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ABSTRACT

Detection of gene mutations is central for assessing genetic factors affecting disease 

predisposition, genetic causes of a particular disease, and gene-targeted treatment. DNA 

microarray methods are widely used to detect mutations by contrasting the expression levels 

of thousands of genes together under varying experimental conditions. The experimental 

conditions could be diseased cell states compared with the normal cell states. Biclustering, 

a robust exploratory data analysis tool, can be applied to microarray data to detect subsets of 

genes that co-express highly only for a subset of experimental conditions. Such detection 

is crucial for gaining insights into gene regulatory networks, differential gene expression, 

and gene-disease associations to identify candidate genes for further study. However, 

biclustering fails to identify functional associations between genes within a bicluster and 

group functionally related genes that might not co-express significantly.

This work presents a novel biclustering algorithm, TopoBARTMAP, which combines 

a biclustering ARTMAP (BARTMAP) with a topological ART (TopoART) to improve the 

quality of biclustering. Whilst producing a graphical representation of space, topological 

clustering can identify arbitrarily shaped clusters in space that are difficult to detect otherwise. 

These methods find application in analyzing disease-specific gene subgroups and disease 

progression. TopoBARTMAP inherits, from TopoART, the ability to detect arbitrarily 

shaped biclusters whilst remaining robust to noise. These capabilities of TopoBARTMAP 

are rigorously demonstrated in the study with 35 benchmark cancer datasets. Further, 

the benchmarking study underpins the statistically significant performance improvement 

observed in comparison to other compared methods. Using the breast cancer dataset 

containing expression levels of 39,326 genes observed over 38 samples, the graphical output 

of TopoBARTMAP is analyzed to detect intra-bicluster-gene associations within the dataset.
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SECTION

1. INTRODUCTION

With today’s advancements in molecular biology and chemical analysis, we can 

comprehend the activity of several thousand genes during cell division. At a molecular 

level, genes are subsequences of Deoxyribonucleic acid (DNA) that encode the information 

needed to synthesize functional proteins which control the development of an organism 

[1]. The mechanism by which the cells synthesize functional products using genes is called 

as gene expression. Understanding gene expression illuminates the conditions required to 

produce observable traits, called phenotype, in the offspring after cell division. By regulating 

gene activity, i.e., by controlling the timing, location, and amount of synthesized protein, 

it is possible to alter the manifestation of a phenotype in an organism. Although gene 

regulation is a cellular process, several extrinsic factors, such as a change in temperature, 

nutrient availability, and PH-level, can affect gene expression and alter the development of 

an organism. Further, any change to the DNA sequence of the gene can affect the expression 

product.

A permanent change to the DNA sequence that makes a gene is called a mutation. 

Since the functioning of a cell is intrinsically related to the functioning of proteins, any 

mutation to the DNA sequence of a gene can alter the coded protein, resulting in its 

malfunction. Mutations to the DNA can be hereditary or acquired, where the latter is 

acquired sometime during an organism’s lifetime. Hereditary mutations occur in the germ 

cell and are inherited by all the cells of a new organism if they are not detected and repaired 

by the cell. Acquired mutations can be caused by environmental factors such as chemical 

exposures (such as cigarette smoke), pathogenic factors (such as viral infections), and drug 

usage [2, 3, 4, 5]. Although not all mutations are harmful, certain mutations are malignant
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and can affect the predisposition of an organism. While Mendelian diseases are associated 

with hereditary mutations, diseases like cancer are related to acquired mutations; hence 

detecting mutations is pivotal for treating genetic conditions.

There are several methods for identifying mutations to the DNA sequence of the 

gene. These methods utilize the basic chemical properties of DNA, or the enzymes that 

act upon it during cell division [6]. Single base-pair mutations are detected by comparing 

each base pair in the gene sequence to that of the normal gene. More significant mutations 

are detected by studying chromosomes during cell division (also known as cytogenetics), 

and molecular diagnosis [7]. Cytogenetic methods like Fluorescence in situ hybridization 

(FISH) use fluorescent probes that bind to specific regions (DNA sequence) of chromosomes, 

and fluorescent microscopy is used to find the binding locations. Molecular methods [8, 9] 

use nucleic acid-based analytical methods to assess the genetic makeup. These methods 

are further classified as methods for detecting novel mutations and for detecting known 

mutations. To identify the former, methods based on the mobility of molecules under 

a uniform electric field (electrophoresis) are often used. To check for the latter, known 

mutations, methods that sequence DNA, exploit complementary binding properties of DNA 

strand, or produce a copy of DNA, like Polymerase chain reaction [10], are used.

DNA microarray or DNA chips [11, 12] use complementary bind properties of DNA 

strands to detect known mutations. These methods allow for measuring the expression 

levels of thousands of genes in one experiment, thus identify multiple known mutations 

in DNA. Furthermore, microarrays are often used to study gene expression profiles under 

different experimental conditions. The experimental conditions investigated could be but are 

not limited to stages of disease development, the time course of a cellular process, disease 

cases compared with controls, and various phenotypes [13]. Such studies with microarrays 

generate an immense amount of data as matrices. Frequently clustering methods are used to 

analyze, compare, and contrast different patterns in the microarray data [14, 15, 16]. Figure 

1.1a shows an example of DNA microarray gene expression data.
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Clustering methods are a family of analytical methods used for grouping objects, 

where each group is referred to as a cluster. The grouping is such that elements within a 

cluster are homogenous and differ significantly from the elements of other clusters [17]. 

Clustering of microarray is used to identify genes that have similar expression patterns across 

various experimental conditions. Such grouping is key for identifying genes associated 

with the regulatory process studied in the experiment (cite from TopoBARTMAP-II paper). 

Furthermore, two-way clustering or Biclustering is used to identify subsets of genes expressed 

only during a subset of experimental conditions. Figure 1.1b shows the result of biclustering 

the example gene expression data.
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Figure 1.1. The DNA microarray data and biclustering result. The Sub-figure (a) presents 
a DNA microarray gene expression matrix with rows representing individual genes and 
columns representing experimental conditions or observations. Each entry of a row indicates 
the expression level of the corresponding gene for the corresponding column experimental 
condition. The Sub-figure (b) presents the output of biclustering the expression data. The 
rows and columns are rearranged to show the biclusters in the data.
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Biclustering methods allow for comparing expression profiles of genes while simul­

taneously comparing experimental conditions such as diseases. Such clustering identifies 

differential gene expression under varying conditions and can be applied to identify genes 

with altered expression, hence mutations. A subset of studied genes and the experimental 

conditions they are highly expressed define a bicluster. Each bicluster defines a differential 

gene module whose expression is either inhibited or promoted due to the changes in the 

associated genes.

This thesis presents a biclustering method based on Adaptive Resonance Theory, a 

neural learning theory. The presented method, Topological Biclustering ARTMAP, combines 

biclustering with Topological Data Analysis to identify arbitrarily shaped biclusters and 

within bicluster gene relations, ultimately to improve the quality of identified biclusters. The 

rest of the introduction is organized as follows. Section 1.1 briefs on gene expression and 

microarray data. In Section 1.2 necessary fundamentals of Adaptive Resonance Theory are 

presented, while Section 1.3 presents Topological data analysis.

1.1. GENE EXPRESSION

It is well known that cells archive the instructions needed for building proteins in 

DNA, the hereditary unit. Portions of this double helix molecule are transcribed to RNA, and 

this RNA is translated to proteins - which carry out specific cellular functions. Depending 

on the needs, cells can adjust the protein production by up-regulating or down-regulating 

the expression of a gene. Despite the identical genetic information shared by all the cells 

that make an organism, the cells that differ in function use different catalysts to express 

parts of DNA specific to their role. Gene expression, or the process by which proteins are 

synthesized from the genes, follows two steps.

DNA as such is made of four nitrogenous compounds, namely Adenine (A), Thymine 

(T), Guanine (G), and Cytosine (C), a sugar called deoxyribose, and phosphate base. A 

single nitrogenous compound with deoxyribose and phosphate base form nucleotides. DNA
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Figure 1.2. Gene Expression Process diagram.

strands are made of nucleotides held together by the covalent bond between the sugar of one 

nucleotide with the phosphate of the other. In a DNA helix, while nucleotides with Adenine 

base always pair with Thymine base, nucleotides with Guanine always pair with Cytosine. 

This specific pairing of nucleotides of one strand with another strand of DNA helix is called 

complementary base-pairing. The complementary pairs are held together by the hydrogen 

bonds. The first step of gene expression is building a Ribonucleic acid (RNA) molecule 

complementary to a portion of a strand of DNA molecule.

The production of RNA is directed by an enzyme called RNA polymerase. At first, 

the RNA polymerase detects a region very next to the gene, the promoter region. The 

enzyme binds to the DNA at the promoter region and breaks the hydrogen bonds between 

the nucleotides separating DNA strands. Next, polymerase builds an RNA with ribonucleic 

acid nucleotides (ribonucleotides), where the sugar is ribose instead of deoxyribose. Further, 

the Thymine base is replaced with Uracil (U). An RNA chain is initiated by bonding A or G 

with the nucleotides of the DNA strand used for RNA construction. Once the first nucleotide
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is connected, the successive nucleotides are joined to elongate the chain. As the RNA is 

elongated with the addition of consecutive nucleotides, the polymerase moves along the 

DNA, adding incoming ribonucleotides. The two DNA strands bond at the disjoint region 

and intertwine as soon as the polymerase passes. Once polymerase reaches the end region 

of a gene called terminators, the RNA chain is terminated. This whole process is called 

transcription. Transcription products include Messanger RNA (mRNA), ribosomal RNA 

(rRNA), and transfer RNA (tRNA).

In the later step, the mRNA is translated to make proteins; hence, it is called 

translation. The Figure 1.2 summarizes the transcription and translation steps of gene 

expression. The translation step happens in the cell’s ribosome, where the rRNA directs the 

catalysis of protein synthesis. While mRNA dictates the order in which amino-acids should 

be connected, the tRNA links amino-acids as per the order. Each of the twenty essential 

amino-acids (footnote) is coded by three consecutive nucleotides of mRNA. Such a sequence 

of three nucleotides is called a codon. Each tRNA molecule has two binding sites. One of 

these sites has a complementary pairing sequence for a specific codon; this sequence forms 

an anticodon. The other site binds to amino-acid coded by the anticodon and codon. During 

Translation, the tRNA bond with the complementary codon while bringing an amino-acid to 

the ribosome. The amino-acids are joined as the ribosome moves along the mRNA, forming 

a polymer - protein. Once the ribosome reaches a stop codon, the Translation terminates.

1.2. ADAPTIVE RESONANCE THEORY

Adaptive Resonance Theory(ART) is a neural theory proposed to explain how the 

brain processes information. The intuition behind the theory is that stable code development 

happens due to the resonance between the bottom-up sensory stimulus and top-down 

expectation signals. Essentially the ART learning model consists of two interacting fields, 

field F1 that receives sensory input and field F2 that produces a top-down expectation 

signal based on the short-term memory(STM) activity of neurons at the field F1. At field
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F1 the top-down expectation is compared with the bottom up sensory information. If 

the input signals match with the top-down expectation, then resonance ensues. During 

resonance, the long-term memory (LTM) traces between the two interacting fields are 

modified. Such a modification aids in the quick recognition of the learnt patterns. However, 

in case of a mismatch, the corresponding highly active top-down signal generating neurons 

are inhibited. This inhibition does not affect the other neurons and they continue to produce 

the top-down expectation signals. The process of inhibition and comparison continues till 

either a resonance occurs or all the neurons in field F2 are shut down and new neurons learn 

the bottom-up sensory signals. Thus this theory provides a solution to stability plasticity 

problem.

Figure 1.3. ART1 model network structure. In the figure, the long-term memory traces are 
indicated by the weights W12 and W21, vigilance value is represented by p.

Several winner takes all neural network models based on ART were developed 

to perform supervised and unsupervised learning. In the ART1 and ART2 models, the 

top-down expectations are stored as prototypes that are compared with the actual features 

of the bottom-up sensory signals. The comparison gives rise to a measure of associability 

with the category represented by each prototype. As long as this similarity is not lower 

than a predefined threshold, vigilance value, the sensed signal is considered as a member 

of the expected category. Further, the filters connecting from field F1 to active category 

and the filters connecting from field F2 to F1 that generate expectation signal are tuned. In



8

case of failure to meet the vigilance criterion, the current winning neuron is shut off and is 

maintained in this state through the current input presentation. A new winner is selected 

form uninhibited neurons followed by a measure of similarity between the patterns. The 

process is repeated until vigilance criterion is satisfied or a new prototype is defined with the 

input signal that can not be associated to any of the learnt prototypes. Figure 1.3 shows the 

neural network structure for the ART1 learning model.

1.3. TOPOLOGICAL DATA ANALYSIS

Topological Data Analysis, TDA in short, is an emerging applied field in Algebraic 

Topology and Computational Geometry. Primarily motivated by the idea of utilising 

topological and geometric methods, TDA extracts insightful information on the shape and 

structure of data originating from a metric space. Often provided data to these methods arises 

as point clouds in high dimensional Euclidean space on which techniques like clustering 

analysis would fail to provide meaningful information (refer carlsson).

For a given finite point cloud data set, TDA methods usually follow the following 

pipeline [18]. TDA procedures start the analysis by assuming a metric defined on the space 

from which the data originates, thus a metric space is defined. A continuous structure is 

built on the data using this metric. Often such a continuous structure built is a simplicial 

complex or a nerve of the open cover, which will be defined eventually. Such construction 

involves the identification of connected spaces. Upon construction of the structure, one may 

either reconstruct the shape using triangulation methods, identify the associated topology, 

visualise the shape of the data, or study the geometric shapes using persistent homology.

In what follows next, the fundamentals of TDA are discussed, whilst providing 

relevant proofs for using TopoART for TDA.

1.3.1. Metric Space, Open Sets, and Connectedness. It is seldom the case that 

finite point clouds data reveals the inherent geometric and topological properties of space it 

originates. Of interest is the continuity of the space and variation in the connectedness of
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the space. The quantification of the connectedness of the space is provided by the distance 

metric used. Therefore, it is essential to define the metric and a metric space, which are 

defined as following [19].

Definition 1.3.1 (M etric Space) A Metric Space (S, d) is a set S together with a function d 

which associates with each pair p ,q  e S a real number d (p, q) such that

(a) d (p ,q )  > 0 fo r  all p ,q  e S

(b) d (p , q) = 0 if  and only if p  = q

(c) d (p ,q )  = d (q ,p ) fo r all p ,q  e S

(d) d (p ,q )  < d (p ,r ) + d (q ,r ) fo r all p ,q ,r  e S (due to triangle inequality).

Thus a metric space can be seen an order pair (S, d ) , where d is the metric, or 

distance measure defined as a function d : S x S ^  R. For example (R2, IMh) is a metric 

space with Euclidean distance as measure. Since most data originates from R d, hence forth 

the set S is assumed to be a subset of Rd unless explicitly stated.

Lem m a 1 Let the metric d fo r all x, y e [0 ,1]2d be defined as the following,

d(x, y) = 1 - I x A y |
d

where x ; A y; = min (xi, y ;) and | x |= £  2=i (x;). I f  the space S  is defined as,

S  = {[z i ,Z2 , • • • ,z d ,z c1,z2, • • • , z cd]T : Vz e [0 ,1]d}

where zC = 1 -  z;, then the space S  equipped with the distance measure d form s a metric

space.
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Proof Vx, y e S , we have:

d (x, y) = 1 -

= 1

I x a y |
d

Z2=i I x, a y, I
d

Z ^ m i n  (x i,y i)

1 -------d---------
1 -  £  min(x , ,y i ) + min(xd+ i, yd+ i)

i=1
d

V Xi > yi 1 -  yi > 1 -  Xi

(min(xi+d,yi+d) = 1 -  max(xi+d, yi+d))

= 1 - 1
i=1

min (x,, yi) + 1 -  max(xi, yi)

1 - 1  + £

d

max (xi, y,) -  m in(x,,y,)

i=1
d

= £
i=1

1 xi -  y , 1 
d

> 0 V max(xi, yi) -  min(x,, yi) =| x, -  yi |> 0

d (x, y) > 0 Vx, y e S

Let x, y e S  3 x = y. Then,

d(x, x) = 1  -
x  A x |

_ d
i2dy /d x .

= 1 _ A=1 xi
= d

Z ,d=1 (x, + 1 -  x,)
= 1

d
d 1

1 -  d ~

V xi d = 1 -  xi

= 0

d (x, y) = 0 iff x = y.
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Vx, y, z e S  we have,

d(x, z) + d(y, z) = 1 -

d

= Z
i=1
d

= Z
i=1

d

> Z

I x a z | I y a z |
d d

1 Xi -  Zi 1 Z  1 Zi -  y» 1
d + ^  d

i=1

I Xj -  Zi + | Zi -  y i |
d

! Xi -  yi | 
d

from proof for  d (x, y) > 0

v | Xi -  Zi | + | Zi -  yi |> | Xi -  yi |

d (x, y) = d (y, x) Vx, y e S  is a direct consequence o f  min (x, y) = min( y ,x ). 

Therefore d is metric in space S .

With notion of metric come the notions of open and closed balls and neighbourhood 

of a point. Open and closed balls can be defined as [19].

Definition 1.3.2 (Open Ball) Given a metric space (S, d), a point p  e S, and some real 

e > 0, the open ball B (p, e) in (S, d) centred at p  o f radius e is the subset o f  S defined by

B (p, e) = {<? e S : d (p , <?) < e}

the closed ball B [p , e] in (S, d) centred at p  o f radius e > 0 is the subset o f  S defined by

B [p ,e] = {<? e S : d (p ,g ) < e}.

A neighbourhood o f a point p  e S is a subset N  o f the metric space (S, d) such that there 

exists an open ball B (p , e) c  U.

For every point p  e S, if the non-empty collection r  of neighbourhoods {N : N is a 

neighbourhood of p  e S} obey the following four axioms then the collection r  is called a 

Topology [20] :
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(a) p  lies in each o f its neighbourhoods.

(b) The intersection o f neighbourhoods o f p  itself is a neighbourhood o f p.

(c) Every set containing neighbourhood o f p  is a neighbourhood o f p.

(d) I f  N  is a neighbourhood o f point p  and if N  ° is a set such that N  ° = {u e N : N is a 

neighbourhood o f  u} then N ° is a neighbourhood o f p.

The structure formed by order pair (S, r) is called Topological space.

With open balls defined, it is possible to construct open sets with a collection of open 

balls. Thus an open set can be defined as following [19].

Definition 1.3.3 A subset U o f metric space (S, d) is open, if  fo r  every p  e U there is an 

open ball centred at p  in U.

Intuitively a subset U in metric space (S, d) is open if there exist some real e > 0 

such that for every p ,q  e U the distance d (p , q ) is less than e . Similarly a closed set can be 

defined as the following.

Definition 1.3.4 A subset U o f metric space (S, d) is closed, if  the set S \  {U} is open.

Given a subset U of a space, a collection of subsets {U}iini such that I  = {1,2, • • • } 

are said to cover U if U c  \J Ui. If the cover is formed by a collection of open sets, then
iel

such a cover is called as open cover.

Defining the open sets gives a way to define connectedness of the metric space under 

consideration. If a metic space is connected, every point belonging to the space has an open 

ball of some radius with the point under consideration that belongs to the metric space. 

Intuitively thus, a space is connected if it can not be represented as union of two disjoint 

open sets. Formally the connected space can be defined, based on the fact that the metric 

space (S, d) and 0 are closed open sets [19], as
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Definition 1.3.5 A metric space (S, d) is connected if the only sets o f the space (S, d) that 

are closed and open are 0 and the space itself.

It ought to be noted that in a connected topological space (S, r )  , each point u e S 

has a collection of neighbourhoods or open sets centred at that point such that the aforesaid 

four axioms hold. However, it is not always the case that a topological space has to be 

connected. Connectedness plays a crucial role in identification of similar objects, cluster 

analysis or clustering. By varying the radius r of a ball Br centred at point p, it is possible 

to identify other points of the space which exhibit similar properties. The clusters or the 

partitions of the data (a set of points originating from Rd) are subjective to the radius of the 

ball under consideration.

1.3.2. Simplicial Complex and Nerve of a Cover. Let a collection of points 

uo, u i, u2, • • • uk be such that ui e S Vi e {0,1,2, • • • , k }. The linear combination of 

these points £ k=0 a iui spans a hyperplane Vai e R such that £ k=0 a i = 1 . If two linear 

combinations x = £ k=0 a iui and y = £ k=0 Piui are equal if and only if Vi [ai = Pi], then the 

points are said to be affinely independent [21]. Given a such k + 1 affinely indpendent points 

u0, u 1,u 2, ••• uk, the smallest convex set containing them defined by the linear combination

k
x = ^  aiui

i=0

where a i > 0 and £  k=0 a i = 1 as the simplex o f  dimension k  (or k-simplex). For example, 

Figure 1.4 shows basic simplices as presented in [21].

It is possible to approximate a topological space (S ,r )  (with S c  Rd) using a 

collection of simplices that can represent the geometric shape of the topological space 

under consideration [22]. The idea is based on covering surface of the geometric shape 

with a grid of triangles - that form simplices. Such an approximaiton method is called 

as Triangulation (please refer to chapter-6 of [20] for further details). The approximating
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(a) o-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 1.4. Examples of simplices. From left to right:A vertex, an edge, a triangle, and a 
tetrahedron. An edge has two vertices. A triangle has three vertices and three edges. A 
tetrahedron has four vertices and six edges forming four faces [21].

collection of simplices fit together in space by either having a vertex, an edge, or a face. 

Such a collection of simplices form a simplicial complex, which is formally defined as the 

following [20].

Definition 1.3.6 A Simplicial Complex K  is a finite collection o f simplices such that 

whenever a simplex lies in the collection then so does all o f its faces, and whenever two 

simplices in the collection intersect, the intersection is either empty or a common face o f 

both.

An immediate question would be how to construct a simplicial complex given a set of 

points A  from some Euclidean space? The simplest way to construct a simplicical complex 

identify which set of points are with a certain distance from each other and establish a link, 

which act as edges, each pair considering them as vertices of the simplicical complex. This 

can be achieved by using open balls of some radius r > 0. Notice that this leads to identifi­

cation of connected subspaces of the entire topological metric space under consideration 

and that this connectivity is subjective to the radius of the ball. By increasing the radius of 

the ball from some r  ^  0, it can be noticed that simplicial complex changes from without 

any edges to one containing all possible links between vertices, forming a convex hull, for 

some radius r  = rc and any further increase in radius (r > rc) doesn’t have any change in
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the shape of the complex as shown in the Figure 1.5. For intermediate value of the radius 

0 < r  < rc each simplicial complex represents a partition (or cluster) with in the data.

(a)

(f)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

0)

Figure 1.5. Change in identified simplicial complexes with change in open-ball radius. 
Top from left to right: (a) the point cloud data with a ball around each point indicating 
its neighbourhood. (b-c) As the radius of the ball increases the number of intersections 
between neighbourhoods increase and partitions of interest emerge. (d-e) Beyond certain 
radius of the ball, the point cloud can be considered as a single cluster due to intersecting 
neighbourhoods. Bottom left to right: corresponding simplicial complexes for Sub-figures 
(a), (b), (c), (d), and (e) respectively. Notice that for (j) the identified simiplicial complex 
has an edge between each pair of vertices.

A simplicial complex can also be constructed using collection of subsets C of space. 

With each subset represented as a vertex, the intersection can be represented as a link or an 

edge between them. Such representation lends a way to find the shape formed by the subsets 

and unshroud the connectivity between them. Further, the identified simplicial complex 

provides a graphical representation. This leads to another question: Would the simplicial 

complex be topological equivalent of the shape formed by the subsets under consideration? 

The answer to the question is given by Nerve Theorem. However, it ought to define Nerve.
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Definition 1.3.7 A Nerve is a finite collection o f subsets o f C such that all its non-empty 

subcollections have a common intersection which is not empty.

N rv  (C) = {X c  C | nX  # 0}

It should be noted that Nerve of a collection C can be seen to contain a simplicial 

complex which is closed under subset operation, i.e, every subset of a sub-collection is 

contained in the complex. The Figure 1.6 illustrates the Nerve of the open cover, shown in 

Sub-figure 1.6c, for the data-set shown in Sub-figure 1.6a. For a point cloud data, collection 

C is a cover of the point cloud data. The Nrv (C) might not always be topological equivalent 

of the object from which the data originates. However, if certain conditions are met, then 

Nerve of cover C can be a weak equivalent of the object. The weak notion of equivalence is 

defined by Homotopy b The idea behind Homotopy is that if two objects share topological 

similarity then it is possible find a continuous path in the space of functions that define the 

structure of two objects under consideration. This means one object can be deformed into 

another and therefore weak equivalence.

Definition 1.3.8 Let P  and Q be topological spaces and f , g  : P  ^  Q be continuous 

functions. The function f  is homotopic to g if there exists a continuous function H  : 

I  x P  ^  Q such that H (0 ,x ) = f  (x) and H ( l ,x )  = g (x) and the homotopy between f  

and g is represented as f  -  g.

All convex spaces and continuous spaces without any holes, a sphere for example, can be 

shrunk into a point, hence homotopic to a point. Further, spaces that can be continuously be 

shrunk to a point are called as contractible. The sufficient condition for Nerve of a cover to 

be homotopic to the subspace is given by Nerve Theorem[18, 20, 21], which will be stated 

without any proof.

from  Greek homos = same, topos = place
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Theorem 1.3.1 (Nerve Theorem) Let C be a finite open cover o f topological space S . 

I f  intersection o f any collection o f subsets in C is either contractible or empty, then the 

N rv  (C) ^ S .

(a) (b)

Figure 1.6. The Nerve of the open cover for the data-set shown in Sub-figure (a). Sub-figure 
(b) shows the open cover formed by sets C\, C2, C3, and C4. Sub-figure (c) shows the 
simplicial complexes or the nerve of the open cover with each set in sub-figure (b) represented 
by a node. Note that each edge of simplex indicates the intersections between the two sets of 
open cover.
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ABSTRACT

Biclustering is a special case of subspace clustering that has become viable in 

several domains. Particularly, in genomic data analysis, biclustering has been used to 

identify conditions under which a subset of genes are highly co-expressed, while topological 

data analysis has been used to analyze disease-specific subgroups, evolution, and disease 

progression. In this work, we combine biclustering with topological data analysis to achieve 

the best of both methods. We present TopoBARTMAP - produced by hybridizing BARTMAP, 

an adaptive resonance theory (ART)-based biclustering method, with TopoART, a topology 

learning ART network - in order to identify topological associations between biclusters. 

TopoBARTMAP outperformed both TopoART and BARTMAP in the experimental analysis 

on six benchmark blood cancer data sets. In some cases, BARTMAP may nevertheless be 

preferred due to implementation simplicity.

mailto:ry222@umsystem.edu
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1. INTRODUCTION

Biclustering, at it’s crux, is the problem of finding a subset of samples with high 

association across a subset of features. It has produced significant results in many different 

fields, starting with the application to gene expression data analysis [1]. Over the past decade, 

several algorithms were proposed under co-clustering [2], biclustering [3, 4], and subspace 

clustering [5]. Biclustering applied to gene expression data is used to identify subsets of 

conditions under which subsets of genes are highly co-expressed. Such identification is 

essential for gaining insights into regulatory networks [6] and gene-disease associations. 

However, biclustering can fail to completely uncover gene regulatory networks [7] due to the 

inability to identify functional associations between genes within a bicluster and to group 

functionally related genes that might not co-express significantly.

In an attempt to mitigate this problem, topological data analysis is becoming popular 

for gene expression data [8, 9]. In general, topological analysis extends clustering to 

identify local relationships in the data. Depending on the proximity of clusters, the identified 

clusters represented by cluster points are connected to generate a high-level graphical 

representation of the underlying shape of the space. Since topological methods discover 

the geometric structure within the data, these methods are sensitive to large and small 

scale patterns, invariant to noise, independent of the coordinate system, and can produce 

a compressed representation of data [10, 11, 8]. In practice, topological data analysis 

methods, such as Mapper [12], had proven to be effective in identifying subgroups of 

cancers [13], understanding genome dynamics [14] and cellular differentiation [15], and 

disease progression [16], which would otherwise be difficult to detect using traditional 

clustering methods applied to biomedical research [17].

In this work, we take a step towards combining topological data analysis with 

biclustering. To do so, we combine BARTMAP [18] with TopoART [19] to produce 

TopoBARTMAP, which can simultaneously identify the structure within the data and the 

biclusters. This algorithm, while identifying inter-bicluster relationships, is resilient to noise
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due to the prototype pruning mechinism of TopoART. While the literature contains a few 

topological biclustering algorithms, such as BiTM [20], wBiTM [21], and SKB[7], to the best 

of our knowledge TopoBARTMAP is the first adaptive resonance theory (ART) [22] based 

topological biclustering algorithm. Amongst the other methods, the BiTM (Biclustering 

using Topological Maps) identifies biclusters by simultaneously clustering rows and columns 

by identifying a discrete topology. The biclustering method wBiTM, based on BiTM, is a 

feature group weighting method that uses topological maps for biclustering. Both BiTM and 

wBiTM produce topological maps that enable data visualisation. SKB, Skeleton Biclustering, 

is capable of identifying and mining missing genes in the biclusters while building inter­

bicluster and intra-bicluster (relationships among genes within a bicluster) relationship 

skeletons. This method uses hierarchical biclustering and gene ontology annotations.

The remainder of this paper is organized as follows: we start with a brief review 

of related ART models [22] in Section 2, which is necessary to contextualize the main 

contribution of this paper introduced in Section 3, which is the TopoBARTMAP model. 

The details concerning the experimental design are presented in Section 4, while Section 

5 reports and discusses the biclustering results on six benchmark blood cancer data sets. 

Although in our experimentation we compare TopoBARTMAP only with one biclustering 

algorithm, BARTMAP, in other papers [23, 18, 24] BARTMAP was already compared with 

other ART-based and non-ART-based methods and found to be superior. Finally, Section 6 

summarizes the findings of this paper.

2. BACKGROUND

This section presents an overview of Fuzzy ART [25], TopoART [19] and BARTMAP [18]. 

We refer the reader to [26, 27, 28, 29, 30] for a comprehensive treatment of ART models 

and their applications.
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2.1. FUZZY ART

This section exists to make the paper self-contained. The reader familiar with Fuzzy 

ART can skip to Section II.B. Readers new to ART will gain useful context from this section 

but will need the cited papers to understand ART well.

Several winner-take-all neural models have been proposed to perform supervised 

and unsupervised learning based on ART. Of them, Fuzzy ART, described in [26], extends 

the binary ART-1 by using fuzzy operations and is capable of recognising stable codes 

(prototypes) in response to real or binary-valued inputs. A typical ART-based learning model 

consists of two interacting fields: F1 and F2. Field F1 receives input as a vector X which 

is normalized and complement coded, i.e., if a = [x \,x2, ...,Xd] denotes the normalized 

sensory input vector with d features, then X = [x, 1 -  xc], where x;c = 1 -  x;. It is customary 

to consider each dimension of the input X as a node. Field F2 consists of several prototypes 

(neurons) - one per node - which are used to categorize the input pattern. The field F1 

generates bottom-up sensory information which produces activity across each prototype in 

field F2 using bottom-up memory traces. The highly active prototype produces a top-down 

expectation signal based on the top-down memory traces. At the orientation subsystem, 

this expectation signal is compared with the sensory information produced by field F1 for 

similarity; this is known as vigilance criterion. If the similarity is greater than a certain 

threshold called the vigilance value, resonance ensues between the highly active prototype 

and field F1; the corresponding memory traces are updated. In any other case, the highly 

active prototype is shut down, and a search is done to find the next active prototype that 

produces a matching expectation. If no such prototype is found, a new node is created to 

register the current input, and this prototype is said to be committed.

Bottom-up memory traces can be represented using top-down memory traces, which 

essentially is a key feature of Fuzzy ART. In this work, we represent the bottom-up memory 

traces as a vector for the j th node in field F2 as weights Wj = [Wp W ^,..., W^d] . Initially, 

field F2 consists of uncommitted prototypes. Instead of using two different memory traces,
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Fuzzy ART has traces or weights (W) connecting F1 to F2 and F2 to F1, i.e., the prototypes are 

directly compared with the input signal. Because the input, X, to Fuzzy ART is normalized 

and complement coded, which is implicitly assumed in the models derived from Fuzzy 

ART, all the uncommitted node weights are initially set to a value of 1. During the input 

presentation, field F2 has an uncommitted neuron along with committed neurons. A measure 

of activity is computed using the category choice function defined by

| X A Wj
a  + \Wj\ (1)

where \ • \ is the i 1 norm, A is the fuzzy AND operation defined by (X A Wj)i = m in(xi, W /), 

X e %2d, W e %2d, and a  > 0 helps in breaking the tie when more than one prototype is a 

fuzzy subset of the input pattern. A winning neuron J  is selected using winner-take-all rule. 

A category match is measured using a match function defined by

Mj  = ^
J \ X\

(2)

If Mj is greater than the vigilance parameter, p, it meets the vigilance criterion. In 

case of failure to satisfy, this winning neuron is shut off and the next winning neuron is tested 

against the vigilance criterion. The search process continues until the vigilance criterion is 

satisfied. When a neuron is found that satisfies the vigilance criterion, its weight vector or 

prototype is updated using the learning law defined as

Wj  = yS(Wj  A X) + (1 -  yS)Wj, (3)

where 0 < S  < 1 is the learning rate. The output of the network yf 2 is set for each ith node 

as

y f2 = <
0, if i ^  J

1, if i = j
(4)
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In the case of fast learning, when an uncommitted prototype is selected, S  is set 

to a value of 1. Each prototype learned this way summarizes all the input patterns it is 

associated with and thus represents either a cluster or cluster point. Due to complement 

coding, it is possible to estimate the size of the cluster and region of space that each prototype 

summarizes [31].

2.2. TOPOART

Topological ART, or TopoART [19], is a Fuzzy ART-based hierarchical clustering 

model that learns topologies present within the input data. All rules used for prototype 

learning of Fuzzy ART remain the same in TopoART. However, TopoART uses a counter, 

ni, for each ith prototype that records the number of samples it summarized. After r  input 

presentations (time steps), the prototypes with a counter less than the threshold <p, called 

candidate prototypes, are pruned from field F2. Hence, the prototypes with ni > <p are called 

permanent prototypes. This pruning mechanism renders TopoART robust to noise. Further, 

along with the best matching prototype J1, a second highly active prototype J2 satisfying 

the vigilance criterion is selected (namely, the second-best). This prototype’s weights are 

updated using the same update rule defined by Eq. (3), but with a smaller learning rate, i.e.,

Pj2 < fij! . (5)

This procedure of identifying and updating the second-best prototype’s weights increases 

noise robustness by making growth of prototypes in pertinent areas of the input space more 

likely [19].

To learn topologies, an edge is established between prototypes Ji and J2 (if J 2 can be 

found), creating a topological structure with prototypes acting as nodes. While edges formed 

with candidate prototypes are removed when these prototypes are pruned, edges between 

permanent prototypes remain stable. Each one of the permanent prototypes is assigned
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with a label depending on its topological association with others, i.e, all the connected 

permanent prototypes are assigned with the same label. These labels are recorded in a vector 

- (2 =< li : li e {1 ,2 ,..., k } >, where k is the number of topologies identified and li is 

the label for the ith permanent prototype in field F2. With the aid of this vector, one can 

identify the topology to which an input datum belongs. Unlike Fuzzy ART, the clusters are 

represented by these topologies rather than the prototypes, which enables the identification 

of arbitrarily shaped clusters. The input patterns that correspond to the deleted prototypes 

are reclassified by associating them to the permanent prototypes that yield the strongest 

responses. This activity is computed using the following rule [19]:

7  = 1
|(X  A W j) -  W j |

|X|
(6)

Further, TopoART achieves hierarchical clustering by cascading multiple Fuzzy 

ART modules, with each having an increasing vigilance parameter value. The vigilance 

parameters across the modules in the hierarchy are computed using the following rule,

Pnext = 2 (1 + Pprevious) , (7)

where p next and p previous are the vigilance values for the next and previous modules 

respectively. The module at the lowest hierarchical level receives all the input patterns, 

whereas subsequent modules receive an input pattern if and only if that pattern activates a 

permanent prototype in the previous module. When new data is presented, inference is made 

using Eq. (6) and the output y F2 for each module of TopoART is computed with Eq. (4) 

using only permanent prototypes.
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2.3. BARTMAP

Biclustering ARTMAP, or BARTMAP [18], is an ART-based two-way clustering 

method that identifies biclusters present in the data adaptively without the explicit requirement 

of prior knowledge of the number of biclusters. We refer the reader to [32] and [33] for 

detailed expositions on ARTMAP and Fuzzy ARTMAP as BARTMAP is inspired by the 

theory of Fuzzy ARTMAP [33]. Here, we present a brief treatment of BARTMAP while 

retaining pertinent details. In doing so, we use the following notation. We represent the 

gene expression data matrix as G = (F , O ), where F  = {f 1,..., f N} represents the set of N 

features (or rows) and O = {o1, ..., om } represents the set of M observations (or columns). 

An element gij e G represents the intensity of feature i in observation j. In using this 

notation, which we did for ease of generalization, we considered each gene as a feature and 

each sample as an observation throughout the exposition.

In construction, BARTMAP consists of two Fuzzy ART modules, ARTa and ARTb, 

connected via an inter-ART module. While the ARTb module receives features as input, 

the ARTa module receives observations as input. In essence, BARTMAP learns a mapping 

between the clusters found by the ARTa and ARTb modules across observations and features, 

respectively, such that local relationships are preserved and captured by the produced 

biclusters. The learning in BARTMAP progresses in two steps. The first step is to identify 

clusters across one of the dimensions, let us say the row dimension, of the matrix. This is 

achieved by using the ARTb module as a standard Fuzzy ART, thus resulting in k f  feature 

prototypes or clusters {Fi|i = 1, . . . , k f }. In the next step, observations (or columns) are 

presented to the ARTa module. At this stage, when a new observation ok is presented, 

the potential associable cluster is identified using winner-take-all. Eventhough the winner 

qualifies via the vigilance test, at this point, it might not represent the observation unless 

the winner corresponds to an uncommitted prototype. If the winner corresponds to an 

uncommitted prototype, its weights are updated. However, if the winner is a committed 

prototype, then the current sample ok is associated to it if and only if the sample exhibits a
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similar trend across at least one feature cluster F , as do the other member observations that 

are associated to the winning prototype. This similarity is verified using the average Pearson 

correlation coefficient that is computed as

(8)

where,
N  _  _

(Sokfit — §okFt) (Soifit — SoiFt)
r (ok,o i,F i) t=l

Ni

lt=l

So k Fi

Soi Ft

Ni

In
(9)

Sok Fi) A J (S°i fit — Soi Ft)
v = l

Ni
/  j Sok fit, (10)
t=l

Ni
'y j Soi fit, (11)

it

l

and o i  is a new observation, ol belongs to observation cluster OJ = {o 1, . . . ,  oms } with 

MJ observations, and the set Fi = {f i1, . . . ,  f iNi} represents the ith feature cluster with Ni 

features. The observation ok becomes a member of cluster OJ if and only if ^ (ok, Oj , Fi) is 

greater than a threshold ^ th for at least one of the feature clusters. Cluster OJ is represented 

by ARTa’s winning prototype J ; therefore, if the previously mentioned constraint is satisfied, 

then its weights are updated using Eq. (3). If the test fails, match tracking ensues [32], i.e, 

the winning prototype is inhibited by increasing the vigilance value p a of ARTa sufficiently 

above its base value. With the inhibition, a search for the next winning prototype ensues. 

Once a suitable cluster is identified or a new cluster is created, the vigilance value p a of 

ARTa is reset to its base value.
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Figure 1. Block diagram of TopoBARTMAP. TopoBARTMAP consists of two TopoART 
modules whose clusters are related by correlation test module. While TopoARTb is shown 
to have learned k f  prototypes, TopoARTa is shown to have learned k0 prototypes (note that 
prototype labeled k 0 is a temporary prototype).

3. TOPOBARTMAP

This section discusses the architectural novelty introduced in this paper. To understand 

the topological associations between the features (genes) and observations of a given gene 

expression matrix, G = (F , O), BARTMAP is modified to produce topological biclusters. 

This is achieved by replacing both Fuzzy ART modules of BARTMAP with TopoART 

modules. The resulting biclustering method, TopoBARTMAP, is more robust to noise 

and can identify associations better than BARTMAP. While the construction and much 

of the training procedure remain the same, i.e., the training proceeds in two steps with a 

similarity/association test using average Pearson correlation, there are subtle differences 

rendered by the nuances in the training of TopoART.

Just as in the training of BARTMAP, one of the dimensions of matrix G , features F  

for example, are presented to TopoARTb during the first stage, resulting in identifying 

k f  prototypes {F  \i = !,.. . ,  k f } and k topologies or clusters formed by these prototypes. 

During the second stage of training, the observations are presented to TopoARTa. Similar to
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BARTMAP, a winning prototype is identified and verified for a match using the vigilance 

test (Eq. (2)) and associability with the similarity test (Eqs. (8) to (11)). If the presented 

observation exhibits the same trend as the other observations summarized by the winner J\ 

across at least one of TopoARTb’s k/  prototypes, it is associated with the winner. Otherwise, 

match tracking ensues and the search proceeds until either another representative prototype 

is found or an uncommitted prototype is assigned. Further, a second-best prototype J2 

is identified using winner-take-all and verified for the match. An edge is established if 

and only if the presented observation exhibits a trend similar to the other observations 

represented by the second winner across at least one of TopoARTb’s k f  prototypes. If 

the similarity test fails, then the current second winner is inhibited and the next winner is 

searched for. This procedure terminates once a second winner passing the vigilance and 

similarity tests is found, or all the prototypes are inhibited. If a qualifying second-best 

prototype exists, then its weights are updated using Eq. (3). The pruning of candidate 

prototypes and reclassification of the observations represented by the pruned prototypes 

are conducted without any changes to TopoART. The learning results in the identification 

of topologies, which represent biclusters, enabling TopoBARTMAP to identify arbitrarily 

shaped biclusters. Similar to TopoART, the permanent prototypes are used for making an 

inference when new data are presented. The TopoBARTMAP architecture is depicted in 

Fig. 1, and its working procedure is summarized by Algorithm 1.

4. EXPERIM ENTATION

To verify and compare the performance of TopoBARTMAP, we used six benchmark 

blood cancer data sets brought together by [34]. The corresponding information about 

the data sets, number of features, number of observations, and number of classes per data 

set is available in Table 1. Of these data sets, Alizadeh-V1 and Alizadeh-V2 [35] have a 

randomized order of observations, while the rest of the data sets have observations ordered 

according to the classes. We used MATLAB (Statistics and Machine Learning Toolbox)
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Algorithm 1: TopoBARTMAP
Input :G , {TopoART a and b parameters}, r th,5 
Output y (0) observation classes

/*  Notation
Oj  : j th c lu s te r  o f observations.
Fi : ith c lu s te r  o f  fea tu res. 
r (ok ,O j ,F i ) : co r re la tio n  between ok  and 

/*  Training
1 for f  € F do / /  TopoARTb
2 | Train TopoARTb using < p b ,<pb ,Tb , a b ,fi j x ,Pj2
3 end
4 Initialize time step counter ta to 0
5 for ok € O do / /  TopoARTa

O j  across

6
7
8

9
10
11
12
13
14
15

16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33

Increment ta

Compute Tj  Vj  using Eq. (1)
Find first winner: J\ = arg max (T7 )

i
Compute M j using Eq. (2) 
if M j x > Pa then

Compute r  (ok, O j j , F ) V Fi using Eq. (8) 
if 3 Fi|r (ok,Oj j ,F i) > rth then

Update using Eq. (3), nj j = nj j + J 
reset p a
Find second winner: J 2 = arg max (T7-)

i , i  *j j
if (M j2  > p a ) A 3 Fi [r (ok, O j2 , Fi) > rth ] then 

Update Wj 2  using Eq. (3)
Establish a link between J j  and J 2 

else if VFiVJ 2 (r  (ok, O j 2 , Fi) < rth ) then 
| Stop the search 

else
Shut down J 2 

Go to line 15
end

else if ($(M j j > p a )) || (Pa > J) then
Wnew  = ok , nn ew  = J
reset pa

else
Shut down J j , p a = p a + 5 
Go to line 8

end
if ta mod Ta = 0 then

| Remove clusters with counter less than (pa 
end34

35 end
36 Identify and label the topologies using the connected prototypes 

/*  Inference
37 for o i  €  O  do
38
39

40 end

Compute Tj Vj  using Eq. (6) 
yi = arg max (Tj) and Cluster = lyi 

i

/

/

>

/



30

Table 1. Data sets used for experimental analysis [4]. Here, Sl.no, N0, N f , and Nc 
refer to serial number, number of observations, features, and Classes within observations, 
respectively.

Sl.no Data set No NZ Nc

1 Alizadeh-V1 [35] 42 1095 2
2 Alizadeh-V2 [35] 62 2093 3
3 Alizadeh-V3 [35] 62 2093 4
4 Armstrong-V1 [37] 72 1081 2
5 Armstrong-V2 [37] 72 2194 3
6 Shipp-V1 [38] 77 798 2

The data sets are available at h t t p s : / / g i t h u b . 
c o m /p a d i lh a /b ic lu s t l ib .

and the Cluster Validity Analysis Platform toolbox [36] to conduct all the experiments. To 

enhance the reproducibility of this research, the MATLAB source code is available at the 

Applied Computational Intelligence Laboratory GitHub repository1.

To investigate the performance of TopoBARTMAP on each of these data sets, 

we ran tests with a Genetic Algorithm (GA) [39] to optimize parameters < p a , ySj 2, 

p a , t%0, pb , ySj 2, p b , t^0, V > with the Adjusted Rand Index [40] as the performance 

measure, where t-° represents the percentage of the total number of samples presented 

to each module. To measure the biclustering performance, we considered topologies 

found by TopoARTa as biclusters. Although topologies can be retrieved from the 

TopoARTb module, for the correlation test, individual prototypes rather than topolo­

gies were considered. Further, the vectors < 0 .0 ,0 .0 ,0 .0 ,0 .1 ,0 .0 ,0 .0 ,0 .0 ,0 .1 ,0 .0  > and 

< 0 .95,1 .0 ,5 .0 ,0 .3 ,0 .95,1 .0 ,5 .0 ,0 .3 ,0 .99 > were used as lower and upper bounds for 

parameters with the aforementioned order during optimization, along with the following 

constraints:

Pa -  Ta%°No > 0, (12)

and

Pb -  T%°N f  > 0, (13)

ihttps://github.com/ACIL-Group/TopoBARTMAP

https://github
https://github.com/ACIL-Group/TopoBARTMAP
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where N0 = #{observations} and N f  = #{fea tu res} .  Note that Ta = Lr %°N01 and

Tb = Lt%Nf  1. The GA was run 10 times for 25 generations with a population size of 200 

agents. Throughout the experiments, J3a and f5b were set to 1, i.e., fast learning is used with 

the value of choice parameter a  set to 0.001, match tracking step size set to 0.01, and data 

presented for one epoch.

BARTMAP, TopoART, and Fuzzy ART were run on the same data sets in order to 

compare their performance with TopoBARTMAP’s. For BARTMAP, < p a, pb , ^ > were 

optimized using GA, with the lower and upper bounds as given by vectors < 0.0,0.0,0.0 > 

and < 0.95,0.95,0.99 >, respectively. For TopoART, < p, f5,j2, <p, t % > were optimized 

using GA, with the lower and upper bounds for these parameters given by vectors < 

0 .0 ,0 .0 ,0 .0 ,0 .1  > and < 0 .95,1 .0 ,5 .0 ,0 .3  >, respectively, as well as the inequality 

constraint

<p -  t %No > 0, (14)

where t % and t are defined as in TopoBARTMAP. Note that unlike the standard TopoART 

network, which uses two modules for hierarchical purposes, here only one module was 

trained, and performance was measured using topologies identified by TopoART. While 

these other methods were run with GAs similar to TopoBARTMAP, Fuzzy ART was run with 

a parameter sweep. In particular, for running Fuzzy ART on each of the six data sets, p  was 

varied amongst 4960 values uniformly sampled from [0,1], which corresponds to roughly 

the same amount of fitness evaluations of the GAs used to optimize the other ART networks. 

For all of these methods, fast learning was used, with the value of choice parameter a  set to 

0.001, and data were presented for one epoch. For BARTMAP, the match tracking step size 

was set to 0.01, similar to TopoBARTMAP.

All agglomerative clustering algorithms (which includes online methods), such 

as most unsupervised ART networks, are prone to ordering effects (see [41, 42, 43] and 

the references therein for further discussion and methods to mitigate order dependency). 

Therefore, once the optimal parameters that produce the best Adjusted Rand Index on each
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of the six data sets were determined, tests were conducted to verify the hyper-parameter 

sensitivity of each method. To do this, each data set is randomized with respect to columns 

and rows separately to produce ten different data sets. Performance on each of these data sets 

was measured using the Adjusted Rand Index with model parameters set to the optimal values 

for the corresponding original data set. Later using GA with corresponding aforementioned 

settings, TopoBARTMAP and BARTMAP had their parameters optimized for the data 

sets produced by randomization to identify the sensitivity to order of presentation. As 

TopoART and Fuzzy were not sensitive to changes in feature order, using the respective 

settings mentioned previously, parameters were optimized for TopoART using GA, and 

Fuzzy ART’s p  was varied to measure the performance on data sets with randomization in 

order of observations.

5. RESULTS AND DISCUSSION

We compare the performance of TopoBARTMAP, BARTMAP, TopoART, and Fuzzy 

ART on the aforementioned experiments in this section.

Table 2 shows the clustering performance of the contenders measured using the 

Adjusted Rand Index. For the original data sets, TopoBARTMAP outperforms the other 

three algorithms on all six data sets. While not being a biclustering algorithm, TopoART 

outperforms BARTMAP on four out of six data sets, and its performance is comparable 

with TopoBARTMAP on the Armstrong-Vl [37] and Shipp-Vl [38] data-sets. On the other 

hand, BARTMAP outperforms TopoART but loses to TopoBARTMAP on Alizadeh-Vl 

and Alizadeh-V3 [35]. We attribute TopoART’s better performance over BARTMAP to the 

topological learning and order of observation presentation. Of all the algorithms compared, 

Fuzzy ART fails to identify better clusters and consequently performs poorly.

The results of experimentation on data sets with a randomized order of observations 

and features with parameters fixed to optimal parameters are summarized in the Tables 3 

and 4, respectively. Unsurprisingly, none of the contenders, TopoBARTMAP, BARTMAP,



33

TopoART, or Fuzzy ART, perform better with the order of observation presentation changed. 

Since TopoART and Fuzzy ART are impervious to the randomization of the features, the 

results summarized in Table 2 are valid for this case. Due to this, the performance of 

TopoBARTMAP and BARTMAP are juxtaposed in Table 4, where BARTMAP wins four 

out of six times in experimentation with randomized features. These tests reveal that 

TopoBARTMAP is more sensitive to parameterization than are BARTMAP or TopoART.

The results of order sensitivity analyses run with GA optimization (and parametric 

sweep for Fuzzy ART) are summarized in Tables 5 and 6. While the performance of each of 

the algorithms differs noticeably, TopoBARTMAP still outperforms the others. In contrast to 

the original-order experiments, in the randomized cases, BARTMAP outperforms TopoART 

on all randomized observation order data sets. To estimate the statistical significance of the 

performance differences on these data sets, a t-test was conducted among TopoBARTMAP, 

BARTMAP, and TopoART. The results indicate that the performances of TopoBARTMAP 

and TopoART, and of BARTMAP and TopoART are significantly different at 0.01 significance 

on all the data sets. However, the performance difference between TopoBARTMAP and 

BARTMAP varied with the data set under consideration. For data sets generated from 

Alizadeh-V1, Armstrong-V1, and Armstrong-V2, the performance differed significantly at 

0.05 significance. For data sets generated from Alizadeh2000v1, Alizadeh2000v3, and 

Shipp2002v1 the performances are significantly different at 0.075,0.10, and 0.15 significance 

levels, respectively. For the randomized feature order experiments, when run with GA, the 

results remained close to the original order experiments. TopoBARTMAP out-performs 

BARTMAP in all these experiments.

6. CONCLUSION

Our goal was to integrate BARTMAP with topological data analysis to improve the 

effectiveness of biclustering and robustness to noise, and to uncover complex relationships 

present in the gene expression data sets. We experimentally demonstrated that combining
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TopoART with BARTMAP, which we call TopoBARTMAP, results in an algorithm that 

outperforms BARTMAP. TopoBARTMAP is more robust to order of presentation than 

either TopoART or BARTMAP. It is also more robust to noise and finds arbitrarily shaped 

biclusters.

The experiments on parameter sensitivity demonstrate that optimal TopoBARTMAP 

hyperparameters for one presentation order might not work for different presentation orders. 

Further, this behavior raises a question about the possibility of TopoBARTMAP being 

subject to overfitting, which requires further investigation. Due to the rigidness concerning 

parameters and its higher computational cost than BARTMAP, we recommend using Topo­

BARTMAP when data are known to have complex structures that are otherwise not easily 

identifiable. In any other case, we recommend using BARTMAP.

Table 2. Biclustering results on original data sets with performance measured using Adjusted 
Rand Index. Best performances are reported in bold.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART Fuzzy ART
1 Alizadeh-V1 0.4407 0.4292 0.1899 0.0922
2 Alizadeh-V2 1.0000 0.8952 0.9186 0.8147
3 Alizadeh-V3 0.5521 0.5079 0.4852 0.4055
4 Armstrong-V1 1.0000 0.5565 1.0000 0.3379
5 Armstrong-V2 1.0000 0.8270 0.9583 0.6281
6 Shipp-V1 1.0000 0.9443 1.0000 0.1583

Table 3. Biclustering results on randomized order of observations data sets run with 
parameters fixed to optimal parameters found for original data set. Mean Adjusted Rand 
Index is used as metric for comparison. Best performances are reported in bold.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART FuzzyART
1 Alizadeh-V1 0.0091 ± 0.0662 0.0119 ± 0.0099 0.0132 ± 0.0125 -0.0056 ± 0.0003
2 Alizadeh-V2 0.4327 ± 0.3773 0.0419 ± 0.0304 0.0183 ± 0.0084 -0.0025 ± 0.0005
3 Alizadeh-V3 0.2576 ± 0.1501 0.1237 ± 0.0871 0.0220 ± 0.0146 -0.0079 ± 0.0000
4 Armstrong-V1 0.0284 ± 0.0536 0.0455 ± 0.0579 0.0075 ± 0.0073 0.0153 ± 0.0006
5 Armstrong-V2 0.0015 ± 0.0034 0.1117 ± 0.0485 0.0093 ± 0.01401 0.0135 ± 0.0005
6 Shipp-V1 0.0116 ± 0.0260 0.0259 ± 0.0195 0.0277 ± 0.0150 0.0066 ± 0.0002
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Table 4. Biclustering results on randomized order of features data sets run with parameters 
fixed to optimal parameters found for original data set. Mean Adjusted Rand Index is used 
as metric for comparison. Best performances are reported in bold.

Sl.no DataSet TopoBARTMAP BARTMAP
1 Alizadeh-V1 0.0179 ± 0.0234 0.0666 ± 0.0641
2 Alizadeh-V2 0.3407 ± 0.4660 0.8952 ± 0.0000
3 Alizadeh-V3 0.2747 ± 0.1987 0.2927 ± 0.0440
4 Armstrong-V1 0.3989 ± 0.3215 0.2881 ± 0.1632
5 Armstrong-V2 1.0000 ± 0.0000 0.8152 ± 0.0000
6 Shipp-V1 0.6312 ± 0.5079 0.9443 ± 0.0000

Table 5. Biclustering results on randomized order of observation data sets run with GA 
optimization for TopoBARTMAP, BARTMAP, and TopoART and variation of p  for Fuzzy 
ART. Adjusted Rand Index is used as metric for comparison. Best performances are reported 
in bold.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART Fuzzy ART
1 Alizadeh-V1 0.5893 ± 0.1120 0.4485 ± 0.0853 0.1208 ± 0.0114 0.0658 ± 0.0012
2 Alizadeh-V2 0.9826 ± 0.0237 0.8836 ± 0.0401 0.3529 ± 0.0689 0.1166 ± 0.0013
3 Alizadeh-V3 0.6006 ± 0.0754 0.5708 ± 0.0896 0.1727 ± 0.0250 0.0954 ± 0.0005
4 Armstrong-V1 0.9068 ± 0.0330 0.7537 ± 0.0478 0.1567 ± 0.0204 0.1147 ± 0.0022
5 Armstrong-V2 0.9149 ± 0.0482 0.8142 ± 0.0776 0.1992 ± 0.0191 0.0990 ± 0.0021
6 Shipp-V1 0.5297 ± 0.0902 0.4116 ± 0.0660 0.2875 ± 0.0538 0.0328 ± 0.0000

Table 6. Biclustering results on randomized order of feature data sets run with GAs. 
Performance measured using Adjusted Rand Index. Best performances are reported in bold.

Sl.no DataSet TopoBARTMAP BARTMAP
1 Alizadeh-V1 0.5580 ± 0.1023 0.5210 ± 0.0646
2 Alizadeh-V2 0.9799 ± 0.0000 0.8952 ± 0.0000
3 Alizadeh-V3 0.5890 ± 0.0501 0.5630 ± 0.0700
4 Armstrong-V1 1.0000 ± 0.0000 0.5640 ± 0.0364
5 Armstrong-V2 0.9840 ± 0.0219 0.8380 ± 0.0061
6 Shipp-V1 1.0000 ± 0.0000 0.9550 ± 0.0249
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ABSTRACT

Biclustering is a powerful tool for exploratory data analysis such as social networking, 

data reduction, and differential gene expression studies. To improve the quality of biclustering 

and module extraction, a biclustering method, BARTMAP, was combined with a topological 

clustering algorithm, TopoART, to produce TopoBARTMAP. Topological clustering identifies 

connected regions that are difficult to find using other popular methods, and it produces 

a graphical representation. TopoBARTMAP inherits the ability to detect topological 

associations while performing data reduction. The capabilities of TopoBARTMAP are 

benchmarked to 35 cancer datasets and contrasted with other clustering methods. Assessments 

are made using the Adjusted Rand Index on ordered and shuffled data. TopoBARTMAP 

provided a statistically significant improvement over the other assessed methods. The 

produced graphical representation is refined to represent gene bicluster associations and 

is assessed on the NCBI GSE89116 dataset containing expression levels of 39,326 genes 

sampled over 38 observations.

Keywords: Adative Resonance Theory (ART), Biclustering, Topological Data Analysis, 

Gene Expression, and Co-expression
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1. INTRODUCTION

With high throughput gene expression profiling thousands of genes simultaneously, 

the study of functional interactions among genes had led to gaining insights into the cell 

cycle and diseases with perturbations in environmental state [1]. Such studies necessitated 

the development of computational methods that could identify and associate genes to specific 

diseases, regulatory processes and uncovering regulatory networks, and disease progression 

and prognosis. Biclustering[2, 3, 4], one such method, has been widely used to identify 

genes corresponding to cancers.

Given the gene expression data, the bi-clustering algorithms identify the genes that 

co-express highly across a subset of all conditions and often uses non-time-series data. 

Co-expression identified by these methods provides insights into local associations within 

gene regulatory networks and are capable of identifying active functional modules [5, 6, 7, 8]. 

Nonetheless, such local information is insufficient to completely uncover the regulatory 

network without further analysis and biclustering methods are shown to perform relatively 

poor at module extraction [8]. Moreover, biclustering fails to explain the nature of interactions 

between genes within a bicluster, although identified genes can be functionally associated 

with other known genes through “Guilt By Association” principle. Furthermore, biclustering 

methods are prone to miss grouping genes related by a regulatory process if they do not 

co-express significantly and if the bi-clusters are of complex and nontrivial shape. Because 

topological methods are able to uncover complex-shaped clusters and underlying geometry, 

a combination of topological methods with biclustering might enable recovery of complex 

shaped biclusters.

Topological methods applied to high dimensional data, Topological Data Analysis 

(TDA)[9, 10, 11, 12, 13, 14], builds on clustering by identifying connected spaces and pro­

duces a graphical representation of the geometric structure, often as simplicial complexes[15], 

which renders topological methods with noise, shift, and scale invariance. These properties 

of interest and graphical representation had led to the application of topological methods
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like Mapper [16] towards uncovering the disease progression [17, 18], identifying subgroups 

of cancer [19], cellular differentiation [20], and genome dynamics and reverse engineering 

gene regulatory networks [21]. In order to enhance biclustering with these properties and 

take a step towards using TDA with biclustering, we developed Topological Biclustering 

ARTMAP, TopoBARTMAP [22], which is a hybrid of BARTMAP [23] and TopoART [24], 

the latter is a topology learning neural clustering method.

In this article, we present a variation of TopoBARTMAP that uses the Maximal 

Information Coefficient (MIC) [25] as a measure for correlation between samples across 

feature clusters. We extend the results of our recent work with TopoBARTMAP [22] by testing 

the algorithm on a much broader collection of benchmark data-sets while demonstrating, via 

statistical analysis, the method’s significant performance when compared to other methods. 

We further detail the performance of the method under randomization and introduce the 

topological gene bicluster association network. The latter summarizes the gene and condition 

cluster associations within a bicluster, produced by clustering using TopoBARTMAP on a 

breast cancer data-set [26].

The remainder of this article is organized as following. The pertinent ART models [27] 

principal for understanding the kernel of the contribution, i.e., TopoBARTMAP, are presented 

in Section 2. Section 3 presents the TopoBARTMAP model. Details germane for experimental 

study: data, methods, clustering performance measures, and parameter tuning procedure 

adopted are explicated in Section 4. Section 5 presents experimental observations and 

discusses their significance. In closing, Section 6 concludes with the findings of this paper.

2. RELATED WORK

This section presents a compendium on TopoART [24] and BARTMAP [23] thus 

furnishing principal details for explicating TopoBARTMAP. The reader is referred to [28, 

29, 30, 31, 32] for a rigorous exploration of "Winner-Take-All" (WTA) learning models 

based on Adaptive Resonance Theory (ART) and their applications.
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2.1. TOPOLOGICAL ART

Fundamentally, topology learning clustering algorithm Topological ART or TopoART 

[24] is built on Fuzzy ART. Readers are recommended [33, 31] for brief explanations, and 

[34, 28] for the original treatise on Fuzzy ART, respectively. TopoART, similar to typical 

ART-based learning models in construction, contains three layers of neurons, called fields, 

F0, F1, and F2. The initial layer F0 receives the input signal and transmits scaled and 

complement coded input to layer F1; i.e., if x = [x\,x2, ...,Xd] represents the scaled input 

vector, then X = [x i,x2, ...,x d,x1,x2, . . . ,xcd] with x;c = 1 -  x; represents the input to F1. 

Since the interactions between field F1 and F2 govern learning, the input to TopoART is 

assumed henceforth in the exposition to be scaled and complement coded, reducing the 

network to contain interacting fields F1 and F2.

The field F2 consists of several prototypes, with j th prototype’s weights represented 

by the vector Wj = [W^, W^, ••• , W^d ] which are used for categorizing the input pattern. 

When an input is presented, due to bottom up activity at the layer F1, each prototype in F2 

gets activated. The activation of each prototype can be computed with the choice function:

|X A Wj
a  + |Wj| (1)

where | • | is the i 1 norm, A is the fuzzy AND operation defined by (X A W j)  = min(x;, W /), 

X e ^ 2d, W e ^ 2d with choice parameter a  > 0. With the activations computed, the best 

matching prototype or the highly active prototype in the field F2 is selected as the winner. 

This winner is checked to satisfy the vigilance criterion using the category match function:

m  =
|X A Wj|

|X|
(2)
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If the match my is above the vigilance threshold, p, the vigilance criterion is satisfied, 

and this causes resonance between the winner prototype and the field F1. Resonance leads 

to learning; the weight vector of the winner is moved in the direction to encompass the 

presented input:

Wj = yS(Wj A X) + (1 -  yS)Wj (3)

where S  is the learning rate. The output of the layer F2 is set as following:

yt =
1, if i = j

0, otherwise.
(4)

If the vigilance criterion is not met, the winner neuron’s activity is suppressed, and the next 

winning neuron is searched. If no such winner neuron is found, a new prototype is assigned 

in layer F2 to represent the input, and its weights are updated with S  set to 1 in Eq. (3) to 

enable fast learning. Each neuron learned this way represents a hyper-cube that covers the 

summarized data points in the space from which they originate. Further, the size of the 

hyper-cube represented by ith prototype, St, at any instance of learning is given by:

d
Si = £ | ( 1  -  W!,+k> -  Wk| .  (5)

k=1

Along with the winning prototype, a second highly active prototype satisfying the 

vigilance criterion, called second best, is selected. The weights of this second-best prototype 

are updated with a lower learning rate Ssecond-best : Ssecond-best < Sbest using the same 

update rule (i.e., Eq. (3)). An edge is established between these two prototypes indicating an 

intersection between the corresponding hyper-cubes. While an update to the weights of the 

second-best prototype moves it closer to the presented input pattern promoting growth in 

relevant regions of input space, the edges represent the connectivity of the space and help in 

uncovering geometric structures of interest within the data.
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Further, each neuron in field F2 has a counter registering the number of samples 

summarized by the prototype. Once in every r  time steps, prototypes that do not summarize 

more than a predefined number of samples, <p, are removed from F2 layer to make the 

method less susceptible to noise. While the prototypes that are retained after this pruning 

mechanism are called permanent prototypes, those created between the two consecutive 

pruning cycles are called candidate prototypes. Further, only edges formed between the 

permanent prototypes are retained.

The retained edges are labeled depending on the connectivity between the prototypes; 

i.e., edges between prototypes belonging to the same cluster are assigned with the same label. 

These labels along with the vertices corresponding to labeled edges are recorded in a vector - 

(2 = {< Cj >: j  = 1 ,...,/} , where l is the number of labels and Cj is the list consisting of all 

the prototypes that are connected by corresponding edges with label l . Each member list Cj 

of the vector C represents a complex-shaped cluster of the data. Further, each of the member 

list Cj can be used to construct the nerve of the cover formed by the prototypes. Since the 

intersection between any two prototypes is either empty or contractible (a hyper-cube), the 

nerve is homotopy equivalent2 of the topological subspace from which the data originates.

After complete data presentation, when no further learning is desired, data associated 

with the pruned neurons can be reclassified by assigning them to permanent prototypes. The 

assignment is decided using WTA applied to the activation defined as the following [24]:

T  = 1
I(X A W j) -  Wj | 

|X|
(6)

TopoART, further, refines the identified clusters by cascading modules of Fuzzy ART that 

receive input patterns that activate a permanent prototype in the preceding module. Each 

such module has a vigilance value higher than that of its preceding module. In addition 

to further improving noise robustness, the cascading produces a hierarchical effect. It is 

customary to calculate the vigilance value of subsequent modules using that of the lowest

2Due to Nerve Theorem [15].
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level module, with the rule:

Pnext = 2 (1 + Pprevious) , (7)

where p next and p previous represent vigilance values of next and previous modules respectively.

2.2. BICLUSTERING ARTMAP

Biclustering ARTMAP, or BARTMAP [23], is a Fuzzy ARTMAP-based [35, 31, 36] 

two-way clustering method that can adaptively identify biclusters present in the data without 

any prerequisite knowledge on the number of biclusters. BARTMAP was engineered by 

modifying the map-field of Fuzzy ARTMAP. This fundamental design change converts the 

latter from a supervised to an unsupervised learning method. In this context, the family of 

ARTMAP-based models that also accomplish such conversion includes the self-consistent 

modular ART (SMART) [37] and iCVI-ARTMAP [38], which perform hierarchical and 

cluster validity index-based clustering, respectively.

The notation adopted for the exposition on BARTMAP in this section is as follows: 

the presented data, related to genomics for instance, is denoted as a matrix G = (F, O ). With 

F  = {f 1, ••• , f N} denoting the feature set of cardinality N , O = {oi, • • • , om } denotes the 

set of M experimental conditions or observation during which the features F  are observed. 

For a given experimental observation o j , the perceived intensity of feature f i is represented 

by the element gfto. e G (or more succinctly, gij ). Henceforward, for generality, the genes 

are considered as features and samples are considered as experimental observations in the 

article.

BARTMAP retains Fuzzy ARTMAP’s modular construction, thereby consisting of 

two Fuzzy ART modules, ARTa and ARTb, interacting via the Inter-ART module, where the 

latter is reduced to measure the similarity. Unlike Fuzzy ARTMAP, however, the training 

procedure for BARTMAP progresses in two steps. The first step of training involves grouping 

features that exhibit similar intensity levels for all considered experimental observations of
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the data matrix G = [gij]MxN. For genomic data, such grouping fundamentally identifies 

genes that are likely involved in the same regulatory process of a biological pathway [39]. 

The ARTb module, which is a standard Fuzzy ART, is responsible for partitioning F  into k f  

clusters {Fi | i = 1, ••• , k f }.

During the second step, the experimental observations/conditions set O is partitioned 

with the ARTa module. For a presented observation, the activity of each prototype in 

ARTa module is computed with Eq. (1). A representative cluster is identified using WTA 

and is tested to meet the vigilance criterion (Eq. (2)). If a significant match is noticed, 

the observation is associated with the recognized winner if and only if it demonstrates a 

similar intensity pattern across at least one of the feature clusters as the other observations 

summarized by the winning prototype. While there are several similarity measures available 

in the literature [40], BARTMAP uses linear Pearson Correlation Coefficient [41] as the 

litmus test for the similarity; which was found to perform better than several other proximity 

measures when bicluster classes are known [42]. This homogeneous behavior is substantiated 

by checking if the average correlation measured between the presented observation and other 

represented observations ^ kj is higher than a presupposed correlation threshold, ^ . The 

former is defined as:

(8)

where
N  _  _

(gokfu — gokFi )(gojifu — gojiFi) 
t= l (9)

(10)

(11)
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and ok is the presented observation, Oji are members of the observation cluster Oj = 

{Oj i, ••• ,OjMj} with cardinality Mj associated with the winning prototype, and Fi = 

{fn ,  • • • , fiNi} denotes a feature cluster with N i members.

The winning prototype Oj qualifies to represent observation ok only if ^ kj is above 

Tlth. If this were the case, then weights of the prototype Oj are updated using the learning rule 

expressed by Eq. (3). Nonetheless, if it were not the case, the current winning prototype is 

suppressed from activating by match tracking [35], which adequately increases the vigilance 

value p a of ARTa above its base value. The increment in vigilance value forces for finding 

next qualifying winning prototype. The match tracking terminates upon identifying a winner 

prototype that qualifies for representing the current observation or the vigilance value is 

increased to 1. If match tracking increases vigilance value to its maximum, a new prototype 

is assigned to represent the current observation. The weights of this prototype are updated 

using fast learning by setting learning rate S  in Eq. (3) to 1. After the termination of match 

tracking and before next observation presentation, the vigilance value p a is readjusted to its 

base value.

Despite scaling, features that demonstrate co-variation for a subset of conditions 

can be grouped into different clusters by the ARTb module due to varying intensity levels. 

Due to the condition imposed for the association, nonetheless, an observation might highly 

correlate with other observations associated with the representative prototype across more 

than one feature cluster. Thus during the training, BARTMAP learns a mapping between 

feature and observation partitions. Upon training, the clusters identified by the ARTa module 

are considered for labeling the observations.

For recovering significant biclusters, from all possible combinations of clusters 

identified by ARTa and ARTb, homogeneity of the bicluster is used as a criterion. The quan­

titative assessment for homogeneity is made using the average correlation computed between 

the observations. For a bicluster Bmbxnb = (FB, OB) = ([ f i , • • • , / mb], [oi, • • • , onb])
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composed of Nb observations and M b features, the average correlation is defined as [43]:

8 (B mb xnb )
1 Nb-1 Nb

/Nb \ r° p ’°« ’
l 2 / p=1 q=p+1

(12)

where r°p°  is the Pearson correlation coefficient between observations ° p , ° q e Ob across 

Fb . A feature cluster is mapped to an observation cluster if and only if 8 (BMbxNb ) is 

above recovery correlation threshold, ^r . With each feature cluster several observation 

clusters might form biclusters that satisfy the aforesaid condition. However, each feature 

cluster is mapped only to the observation cluster that results in a bicluster with highest 

8 (BMbXNb). Therefore, BARTMAP identifies block-diagonal structure in the provided 

data. BARTMAP had been extended to perform hierarchical biclustering and supervised 

learning[43], respectively. Hierarchical BARTMAP variant is furnished with the ability to 

evaluate and pair the feature and observation clusters to form biclusters.

3. TOPOLOGICAL BICLUSTERING ARTMAP

Topological Biclustering ARTMAP (TopoBARTMAP) is a modified BARTMAP 

wherein TopoART modules supplant fuzzy ART modules to identify the topological 

associations within the presented expression data matrix, G = (F , 0 ). TopoBARTMAP 

inherits the modular structure and two-phase learning process from BARTMAP; nonetheless, 

each module’s learning procedure differs due to the usage of TopoART. Learning procedure 

results in the identification of gene and sample subspace topologies while associating them 

through identified biclusters. While usage of TopoART renders the method noise-robust, it 

also produces a graphical representation of the underlying space. In what follows next, the 

training procedure is delineated.

The first phase of training involves grouping features, or genes, that exhibit similar 

intensities over all experimental observations of a given expression data matrix G, which 

is achieved by clustering features with TopoARTb module. Clustering results in the
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Figure 1. Schematic of TopoBARTMAP [22]. In construction, TopoBARTMAP contains 
two TopoART modules connected by the inter-ART module that relates clusters found by 
each module through the similarity test. The schematic shows the k/  prototypes identified 
by the TopoARTb module in layer . For TopoARTa, the layer is shown to have k0 
learned prototypes which include both permanent and temporary prototypes (indicated by 
a dashed circle). Connected nodes in the F2 layers of both modules indicate identified 
clusters/topologies.

identification of k f  prototypes that form k clusters. All the feature patterns that are 

associated with pruned prototypes are reclassified and associated with permanent prototypes 

using Eq. (6).

In the later training step, the TopoARTa module is trained on the observations O . 

During an observation presentation, the identified winner prototype is tested for match 

and associability using the vigilance test and similarity test, respectively. For similarity 

test, similarity can be measured using the Pearson Correlation coefficient [44] when the 

strength of linear association is desired to be measured. Nonetheless, when non-linear 

associations are desired to be identified, the similarity can be measured using Maximal 

Information Coefficient (MIC)[25], an information-theoretic-based measure. MIC is based 

on the premise that if the two variables are related, then the scatter plot or the ordered pairs of 

the two variables can be partitioned such that the relationship is preserved and summarized 

by the partitions.



51

To calculate the MIC between two variables X =< x \ , x 2, ■■■ > and Y =< 

y 1,y 2, ••• > of same size, the ordered pair D | D = {{xi,yi }Vi e {1,2,3, •••}}} is 

distributed into several bins using grids, with varying number of rows and columns, that 

divide the scatter plot. For n rows and m columns, several grids G are possible. For each of 

such combination of n and m, the maximum Mutual Information I*(D, n, m) over all grids 

is found where

I*(D, n, m) = max [I(D  |g )] , (13)
G

here I  (D |G) denotes the mutual information computed for the grid G . With I  * computed 

for all combinations of n and m, a characteristic matrix is then defined with entries

M (D)n,m
I *(D, n, m) 

log (min{n, m }) ’ (14)

the division with log (min{n.m}) scales the values to between 0 and 1 as for any grid G , 

0 < I  (D |G) < 1. Using the characteristic matrix, MIC of two variable X and Y with 

samples size s and grid size less than B (s) is determined by

M IC  = max [M(D)„ ,m ], (15)
nm<B( s)

where B (s) defines the upper bound for the grid size [25].

If the input observation demonstrates the same behavior as the other observations 

summarized by the winner across at least one identified feature cluster, then the input is 

assigned to the winner. However, if significant similarity can not be identified, match 

tracking suppresses the current winner. Like BARTMAP, the match tracking resultant 

search proceeds to find an associable prototype until all the prototypes are suppressed, 

and a new cluster is formed. If the winner is an existing prototype, then a second-best 

prototype is recognized using WTA and tested for the match. If the considered second-best 

prototype meets the vigilance criterion, then the similarity test is conducted to verify the
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observation’s associability. If a significant similarity between the input observation and 

observations summarized by the second winner across at least one feature cluster is detected, 

then an edge between the first and the second winners is established. If the similarity test 

detects no significant similarity, then the current second-best is suppressed and the next 

winner is searched. The search continues until either a prototype qualifying both vigilance 

and similarity test is identified or all the prototypes are shutdown. Upon identification of 

qualifying second-best prototype, the weights are updated using Eq. (3) with a lower learning 

rate. The pruning mechanism and reclassification of the corresponding observations are 

unchanged from TopoART.

Unlike BARTMAP, where each observation prototype represents a bicluster; in 

case of TopoBARTMAP, the complex-shaped clusters formed by connected observation 

prototypes (each forming a topological subspace3) represent biclusters. Such representation 

aids in uncovering the intra-bicluster interactions. Further, if the input to TopoBARTMAP is 

an expression data, clustering genes with TopoARTb module generates a graph analogous 

to Gene Coexpression Networks (GCN) [45]. The nodes in the generated graph represent 

gene modules rather than individual genes, and links represent the interactions between 

these modules. Moreover, the learning in TopoARTa module associates these nodes to 

specific subsets of experimental conditions, facilitating further analysis of misregulation in 

genes; therefore, the generated network is called as Topological Gene Bicluster Association 

Network.

The similarity condition imposed for recognizing the second-best prototype during 

TopoARTa learning leads to the identification of gene prototypes for which the observations 

represented by both best and second-best prototypes show high similarity. However, each 

prototype’s represented observation might demonstrate homogeneity for more than one of

3In topological space defined on [0,1]2d, from which the scaled complimented coded input data originates
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the k f  gene prototypes. When applied to time series gene expression data, four relationships 

emerge between the gene clusters (call Fb and Fsb) associated with best and second best 

observation prototypes that represent an observation. And they are:

• Ft = Fsb: This indicates the continuity of co-expression through the conditions.

• Fb c  Fsb : This indicates a possible down regulation and inhibition of the genes that 

are in the set {Fsb \  Fb} while the genes in the set Fb continue to be up regulated.

• Fb D Fsb : This indicates possible triggered up regulation of the genes that are in the 

set {Fb \  Fsb } due to the continued up regulation of genes in the set Fb.

• Fb ^  Fsb : This indicates the end of the upregulation of the genes in the set 

Fb \  (Fb n  Fsb) and start of the up regulation of the Fsb \  (Fb n  Fsb) in the overlap 

region.

4. EXPERIM ENTATION

4.1. DATA

This work examines and compares the clustering performance of TopoBARTMAP 

with other methods on an extensive collection of thirty-five benchmark cancer data-sets [46] 

used in several other biclustering studies. Table 1 summarizes the pertinent information on 

the number of features, observations, and classes per data-set.

To study and understand the relevance of the topological graphs produced by 

TopoBARTMAP, TopoBARTMAP was run on the data-set made available by [26] on 

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus with the 

accession number: GSE89116. The data-set consists of unnormalized expression levels 

of 39,326 genes collected for 38 tissue samples (observations) along with p-values. The 

samples consist of tissue collected from 12 Early-onset breast tumors (with age < 40 yrs), 17
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Late-onset breast tumors (with age > 55 yrs), and adjacent normal tissues from 4 Early-onset 

and 5 Late-onset breast cancer patients as controls. The raw gene expression values without 

any normalization[47] were used to experiment. The information pertinent to tissue type was 

used to group the observations into four categories, and this partitioning is used to measure 

the clustering performance.

4.2. CLUSTERING PERFORM ANCE

In all the experiments conducted, clustering is done to achieve hard partitioning; i.e., 

each sample is assigned to a single cluster. Cluster validity indices (CVIs) are used as a 

proxy for the quality of data partitions and can be categorized as internal or external. Internal 

CVIs are used in the absence of labels, which is the case of true unsupervised learning 

scenarios. While these CVIs have been traditionally computed offline [33], online versions 

have been recently developed in [73, 74, 75]. Conversely, external CVIs are typically used 

when a reference partition is available, which is the case when benchmarking clustering 

algorithms. Therefore, in our experiments, the clustering performance is measured using 

the Adjusted Rand Index [76], an external CVI, which is defined as the following for two 

partitions P and Q of a set D = {d \ ,d 2, • • • dN} with N data points:

. (N) (P + q) - ( ( P + r)(P + s) + (q + r) (q + s))
A R I  = ----- iT?---------------------------------------------------, (16)

( 2 ) - ( ( p  + r ) (p  + s) + (q + r ) (q + s))

where

• p  denotes total number of pairs of elements in D that belong to the same partition in 

both P and Q

• q denotes total number of pairs of elements in D that are assigned different partitions 

in both P and Q
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Table 1. Thirty-five benchmark cancer data sets used for experimentation [4]. The Sl.no, 
N 0, N f , and N c denote respectively the serial number, O b serva t io n s ,  #Features, and 
#Classes  in observations.

Sl.no Data set No N f Nc
22 Alizadeh-V1 [48] 42 1095 2
23 Alizadeh-V2 [48] 62 2093 3
24 Alizadeh-V3 [48] 62 2093 4
1 Armstrong-V1 [49] 72 1081 2
2 Armstrong-V2 [49] 72 2194 3
3 Bhattacharjee [50] 203 1543 5

25 Bittner [51] 38 2201 2
26 Bredel [52] 50 1739 3
27 Chen [53] 180 85 2
4 Chowdary [54] 104 182 2
5 Dyrskjot [55] 40 1203 3

28 Garber [56] 66 4553 4
6 Golub-V1 [57] 72 1877 2
7 Golub-V2 [57] 72 1877 3
8 Gordon [58] 181 1626 2

29 Khan [59] 83 1069 4
9 Laiho [60] 37 2202 2

30 Lapointe-V1 [61] 69 1625 3
31 Lapoint-V2 [61] 110 2496 4
32 Liang [62] 37 1411 3
10 Nutt-V1 [63] 50 1377 4
11 Nutt-V2 [63] 28 1070 2
12 Nutt-V3 [63] 22 1152 2
13 Pomeroy-V1 [64] 34 857 2
14 Pomeroy-V2 [64] 42 1379 5
15 Ramaswamy [65] 190 1363 14
33 Risinger [66] 42 1771 4
16 Shipp [67] 77 798 2
17 Singh [68] 102 339 2
18 Su [69] 174 1571 10
19 West [70] 49 1198 2
20 Yeoh-V1 [71] 248 2526 2
21 Yeoh-V2 [71] 248 2526 6
34 Tomlins-V1 [72] 104 2315 5
35 Tomlins-V2 [72] 92 1288 4

The data sets are available at h t t p s : / / g i t h u b . 
c o m /p a d i lh a /b ic lu s t l ib .

https://github
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• r  denotes total number of pairs of elements in D that are in same partition in P but 

different partition in Q

•  ̂denotes total number of pairs of elements in D that are in different partitions in P 

but same partition in Q

4.3. METHODS

To compare and contrast the performance of TopoBARTMAP with other methods, 

BARTMAP, Fuzzy ART, Spectral biclustering, and TopoART were run on the same thirty- 

five data-sets. The choice of Spectral clustering is driven by the results reported in [4], 

where Spectral clustering was shown to perform better than sixteen other state-of-the-art 

biclustering methods when sample clustering accuracy, measured in terms of FARI [77] 

and 13 AGRI [78], was used as the performance measure. To run the Spectral biclustering, 

we used the Scikit-Learn [79] Python library. This study used MATLAB implementations 

of BARTMAP, Fuzzy ART, TopoART, and TopoBARTMAP, which are made available at 

the Applied Computational Intelligence Laboratory GitHub repository4. In conjunction 

with the MATLAB source code, the Cluster Validity Analysis Platform toolbox [80] and 

minepy5 [81] (MIC tool) were used when needed.

To statistically analyze the differences in performance of multiple methods, compar­

isons were made using Statistical Comparison of Multiple Algorithms in Multiple Problems 

(SCMAMP) R-package [82]. In this study, the similarity in performance of two classifiers is 

ascertained using the Wilcoxon signed-rank test. For multiple methods, Friedman’s rank-sum 

test [83] is used as an evaluation of statistical similarity in behavior. The assessment was 

made with Iman and Davenport omnibus test run on the observed performances. If the tests

4https://github.com/ACIL-Group/TopoBARTMAP
5https://minepy.readthedocs.io/en/latest/

https://github.com/ACIL-Group/TopoBARTMAP
https://minepy.readthedocs.io/en/latest/
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resulted in a small p-value, an indicative that at least one method performs differently than 

the rest, then Friedman post-hoc test with Bergmann and Hommel’s correction [83] was 

conducted to quantify the differences between multiple classifiers.

4.4. PARAMETER TUNING

To study the biclustering performance of TopoBARTMAP with Pearson Correlation 

and MIC on each of the thirty five data-sets, the parameters p a, Pasecond-best, 0 a , T%°, P b , 

^second-best, 0 b , , and t were optimized with Genetic Algorithm (GA) [84] for one epoch

of data presentation. Here t% denotes the percentage of aggregate number of patterns input 

to each TopoART module. During the optimization the following constraints were imposed 

on the parameters:

0 a  -  Tâ N 0 > 0 , (17)

and

0 b  -  T%Nf  > 0 , (18)

where N 0 = #{observations} and N f  = #{fea tu res} . Note that Ta = [t%0N 0 ] and

Tb = Lr %°Nf 1. Throughout the experiments, the lower and upper bounds for the parameters, 

following the aforesaid order, were set to <  0 .0 , 0 .0 , 0 .0 , 0 . 1, 0 .0 , 0 .0 , 0 .0 , 0 . 1, 0 .0 >  and 

<  0 .95 , 1.0 , 5 .0 , 0 .3 , 0 .95 , 1.0 , 5 .0 , 0 .3 , 0 .99 > . Because many data-sets become sparse upon 

normalization, the correlation is computed between two samples over only those genes for 

which the normalized activity is non-zero [85]. The GA was run 10 times with a population 

size of 200 agents and for 25 generations. Further for all the ART based methods evaluated, 

the choice parameter a  was set to 0 .001, match tracking step size wherever applicable was 

set to 0 .01, and best prototype learning rates were set to 1, thereby ensuring fast learning.

The Spectral biclustering method searches for the checkerboard pattern formed 

by the specified number of row and column clusters; thus, the number of row clusters 

and column clusters are considered as parameters for the method. Whilst the parameters
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for other methods considered here take continuous values from a specified range, each 

aforementioned parameter of Spectral biclustering takes discrete values between 1 (resulting 

in a trivial cluster) to the number of rows or columns in the data; therefore, we did not use 

GA for optimization. In order to reduce the parameter search space, however, similar to 

experimentation in [4], the method received the ground truth number of classes, reported in 

Table 1, as the number of column clusters to be searched. Nonetheless, the input number 

of row clusters is varied from 2 to min{#rows,100}, where #rows is the number of rows 

in the dataset. Further, the scikit-learn library allows choosing among three different data 

normalization methods for Spectral biclustering - Independent row and column normalization, 

Log normalization, and Bistochastization; we ran experiments with each normalization 

method while setting other parameters related to Singular Value Decomposition to their 

default values.

To investigate the performance of BARTMAP, parameters < p a, pb , V > were 

optimized with GA using < 0 .0,0.0,0.0 > and < 0.95,0.95,0.99 > as lower and upper 

bounds, respectively. Similarly for studying TopoART, parameters < p, yS/2, 0, r% > were 

optimized with GA using < 0 .0 ,0 .0 ,0 .0 ,0 .1  > and < 0 .95,1 .0 ,5 .0 ,0 .3  > as lower and 

upper bounds, respectively. These were also subjected to the following inequality constraints:

0 -  r % > 0, (19)

where r% and r  are defined as for running TopoBARTMAP experiments. Similar to 

TopoBARTMAP, for data-sets that become sparse upon normalization, modified Pearson 

correlation was used.

We note that while TopoART can refine the identified cluster with multiple modules, 

no such refinement was considered during the experimentation. Further, like TopoBARTMAP, 

the identified complex shaped clusters formed by connected prototypes were used to measure 

the performance. Finally, because Fuzzy ART has single parameter which can be varied,
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to maintain consistency with the number of fitness evaluations of the GA used to optimize 

other ART based methods, p  was varied among 4960 values uniformly spaced from the 

range [0,1].

5. RESULTS AND DISCUSSION

This section presents a particularized account on the experimental observations while 

furnishing the qualitative and quantitative assessments made to evaluate the performance of 

TopoBARTMAP.

5.1. ORIGINAL DATA ORDERING EXPERIM ENT

The Table 2 juxtaposes the performance of TopoBARTMAP with Pearson Correlation 

Coefficient and MIC, BARTMAP, Spectral Biclustering, TopoART, and Fuzzy ART in 

the experiments conducted on thirty-five benchmark data-sets. In these experiments, 

TopoBARTMAP with both Pearson Correlation Coefficient and MIC outperforms the rest 

four methods on eighteen data-sets. While BARTMAP outperforms other methods on 

five data-sets, it performs equally with TopoBARTMAP and TopoART on three data-sets. 

The topological non-bi-clustering method TopoART is observed to perform better than 

BARTMAP and equally to TopoBARTMAP on five data-sets while outperforming the other 

four methods on one data-set. Although such equal performance remains unexplained, we 

ascribe this to topological clustering and order of data presentation. For Spectral Biclustering, 

for each data-set, the Table 2 reports best-observed ARI value among three normalization 

procedures. While both Spectral Biclustering and Fuzzy ART are observed to perform 

poorly, these two methods perform better than other methods on one data-set each.

Due to the apparent similarity in performance between multiple algorithms over 

multiple data-sets, an assessment was made to check if the methods demonstrate similar 

behavior. The first test was made to check for the statistical difference in the behavior of both
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Table 2. Biclustering results on thirty-five benchmark cancer data-sets. The best found 
Adjusted Rand Index value for each method is reported against the corresponding data-set. 
Best performances for each data-set are reported in bold. Columns TBM-P, TBM-MIC, and 
Spectral refer to the performances reported for TopoBARTMAP with Pearson Correlation, 
TopoBARTMAP with MIC, and Spectral Biclustering respectively

Sl.no DataSet TBM-P TBM-MIC BARTMAP TopoART Fuzzy ART Spectral
1 Alizadeh-V1 0.4407 0.5143 0.4292 0.1899 0.0922 0.2222
2 Alizadeh-V2 1.0000 1.0000 0.8952 0.9186 0.8147 0.9471
3 Alizadeh-V3 0.5521 0.5925 0.5079 0.4852 0.4055 0.5526
4 Armstrong-V1 1.0000 1.0000 0.5565 1.0000 0.3379 0.2383
5 Armstrong-V2 1.0000 1.0000 0.8270 0.9583 0.6281 0.5879
6 Bhattacharjee 0.9827 0.9861 0.9885 0.9779 0.6449 0.5511
7 Bittner 0.7593 0.7951 0.5775 0.5931 0.3284 0.0085
8 Bredel 0.8225 0.8043 0.6631 0.2085 0.0569 0.3244
9 Chen 0.6765 0.615 0.4448 0.1998 0.0402 0.7097
10 Chowdary 1.0000 1.0000 0.9615 0.9418 0.8504 0.0409
11 Dyrskjot 0.7939 0.8206 0.8391 0.4235 0.2099 0.2279
12 Garber 0.4674 0.4075 0.4836 0.2284 0.1366 0.2344
13 Golub-V1 0.9443 0.9171 0.9295 0.8210 0.2666 0.7843
14 Golub-V2 0.7333 0.856 0.7873 0.6106 0.2974 0.4900
15 Gordon 1.0000 1.0000 1.0000 1.0000 0.2968 0.9469
16 Khan 0.7960 0.8725 0.9095 0.5869 0.4476 0.3930
17 Laiho 1.0000 1.0000 0.7608 1.0000 0.2480 0.3796
18 Lapointe-V1 0.3215 0.3621 0.3996 0.1629 0.0776 0.1583
19 Lapointe-V2 0.3708 0.3588 0.3639 0.0908 0.0255 0.2554
20 Liang 0.5699 0.6108 0.3619 0.2996 0.1123 0.1573
21 Nutt-V1 0.9563 0.91 0.7990 0.8970 0.4647 0.1726
22 Nutt-V2 1.0000 1.0000 1.0000 1.0000 0.6033 0.0023
23 Nutt-V3 1.0000 1.0000 1.0000 1.0000 0.1099 0.0487
24 Pomeroy-V1 1.0000 1.0000 1.0000 1.0000 0.3633 0.0203
25 Pomeroy-V2 0.9600 0.9516 0.8320 0.8494 0.7251 0.5451
26 Ramaswamy 0.6189 0.6421 0.6308 0.3989 0.7048 0.1685
27 Rising 0.9594 0.9428 0.7478 0.9428 0.4951 0.3318
28 Shipp-V1 1.0000 1.0000 0.9443 1.0000 0.1583 0.0161
29 Singh 1.0000 1.0000 0.9048 1.0000 0.5807 0.0404
30 Su 0.7774 0.7891 0.6773 0.5920 0.3782 0.3808
31 Tomlins 0.9513 0.8843 0.8539 0.8831 0.7246 0.1814
32 Tomlins-V2 0.9718 0.9446 0.8537 0.9562 0.7412 0.1359
33 West 0.7652 0.6938 0.7288 0.1911 0.1202 0.0562
34 Yeoh-V1 1.0000 1.0000 0.6369 0.9967 0.0626 0.9205
35 Yeoh-V2 0.8543 0.8507 0.6355 0.8637 0.2545 0.1423

TopoBARTMAP variants. The Wilcoxon statistical test for these two classifiers resulted in 

a p-value of 1, which indicates high statistical similarity. For later tests, TopoBARTMAP 

with Pearson correlation was used for assessment to maintain fairness in comparison with
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BARTMAP, because the latter uses Pearson correlation coefficient. The omnibus test 

on results reported in Table 2 produced p-value < 2.2e-16. The observed small p-value 

indicates that at least one of the methods performs differently than the rest; thus, we 

proceeded to perform the Friedman post-hoc test with Bergmann and Hommel’s correction. 

The corresponding pair-wise comparison p-values are reported in the Table 3 and the 

statistical difference plot is shown in the Figure 2. The statistical difference plot shows that 

TopoBARTMAP performs statistically different from the other algorithms. The test further 

shows while the BARTMAP and TopoART perform similarly, whereas Spectral Biclustering 

performs similar to Fuzzy ART.

Table 3. Statistical comparison of different algorithms made using post-hoc test for observed 
biclustering results reported in Table 2. The p-values less than 0.05 are reported in bold.

Figure 2. Statistical difference plot for the performance of each method on original data 
ordering experiments. These plots are produced using the Friedman post-hoc test with 
Bergmann and Hommel’s correction. The omnibus test conducted to verify performance 
difference produced a p-value = 2.2e-16, indicative of significant difference. Each method 
is shown with its average rank in the block. The connections between blocks indicates 
statistical similarity in performance between corresponding methods.
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5.2. RANDOMISED DATA ORDERING EXPERIM ENT

To study the effect of randomization in presentation order on the performance 

of ART based methods, we presented randomized data to BARTMAP, TopoART, and 

TopoBARTMAP. The presentation order randomization in each of the thirty-five data-sets 

is achieved by permuting rows followed by columns. While similar experiments were 

conducted in our earlier work [22]; the permutations were limited to either rows or columns 

affecting the performance of one of the two ART modules of biclustering methods. By 

permuting rows followed by columns, both the ART modules are considered for the test, and 

hence a more challenging problem. With performance measure by Adjusted Rand Index, for 

each of the randomized data-set, BARTMAP, TopoART, and TopoBARTMAP were run with 

GA optimization with aforesaid settings. To run experiments with TopoBARTMAP, only 

Pearson Correlation Coefficient is used as a similarity measure due to the computational 

demand of running MIC [86] and statistical similarity in performance of both variants. 

Further, since permutations in data would only permute the left and right singular vectors of 

data matrix, Spectral Biclustering was not chosen for this study.

Table 4 summarizes the results of experimentation on randomized data-sets for 

ART-based agglomerative methods. In contrast to experiments with original data-sets, the 

TopoBARTMAP outperforms all the compared methods in twenty-six data-sets. While 

TopoBARTMAP and TopoART perform equally on eight data-sets, BARTMAP, while 

outperforming other methods on one data-set, performs equally with other compared 

methods on four data-sets. This similar performance is observed on the same set of data-sets 

as reported in Table 2. Further, it is observed that each biclustering method compared has 

a significant change in the best ARI values found. Whilst BARTMAP’s performance is 

observed to degrade overall, where best ARI values were noticed to decline for 15 data-sets 

and improve for 10 data-sets; the performance of TopoBARTMAP remains relatively same, 

where best ARI values were observed to decline for 11 data-sets and improve for 12 data-sets 

than those reported in Table 2. Statistical tests were conducted to assess similarity in
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the results, the omnibus test resulted in a p-value of 5.623e-10. The registered small 

p-value indicates that at least one of the algorithms performs differently from the others. 

Following omnibus test, Friedman post-hoc test with Bergmann and Hommel’s correction 

was conducted to make a pair-wise comparison. The corresponding p-value and statistical 

differences plot are presented as Table 6 and Figure 3 respectively.

Figure 3. Statistical difference plot produced for the performance of each compared method 
on the randomized data-sets. The statistical significance is tested with the Friedman post-hoc 
test with Bergmann and Hommel’s correction. The omnibus test conducted before post-hoc 
test produced a p-value = 5.623e-10, indicative of significant difference in performance of at 
least one method. In the plot, each method is shown with its average rank in the respective 
block. The connections between blocks indicate statistical similarity in performance between 
corresponding methods.

5.3. NCBI GEO GSE89116 GENE EXPRESSION STUDY-CASE

The experimentation with TopoBARTMAP to study the Topological Gene Bicluster 

Association Network on Gene Expression Omnibus GSE89116 data-set resulted in the best 

ARI of 0.8436 at the following parameter combination p a = 0.5127, Ba , , = 0.9913,

(Pa = 0.6025, r%° = 0.1071, Pb = 0.9500, fibsecond-best = 0.0914, 0b = 2.7127, r% = 0.1617, 

and ^ = 0.5848. For the mentioned parameter combination, TopoBARTMAP identified 

577 gene prototypes. Further, 8 observation prototypes were created in the TopoARTa 

module which formed 4 clusters. The topological graph of the identified observation clusters, 

with prototypes colored according to the cluster, is shown in the Figure 4. The clustering 

misclassified two Late-normal observations as Early-tumors and one Late-normal sample as

Late-tumor.
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Table 4. Observed biclustering results on randomized data-sets. The optimal Adjusted Rand 
Index found for each method with GA are reported against the data-set. Best performances for 
each data-set are reported in bold. For these test TopoBARTMAP with Pearson Correlation 
was used.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART
1 Alizadeh-V1 0.6467 0.5515 0.1899
2 Alizadeh-V2 0.9799 0.8952 0.9186
3 Alizadeh-V3 0.5678 0.5607 0.4852
4 Armstrong-V1 1.0000 0.5435 1.0000
5 Armstrong-V2 1.0000 0.8406 0.9583
6 Bhattacharjee 1.0000 0.9838 0.9779
7 Bittner 0.7766 0.5775 0.5931
8 Bredel 0.7242 0.6007 0.2085
9 Chen 0.5761 0.4630 0.1857
10 Chowdary 1.0000 0.9615 0.9418
11 Dyrskjot 0.8692 0.8183 0.4235
12 Garber 0.6257 0.6155 0.2213
13 Golub-V1 0.9811 0.8894 0.8234
14 Golub1-V2 0.8861 0.6772 0.6106
15 Gordon 1.0000 1.0000 1.0000
16 Khan 0.8885 0.7911 0.5869
17 Laiho 1.0000 0.6534 1.0000
18 Lapointe-V1 0.3735 0.3728 0.2232
19 Lapointe-V2 0.3450 0.3789 0.1143
20 Liang 0.5290 0.3863 0.2996
21 Nutt-V1 0.9169 0.7990 0.8970
22 Nutt-V2 1.0000 1.0000 1.0000
23 Nutt-V3 1.0000 1.0000 1.0000
24 Pomeroy-V1 1.0000 1.0000 1.0000
25 Pomeroy-V2 0.9302 0.8651 0.8494
26 Ramaswamy 0.6052 0.5919 0.3989
27 Rising 0.9428 0.7479 0.9428
28 Shipp-V1 1.0000 0.9443 1.0000
29 Singh 1.0000 0.8877 1.0000
30 Su 0.6844 0.6826 0.5920
31 Tomlins-V1 0.9206 0.8120 0.8831
32 Tomlins-V2 0.9718 0.8714 0.9562
33 West 0.9183 0.6607 0.2238
34 Yeoh-V1 1.0000 0.6421 0.9967
35 Yeoh-V2 0.8859 0.6171 0.8449
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Table 5. Post-hoc test results for observed performances reported in Table 4. The p-values 
less than 0.05 are reported in bold, which shows that TopoBARTMAP performs differently 
from the rest.

TopoBARTMAP BARTMAP TopoART
TopoBARTMAP n/a 0.000 0.000
BARTMAP 0.000 n/a 0.676
TopoART 0.000 0.676 n/a

For each observation class,to recover biclusters formed by the associated observation 

prototypes with gene prototypes, average correlation defined in Eq. (12) was used as a 

coherence measure [87]. Biclusters with average correlation above a minimum of 0.5848, the 

optimal correlation level identified during optimization, were considered as homogeneous. 

During bicluster recovery, it is possible to assign gene prototypes with multiple sample 

prototypes to form biclusters. However, for this study, each gene prototype is assigned to the 

sample prototype to results in a bicluster with the highest 5 (BMxN).

The topological graph of gene prototypes is refined to depict the bicluster associations 

using the recovered biclusters for each observation class. The refinement is achieved by 

associating graph nodes to the corresponding observation classes and color-coding them 

with the class colors used for observation clusters in Figure 4. Since each gene prototype is 

a multi-dimensional vector, the t-Distributed Stochastic Neighbor Embedding (t-SNE) [88] 

was used to reduce the dimensionality and embed each prototype in a 2-D space. The 

resultant network is shown in Figure 5. The produced graph is named as topological gene 

bicluster association network.

By varying the recovery correlation threshold, ^r , it was observed that for a particular 

observation prototype, a subset of gene prototypes are uniquely associable; they form bicluster 

only with this prototype and not with other prototypes in the observation class. Further, 

not all gene prototypes were observed to form biclusters, even at the optimal correlation 

level of 0.5848 found by GA as shown in the Figure 5. In the produced topological graphs, 

moreover, it was noticed that there are no direct links between nodes corresponding to Early



66

Figure 4. The sample classes identified by TopoARTa module of TopoBARTMAP for 
GSE89116 data-set. Each colored dot with corresponding number represents a prototype, 
with its association with other prototypes established by an edge.

Tumors (Orange color) and Early Normal tissue (Blue color). Nodes associated with Early 

Tumors are directly connected to Late Tumors (Blue-Green color) or Late Normal (Green 

color) nodes; the latter could be due to misclassification. To verify the significance of 

disease-specific biclusters, genes associated with these biclusters were compared with the 

differentially expressed genes reported by [26]. Of the identified genes, 195 were reported 

to be differentially expressed by [26], presented in Table 6. Because the presented results 

in this section were observations based on clustering, we can not vouch for the medical 

interpretation.



ON ^
1

Fi
gu

re
 5

. 
Th

e 
To

po
lo

gi
ca

l G
en

e 
B

i-
cl

us
te

r A
ss

oc
ia

tio
n 

N
et

w
or

k 
at

 c
or

re
la

tio
n 

le
ve

l o
f 0

.5
84

8.
 T

he
 n

od
e 

co
lo

rs
 in

di
ca

te
 th

e 
as

so
ci

at
ed

 
bi

-c
lu

st
er

 id
en

tif
ie

d 
by

 th
e 

To
po

B
A

R
TM

A
P.



68

Table 6. Identified highly active differentially expressed genes with corresponding observation 
prototypes and tumor categories.

Observation Pro­
totypes

Category Genes

1 and 2 Early tumor
AXUD1, B3GALNT1, C6, CDO1, CRY2, LEP, LEPR, LIPE, 
LMOD3, NCALD, PCOLCE2, RDH5, SLC19A3, THRSP, TIMP4

4, 5, 6, and 7 Late tumor

ABCA8, ADCY4, ADRB2, AGPAT2, AHNAK, AK5, AKAP12, 
AKAP13, ALDH18A1, ALDH1A2, ALDH1L1, ALDH2, AL- 
DOA, ALPP, AMACR, AMFR, AMMECR1, AMOTL2, ANGPT1, 
ANGPTL1, ANGPTL4, ANGPTL7, ANK2, ANKRD29, APBB3, 
APOB, APOLD1, AQP7P2, ARID4B, ARL16, AURKA, BCHE, 
BLZF1, BOLA2, BPNT1, BRI3BP, BTNL9, C12ORF39, 
C14ORF85, C17ORF75, CA3, CALB2, CAT, CCNL1, CD248, 
CDC20, CDCA4, CEBPA, CEP350, CIDEC, CKS2, CLEC3B, 
CNN1, COL10A1, COL11A1, COPE, CORIN, CORO2A, CPXM2, 
CRB3, CSN1S1, DNAJB9, DSP, DTL, ECHDC3, ECM2, 
EHBP1, EID2B, EIF1B, ENG, ENPP2, EPB41L2, FAM102A, 
FHL1, FLAD1, FLJ21986, FLNC, FREM1, G0S2, G3BP1, 
GDF10, GJA4, GJB2, GPAM, GRK5, GRRP1, GSN, GSTM5, 
GYPC, HIST1H2BD, HIST1H2BJ, HIST2H2AA3, HIST2H2AC, 
HMGCS1, HPRT1, HS.163752, HSD17B13, HSD17B6, ICAM2, 
ID1, IFI6, IGF2, IL11RA, IL17B, KIF25, KIT, KLF11, KLF4, 
KRTAP21-2, LAMA4, LDB2, LMO2, LOC440348, LOC440359, 
LOC644322, LOC651816, LOC90586, LPL, LRAP, MFAP4, 
MMP1, MMP10, MMP13, MMP3, MOSC1, MRAP, MRPL12, 
NDRG2, NMT2, PALM, PECAM1, PELI1, PENK, PFKFB4, 
PGAM4, PI16, PLEKHM1, PLTP, PNPLA2, PPAP2A, PPAP2B, 
PPARG, RAD21, RARRES2, RBM6, RBP4, RBPMS2, RCP9, 
RIPK2, ROPN1, ROPN1B, RSPRY1, RXRA, SALL4, SDPR, 
SEMA3E, SHANK3, SLC38A1, SLCO2A1, SPRY1, SPTBN1, 
SRPX, SSPN, ST6GALNAC6, TDO2, TESC, TLE4, TMEM79, 
TMEM9, TOP2A, TSPAN7, TSPAN8, TUBB3, TYMS, UBE2T, 
VTI1B, WT1, YIF1A, ZMYND8, ZNF14

6. CONCLUSION

This work presents TopoBARTMAP, which uses TopoART modules and a maximal 

information coefficient or Pearson Correlation test to detect the similarity between samples 

during training. The experimental results on a collection of datasets demonstrated the 

statistical superiority of TopoBARTMAP’s performance compared to BARTMAP, TopoART, 

Fuzzy ART and Spectral Biclustering. However, our experimentation demonstrates that it
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is not always the case that the detection of nonlinear relationships improves the efficiency 

of clustering gene expression data. We suggest using the Pearson Correlation coefficient 

whenever the problem can be adequately characterized by linear relationships.

The experiments on randomized datasets demonstrate the relative robustness of the 

method to the order of presentation. We suggest using GA optimization to maximize average 

performance evaluated on multiple permutations of data.

The exploratory analysis on the GSE89116 data-set using a topological network 

produced by TopoBARTMAP showcases the method’s utility as a tool for identifying 

modular interactions. With the method's ability to utilize topological information to uncover 

complex-shaped biclusters coupled with the ability to serve as a TDA tool, we posit that 

TopoBARTMAP can be used to discover intricate structure within data.
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SECTION

2. CONCLUSIONS

The objective of this thesis is to develop a biclustering method to identify intra-cluster 

gene-functional relationships while associating functionally related genes that might not 

coexpress significantly. To meet this objective, a biclustering method, BARTMAP, was 

integrated with a topology learning clustering method, TopoART, to produce TopoBARTMAP. 

The rationale driving the integration is that identifying the spatial relations of the observations 

within a bicluster can associate gene subgroups within the same cluster. Furthermore, 

recovering the shape of the objects in the data can aid in recognizing arbitrarily shaped 

clusters. Along with the detection of local linear relationships between genes and observations, 

TopoBARTMAP was extended to detect non-linear relationships with the aid of Mutual 

Information Coefficient.

The experimental study on 35 benchmark data-sets demonstrated a statistically 

significant improvement, subject to the Adjusted Rand Index, in the biclustering accuracy. 

It was also observed that the detection of non-linear patterns by the method might not 

necessarily result in better biclusters. Moreover, TopoBARTMAP is less susceptible to noise 

and is more robust to presentation order than either TopoART or BARTMAP. Nonetheless, 

the experiments on the parameter sensitivity indicate that the optimal hyperparameters 

for one presentation order might not work for different presentation order. Due to the 

rigidness and computational costs, this thesis suggests using TopoBARTMAP on data with 

complex structures which are hard to identify. Otherwise, this thesis recommends using 

BARTMAP. The analysis on the breast cancer data-set (GSE89116) accentuates the utility 

of TopoBARTMAP as a tool for uncovering interactions between gene groups.
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