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ABSTRACT 

The Polochic-Motagua Fault System in Guatemala is the on-land segment of the 

sinistral transform plate boundary between the North American Plate and the Caribbean 

Plate. Three major seismically active strike-slip faults in this fault system pose significant 

earthquake threats to surrounding populated cities. The assessment of seismic hazard 

requires a better understanding of the kinematics of the fault system. GPS monitoring 

indicates that seventy-five percent of the ~20 mm/yr. plate motion is accommodated by the 

Motagua Fault and less than twenty-five percent is accommodated by the Polochic Fault. 

However, the Polochic Fault documents a lateral offset of ~132 ± 5 km, forming a pull-

apart basin and the introduction of more faults may change the strain partitioning. The 2D 

Finite Element Analysis is used to better constrain slip rates and improve established data. 

Previous kinematic models are not sufficient to provide the degree of strain partitioning 

due to interpreting the complex fault system as a singular structure.  

In this study, we present new 2D finite element models of the fault network area in 

Guatemala to study strain partitioning of the plate boundary fault system. The preliminary 

model results are used to calibrate with published GPS data, resulting in a best-fit model. 

Such a model provides a better understanding of the structural geometry at the fault 

network and the strain distribution between different faults in the fault system. This 

modeling approach allows refinement of current structural models, and strain partitioning 

results will aid in future seismic hazard assessment in the fault system. 
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1. INTRODUCTION 

1.1. LITERATURE REVIEW 

The Polochic-Motagua Fault System (PMFS) is in eastern Guatemala. The west-

east trending PMFS is a sinistral plate boundary fault system that accommodates the motion 

between the North American Plate (NA) and the Caribbean Plate (CA).  

1.1.1. Geological Setting.  There are three roughly paralleled, strike-slip, left-

lateral major faults included in the PMFS: the Polochic Fault (PF), the Motagua Fault (MF), 

and the Jocotan Fault (JOF) (Figure 1.1). The PF extends ~400 km on-land and experienced 

~130 km offset (Burkart, 1978) in Neogene, forming a large pull-apart basin called the 

Izabal Basin that has a 4 km thickness of sediments (Lodolo et al., 2009). The MF extends 

~ 300 km and experienced ~300 km Neogene displacements (Ratschbacher et al., 2009), 

creating the Motagua Valley which is covered by a 1 km thickness of sediments (Lodolo 

et al., 2009). The JOF is located on the southernmost side of the fault system and has a 

length of 200 km. 

To the east, the PMFS is considered to connect with the Swan Fault (SF), which 

represents the plate boundary between the CA and NA in the Caribbean Sea, and then 

connects to the Cayman Trough (Lyon-Caen et al., 2006; Authemayou et al., 2012). At the 

west end of the PMFS, the Tonala Fault (TF) extends from the western tip of the PF towards 

the northwest and is roughly parallel to the west boundary of the CA. The Ixcan Fault (IF) 

is to the north and paralleled to the fault system. To the southwest of the PMFS, the plate 

boundary between the Caribbean Plate and the Cocos plate (CO) is marked by the Mid-

American Trench (The NA, the CA, and the CO form a triple junction). This trench is 
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formed by the subduction of the CO beneath the overriding plates (the CA and the CO). 

This subduction zone induced the formation of a Volcanic Arc (VA). A rheologically weak 

zone, formed due to the VA, lies along the CA and results in the dextral strike-slip 

Jalpatagua Fault (JF). 

 

 

Figure 1.1 Tectonic setting of the PMFS (a) Plate tectonic setting of the Caribbean Plate. 
The red rectangular is the study area. (b) Tectonic setting and major faults (interpreted 

from the literature cited in 2.1 and highlighted with red lines) of the PMFS and adjacent 
area. Blue arrows are velocity vectors of GPS data from Franco et al. (2012).  
 

1.1.2. Seismicity. The PMFS and adjacent area is a historically seismic area, 

including large active fault networks caused by the relative plate motion. Thus, the PMFS 

poses a significant earthquake hazard to surrounding populated cities (White, 1984). White 

(1984) studied the history of seismicity in the Guatemala region, including the epicenter of 



3 

 

earthquakes, magnitudes, and damages. For example, in 1785, an earthquake with Mw 7.3-

7.5 ruptured the eastern part of the PF. In 1816, the western PF, adjacent to the location of 

the 1785 event, was ruptured by an earthquake with Mw 7.5-7.7 (White, 1984). The last 

destructive major earthquake occurred at the eastern MF in 1976 with a moment magnitude 

(Mw) of 7.5. This event ruptured the MF for over 230 km, which killed ~23,000 people and 

left 1.5 million people homeless (Plafker, 1976; Olcese et al., 1977). All of these events 

caused casualties and major damage to buildings. In addition, after the earthquake in 1976, 

Guatemala has tripled in population (worldbank, 2018); therefore, the next major seismic 

event in this fault network could be even more devastating. 

1.2. OTHER STRIKE-SLIP FAULTS  

Plenty of other large active strike-slip plate boundary fault systems on earth have 

experienced severe seismic activities. Recent major earthquakes on the San Andreas Fault 

(SAF) in California include the MW 7.3 Landers earthquake in 1992 (Hauksson et al., 

1993), the MW 7.1 Hector Mine earthquake in 1999 (Fialko & Simons, 2001; Fialko et al., 

2002), and the 2019 MW 7.1 Ridgecrest earthquake (USGS.gov, 2019). Many seismic 

events have been reported on the North Anatolian Fault (NAF) in Turkey, such as the 1939 

Erzincan earthquake with MW 7.9, the 1943 Tosya earthquake with MW 7.6, and the Bolu-

Gerede earthquake in 1944 with MW 7.6 (Ambraseys, 1970; Barka, 1996). Along the 

Alpine Fault (AF) in New Zealand, major seismic events include 1717 MW 7.9 earthquake 

(De Pascale & Langridge, 2012), 1620 MW 7.6 earthquake, and 1430 MW 7.9 earthquake 

(Sutherland et al., 2007). Large earthquakes on plate boundary fault systems also include 

the 1995 Nuweiba earthquake in the Dead Sea Fault (DSF) that ruptured the southern 
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section with MW 7.1 (Baer et al., 1999). Each of those seismic events experienced ruptured 

faults for hundreds of kilometers and caused damage to adjacent cities. 

Conclusions from studies on other strike-slip faults, earthquake nucleation, 

propagation, and termination along strike-slip plate boundary faults are dependent on how 

strain is accumulated and partitioned across the often-multiple fault branches of such fault 

systems. As high stress accumulation has the potential to trigger large earthquakes, the 

degree of strain partitioning will indicate where the next event is more likely to strike. 

One example is the San Andreas Fault (SAF), which released large amounts of 

previously accumulated strain that triggered the Hector Mine earthquake and ruptured the 

preexisting faults (Fialko & Simons, 2001; Fialko et al., 2002). In addition, the strain could 

also possibly be released to surrounding faults, leading to a new rupture (Barka, 1996; Stein 

et al., 1997). For example, earthquakes transferred along the North Anatolian Fault system 

(NAF) from east to west due to the stress release (Hussain et al., 2016; Barka, 1992, 1996). 

Therefore, understanding the accumulation and partitioning of strain is one key to 

understanding seismic hazards. 

Different methods have been used to study the kinematics of plate boundary fault 

systems to understand strain partitioning. These methods include trenching (Lefevre et al., 

2018; Wechsler et al., 2018; McGill et al., 2002), Global Positioning System (GPS) 

measurements, and Interferometric Synthetic Aperture Radar (InSAR) (Lindsey and 

Fialko, 2013; Lindsey et al., 2014; Tymofyeyeva & Fialko, 2018; Szeliga et al., 2012). 

Based on these methods, certain large strike-slip plate boundary fault systems have been 

thoroughly studied to investigate the possibility of future seismic events. The SAF is a 

complex plate boundary fault system with fast relative motion of ~40 mm/yr (Bennett et 
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al., 1996). Recent studies mainly focus on the southern part of the SAF. Due to the 

continued strain accumulation that occurs when there are no seismic events in hundreds of 

years, the SAF presents a large possibility to trigger major earthquakes (Lindsey & Fialko, 

2013; Tymofyeyeva & Fialko, 2018; Lindsey et al., 2014; Fialko, 2006). The NAF is 

characterized by westward decreasing slip rates (Hussain et al., 2016; Barka, 1996, 1992). 

Since the geometry is simple without many adjacent fault segments, all strain should be 

constrained on the main fault trace. This results in the stress accumulation that builds in 

the near part of the failure segments, which is considered to be the location of future 

earthquakes (Barka, 1996; Stein et al., 1997). The Dead Sea Fault (DSF) has a relatively 

slow motion of ~4 mm/yr (Wdowinski et al., 2004). However, the long quiescence from 

large ruptures indicates that the fault system has already accumulated a large amount of 

strain and is prepared to rupture, especially in the southern part of the DSF and the 

Yammouneh Fault (bounded a restraining bend) (Wechsler et al., 2018; Hamiel et al., 2018; 

Lefevre et al., 2018; Gomez et al., 2007). The total motion accommodated on the Alpine 

Fault (AF) is about 27±5 mm/yr, and the maximum velocity is in the central South Island. 

The highest strain of this fault system is currently partitioned on the Hope Fault to the north 

(Langridge et al., 2010; Norris & Cooper, 2001; Sutherland et al., 2007). All these strain 

studies are helpful to understand the evolution of the fault system and future earthquakes. 

1.3. RESEARCH OBJECTIVES AND QUESTIONS 

Like other large plate boundary strike-slip fault systems, destructive earthquakes 

have been historically widely distributed in our study area. Following previous studies of 

other major strike-slip fault systems, the method to understand the kinematic should be 
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used to study within the PMFS. 

1.3.1. Objectives. This study simulates the kinematics of the PMFS by using 2D 

Finite Element Analysis. The main objective of this study is to: 

• Refine the strain partitioning across the PMFS. 

• Improve the understanding of the kinematic of the fault system. 

1.3.2. Previous Studies of Kinematic and Modeling of the PMFS. From the GPS 

measurements, some current kinematic information has been revealed. The far-field 

velocity of the PMFS has been decreasing from 20 mm/yr in eastern Guatemala to several 

mm per year at offshore southwestern Mexico (Lyon-Caen et al., 2006; Franco et al., 2012). 

The velocity continues to decrease to ~0 mm/yr at TF. Previous studies indicate that within 

the PMFS, the PF only accommodates 25% (~5 mm/yr) of the total 20 mm/yr plate 

boundary motion and about 75% (Lyon-Caen et al., 2006; Authemayou et al., 2012) or 

65% (Ellis et al., 2019) remains on the MF. Along the Mid-American Trench, the 

subduction of the CO is at a velocity of 70-80 mm/yr (DeMets, 2001; Ellis et al., 2019). 

The JF lies on the VA, accommodating the motion from the retreating CA, with a velocity 

of 10 mm/yr (Lyon-Caen et al., 2006). However, the GPS measurements have their 

shortcomings. Many GPS sites do not include continuous GPS measurements. GPS 

campaigns record data in a short period of time, and are usually affected by many 

situations, and they cannot tell if this period is a seismic period or interseismic period, 

which may cause errors. 

There are already several studies using the finite element method to simulate the 

geometry of this area in order to perform kinematic investigations. Alvarez-Gomez et al. 

(2008) and Rodriguez et al. (2009) indicate that the Volcanic Arc (VA) is a weak zone that 
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is about one magnitude of Young’s Modulus lower than surrounding areas. In addition, the 

subduction of the CO is characterized as low coupling, which means that less strain is 

transferred from the CO to the overriding plates. These model results are consistent with 

information provided by Lyon-Caen et al. (2006) and Franco et al. (2012). The PMFS in 

those models are modeled as a singular structure. 

1.3.3. Questions. Despite doing all these kinematic studies, including model 

simulation, some questions still remain. For example, the smooth curve of velocity profiles 

across the PMFS created with GPS data (Lyon-Caen et al., 2006; Franco et al., 2012) does 

not provide sufficient details of the degree of strain partitioning over the plate boundary 

fault system. Furthermore, not enough faults have been included in previous studies. In 

addition, the GPS campaign may not be reliable, and the PMFS in these studies is treated 

as a homogenous fault zone. However, the strain should be partitioned unevenly on each 

fault, which results in various earthquakes. The strain distribution is also connected with 

structure geometry (Rodriguez et al., 2009; Alvarez-Gomez et al., 2008), while some 

unknowns remain about structure geometry due to difficulties like vegetative covered 

surfaces and less geodetic data.  

Research questions to be addressed: 

• What is the influence of the geometry on the degree of strain partitioning? 

• Which fault is connected to the Swan Fault? 

• Is the Jocotan fault an active fault of the plate boundary? 

• What is the influence of the friction coefficient on the faults? 

• How much strain is laterally transferred across the subduction zone? 

• What is the relative role of each of the faults as part of the plate boundary? 
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2. METHOD 

This study simulates the Polochic-Motagua Fault System in Guatemala by using 

the 2D Finite Element Method to derive the degree of strain partitioning of each fault. In 

order to get the best model results, the geometry must be initially tested. The 2D linear 

elastic model is utilized to fill the knowledge gaps in strain partitioning, and fault system 

geometry which includes fault connections, presence of weak zones, and low coupling. 

This model is built via the Altair Hypermesh with the slip rate results being calculated by 

the software package AbaqusTM. 

The finite element method is useful in improving data from previous studies, 

particularly if the comprehensive geodetic data are not available (Nabavi et al., 2018). 

In this study, we use 2D finite element modeling to analyze the different roles of 

faults by testing the structure geometry and simulating the PMFS and the surrounding 

areas. We test several scenarios and calibrate the results with GPS data (Lyon-Caen et al., 

2006; Franco et al., 2012). The model results accurately reflect the GPS data such that the 

steps of velocity change across each fault in the fault system shows the degree of strain 

partitioning on each fault. 

2.1. MODEL SETUP (GEOMETRY AND BOUNDARY CONDITIONS) 

 This model is a 2D plane stress linear elastic model georeferenced in WGS 1984 

UTM Zone 16N projected Coordinate System. The rectangular model, with a size ~600 km 

× 700 km, covers major faults network area. Triangular elements are mainly used to fit the 

corners. This 2D plane stress kinematic finite element analysis model comprises two plates, 
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the North American Plate and the Caribbean Plate. The Polochic-Motagua Fault System, 

which separates the two plates, includes three major strike-slip faults (the PF, MF, and 

JOF). The Swan Fault and Tonala Fault are located on the east and west side of the fault 

system. The right lateral Jalpatagua Fault is included within the Caribbean Plate and is 

relatively parallel to the model boundary. All geometries in this model follow previously 

published geological maps and consider historical seismicity distributions (Franco et al., 

2012; Lyon-Caen et al., 2006; Authemayou et al., 2012; Bartole et al., 2019; Ellis et al., 

2018). All faults are introduced as constantly moving frictional interfaces with a coefficient 

of friction of 0.6. 

Boundary conditions: as shown in Figure 2.1, black solid triangles represent fixed 

edges, black arrows represent moving edges, and rollers represent nodes that are fixed in 

the direction perpendicular to the edge and are free in the direction parallel to the edge. The 

velocity used for the CA is 20 mm/yr, and the orientation is 069˚. The CO has a velocity 

perpendicular to the trench of 75 mm/yr (Ellis et al., 2019).  

In this model, the far-field strain is modeled by fixing the North American Plate 

and dragging the Caribbean Plate to the east-northeast, in order to compare the slip 

differences between two plates and derive slip rates of each fault within the PMFS. The 

south-west edge of this model represents the subduction zone between the CO and the two 

overriding plates. Therefore, even excluding the CO, this model still applies the strain that 

transferred from the CO to the overriding plates. This model also includes 33 GPS sites 

and 3 velocity profiles, shown in Figure 2.2, to help compare the model results with GPS 

data. 



10 

 

 

Figure 2.1 The sketch of model geometries and boundary conditions. Black triangles 
represent the fixing edge. Red abbreviations are for faults, TF: Tonala Fault, PF: Polochic 
Fault, MF: Motagua Fault, SF: Swan Fault, JOF: Jocotan Fault, JF: Jalpatagua Fault. The 
r is the location of the weak zone along the volcanic arc, VA: Volcanic Arc, WZ: Weak 
Zone. Red lines are highlights of faults. Dashed lines represent the tested connection of 

geometries. 

 

 

Figure 2.2 Model with GPS sites and velocity profiles. Locations of 33 GPS data sites 
(grey triangles) and 3 velocity profiles (white lines) in the model following Lyon-Caen et 

al. (2006) and Franco et al. (2012). 
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2.2. PROPERTIES 

The elastic parameters include the Young’s Modulus, the Poisson’s Ratio, the 

friction coefficient, and the coupling (Correa-Mora et al., 2009) of the subduction zone. 

(Table 2.1) The values for Young’s Modulus and Poisson’s ratio follow Alvarez-Gomez et 

al. (2008) and Rodriguez et al. (2009) and represent the rheology of general rocks. The 

friction coefficient of faults is 0.6 (Byerlee, 1978). The coupling of the subduction zone 

uses 0.6-0.25 (Franco et al., 2012) for the base model to represent moderate to low strain 

transferred from the CO to the overriding plates. 

Without detailed geometry measurements and testing in this area, some information 

is needed to improve the models. The friction coefficient is tested with 0.6 (high friction) 

and 0.1 (low friction) to simulate strong vs weak faults. The coupling of subduction is 

tested from 0 to 0.6 based on Franco et al. (2012). A weak zone has been predicted parallel 

to the trench along the Jalpatagua fault due to the underground magma flow (Rosenberg & 

Handy, 2005; Alonso-Henar et al., 2015; Garibaldi et al., 2016), which is characterized by 

a Young’s Modulus one order of magnitude lower than surrounding areas (Alvarez-Gomez 

et al., 2008; Rodriguez et al., 2009). The test of geometry also includes the connection, 

activity, and position of faults (detailed explanation in the next section).  

All model results are calibrated with the GPS data from Lyon-Caen et al. (2006) 

and Franco et al (2012). 
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Table 2.1 Model scenarios investigated in the simulation. 

Parameters Model 

The connection 

between the PMFS 

and SF 

The coupling 

of subduction 

The geometry of 

JF 

The JOF 

activities 

Frictional 

Coefficient 

Basic 1 No connection 0.6-0.25 Fault segments Inactive All 0.6 

Connection between 

the PMFS and SF 

2 

3 

PF-SF 

MF-SF 

0.6-0.25 

0.6-0.25 

Fault segments  

Fault segments 

Inactive  

Inactive 

All 0.6 

All 0.6 

The coupling of 

subduction 
4 MF-SF 0.4-0.15 Fault segments Inactive All 0.6 

The geometry of the 

JF 
5 MF-SF 0.4-0.15 Through-going JF Inactive All 0.6 

JOF activities 6 MF-SF 0.4-0.15 Through-going JF Active All 0.6 

Friction Coefficient 7 MF-SF 0.4-0.15 Through-going JF Active 0.6 (JF 0.1) 
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3. RESULTS 

All modeling results will be described in the following content and test the 

following scenarios: the connection between the PMFS and the SF, the activity of the JOF, 

the length of the JF, the friction coefficient of faults, and the coupling of the subduction 

zone.  

To compare the model results with GPS data, we use two kinds of plots; the fault 

parallel motion plots which extract model results along three velocity profiles: profile E, 

C, and W, same as previous studies by Lyon-Caen et al. (2006) and Franco et al. (2012), 

and the vector plot of 33 locations at GPS sites. 

For fault parallel motion plots, the X-axis is horizontal distance and Y-axis 

represents fault parallel motion. The location of faults is demonstrated in the figure by 

colored vertical lines. The pink line is the position of the IF, the blue line represents the 

position of the PF, the yellow line represents the MF, the purple line represents the JOF, 

and the green line represents the JF. Dark blue points are GPS data from Franco et al. 

(2012). The stepped line is the model result of velocity change across the fault system, and 

the circles are model results of GPS sets. In addition, we use ELEN as the reference point 

to compare the GPS data with model results. For vector plots, the blue arrows are GPS data 

from Franco et al. (2012). 

3.1. INITIAL MODEL 

The first model is only based on the map that was decided by several published 

geological maps, seismicity distribution, and previous study results. The PMFS remains 
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unconnected with the SF, and the JOF is inactive. The JF includes three segments that are 

directly analyzed from geological maps. The friction coefficient of faults uses 0.6, and the 

coupling of the subduction zone is 0.6-0.25 from west to east based on Franco et al. (2012). 

3.1.1. Profile E.  Profile E shows the velocity change across the fault system in 

eastern Guatemala (Figure 3.1). The total motion between the NA and the CA is ~ 14.5 

mm/yr, and the stepped line shows the strain partitioned on each fault. The slip rates are 2 

mm/yr, 5 mm/yr, 5 mm/yr, and 0 mm/yr on the IF, PF (two branches), MF, and JOF 

respectively. The GPS data and model results match with each other to the north of the 

JOF, while not enough strain is released on the CA plate. 

 

 

Figure 3.1 The model results of velocity change along profile E based on the original 
model. 
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3.1.2. Profile C.  Figure 3.2 shows the degree of strain partitioning on each fault 

along Profile C in central Guatemala. Based on the step line, 2 mm/yr, 3 mm/yr, and 2 

mm/yr slip rate occurred on the IF, PF, and MF respectively. The model results accurately 

match the GPS data to the north of the MF, while the strain released on the CA is small. 

The total motion for the model is ~9 mm/yr while the GPS shows ~13 mm/yr relative 

motion. The data line bend at the western end between the MF and the JF is due to the 

influence of the weak zone. 

 

  

Figure 3.2 The model results of velocity change along profile C based on the original 
model. 

 

3.1.3. Profile W.  The step line shows the degree of strain partitioning on each fault 

along profile W in western Guatemala (Figure 3.3). The slip rate is about 3 mm/yr on the 

PF and ~ 0.2 mm/yr on the southern branch of the JF. Total motion is ~ 7 mm/yr. While 



16 

 

the GPS data and model results only partially match each other, the sites HUEH and HUE 

have 2-3 mm/yr difference, and ~1 mm/yr off at site MAZ. The bends around the JF are 

due to the influence of the weak zone. 

 

  

Figure 3.3 The model results of velocity change along profile W based on the original 
model. 

 

3.1.4. Vector Plot.  Red vectors are from model results (Figure 3.4). Overall, the 

model vector and GPS vector are roughly at the same orientation and magnitude. More in-

depth inspection reveals that the model results are double in magnitude than GPS at the 

western part (around Profile W), whereas smaller in the CA (CON, TEXW). In addition, 

the orientations of the sites are all slightly shifted to the north, especially sites QUE, MAZ, 

and CHL. 
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Figure 3.4 The vector plot based on the original model. 

 

Based on the fault parallel motion and vector plots from the original model, the 

results are not perfectly consistent with the GPS data. The origin model should be improved 

by filling knowledge gaps. 

3.2. CONNECTION TESTING 

The connection between the PMFS and the SF remains unknown based on previous 

studies. In this model, we tested the connection: connect the PF or MF with SF. Figure 3.5 

shows the different strain partitioning on faults along profile E. From the results, the grey 

line perfectly matches with GPS data to the north of the MF. Between the MF and the JOF, 

three models are all slightly higher than expected, while to the south of the JOF, model 

data are 2-5 mm/yr smaller than GPS. Figure 3.6 and 3.7 shows different strain partitioning 

on faults along profile C and W. The velocity differences between models are all within 1 
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mm/yr. To the north of the MF, GPS data and model results match each other while in the 

CA plate, model results are smaller than GPS data. From Figure 3.8, west Guatemala 

experienced an excess of strain in the model compared to the GPS data. On the CA, vectors 

from models did not obtain enough strain from CA plate retreat and accommodate too 

much strain from subduction of CO. From different connections between the PMFS and 

the SF, results show difference only around east Guatemala, the grey vector matches the 

GPS data better. 

 

 

Figure 3.5 The model results of velocity change along profile E based on different 
connections between the PMFS and the SF. The grey line, dark red line, and orange line 
represent no connection between the PMFS and the PF, connect the PMFS with the PF, 

and connect the PMFS with the MF respectively. 
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Figure 3.6 The model results of velocity change along profile C based on different 
connections between the PMFS and the SF. The grey line, dark red line, and orange line 
represent no connection between the PMFS and the PF, connect the PMFS with the PF, 

and connect the PMFS with the MF respectively. 

 

 

Figure 3.7 The model results of velocity change along profile W based on different 
connections between the PMFS and the SF. The grey line, dark red line, and orange line 
represent no connection between the PMFS and the PF, connect the PMFS with the PF, 

and connect the PMFS with the MF respectively. 
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Figure 3.8 The vector plot of model results and GPS data based on models with different 
connections between the PMFS and the SF. The blue arrows are GPS data from Franco et 

al. (2012). The grey, dark red, and orange arrows represent no connection between the 
PMFS and the PF, connect the PMFS with the PF, and connect the PMFS with the MF 

respectively. 

 

3.3. COUPLING OF CO SUBDUCTION 

The most obvious difference between the model results and the GPS data is shown 

in the vector map. Figure3.9 shows that the previous model results experienced large 

amounts of strain transferred across the subduction zone, especially in western Guatemala 

(grey arrows). The coupling that is given in Franco et al. (2012) is calculated by GPS 

velocity inversion, with an uncertainty that the locking depth is assumed to be 25 km. Based 

on the inversion result with uncertainty, we decreased the coupling value at the west side, 

where it appears highly inconsistent with GPS data. Figure 3.9 shows the vector change 
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when the coupling is decreased along the subduction zone.  Therefore, after reducing the 

coupling, the model results are more consistent with the GPS data. 

 

 

Figure 3.9 The vector plot of model results and GPS data based on models with different 
degree of coupling along the subduction zone. The blue arrows are GPS data from Franco 
et al. (2012). The grey and dark red arrows represent a model with origin coupling from 

Franco et al. (2012) and decreased coupling based on the same trend respectively. 

 

3.4. JF EXTENSION TEST 

The dextral motion of the JF is 10-14 mm/yr (Lyon-Caen et al., 2006; Franco et al., 

2012). From the model slip result, the JF is currently accommodated only 5 mm/yr. 

Therefore, we extend the JF to both sides and connect segments together (Authemayou et 

al., 2012). The position and length of the extended JF are shown in Figure 3.10, with a 

dextral slip rate of ~12 mm/yr. After extending the JF, the vector plot does not change 
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much on the NA plate, vectors on the CA rotate slightly to the south and better fit the GPS 

data. The east part of the JF experienced major change after extending the JF, the SIGN, 

and SSIA accommodate less strain from the CA. 

 

 

Figure 3.10 The vector plot of model results and GPS data based on models with different 
JF geometry. The blue arrows are GPS data from Franco et al. (2012). The grey and dark 

red arrows represent a model with extended JF and without extended JF respectively. 

 

3.5. JOF ACTIVITY TEST 

There are only one of the three velocity profiles across the JOF. From the result of 

profile E (Figure 3.11), the JOF accommodated a ~2 mm/yr slip rate. The GPS data shows 

that the site CPJ and CON have over 7 mm/yr slip which means there should be some slip 

experienced on the JOF. 
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Figure 3.11 The model results of velocity change along profile E based on models that 
with or without the JOF. The grey line and dark red line represent inactive JOF and active 

JOF respectively. 

 

3.6. FRICTION COEFFICIENT TEST 

One property that has a major effect on faults is the friction coefficient which has 

not been tested in previous studies. Faults could become weak due to the lithology of the 

contact surface and the present of fault gouge (Dengo & Logan, 1981; Lavallee et al., 2014; 

Carpenter et al., 2015), etc. Based on current results, we tested a low friction coefficient 

for each fault. 

The JF is along the volcanic arc; the volcanic arc could affect the behavior of fault. 

We apply 0.1 instead of 0.6 for the JF to test the possibility of a low friction coefficient. 

Figure 3.12 shows vector changing when varying the friction. From this figure, there is not 

a significant change, while vectors match the GPS data better. 
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Figure 3.12 The vector plot of model results and GPS data based on models with different 
friction coefficient. The blue arrows are GPS data from Franco et al. (2012). The green 

and dark red arrows represent models with the JF friction coefficient 0.1 and 0.6 
respectively. 
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4. DISCUSSION 

Various kinematic studies show that strain partitioning is the key point to 

understand fault behavior and seismic hazard. In this study, 2D finite element modeling is 

used to determine the degree of strain partitioning for the PMFS by testing the control 

properties and geometries. From the comparison of model results, the best-fit model is 

derived. This model connects the Motagua Fault with the Swan Fault, is applying 40-15% 

of lateral coupling across the Mid-American Trench from west to east, includes the 

currently active Jocotan Fault, includes the through-going Jalpatagua Fault, and is applying 

0.6 friction for fault interfaces with a low friction coefficient (0.1) for the JF. 

4.1. LIMITATIONS OF THE MODELING APPROACH 

This study using the 2D Finite Element Model to help to test some knowledge gaps 

of the fault geometries and to understand the strain partitioning across the PMFS. However, 

due to the less availability of reliable data, this modeling approach has limitations. 

One limitation is the uncertainty of the geometry of the fault system. Fault traces 

of this model are derived from previous published geological maps, while, none of them 

did detailed mapping of those faults. Therefore, although we have carefully selected the 

faults that we used in the model, the uncertainty of the fault line itself has created 

limitations. 

The lacking of experiment data of rock properties causes limitations. Some 

properties, for example, the friction coefficient and Young’s modulus, that applied on the 

faults are from previous studies (Byerlee, 1978; Alvarez-Gomez et al., 2008; Rodriguez et 



26 

 

al., 2009). Although these data have shown their value in previous papers, they are untested 

and remain uncertain. 

The 2D model also has limitation itself. For example, the 2D model cannot simulate 

the grabens in this area. The grabens, which represent the block extension, distributed at 

the wedge of the CA. The extension of those grabens will introduce more strain in those 

areas and release more movements, which could affect the strain partitioning in the fault 

system area.  

In addition, the 2D model simulate long-term slip-rate instead of interseismic slip-

rate, which recorded by GPS measurements. The meaning of using time-averaged 

geological slip-rate is to show how is the strain partitioned on each fault. Geological slip-

rate equals interseismic slip-rate plus coseismic slip-rate. 

4.2. THE ROLE OF EACH FAULT IN THE PMFS 

The velocity profiles of the best-fit model shown in Figures 4.1, 4.2 and 4.3 are 

comparing with the results of previous studies to demonstrate the degree of strain 

partitioning. Many of the results are consistent with previous studies. The degree of strain 

partitioned on northern PF on Profile E, main PF on Profile C and Profile W are all 3 

mm/yr. This result agrees with Ellis et al. (2019) that ~3.2 mm/yr for the PF, while slightly 

smaller than geological result 4.8 mm/yr (Authemayou et al., 2012). The model shows a 6 

mm/yr velocity of the MF on Profile E, which agrees with the stream offset data of 6 mm/yr 

(Schwartz et al., 1979).  

Some results of the model cannot match with previous studies. The plate motion 

between the NA and CA is decreasing from 14 mm/yr (Profile E; Figure 4.1) in eastern 
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Guatemala to 10 mm/yr (Profile C; Figure 4.2) in central Guatemala and 3.5 mm/yr (Profile 

W; Figure 4.3) in western Guatemala. While, in previous GPS studies, the slip rate of the 

PMFS decreasing from 16-20 mm/yr in eastern Guatemala (Lyon-Caen et al., 2006; Franco 

et al., 2012; Ellis et al., 2019), to 12-16 mm/yr (Lyon-Caen et al., 2006; Franco et al., 2012; 

Ellis et al., 2019) in central Guatemala and 3-5 mm/yr (Franco et al., 2012; Ellis et al., 

2019) in western Guatemala. Those differences between the GPS data and our model 

results may due to the 2D model limitation that cannot capture the grabens. There are three 

grabens in our model area (the Guatemala City graben; the Ipala graben; the Honduras 

depression), which could be weakening the graben areas and release more slip rate on the 

CA. This could be modeled in the 3D model in future studies. 

Compare with Previous studies, we included more faults. Therefore, some new 

information may help to understand the strain partitioning. The degree of strain partitioned 

on the MF calculated by Franco et al. (2012) and Ellis et al. (2019) are 13 and 18 mm/yr 

respectively, which is doubled the stream offset data (6 mm/yr) and our model result. The 

main difference is we introduced more faults in this new FE model, while their 13-18 mm 

/ yr velocity on the MF obtained from inversion based on only one or two faults. For the 

PF, we also have southern PF in our model, which accommodates about same strain as the 

northern PF (~3 mm/yr). In addition, the active of JOF (Schwartz et al., 1979) and including 

the IF (Guzman-Speziale, 2010) accommodate ~3 mm/yr. Therefore, the results of the new 

FEA model with increased faults are release 6 mm/yr velocity on MF. This phenomenon 

concludes that since each active fault is assigned a certain strain, an accurate selection of 

the faults introduced in the model is crucial. 
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Figure 4.1 The model results of velocity change along profile E based on the best-fit 
model. The dark red line represents profile E of model results. The grey line represents 

profile E that estimates from several GPS data in Franco et al. (2012). 

 

 

Figure 4.2 The model results of velocity change along profile C based on the best-fit 
model. The dark red line represents the profile C of model results. The grey line 

represents the profile C that estimates from several GPS data in Franco et al. (2012).  
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Figure 4.3 The model results of velocity change along profile W based on the best-fit 
model. The dark red line represents the profile W of model results. 

 

4.3. THE IMPROVEMENTS FROM PROPERTY TESTS  

The vector plot shows the differences between the GPS data and the model results 

in orientation and magnitude. We are using a χ2  approach from He et al. (2013) to show 

how differences changed with the testing of properties. The χ2 that calculate from the base 

model is 7.9 while from the best-fit model is 3.1. This phenomenon indicates that our 

research has greatly improved the kinematics of PMFS. While, the obvious differences 

occur along the JF (Figure 4.4). Even though we have lowered the coupling, based on the 

current results, there is still a need to be more influenced by the Caribbean plate. This 

problem could be affected by the uncertainty of the JF, such as the geometry, rheology, or 

other properties that are not been observed or tested in the 2D model. The area along the 

JF has consistently caused problems when matching with GPS data (Rodriguez et al., 2009 

and Ellis et al., 2019).  
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Figure 4.4 The vector plot based on the best-fit model. 

 

4.4. STRAIN FIELD 

In Figure 4.5, 4.6, 4.7, and 4.8, axis are principal strain orientations. Orange axis 

represent contraction and green axis represent dilation. When the strain field shows 

dilation, it may indicate that the stress decreases in the horizontal direction, and the 

direction of σ1 will be vertical. In this situation, normal faults may occur. In contrast, when 

the strain field shows contraction, it may indicate that the direction of σ1 will be horizontal. 

Therefore, reverse faults may occur. This is a quantitatively conclude about the state of 

stress without modelling it. With the 2D kinematic model and observed deformation, we 

can only quantify strain. 3D model and more other information needed for stress studies.  

The orientations and relative magnitudes of the principal strain field in those areas 

are compared with the distribution and appearance of faults observed in geological maps. 
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In many areas, the results of our model are consistent with the results of geological 

observations. To the north of the Polochic Fault (Figure 4.5), several reverse faults show 

near the Cuchumatanes highs with NW-SE orientation (Authemayou et al., 2012). In the 

same area, the strain field of the model result shows contraction at the direction of NE-SW. 

Some normal faults appear around the north segment of the Jocotan Fault (Figure 4.6), 

strike direction is nearly N-S. The model result formed a dilation strain field in nearly W-

E. In addition, between the Motagua fault and the Jalpatagua fault (Figure 4.7), in the 

wedge area, many N-S oriented normal faults appears. The strain field of the model results 

accurately matches with the indication by showing dilation. 

 

 

Figure 4.5 Strain fields of model results compare with the fault type to the north of the PF 
(Authemayou et al., 2012). 
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Figure 4.6 Strain fields of model results compare with the fault type in the northern part 
of the JOF (Authemayou et al., 2012).  

 

 

Figure 4.7 Strain fields of model results compare with the fault type in the Guatemala 
City Graben and Ipala Graben (Authemayou et al., 2012). 
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There are still some cases that differ from actual measurements. For example, 

between the Polochic and Motagua faults (Figure 4.8), some normal faults with NE-SW 

direction are mapped in published maps. While in the model, the principal strain field 

shows contraction. The vector plot also shows an incongruity with the GPS data around 

this area. This discrepancy may also be caused by the knowledge gap of geometry. 

 

 

Figure 4.8 Strain fields of model results compare with the fault type between the PF and 
the MF (Authemayou et al., 2012).
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5. CONCLUSION 

This study simulates the sinistral transform PMFS, testing geometries and 

properties, and calibrating with GPS data. From the comparison of model results, the best-

fit model which reproduces the GPS data are derived. Model results of the best-fit model 

investigate the fault system in detail in several ways, including velocity profiles, vector 

plots, and strain fields.   

The key finding in this study is that the fault system is not a simple structure with 

one or two faults as indicated by the GPS studies. This study shows (Figure 5.1), with 

including all the major faults, the PMFS is a plate boundary that partitions strain. From our 

model results, 13% of the total relative motion accommodate on the IF, 18% accommodate 

on both northern PF and southern PF, 40% on the MF, and 11% on the JOF. Therefore, the 

plate boundary combined accumulation on those faults, not a simple structure. 

Another key finding is from the Chi-square. For the best-fit model, the overall 

χ2=3.1, while when we specifically divided data into each block, results are significantly 

different. The χ2=1.5 on the CA, 3.6 on the NA, and 9.6 on the forearc sliver. We have a 

bad fit on forearc sliver while we have a perfect fit on the CA and nearly fit at the NA. The 

plate boundary fault system is a complex tectonic system, the strike slip tectonics are 

decoupled from the motion of forearc sliver. This model can predict on in the NA and CA, 

while cannot predict what is going on in the forearc sliver. More research is necessary for 

the forearc sliver. 



35 

 

 

Figure 5.1 The detailed slip rate from the best-fit model.



 

 

BIBLIOGRAPHY 

Alonso‐Henar, J., Schreurs, G., Martinez‐Díaz, J. J., Álvarez‐Gómez, J. A., & 
 Villamor, P. (2015). Neotectonic development of the El Salvador Fault Zone and 
 implications for deformation in the Central America Volcanic Arc: Insights from 
 4‐D analog modeling experiments. Tectonics, 34(1), 133-151. 
 
Álvarez‐Gómez, J. A., Meijer, P. T., Martínez‐Díaz, J. J., & Capote, R. (2008). 
 Constraints from finite element modeling on the active tectonics of northern Central 
 America and the Middle America Trench. Tectonics, 27(1). 
 
Ambraseys, N. N. (1970). Some characteristic features of the Anatolian fault zone. 
 Tectonophysics, 9(2-3), 143-165. 
 
Authemayou, C., Brocard, G., Teyssier, C., Suski, B., Cosenza, B., Morán‐Ical, S., ... & 
 Holliger, K. (2012). Quaternary seismo‐tectonic activity of the Polochic Fault, 
 Guatemala. Journal of Geophysical Research: Solid Earth, 117(B7). 
 
Baer, G., Sandwell, D., Williams, S., Bock, Y., & Shamir, G. (1999). Coseismic 
 deformation associated with the November 1995, Mw= 7.1 Nuweiba earthquake, 
 Gulf of Elat (Aqaba), detected by synthetic aperture radar interferometry. Journal 
 of Geophysical Research: Solid Earth, 104(B11), 25221-25232. 
 
Barka, A. A. (1992). The north Anatolian fault zone. In Annales tectonicae (Vol. 6, No. 
 Suppl, pp. 164-195). 
 
Barka, A. (1996). Slip distribution along the North Anatolian fault associated with the large 
 earthquakes of the period 1939 to 1967. Bulletin of the Seismological Society of 
 America, 86(5), 1238-1254. 
 
Bartole, R., Lodolo, E., Obrist-Farner, J., & Morelli, D. (2019). Sedimentary architecture, 
 structural setting, and Late Cenozoic depocentre migration of an asymmetric 
 transtensional basin: Lake Izabal, eastern Guatemala. Tectonophysics, 750, 419-
 433.  
 
Bennett, R. A., Rodi, W., & Reilinger, R. E. (1996). Global Positioning System constraints 
 on fault slip rates in southern California and northern Baja, Mexico. Journal of 
 Geophysical Research: Solid Earth, 101(B10), 21943-21960.  
 
Burkart, B. (1978). Offset across the Polochic fault of Guatemala and Chiapas, Mexico. 
 Geology, 6(6), 328-332. 
 



37 

 

Byerlee, J. (1978). The friction of rocks. In Rock friction and earthquake prediction (pp. 
 615-626). Birkhäuser, Basel. 
 
Carpenter, B. M., Saffer, D. M., & Marone, C. (2015). Frictional properties of the active 
 San Andreas Fault at SAFOD: Implications for fault strength and slip behavior. 
 Journal of Geophysical Research: Solid Earth, 120(7), 5273-5289. 
 
Correa-Mora, F., DeMets, C., Alvarado, D., Turner, H. L., Mattioli, G., Hernandez, D., ... 
 & Tenorio, C. (2009). GPS-derived coupling estimates for the Central America 
 subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua. 
 Geophysical Journal International, 179(3), 1279-1291. 
 
DeMets, C. (2001). A new estimate for present‐day Cocos‐Caribbean plate motion: 
 Implications for slip along the Central American volcanic arc. Geophysical 
 research letters, 28(21), 4043-4046. 
 
De Pascale, G. P., & Langridge, R. M. (2012). New on-fault evidence for a great earthquake 
 in AD 1717, central Alpine fault, New Zealand. Geology, 40(9), 791-794. 
 
Ellis, A., DeMets, C., Briole, P., Cosenza, B., Flores, O., Graham, S. E., ... & Lord, N. 
 (2018). GPS constraints on deformation in northern Central America from 1999 to 
 2017, Part 1–Time-dependent modelling of large regional earthquakes and their 
 post-seismic effects. Geophysical Journal International, 214(3), 2177-2194. 
 
Ellis, A., DeMets, C., McCaffrey, R., Briole, P., Cosenza Muralles, B., Flores, O., ... & 
 Lord, N. (2019). GPS constraints on deformation in northern Central America from 
 1999 to 2017, Part 2: Block rotations and fault slip rates, fault locking and 
 distributed deformation. Geophysical Journal International, 218(2), 729-754. 
 
Ferrari, L., Pasquare, G., & Zilioli, E. (1994, December). Kinematics and 
 seismotectonics of a segment of the North America-Caribbean plate boundary: a 
 remote sensing and field study of the Jocotan fault system in Guatemala. In Geology 
 from Space (Vol. 2320, pp. 55-64). International Society for Optics and Photonics. 
 
Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the 
 southern San Andreas fault system. Nature, 441(7096), 968. 
 
Fialko, Y., Simons, M., & Agnew, D. (2001). The complete (3‐D) surface displacement 
 field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, 
 from space geodetic observations. Geophysical research letters, 28(16), 3063-
 3066. 
 
Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., & Minster, B. (2002). 
 Deformation on nearby faults induced by the 1999 Hector Mine earthquake. 
 Science, 297(5588), 1858-1862. DOI: 10.1126/science.1074671 
 



38 

 

Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, 
 M., ... & Barrier, E. (2012). Fault kinematics in northern Central America and 
 coupling along the subduction interface of the Cocos Plate, from GPS data in 
 Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 
 189(3), 1223-1236. 
 
Garibaldi, N., Tikoff, B., & Hernández, W. (2016). Neotectonic deformation within an 
 extensional stepover in El Salvador magmatic arc, Central America: Implication 
 for the interaction of arc magmatism and deformation. Tectonophysics, 693, 327-
 339. 
 
Gomez, F., Karam, G., Khawlie, M., McClusky, S., Vernant, P., Reilinger, R., ... & 
 Barazangi, M. (2007). Global Positioning System measurements of strain 
 accumulation and slip transfer through the restraining bend along the Dead Sea fault 
 system in Lebanon. Geophysical Journal International, 168(3), 1021-1028. 
 
Guzmán-Speziale, M. (2010). Beyond the Motagua and Polochic faults: Active strike-slip 
 faulting along the western North America–Caribbean plate boundary zone. 
 Tectonophysics, 496(1-4), 17-27. 
 
Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of 
 crustal deformation across the southern Arava Valley section of the Dead Sea Fault 
 and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-
 178. 
 
Hauksson, E., Jones, L. M., Hutton, K., & Eberhart‐Phillips, D. (1993). The 1992 Landers 
 earthquake sequence: Seismological observations. Journal of Geophysical 
 Research: Solid Earth, 98(B11), 19835-19858. 
 
He, J., Lu, S., & Wang, W. (2013). Three-dimensional mechanical modeling of the GPS 
 velocity field around the northeastern Tibetan plateau and surrounding regions. 
 Tectonophysics, 584, 257-266. 
 
Hussain, E., Hooper, A., Wright, T. J., Walters, R. J., & Bekaert, D. P. (2016). Interseismic 
 strain accumulation across the central North Anatolian Fault from iteratively 
 unwrapped InSAR measurements. Journal of Geophysical Research: Solid Earth, 
 121(12), 9000-9019. 
 
Langridge, R. M., Villamor, P., Basili, R., Almond, P., Martinez-Diaz, J. J., & Canora, C. 
  (2010). Revised slip rates for the Alpine fault at Inchbonnie: Implications for plate 
 boundary kinematics of South Island, New Zealand. Lithosphere, 2(3), 139-152. 
 
Lavallée, Y., Hirose, T., Kendrick, J. E., De Angelis, S., Petrakova, L., Hornby, A. J., & 
 Dingwell, D. B. (2014). A frictional law for volcanic ash gouge. Earth and 
 Planetary Science Letters, 400, 177-183. 
 



39 

 

Lefevre, M., Klinger, Y., Al-Qaryouti, M., Le Béon, M., & Moumani, K. (2018). Slip 
 deficit and temporal clustering along the Dead Sea fault from paleoseismological 
 investigations. Scientific reports, 8(1), 4511. 
 
Lindsey, E. O., & Fialko, Y. (2013). Geodetic slip rates in the southern San Andreas Fault 
 system: Effects of elastic heterogeneity and fault geometry. Journal of Geophysical 
 Research: Solid Earth, 118(2), 689-697. 
 
Lindsey, E. O., Sahakian, V. J., Fialko, Y., Bock, Y., Barbot, S., & Rockwell, T. K.   
  (2014). Interseismic strain localization in the San Jacinto fault zone. Pure and 
 Applied Geophysics, 171(11), 2937-2954. 
 
Lodolo, E., Menichetti, M., Guzmán-Speziale, M., Giunta, G., & Zanolla, C. (2009). 
 Deep structural setting of the North American-Caribbean plate boundary in eastern 
 Guatemala. Geofísica internacional, 48(3), 263-277. 
 
Lyon‐Caen, H., Barrier, E., Lasserre, C., Franco, A., Arzu, I., Chiquin, L., ... & Luna, J. 
  (2006). Kinematics of the North American–Caribbean‐Cocos plates in Central 
 America from new GPS measurements across the Polochic‐Motagua fault system. 
 Geophysical Research Letters, 33(19).  
 
McGill, S., Dergham, S., Barton, K., Berney-Ficklin, T., Grant, D., Hartling, C., ... & 
 Russell, J. (2002). Paleoseismology of the San Andreas fault at Plunge Creek, near 
 San Bernardino, southern California. Bulletin of the Seismological Society of 
 America, 92(7), 2803-2840. 
 
Nabavi, S. T., Alavi, S. A., & Maerten, F. (2018). 2D finite-element elastic models of 
 transtensional pull-apart basins. Comptes Rendus Geoscience, 350(5), 222-230. 
 
Norris, R. J., & Cooper, A. F. (2001). Late Quaternary slip rates and slip partitioning on 
 the Alpine Fault, New Zealand. Journal of Structural Geology, 23(2-3), 507-520. 
 
Olcese, O., Moreno, R., & Ibarra, F. (1977). The Guatemala earthquake disaster of 1976: 
 A review of its effects and of the contribution of the United Nations family. UN 
 Development Program. July 1977. sl GT. 
 
Plafker, G. (1976). Tectonic aspects of the Guatemala earthquake of 4 February 1976. 
 Science, 193(4259), 1201-1208. 
 
Ratschbacher, L., Franz, L., Min, M., Bachmann, R., Martens, U., Stanek, K., ... & López-
 Martínez, M. (2009). The North American-Caribbean plate boundary in Mexico-
 Guatemala-Honduras. Geological Society, London, Special Publications, 328(1), 
 219-293. 
 



40 

 

Rodriguez, M., DeMets, C., Rogers, R., Tenorio, C., & Hernandez, D. (2009). A GPS and 
 modelling study of deformation in northern Central America. Geophysical Journal 
 International, 178(3), 1733-1754. 
 
Rosenberg, C. L., & Handy, M. R. (2005). Experimental deformation of partially melted 
 granite revisited: implications for the continental crust. Journal of metamorphic 
 Geology, 23(1), 19-28. 
 
Schwartz, D. P., Cluff, L. S., & Donnelly, T. W. (1979). Quaternary faulting along the 
 Caribbean-North American plate boundary in Central America. Tectonophysics, 
 52(1-4), 431-445. 
 
Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North 
 Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal 
 International, 128(3), 594-604. 
 
Sutherland, R., Eberhart-Phillips, D., Harris, R. A., Stern, T., Beavan, J., Ellis, S., ... & 
 Townend, J. (2007). Do great earthquakes occur on the Alpine fault in central South 
 Island, New Zealand?. GEOPHYSICAL MONOGRAPH-AMERICAN 
 GEOPHYSICAL UNION, 175, 237. 
 
Szeliga, W., Bilham, R., Kakar, D. M., & Lodi, S. H. (2012). Interseismic strain 
 accumulation along the western boundary of the Indian subcontinent. Journal of 
 Geophysical Research: Solid Earth, 117(B8). 
 
Tymofyeyeva, E., & Fialko, Y. (2018). Geodetic evidence for a blind fault segment at the 
 southern end of the San Jacinto Fault Zone. Journal of Geophysical Research: Solid 
 Earth, 123(1), 878-891. 
 
Wdowinski, S., Bock, Y., Baer, G., Prawirodirdjo, L., Bechor, N., Naaman, S., ... & 
 Melzer, Y. (2004). GPS measurements of current crustal movements along the 
 Dead Sea Fault. Journal of Geophysical Research: Solid Earth, 109(B5). 
 
Wechsler, N., Rockwell, T. K., & Klinger, Y. (2018). Variable slip-rate and slip-per-event 
 on a plate boundary fault: The Dead Sea fault in northern Israel. Tectonophysics, 
 722, 210-226. 
 
White, R. A. (1984). Catalog of historic seismicity in the vicinity of the Chixoy-Polochic 
 and Motagua faults, Guatemala (No. 84-88). US Geological Survey,. 



41 

 

VITA 

Qiaoqi Sun was born and grew up in Tianjin, China. She earned her bachelor’s 

degree in Resources Exploration Engineering from Yangtze University (China) in May 

2017. After graduation, she attended the Missouri University of Science and Technology, 

in Rolla, Missouri for the master’s degree. She started her master's program in Geology 

and Geophysics in August 2017, working with Dr. Andreas Eckert and Dr. Obrist-Farner. 

She received her Master of Science in Geology and Geophysics from Missouri University 

of Science and Technology in May 2020. 

 

 

 

 

 

 


	Strain partitioning across the Polochic-Motagua Fault System in Guatemala: Insight from kinematic modeling
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	1. INTRODUCTION
	1.1. LITERATURE REVIEW
	1.1.1. Geological Setting.
	1.1.2. Seismicity.

	1.2. OTHER STRIKE-SLIP FAULTS
	1.3. RESEARCH OBJECTIVES AND QUESTIONS
	1.3.1. Objectives.
	1.3.2. Previous Studies of Kinematic and Modeling of the PMFS.
	1.3.3. Questions.


	2. METHOD
	2.1. MODEL SETUP (GEOMETRY AND BOUNDARY CONDITIONS)
	2.2. PROPERTIES

	3. RESULTS
	3.1. INITIAL MODEL
	3.1.1. Profile E.
	3.1.2. Profile C.
	3.1.3. Profile W.
	3.1.4. Vector Plot.

	3.2. CONNECTION TESTING
	3.3. COUPLING OF CO SUBDUCTION
	3.4. JF EXTENSION TEST
	3.5. JOF ACTIVITY TEST
	3.6. FRICTION COEFFICIENT TEST

	4. DISCUSSION
	4.1. LIMITATIONS OF THE MODELING APPROACH
	4.2. THE ROLE OF EACH FAULT IN THE PMFS
	4.3. THE IMPROVEMENTS FROM PROPERTY TESTS
	4.4. STRAIN FIELD

	5. CONCLUSION
	BIBLIOGRAPHY
	VITA

