% 72.78% 48.28% 62.11% 

4 73.25% 44.76% 67.36% 58.45% 44.40% 72.81% 

5 74.89% 67.34% 45.11% 71.93% 64.89% 45.00% 

Average 75.05% 51.12% 51.96% 69.58% 49.62% 57.81% 

Standard 

Deviation 
0.02 0.08 0.10 0.06 0.08 0.09 

 

 

Fold 
Bottom layer (fully trained 

model) 
Bottom (best model) 

  Training Validation Testing Training Validation Testing 

1 61.73% 36.20% 57.67% 59.30% 35.65% 56.46% 

2 64.39% 34.27% 36.42% 64.37% 35.00% 37.78% 

3 58.69% 38.82% 47.08% 57.52% 40.28% 53.93% 

4 62.50% 35.72% 54.75% 56.90% 34.87% 64.60% 

5 64.80% 47.16% 38.58% 56.23% 59.90% 47.41% 

Average 62.42% 38.43% 46.90% 58.86% 41.14% 52.04% 

Standard 

Deviation 
0.02 0.05 0.08 0.03 0.10 0.09 
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Table 3.6 Patch accuracy for CIN grades at the top, middle, and bottom layers 

Fold Top layer  

  Normal CIN1 CIN2 CIN3 

1 98.77% 2.59% 22.43% 65.53% 

2 79.29% 0.50% 43.37% 65.53% 

3 84.05% 5.54% 37.16% 63.14% 

4 89.16% 5.27% 47.54% 86.51% 

5 73.61% 7.86% 26.93% 63.38% 

Average 84.98% 4.35% 35.49% 68.82% 

Standard  

Deviation 
0.0962 0.0285 0.1065 0.0996 

 

 

Fold Middle layer 

  Normal CIN1 CIN2 CIN3 

1 62.86% 61.15% 19.31% 63.83% 

2 82.36% 4.31% 31.40% 59.30% 

3 72.28% 18.59% 10.82% 53.89% 

4 75.67% 5.29% 46.84% 77.88% 

5 90.07% 5.92% 1.11% 57.24% 

Average 76.65% 19.05% 21.90% 62.43% 

Standard 

Deviation 
0.1028 0.2425 0.1785 0.0936 

 

 

Fold Bottom layer 

  Normal CIN1 CIN2 CIN3 

1 87.04% 4.82% 0.00% 56.99% 

2 90.75% 0.00% 18.01% 0.40% 

3 70.80% 0.00% 0.57% 41.65% 

4 79.49% 0.00% 15.39% 17.84% 

5 74.68% 0.16% 0.03% 48.93% 

Average 80.55% 1.00% 6.80% 33.16% 

Standard 

Deviation 
0.0832 0.0214 0.0909 0.2343 
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4. CONCLUSION 

 

This work successfully implements intra-epithelium detection in cervical 

histology images with a very good accuracy of 98.76%. Since the size of the digital 

histology images are very large and comes with 20x zoom level, it takes longer time for 

pathologists to identify the epithelium region. This work facilitates and identifies the 

epithelium region so that the pathologists can focus on the specific areas instead of the 

finding where the epithelium region is located. In this study, various CNN architectures 

were implemented and the best results are obtained for the VGG-19 architecture using 

transfer learning. Deep CNN performed better when compared to shallow networks. 

The second part of the study focused on the cervical cancer classification. In this 

work since the dataset is small, chunks of small size were extracted and chunk level 

accuracy is determined. Data fusion techniques are used for determining the overall 

accuracy of the images. The features extracted using CNN are utilized as input to the 

classifiers like SVM, MLP, Logistic and RF. Maximum accuracy of 77.27% is obtained 

using this dataset. The accuracy can be further improved by using larger datasets and 

using different preprocessing techniques to generate patches of different sizes. Future 

work involves exploring these possibilities to further improve the accuracy of the CIN 

classification. 
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