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ABSTRACT

The use of Artificial Intelligence (AI) decision support systems is increasing in 

high-stakes contexts, such as healthcare, defense, and finance. Uncertainty information 

may help users better leverage AI predictions, especially when combined with domain 

knowledge. I conducted two human-subject experiments to examine the effects of 

uncertainty information with AI recommendations. The experimental stimuli are from an 

existing image recognition deep learning model, one popular approach to AI. In Paper I, I 

evaluated the effect of the number of AI recommendations and provision of uncertainty 

information. For a series of images, participants identified the subject and rated their 

confidence level. Results suggest that AI recommendations, especially multiple, 

increased accuracy and confidence. However, uncertainty information, which was 

represented visually with bars, did not significantly improve participants' performance. In 

Paper II, I tested the effect of AI recommendations in a within-subject comparison and 

the effect of more salient uncertainty information in a between-subject comparison in the 

context of varying domain knowledge. The uncertainty information combined both 

numerical (percent) and visual (color-coded bar) formats to make the information easier 

to interpret and more noticeable. Consistent with Paper I, results suggest that AI 

recommendations improved participants’ accuracy and confidence. In addition, the more 

salient uncertainty information significantly increased accuracy, but not confidence. 

Based on a subjective measure of domain knowledge, participants had higher domain 

knowledge for animals. In general, AI recommendations and uncertainty information had 

less of an effect as domain knowledge increased. Results suggest that uncertainty 

information, can improve accuracy and potentially decrease over-confidence.



v

ACKNOWLEDGEMENTS

My sincere thanks to Dr. Casey Inez Canfield, without whom this research will 

not be possible. Dr. Canfield's mentorship and leadership qualities enabled me to 

complete this project with much confidence. I gained much knowledge working under 

her, and I am more than excited to learn more in the future as a Ph.D. student. I would 

also like to thank Dr. Daniel B. Shank and Dr. Cihan B. Dagli for their invaluable 

contributions to this project. My sincere thanks to fellow Canfield Lab peers Hannah 

Elder-Felske, Ankit Agarwal, Matthew Kinnison, Casey Hines, and Luke Andrews for 

helping me with this project. Last but most importantly, I would like to thank my friends 

and family for all the love and support!

We would like to thank the anonymous reviewer through the American Society of 

Engineering Management (ASEM) body for helpful comments on Communicating 

Uncertain Information from Deep Learning Models in Human Machine Teams paper that 

were partially addressed in section 2 analysis.

We would also like to thank the National Science Foundation (NSF) for partially

funding this project.



vi

TABLE OF CONTENTS

PUBLICATION THESIS OPTION...................................................................................iii

ABSTRACT....................................................................................................................... iv

ACKNOWLEDGEMENTS................................................................................................ v

LIST OF ILLUSTRATIONS............................................................................................. ix

LIST OF TABLES.............................................................................................................. x

SECTION

1. INTRODUCTION..................................................................................................1

PAPER

I. COMMUNICATING UNCERTAIN INFORMATION FROM DEEP
LEARNING MODELS IN HUMAN MACHINE TEAMS................................... 3

1. INTRODUCTION................................................................................................... 3

1.1. COMMUNICATING AI RECOMMENDATIONS......................................... 4

1.2. COMMUNICATING UNCERTAINTY INFORMATION..............................5

2. METHOD................................................................................................................ 6

2.1. DESIGN............................................................................................................ 6

2.2. STIMULI...........................................................................................................7

2.3. MEASURES......................................................................................................8

3. RESULTS AND DISCUSSION............................................................................. 9

4. CONCLUSION.......................................................................................................14

Page

5. IMPLICATIONS 16



REFERENCES...........................................................................................................17

II. ROLE OF UNCERTAINTY INFORMATION AND DOMAIN KNOWLEDGE 
IN USE OF AI RECOMMENDATIONS.................................................................19

1. INTRODUCTION..................................................................................................19

1.1. PROVIDING UNCERTAINTY INFORMATION WITH AI
PREDICTIONS..................................................................................................... 21

1.2. EFFECT OF DOMAIN KNOWLEDGE.........................................................22

2. AIM OF STUDY................................................................................................... 24

3. METHODS............................................................................................................ 25

3.1. PARTICIPANTS...........................................................................................25

vii

3.2. DESIGN.......................................................................................................... 26

3.3. PROCEDURE................................................................................................. 28

3.4. ANALYSIS..................................................................................................... 29

4. RESULTS AND DISCUSSION.........................................................................30

4.1. EFFECT OF AI RECOMMENDATIONS......................................................33

4.2. EFFECT OF UNCERTAINTY INFORMATION.......................................... 35

4.3. EFFECT OF DOMAIN KNOWLEDGE..................................................... 38

5. CONCLUSION...................................................................................................  45

REFERENCES 49



viii

SECTION

2. CONCLUSION.....................................................................................................54

APPENDIX....................................................................................................................... 58

BIBLIOGRAPHY............................................................................................................. 63

VITA................................................................................................................................. 68



LIST OF ILLUSTRATIONS

Figure 1. Example of a deep learning model with artificial neural networks for
image recognition................................................................................................. 4

Figure 2. Example stimulus for each of the six conditions...................................................7

Figure 3. Mean performance of the participants in each experimental condition
across all accuracy definitions............................................................................ 14

PAPER II

Figure 1. Example stimulus for each experimental condition........................................... 27

Figure 2. Accuracy and confidence is significantly improved by AI
recommendations.............................................................................................. 35

Figure 3. Accuracy is significantly improved by uncertainty information, but
confidence is not ...............................................................................................  37

Figure 4. Effect of animal (b, d) and plant (a, c) domain knowledge on accuracy
(a, b) and confidence (c, d)................................................................................. 41

Figure 5. Effect of animal (b, d) and plant (a, c) domain knowledge on accuracy
(a, b) and confidence (c, d)................................................................................. 44

ix

PAPER I Page



x

LIST OF TABLES

Table 1. Mean and standard deviation for each experimental condition..........................10

Table 2. Separate ANOVA for each accuracy definition.................................................12

Table 3. Two-way ANOVA for each accuracy definition............................................... 13

PAPER II

Table 1. Summary of measures by conditions................................................................. 33

Table 2. Pearson correlation matrix. Bolded coefficients are significant at a=.05.......... 34

Table 3. Linear mixed effects regression models suggest AI recommendations
improve accuracy and confidence........................................................................ 36

Table 4. Linear regression models suggest that uncertainty information improves
accuracy, but not confidence................................................................................38

Table 5. Summary of measures by plants and animals......................................................39

Table 6. Linear mixed effects regression model suggests the interaction of animal
domain knowledge and AI recommendations decreases confidence..................42

Table 7. Linear regression model suggests the interaction of animal domain
knowledge and Uncertainty Information decreases confidence......................... 45

PAPER I Page



1. INTRODUCTION

The use of Artificial Intelligence (AI) has exploded in high-stakes contexts. Studies 

have tested both fully automated systems (Rauschecker et al., 2020) and recommender 

systems (Bien et al., 2018; Lakhani & Sundaram, 2017; Patel et al., 2019) in high-stakes 

scenarios like medical diagnosis. In most cases, recommender systems (i.e., AI decision 

support systems), are desired so that human experts can use their domain knowledge 

along with decision support system recommendations to ensure a successful outcome 

(Zhang et al., 2020). As experimental evidence has shown, human-AI teams, especially 

for lay people, are sometimes less accurate than the decision support system alone (Green 

& Chen, 2019; Grgic-Hlaca et al., 2019; Lin et al., 2020). Uncertainty information may 

help users better leverage AI predictions, especially when combined with their own 

domain knowledge. However, empirical research on the effects of communicating 

uncertainty with AI recommendations is limited (Bhatt et al., 2020). This thesis includes 

two studies that use an existing image recognition deep learning model to examine the 

effects of an AI decision support system on users’ accuracy and confidence. We also 

measure the interaction effects of decision support system and users’ self-reported 

domain knowledge on their accuracy and confidence.

In Paper I, we evaluated the effect of the number of AI recommendations and 

provision of uncertainty information. For a series of images, participants identified the 

subject and rated their confidence level. Results suggest that providing AI 

recommendations increased accuracy and confidence, especially when multiple AI 

recommendations were present. However, uncertainty information, which was
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represented visually with bars, did not significantly improve participants' accuracy or 

confidence. In Paper II, we tested the effect of AI recommendations in a wi thin-subject 

comparison and the effect of more salient uncertainty information in a between-subject 

comparison in the context of varying domain knowledge. The uncertainty information 

combined both numerical (percent) and visual (color-coded bar) formats to make the 

information easier to interpret and more noticeable. Consistent with Paper I, results 

suggest that AI recommendations improved participants’ accuracy and confidence. In 

addition, the more salient uncertainty information significantly increased accuracy, but 

not confidence. Based on a subjective measure of domain knowledge, participants had 

higher domain knowledge for animals. In general, AI recommendations and uncertainty 

information had less of an effect as domain knowledge increased. Future work will 

further investigate the role of domain knowledge in the use and interpretation of AI 

predictions.
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PAPER

I. COMMUNICATING UNCERTAIN INFORMATION FROM DEEP LEARNING 
MODELS IN HUMAN MACHINE TEAMS

1. INTRODUCTION

Artificial intelligence (AI) recommendations are not only found in online 

shopping, streaming services, and smart home devices. Increasingly, there are efforts to 

embed AI recommendations in high-risk work contexts such as the military, healthcare, 

and manufacturing (Ashiku & Dagli, 2019; Gottapu & Dagli, 2018). Consequently, it is 

critical to understand how people use AI recommendations in situations with varying 

uncertainty and potential impacts.

One popular approach to AI is deep learning. In the context of image recognition, 

deep learning models use neural networks to find similarities in each image and 

categorize them accordingly (see Figure 1). Neural networks are essentially rows of 

computational cells in layers that process information individually and pass information 

on to the next layer. The network learns and thus improves the more it is used. These 

networks start to recognize patterns between examples, which helps classify future 

examples or information. While neural networks excel at specific tasks as they learn from 

data, they are poor at extrapolation. It is possible to give prediction probabilities for 

different choices in clustering problems for deep learning models that use “softmax” 

functions in the last layer of the network. This probability is valuable for AI systems that
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interact with humans as a representation of uncertainty or confidence for each 

recomm endati on.

Figure 1. Example of a deep learning model with artificial neural networks for image
recognition.

This research draws on insights from the literature on communicating AI 

recommendations and communicating uncertainty. This study provides human 

participants with recommendations from an image recognition deep learning model to 

answer two primary research questions:

• Does human performance improve when participants receive multiple 

recommendations instead of a single recommendation? Do multiple 

recommendations need to be ranked?

• Does providing a confidence bar for each recommendation improve performance?

1.1. COMMUNICATING AI RECOMMENDATIONS

It is important for human users to understand both the capabilities and limitations 

of AI when used for decision-making. Experimental evidence suggests that a detailed 

example of how the AI will help the user in the activity may provide a better
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understanding for the users (Amershi et al., 2019). Raising awareness of mistakes made 

by the AI can increase acceptance of AI assistance. This "expectation-setting 

intervention" helps users understand how the AI works and be more accepting of 

mistakes (Kocielnik et al., 2019). People are also sensitive to how AI recommendations 

are communicated. For example, when performing a 2D task (such as on a computer 

screen), people are more influenced by a 2D on-screen agent. However, when performing 

a 3D task (such as operating a machine), people are more influenced by the 

recommendations of a 3D robot interface (Shinozawa et al., 2005). This suggests that the 

AI recommendations need to be presented in a way that is consistent with the task.

1.2. COMMUNICATING UNCERTAINTY INFORMATION.

One strategy for communicating the limitations of AI is to include uncertainty or 

confidence information with the recommendations. However, one of the challenges is 

that there may be different types of uncertainty associated with the training and test data 

vs. the model (van der Bles et al., 2019). In addition, visual communications of risk (or 

uncertainty) that improve quantitative understanding differ from the types of 

visualizations that encourage behavior change. Being able to make comparisons between 

categories (e.g., part vs. whole) is effective for increasing understanding. Without the 

ability to make comparisons, it is much more challenging to interpret the information 

(Ancher et al., 2006). In a review of the health communication literature, Lipkus & 

Hollands (1999) find that providing numerical and written information in addition to 

visualizations improves the perception of risk and perceived helpfulness. The visual
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representation of risk (or uncertainty) is more effective for helping people make decisions 

that affect them positively (Lipkus & Hollands, 1999; Lipkus, 2007).

2. METHOD

2.1. DESIGN

We recruited 286 participants from Prolific, an online participant pool platform.

In order to participate, participants had to be over 18 and speak English. Prolific offers a 

more diverse group of English-speaking participants in terms of geographical location 

and ethnicity (Peer et al., 2017). Participants performed an image recognition task. Each 

participant was randomly assigned to one of six conditions:

a) No Recommendation Control -  no AI recommendation or confidence bar 

provided,

b) 1 AIRecommendation/Text Only -  top recommendation by AI,

c) 1 AIRecommendation/Confidence Bar -  top recommendation by AI with 

confidence bar,

d) 5 AIRecommendations/Alphabetical Control -  top five recommendations by the 

AI in alphabetical order,

e) 5 AIRecommendations/Text Only -  top five recommendations by the AI in ranked 

order, and

f) 5 AI Recommendations/Confidence Bar -  top five recommendations by the AI in

ranked order with confidence bar for each recommendation.
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Figure 2 below shows examples of experimental stimulus for each condition. 

Within each condition, each participant identified 24 images and answered additional 

survey questions.

Figure 2. Example stimulus for each of the six conditions.

2.2. STIMULI

The images, AI recommendations, and confidence bars were drawn from the 

supplementary materials of Krizhevsky et al. (2012), which leverages the ImageNet 

database (Deng et al., 2010). The ImageNet database is made up of 12 subsets consisting 

of 3.2 million images in 5,247 categories. Deng et al. (2010) used participants from 

Amazon mTurk to label these images. The Krizhevsky et al. (2012) model used in this 

study was trained on 1.2 million images in 1,000 categories. To avoid overfitting,
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Krizhevsky et al. (2012) augmented the model by scaling all the input images to 256 x 

256 resolution and by altering the RGB scales of all the images. From the 88 images 

provided in the supplementary materials by Krizhevsky et al., (2012), we selected 24 to 

use in this study where the image label was clearly a focus of the image and there was a 

mix of correct and incorrect AI recommendations.

2.3. MEASURES

Before viewing the images, participants completed two attention check questions: 

"In the instructions, an example image was given along with the correct label for that 

image. What was the correct answer for the example image?" (answer: "howler monkey") 

and "How did the instructions say to describe the picture?" (answer: "be specific"). In 

addition, there was one attention check embedded in the images where participants were 

asked to identify the image that was explained in the instructions. These items were 

combined into an attention indicator, where 1 indicates that the participant passed all 

three of the attention checks and 0 indicates that they failed at least one. In addition, we 

measured the average time spent per image.

For each of the 24 images, participants identified the subject of the image ("What 

is this a picture of?") in an open textbox. The responses were manually categorized into 

the following types of accuracy:

(1) Exact Match -  answer matched the image label,

(2) Synonym -  answer was an alternate or similar name to the image label (e.g.,

Metal Nails instead of Nail),
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(3) Present -  the answer was present in the image but not the image label (e.g. White 

Wall instead of Nail),

(4) Category -  the answer was a broader category, rather than specific (e.g. Hardware 

instead of Nail),

where each level includes the previous level. In other words, if the response was 

"Category correct", then it was also considered correct for the other levels. After each 

image, participants indicated their confidence on a 6-point scale that ranged from 0-100% 

confident ("How confident are you in your answer?").

Following the series of images, participants rated the difficulty of the task ("How 

difficult was this task?") on a 5-point Likert scale that ranged from "extremely difficult" 

to "extremely easy". We also measured demographics including gender, education, and 

age. Four participants did not report their education level. Age was highly skewed, so a 

log transformation was used to normalize the measure. A separate ANOVA was run for 

each definition of accuracy, where the outcome (or dependent) variable was the 

performance of an individual participant across 24 images. Due to the high number of 

statistical tests, we focus on interpreting effects with p  < 0.01 to reduce false positives.

3. RESULTS AND DISCUSSION

Participants were predominantly female (67%) and approximately half had at least 

a 4-year college degree. The average age was 33 years old and ranged from 18 to 67 

years old. Table 1 summarizes measures across experimental conditions. The 

demographics and attention measures did not significantly vary across the experimental 

conditions. This suggests that the random assignment was successful and there are no
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systematic differences between the experimental groups. Older participants tended to 

spend more time per image, r(284) = .27, p  < .001. In addition, participants that were 

more confident tended to spend more time per image, r(284) = .15, p  = .01, and perceive 

the task as more difficult, r(284) = .26, p  < .001.

Table 1. Mean and standard deviation for each experimental condition. Accuracy, 
confidence, and task difficulty differed across experimental conditions.

Controls
1 AI

Recommendation 5 AI
Recommendations

Total No Alphabetical Text Confidence Ranked Confiden
Rec Recs Only Bar Text Bar

Participants 286 46 45 49 49 48 49

Exact Match 45% 25% 47% 46% 49% 49% 50%
Accuracy (31%) (27%) (35%) (35%) (39%) (40%) (37%)
Synonym 55% 38% 58% 56% 58% 60% 61%
Accuracy (32%) (31%) (33%) (36%) (38%) (33%) (35%)
Present

Accuracy 64% 48% 6 6 % 64% 65% 6 8 % 69%
(30%) (33%) (31%) (34%) (37%) (31%) (32%)

Category
Accuracy 77% 75% 76% 77% 74% 78% 79%

(27%) (2 0 %) (28%) (31%) (34%) (27%) (30%)

Confidence 69% 63% 67% 71% 6 6 % 73% 73%
(14%) (19%) (1 0 %) (15%) (14%) (1 1 %) (1 1 %)

Task
Difficulty 3.2

(1. 1)
3.8

(1.0 )
4.3

(1 .0 )
3.3

(1. 1)
3.2

(1. 1)
2.7

(1 .0 )
2.9

(1. 1)

% Passed 
Attention 75% 78% 76% 80% 80% 69% 69%

(43%) (42%) (43%) (41%) (41%) (47%) (47%)
Time per 
image (secs) 2 2 2 1 27 23 18 23 2 2

(15) (1 2 ) (14) (18) (14) (16) (1 2 )

% Male 33% 33% 33% 29 % 33% 33% 33%
% College 50% 59% 36% 59% 45% 50% 52%

Age 33 33 33 34 31 34 31
(1 1 ) (1 0 ) (1 1 ) (1 2 ) (9) (13) (1 0 )
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As shown in Table 2, separate ANOVAs were conducted for each definition of 

accuracy. Performance differed across experimental conditions and confidence. In 

addition, there were weakly significant effects at the p  < .05 level for attention and task 

difficulty. Tukey HSD post hoc tests indicated that when compared to the control 

condition, accuracy was higher in all of the AI conditions (p < .01), but there was no 

significant difference between the AI conditions (see Table 1 and Table 3). This was true 

across all definitions of accuracy except Category accuracy, which uses the most lenient 

definition. In this case, there was no significant difference between the control and AI 

conditions (although post hoc tests indicated that a few comparisons approached, but did 

not achieve, statistical significance).

Participants that were more confident tended to have higher Synonym and 

Category accuracy. From a metacognition perspective, the Category accuracy effect 

suggests that participants knew when they did or did not have a vague sense (i.e. the 

category) of an image. More investigation is needed to determine the mechanism for 

Synonym accuracy. A one-way ANOVA indicates that the average confidence varied 

across experimental conditions, F(5, 280) = 4.41 , P < .001. Post hoc comparisons using 

the Tukey HSD test suggest that participants in the 1 AI Recommendation/Text Only, 5 

AI Recommendation/Text Only, and 5 AI Recommendation/Confidence Bar conditions 

were significantly more confident that the No Recommendation Control group (see Table 

1). This suggests that the confidence bar increased confidence (compared to the No 

Recommendation Control condition) when there were 5 AI recommendations, but not 

when there was only 1 AI recommendation. The confidence bar may help sort among
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multiple recommendations, but simply serves to decrease confidence if there are no 

alternative recommendations.

A one-way ANOVA showed that the perceived task difficulty varied across the 

experimental conditions, F(5, 280) = 6.28, p  < .001. Tukey HSD post-hoc tests indicate 

that the 5 AI Recommendations/Alphabetical Control condition was perceived as 

significantly more difficult than the 5 AI Recommendations/Text Only condition (see 

Table 1). In addition, the 5 AI Recommendations/Text Only and 5 AI 

Recommendations/Confidence Bar conditions were perceived as significantly less 

difficult than the No Recommendation Control condition. This suggests that providing 

multiple recommendations made the task less difficult, as long as the recommendations 

were ranked.

Table 2. Separate ANOVA for each accuracy definition. Accuracy differed across
experimental conditions (p < .01).

Exact Match Synonym Present Category

F TJ2 F TJ2 F TJ2 F TJ2

AI Recommendation 45.11*** 0.44 3 4 .4 6 *** 0.38 29.00*** 0.34 2 .8 8 * 0.05

Confidence 6.31* 0 .0 0 1 5.70* 0 .0 1 1.64 0 . 0 0 6.37* 0 . 0 2

Task Difficulty 3.40 0 .0 1 1.936 0 . 0 0 0.65 0 . 0 0 0.08 0 . 0 0

Attention 5.96* 0 .0 1 5.10* 0 .0 1 4.58* 0 .0 1 2.97 0 .0 1

Time per Question 2.62 0 .0 1 1.57 0 . 0 0 2.13 0 .0 1 0.16 0 . 0 0

% Male 2.50 0 . 0 0 1.16 0 . 0 0 0.80 0 . 0 0 0.54 0 . 0 0

% College 0.94 0 . 0 0 0.07 0 . 0 0 0.03 0 . 0 0 0 . 0 0 0 . 0 0

Age (logged) 0.06 0 . 0 0 1 .2 0 0 . 0 0 0.69 0 . 0 0 0.08 0 . 0 0

Note: *p < .05, **p < .01, and ***p < .001



13

When excluding the Control conditions, it is possible to examine the potential 

interaction of the number of AI recommendations and the use of the confidence bar. As 

shown in Table 3, there is a significant difference due to the number of AI 

recommendations for all definitions of accuracy. However, the difference is weakly 

significant for the Exact Match accuracy (p < .05), which is the most restrictive definition 

of accuracy. Providing 5 recommendations rather than 1 recommendation increased 

performance for exact match (50% vs. 47%), synonym (61% vs. 57%), present (68% vs. 

64%), and category (79% vs. 75%) accuracy. However, the use of confidence bars was 

not associated with any significant differences, suggesting that this information did not 

improve participant accuracy.

Table 3. Two-way ANOVA for each accuracy definition. Accuracy differed for the 
number of AI recommendations, but not use of confidence bar (p < .01).

Exact Match Synonym Present Category

F ^2 F TJ2 F TJ2 F TJ2

Number of AI Recs 4.06* 0 . 0 2 8.59** 0.04 7.89** 0.04 11  4 7 *** 0.06

Bar 3.36 0 . 0 2 1.63 0 .0 1 1.23 0 .0 1 0 . 0 2 0 . 0 0

Number of AI Recs * Bar 0.98 0 . 0 0 0.38 0 . 0 0 0.05 0 . 0 0 0.62 0 . 0 0

Confidence 0 . 0 0 0 . 0 0 0.51 0 . 0 0 1.34 0 .0 1 0.24 0 . 0 0

Task Difficulty 2.60 0 .0 1 1.51 0 .0 1 0.48 0 . 0 0 0 .0 1 0 . 0 0

Attention 4.49* 0 . 0 2 2.82 0 . 0 0 3.14 0 . 0 2 3.61 0 . 0 2

Time per Question 0.44 0 . 0 0 0 .1 1 0 . 0 0 0.73 0 . 0 0 0.06 0 . 0 0

% Male 2.55 0 .0 1 1.31 0 .0 1 0.88 0 . 0 0 0.34 0 . 0 0

% College 0.82 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

log (Age) 0 . 1 2 0 . 0 0 0.65 0 . 0 0 0.29 0 . 0 0 0.43 0 . 0 0

Note: *p < .05, **p < .01, and ***p < .001
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Figure 3. Mean performance of the participants in each experimental condition across all 
accuracy definitions. The AI conditions improved performance for exact match,

synonym, and present accuracy.

4. CONCLUSION

The results suggest that AI recommendations improve accuracy for human-led 

image recognition tasks across multiple definitions of accuracy. In addition, providing 

additional recommendations (5 vs. 1) improves accuracy, but the use of confidence bars 

was not associated with any significant differences. For Category accuracy, the broadest 

definition of accuracy, there was a weak difference between the experimental and control 

conditions. This suggests that there were some images that did not benefit from AI 

recommendations, when using the most generous definition of accuracy. In addition, 

when examining the effect of the number of AI recommendations, there was a weak
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effect for Exact Match accuracy, suggesting that additional recommendations may not 

help for narrow definitions of accuracy. This work suggests that AI recommendations are 

generally helpful even when the human and machine or AI components of a system have 

different definitions of accuracy. In this experiment, the Exact Match accuracy is the only 

case where the human and AI definitions match. For Synonym and Present accuracy, the 

human is recognizing more aspects of the image than the AI, yet the AI recommendations 

are still improving accuracy.

The AI recommendation conditions differ in how they influenced confidence. 

Participants in the 1 AI Recommendation/Text Only, 5 AI Recommendations/Text Only, 

and 5 AI Recommendations/Confidence Bar conditions were significantly more confident 

that the No Recommendations Control group. This suggests that ranked AI 

recommendations are associated with higher confidence. In addition, the confidence bars 

are more helpful for increasing confidence when sorting through multiple 

recommendations. In terms of metacognition or people's ability to "know what they 

know", participants were able to distinguish between Category accuracy and wrong 

answers. However, they did not know whether they were focusing on the same aspect of 

the image as the AI. More investigation is needed to determine the mechanism for 

Synonym accuracy.

Providing multiple recommendations made the task seem less difficult, as long as 

the recommendations were ranked. The 5 AI Recommendations/Alphabetical Control 

condition was perceived as the most difficult while the 5 AI Recommendations/Text Only 

and 5 AI Recommendations/Confidence Bar conditions were perceived as the least 

difficult. This suggests that providing multiple ranked recommendations with confidence
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bars from an AI system may increase human operator confidence and reduce the 

perceived difficulty of the task.

Future research efforts will further investigate principles for designing AI 

recommendation communications. The research team will explore stimuli-level effects, 

the impact of AI recommendations that are not correct, and the role of attention. This 

work is based on a laboratory experiment and does not represent an ecologically valid 

task. As a result, these findings may not be directly generalizable to workplaces or 

specific applications. Further research is needed to determine if there are any differences 

based on domain or application.

5. IMPLICATIONS

AI recommendations are increasingly being integrated into a variety of 

engineering management contexts (e.g., healthcare, military, manufacturing, supply 

chain). However, to date, there is insufficient research on integrating uncertainty or 

confidence information into AI recommendation communications. The results of this 

study suggest that it may be valuable for AI systems to provide multiple ranked 

recommendations, particularly if the AI is trained on a narrower task than the human 

operators are performing. In the context of image recognition, the AI may be focused on 

specific features while a human analyst is examining the broader context and may focus 

on different features or levels of precision. Engineering managers must consider the task 

characteristics to determine the appropriate strategy for communicating AI 

recommendations and the impacts on human performance.
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More research is needed on designing communications of uncertainty for AI 

outputs. This study found no evidence of a performance benefit associated with including 

uncertainty or confidence bars for each recommendation. However, there are many types 

of uncertainty. For example, temporal uncertainty refers to uncertainty about future 

events. Structural uncertainty refers to uncertainty that is introduced as a function of the 

model. Measurement uncertainty refers to uncertainty associated with measuring specific 

values and translational uncertainty refers to the uncertainty introduced in the 

communication process (Rowe, 1994). This work focuses on developing communications 

for a measure that incorporates multiple types (e.g., structural and metrical). Future work 

should explore strategies for designing communications that differentiate between kinds 

of uncertainty. In addition, future work should investigate combining visual and 

numerical uncertainty information. Ultimately, this research effort aims to develop 

communications that improve the performance of human-machine teams.
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II. ROLE OF UNCERTAINTY INFORMATION AND DOMAIN KNOWLEDGE 
IN USE OF AI RECOMMENDATIONS

1. INTRODUCTION

Artificial Intelligence (AI) decision support systems are increasingly common 

across sectors, especially for high-risk scenarios in healthcare, manufacturing, and the 

military (Ashiku & Dagli, 2019; Gottapu & Dagli, 2018). Peng (2018) summarized key 

AI system failures in 2018, highlighting the need for further understanding AI and its 

limitations. IBM’s Watson AI Health was geared to help doctors in cancer treatment. 

Doctors stopped using it as they found it provided unsafe recommendations that could 

have had dire or fatal consequences. Similarly, Amazon stopped using its AI software for 

screening resumes after finding the AI’s gender bias. The AI was trained on benchmark 

engineering applicant resumes, which predominantly belonged to white men. As a result, 

the AI predicted males would be a better fit for engineering jobs (Blier, 2020). 

Consequently, it is not sufficient to simply communicate an AI prediction and assume 

human users will know how to use the information.

People are more likely to accept an AI prediction when given a choice, 

particularly in a high-stakes scenario. In general, participants tend to weigh AI 

recommendations similar to an expert's recommendation when making decisions (Wang 

et al., 2020). However, there is mixed evidence of which they prefer. Ashktorab et al. 

(2020) found evidence that participants preferred human experts, but decision 

performance was not affected by whether participants perceived their partner as a human 

expert or an AI. In contrast, Logg et al. (2019) found that participants chose to side with
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AI recommendations more than experts' when given a choice. In three different 

experiments, participants received the same advice either from an algorithm or other 

people. Results suggested that lay people relied more on advice when they thought it 

came from an algorithm (Logg et al., 2018). In other words, participants tended to accept 

the recommendation more when it came from a recommender system than humans. This 

mixed preference to recommender system could be tied to user’s perception on the 

accuracy of a decision support system.

AI decision support systems can improve human decision-making if they can 

compensate for each other’s errors, and people can discern when to follow or not follow 

the AI. Experimental evidence suggests that human-AI teams tend to perform better than 

either alone (Bansal et al., 2020; Rosenberg & Willcox, 2019), even in high-stake 

medical situations (Bien et al., 2018; Lakhani & Sundaram, 2017; Patel et al., 2019; 

Xiong et al., 2020). However, humans-AI teams tend to be less accurate than AI alone in 

high-stake prediction tasks like recidivism (when participants decide to grant or not grant 

bail for defendants) prediction (Green & Chen, 2019; Grgic-Hlaca et al., 2019; Lin et al., 

2020). Recidivism studies used laypeople in their experiments, whereas the medical 

studies involved domain experts. This suggests that laypeople may inappropriately rely 

on AI predictions when it is not warranted. So, it may be helpful to provide prediction- 

specific guidance, such as uncertainty information. In addition, people with domain 

knowledge may be better able to leverage the uncertainty information.
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1.1. PROVIDING UNCERTAINTY INFORMATION WITH AI PREDICTIONS

Uncertainty measures the “lack of knowledge” about an outcome. In tasks such as 

image recognition, uncertainty of a recommender system is the predicted probability to 

match the ground truth (Bhatt et al., 2020). Communicating this uncertainty to users is 

rather complex as almost 30% of the participants in a study could not differentiate the 

levels of risk between 1 in 10, 1 in 100, or 1 in 1000 (Galesic, 2010). Another study by 

Zikmund-Fisher et al. (2007) found that participants’ risk comprehension abilities are 

significantly affected by their numeracy skills. Hence, it may be necessary to 

communicate uncertainty in more than one manner that is easy to understand for the task 

at hand.

Uncertainty can be communicated via text, numbers, and visuals. However, the 

best representation may vary based on the task and individual characteristics. For 

example, a study conducted by Budescu et al. (2012) used an Intergovernmental Panel on 

Climate Change (IPCC) report and asked the participants to translate the verbal 

uncertainties mentioned in the report, numerically. They found that participants 

interpreted “very likely” to mean 60% probability as opposed to 90% probability as 

intended by the IPCC. Bhatt et al. (2020) reviewed literature on communicating 

uncertainty and recommended using categorical or numerical methods to overcome this 

misinterpretation. Another common method to represent uncertainty is through graphs. 

Graphical representation of data enables users to identify patterns, and trends (Lipkus & 

Hollands, 1999). Different graphs could be used to communicate uncertainty like pie 

charts for proportions, bar charts for comparisons, or line charts for time-series data. 

Choosing the appropriate visual tool depends on the task at hand. Additionally, Gkatzia et
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al. (2016) found providing uncertainty in text, numerical, and visual formats together 

significantly improved users' accuracy and confidence when compared to providing just 

visual information.

There is mixed evidence on the effectiveness of providing uncertainty information 

with AI predictions to improve decision-making. In some studies, providing uncertainty 

or confidence information increases accuracy (Bansal et al., 2020; Fernandes et al., 2018; 

Gkatzia et al., 2016), often because users trust the AI more (Antifakos et al., 2005). 

However, studies have also found no effect or limitations to the use of uncertainty 

information. In contrast to the studies above, Subramanian et al. (2020) found no effect of 

uncertainty information when represented in terms of confidence bars. Similarly, 

providing an explanation for why the AI is providing a recommendation, has not 

improved accuracy (Bansal et al., 2020). This suggests that although visual 

representations of uncertainty tend to be most effective, there are exceptions likely 

related to the saliency of the uncertainty information. In Antifakos et al. (2005), users 

needed more information when the AI's confidence level was below 50%. This suggests 

that users tend to agree with the AI when the probabilities are above 50% and choose 

their own answer when it is not. When AI recommendations’ uncertainty is low, it 

requires the users to expertly navigate among the choices. As a result, domain knowledge 

may play a more important role when the AI is uncertain.

1.2. EFFECT OF DOMAIN KNOWLEDGE.

In general, experts are able to perform a task much better than novices. In a study 

by Snow et al. (2008), they found that they needed four novices to label an item to the
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same accuracy of one expert. Brand-Gruwel et al. (2017) found that domain experts 

performed better than novices in an experimental setting of gathering reliable information 

on topics relating to psychology using the Internet. Another study found that with AI 

recommendations, experts performed better under time pressure whereas there was no 

accuracy differences between experts and novices without a time constraint (Dane et al., 

2012). After reviewing literature on human-AI teams, Maadi et al. (2021) found that as 

the task difficulty or complexity increased, the need for a higher domain knowledge 

human expert to be in the loop also increased. This suggests that experts are better able to 

navigate and integrate AI information than novices.

Experts also benefit more from a complex recommender system since it gives 

them more control whereas novices preferred the opposite (Knijnenburg et al., 2011). 

However, there is some evidence that AI systems can hurt experts’ accuracy if they 

under-rely on it. Logg et al. (2019) found experts tended to rely less on algorithmic 

recommendations than human recommendations, which hurt their accuracy. In contrast, 

novices who had low domain knowledge, tended to rely on recommendation systems 

more (Wang & Benbasat, 2013), especially when uncertainty information was provided 

(Bussone et al., 2015). This suggests that novices may agree with the AI even if the 

recommendations are incorrect. Additionally, an empirical study by Feng & Boyd-Graber 

(2019) found that experts are better able to navigate AI recommendations, suggesting that 

it may be extremely valuable to adapt AI interfaces to match users' skillsets.
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Even though the accuracy of the users is highly studied in Al-assisted high-stake 

scenarios, the research on uncertainty information is limited to the effect on users’ 

confidence (Greis et al., 2017; Zhou et al., 2015). Communicating uncertainty has been 

highly studied in the risk communication literature (Spiegelhalter, 2017) but, literature on 

communicating uncertainty and its effects on task performance in human-AI teams is also 

minimal (Arshad et al., 2015; Bhatt et al., 2020; Gkatzia et al., 2016). Lastly, many of the 

high-stakes decision support system research are in the medical field and only use experts 

in their studies. One exception is Huang et al. (2020) who found that the AI performed 

better with experts (doctors) than novices (interns). They only tested the accuracy of the 

decision support system when experts and interns provided training data for the system 

and not vice-versa. Using breast cancer patient cases from April 2017 to August 2018, 

McNamara et al. (2019) used IBM’s AI Watson for Oncology to find that breast cancer 

experts’ accuracy did not vary with and without the AI, whereas novices (tumor and 

hematologic focused oncologists) accuracy improved significantly after AI 

recommendations. However, Peng (2018) reported that IBM’s AI Watson was stopped 

from use as it provided unreliable recommendations. Consequently, it is difficult to 

accept the findings of McNamara et al. (2019). As a result, effects of different levels of 

domain knowledge (experts vs novices) interacting with the decision support system 

recommendations and uncertainty information in high-stakes scenarios is not well

2. AIM OF STUDY

documented.
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To address these gaps, this study evaluates the effect on accuracy and confidence 

of providing AI predictions with uncertainty information and how this effect varies based 

on the participant’s domain knowledge. Based on findings from the risk communication 

literature, the uncertainty information includes both numerical and visual representations 

as well as color to increase saliency. We use an image recognition task for pictures of 

plants and animals with an existing deep learning model to provide the AI 

recommendations and uncertainties. We test three hypotheses in a mixed-subject design:

H1. In a within-subjects comparison, ranked AI recommendations increase image 

recognition accuracy and confidence compared to random order AI 

recommendations.

H2. In a between-subjects comparison, ranked AI recommendations with uncertainty 

information increase accuracy and confidence more than without uncertainty 

information.

H3. Participants with higher domain knowledge have higher accuracy and confidence 

when provided ranked AI recommendations (Domain Knowledge X AI) and 

uncertainty information (Domain Knowledge X Uncertainty).

3. METHODS

3.1. PARTICIPANTS

We recruited 201 participants from Prolific, an online participant recruitment 

platform. All participants were over 18 years old and spoke English. Prolific offers 

comparable data and a more diverse group of participants than Amazon mTurk (Peer et
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al., 2017). All participants provided informed consent and were compensated $5. This 

study was approved by the University of Missouri Institutional Review Board.

3.2. DESIGN

In a mixed-subject design, participants performed an image recognition task with 

and without AI recommendations (within-subjects). With the AI recommendations, 

participants were randomly assigned to receive or not receive uncertainty information 

(between-subjects). To evaluate the effect of domain knowledge, we used a self-reported 

subjective measure of knowledge related to plants and animals and analyzed the different 

types of stimuli separately.

In the image identification task, the image stimuli were of plants and animals. For 

the AI predictions and associated uncertainties, we use an existing image recognition 

deep learning model (Krizhevsky et al., 2012) that was trained on the ImageNet database. 

The ImageNet database is made up of 12 subsets consisting of 3.2 million images in 

5,247 categories. Deng et al. (2010) used participants from Amazon mTurk to label these 

images. The Krizhevsky et al. (2012) model used in this study was trained on 1.2 million 

images in 1,000 categories. In their supplementary materials, Krizhevsky et al. (2012) 

provide 88 images with 5 label predictions and associated uncertainties displayed as bars.

We selected 33 images to use in this study where the image label was clearly a 

focus of the image and there was a mix of correct and incorrect AI recommendations. For 

each image, we provided 6 potential labels to ensure that the correct label was always 

included. In addition to the 5 labels provided by Krizhevsky et al. (2012), we either added 

the correct label or another similar but incorrect label. In addition, we redesigned the
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uncertainty information to improve ease-of-interpretation compared to Subramanian et al. 

(2020). In the original presentation, the label text overlapped the uncertainty bars, the 

bars were monochrome, and no numerical information was provided. In this study, the 

uncertainty bars were color coded to represent the AI’s confidence in its 

recommendation, where green is 100% - 76%, yellow is 75% - 51%, orange is 50% - 

26%, and red is 25% - 0%. The uncertainty bars were separated from the label text, and 

we added a percentage value indicating the AI’s confidence in its recommendations based 

on measuring the bars.

Figure 1. Example stimulus for each experimental condition. Within-subjects comparison 
between (a) No-AI recommendations & (b) AI recommendations. Between-subjects 

comparison between (b.1) AI recommendations without Uncertainty information & (b.2) 
AI recommendations with uncertainty information.
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3.3. PROCEDURE

After providing informed consent and reading instructions, participants performed 

the image identification task. Participants identified 32 images, of which 19 were plants 

and 13 were animals via a multiple-choice question, "what is this a picture of?" First, 

participants selected one from six random ordered options, where the options were the AI 

recommendations. This response was scored as correct or incorrect to determine pre-AI 

accuracy. For each image, participants rated their pre-AI confidence via "How confident 

are you in your answer?" [1 = not confident at all (0-20%), 5 = extremely confident (80­

99%), 6 = absolutely confident (100%)].

Each image was viewed twice for the within-subject comparison. However, in the 

second viewing, the multiple-choice options were provided in rank order according to the 

AI recommendations. To measurepost-AI accuracy, participants again answered, "what 

is this a picture of?" For each image, participants rated (a)post-AI confidence, "How 

confident are you in your answer?" [1 = not confident at all (0-20%), 5 = extremely 

confident (80-99%), 6 = absolutely confident (100%)] and (b) perceived usefulness,

"How useful was the AI in recognizing the image?" (1 = not useful at all, 6 = extremely 

useful). We also measured the time taken/image by the participant.

In order to evaluate data quality, we used three attention checks. After the 

instructions, we asked, "what was mentioned as the correct answer to the image provided 

in the instructions?" (multiple choice; answer: Howler Monkey). After the image 

identification task, we asked, "how many AI recommendations did you get for each 

image?" (multiple choice; answer: 6). We also embedded an attention check in the 

images where participants responded to "What is this a picture of?" (answer: Howler
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Monkey), which was used in the instructions example. All three attention checks were 

combined into an attention score.

After the image identification task, participants rated their domain knowledge via 

two questions "How well can you identify plants?" and "How well can you identify 

animals?" (1 = not well at all, 6 = extremely well). In addition, participants rated (a) 

perceived difficulty., "How difficult was this task?" (1 = extremely easy, 6 = extremely 

difficult) and (b) perceived trustworthiness, "How trustworthy was the AI?" (1 = very 

untrustworthy, 6 = very trustworthy). In both cases, an "I do not know" option was 

treated as missing. Participants also completed cognitive measures relating AI usefulness 

(4 items) (Viswanath,V. & Fred D., 2000) and AI reliability (5 items) (Madsen & Gregor, 

2000) on a 7-point Likert scale (1 = Strongly disagree, 4 = Neither agree nor disagree, 

and 7 = Strongly agree). Detailed information on the scales is provided in the Appendix. 

Lastly, we measured demographics, including age, gender, and education. A log 

transformation was used to normalize age.

3.4. ANALYSIS

We performed linear regressions to evaluate the effect of (1) AI 

recommendations, (2) uncertainty information, and (3) domain knowledge on (a) 

accuracy and (b) confidence. Each person was observed for both within and between- 

subject analysis. Accuracy, confidence ratings, time taken per image, and perceived AI 

usefulness ratings were averaged for every person. Dummy variables were used to denote 

AI recommendations and Uncertainty Information. Each person appears twice in the 

dataset, once representing their accuracy and other measures without AI
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recommendations and again representing their measures with AI recommendations. 

Linear mixed-effects regressions evaluated the within-subject effects of AI 

recommendations using this data. Then, participants were identified separating for 

receiving and not receiving Uncertainty information used for between-subjects analysis 

using frequentist linear regression. To examine the effects of domain knowledge, the data 

was separated into plant and animal stimuli.

Due to the large number of planned tests, we use a < 0.01 for interpretation to 

reduce false positives. We preregistered the analyses at Open Science Framework 

(https://osf.io/bjgu9/). This analysis deviates from the preregistration in one way. Initial 

approach included logistic mixed-effects model for analyzing accuracy to account for 

repeated measures in within-subjects design. Instead, we averaged the participants’ 

accuracy across images and performed linear mixed-effects regression to account for the 

same repeated measures. All the data, R code, and survey materials are available on Open 

Science Framework (https://osf.io/bjgu9/).

4. RESULTS AND DISCUSSION

Of the 201 participants, 49% were male and 48% had completed a 4-year college 

degree. The average age was 33 years old, ranging from 18 to 64 years old. Overall, 74% 

of the participants passed all three attention checks. More than 90% of the participants 

responded correctly to two of the three attention checks. Participants mostly failed the 

last attention check in the experiment. Only 78% of the participants passed "how many 

AI recommendations did you get for each image?" (Answer: 6) which was asked at the

https://osf.io/bjgu9/
https://osf.io/bjgu9/
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end of the survey. As summarized in Table 1, the mean time to identify an image was 13 

seconds (Median = 10, SD = 14). Before the AI information, the mean time per image 

was 16 seconds (Med = 12, SD =19). With the AI information, the mean time per image 

was 10 seconds (Med = 9, SD = 6). In a paired t-test, participants spent significantly less 

time on the images when viewing for a second time with the AI information, t(200) = 

4.19, p  < .001.

Accuracy increased in the post-AI and uncertainty conditions, but confidence did 

not. In a paired t-test, accuracy was higher for participants after AI information (M = .54, 

Med = .56, SD = .08) than before (M = .36, Med = .34, SD = .08), t(200) = 30.43, p  < 

.001; d  = 2.36. As reported in Table 2, participants average pre-AI accuracy and post-AI 

condition accuracy were moderately correlated, r(201) = .39, p  <.001. In a two-sample t- 

test, accuracy was higher for participants who received uncertainty information (M = .57, 

Med = .56, SD = .05) than participants who did not (M = .52, Med = .53, SD = .09), 

t(147.6) = 5.40, p  < .001; d  = .77. The human-AI team was less accurate than the AI 

alone as the AI’s top recommendation accuracy was 59% which is in disagreement with 

(Bien et al., 2018; Lakhani & Sundaram, 2017; Patel et al., 2019; Xiong et al., 2020) 

findings and similar to (Green & Chen, 2019; Grgic-Hlaca et al., 2019; Lin et al., 2020).

As summarized in Table 1, in a paired-test, confidence was higher for participants 

after AI information (M = .57, Med = .58, SD = .16) than before (M = .43, Med = .41,

SD = .15), t(200) = -18.07, p  < .001; d  = .95. In a two-sample test, confidence was not 

significantly higher for participants who received uncertainty information (M =.58, Med 

= .60, SD = .15) than participants who did not (M = .56, Med = .57, SD = .16), t(196) =
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1.07, p  = .29; d  = .15. Participants pre-AI condition confidence and post-AI condition 

confidence ratings were also highly correlated, r(201) = .72, p  <.001.

Overconfidence was calculated by calculating the difference between participants 

average accuracy and average confidence ratings. In a paired-test, participants were more 

overconfident before AI recommendations (M = .07, Med = .04, SD = .17) than after AI 

recommendations (M= .03, Med = .03, SD = .17), t(200) = 4.90, p  < .001; d  = .26. 

Participants’ overconfidence was not significantly different in the between-subjects part 

(with & without uncertainty information). Lastly, a two-sample t-test for cognitive 

measures (scales from (Madsen & Gregor, 2000; Viswanath, V. & Fred D., 2000)) show 

participants found the AI information more useful (M = 5.20, Med = 5.25, SD = 1.21) 

than reliable (M = 4.14, Med = 4.20, SD = 1.23) with a large effect, t(400) = 8.69, p  

<.001; d  = .87. AI recommendations’ uncertainty information showed over 50% 

predicted probability of success for the correct label only for 15 out of the 32 images. So, 

this suggests that participants were able to realize when the AI provided reliable 

information and when it did not. Individual item statistics for the cognitive measures are 

provided in the Appendix.

As summarized in Table 2, few of the measured covariates were significantly 

correlated with the outcome variables, accuracy and confidence. Participants with high 

animal domain knowledge tended to also report high plant domain knowledge, r(201) = 

.40, p  < .001. Participants with high pre-AI confidence tended to have high animal 

domain knowledge, r(201) = .46, p  < .001. Participants who perceived the AI as more 

useful tended to also perceive the AI as more trustworthy, r(200) = .41, p  < .001.
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Table 1. Summary of measures by conditions. *

Within-Subjects Between-Subjects

No AI AI AI w/o Uncertainty AI w/ Uncertainty

M (SD) M (SD) M (SD) M (SD)

Participants 201 99 102

Accuracy 36% (8%) 54% (8%) 52% (9%) 57% (5%)

Confidence 43% (15%) 57% (16%) 56% (16%) 58% (15%)

Overconfidence 7% (17%) 3% (17%) 5% (18%) 1% (15%)

Time per Image (s) 16 (19) 10 (6) 10 (6) 10 (5)

AI Usefulness 56% (33%) 55% (33%) 57% (33%)

Task Difficulty 3.2 (1.0) 3.2 (1.1) 3.1 (1.0)

AI Trustworthiness 3.5 (1.0) 3.5 (1.0) 3.5 (1.0)

*AI’s top recommendation accuracy is 59%

4.1. EFFECT OF AI RECOMMENDATIONS

The results support H1, suggesting that providing rank ordered AI 

recommendations increased accuracy and confidence (see Figure 2). As shown in Table

3.3, separate linear mixed effects regressions were conducted to test the within-subject 

effects of the AI recommendations on accuracy and confidence. For each outcome 

variable, we estimated two models to measure the effect of additional covariates. Results 

for the effect of AI were consistent across both models.

Across participants, ranked AI recommendations increased accuracy by 0.19 (t = 

30.43, p < .001; d = 2.36), representing a large effect consistent with the paired t-tests. 

None of the additional covariates were significant, suggesting that this effect was
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independent of perceptions of the AI or task (a = .01). Low variance for the random 

effects suggests that the variability between individual participants was not substantial. 

Similarly, ranked AI recommendations increased confidence by 0.14 (t = 18.07, p < .001; 

d = .95), representing a large effect consistent with the paired t-tests. None of the

Table 2. Pearson correlation matrix. Bolded coefficients are significant at a=.05.

1 1 2 3 4 5 6 7 8 9 10 11 12 13

1. Pre-AI
Accuracy .39 .05 .11 .06 .11 .05 .04 .02 .15 .14 -.11 -.04

2. Post-AI 
Accuracy -.16 .10 .36 .02 -.03 .24 -.04 .03 .04 .13 .00

3. Pre-AI 
Confidence .72 .14 .24 .15 .24 -.15 .39 .46 -.21 .07

4. Post-AI 
Confidence .08 .19 0.0

6 .62 -.15 .29 .25 -.16 .16

5. Uncertainty .02 .00 .07 -.24 -.08 -.06 -.07 .01
6. Pre-AI Avg 
Time taken .29 .16 -.01 .12 .10 -.16 .10

7. Post-AI Avg 
Time taken .03 -.07 .16 .03 .03 .12

8. AI usefulness -.08 .25 .04 -.11 .41

9. Attention score -.18 -.17 .06 .00

10. Plant 
knowledge .40 -.24 .15

11. Animal 
knowledge -.12 -.02

12. Task 
difficulty -.11

13. AI
trustworthiness
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additional covariates were significant, suggesting that this effect was independent of 

perceptions of the AI or task (a = .01). Low variance for the random effects suggests that 

the variability between individual participants was not substantial.

Figure 2. Accuracy and confidence is significantly improved by AI recommendations. 
Dotted blue line represents the accuracy of AI (59%)

4.2. EFFECT OF UNCERTAINTY INFORMATION

As shown in Figure 3, providing uncertainty information with AI 

recommendations increased accuracy, but not confidence, partially supporting H2. As 

shown in Table 4, separate linear regressions were conducted to test the between-subject 

effects of uncertainty information on accuracy and confidence. For each outcome 

variable, we estimated two models to measure the effect of additional covariates related
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Table 3. Linear mixed effects regression models suggest AI recommendations improve
accuracy and confidence.

Accuracy Confidence

Fixed Effects
Model 1
B (SE)

Model 2
B (SE)

Model 3
B (SE)

Model 4
B (SE)

Intercept .36 (.01) *** .41 (.06) *** .43 (.01) *** .61 (.10) ***

AI .19 (.01) *** .19 (.01) *** .14 (.01) *** .15 (.01) ***

Avg. Time/Image (s) .00 (.00) .00 (.00)

Attention Score -.00 (.01) -.05 (.02) *

Task Difficulty .00 (.00) -.02 (.01) *

AI Trustworthiness -.00 (.00) .01 (.01)

Age (logged) -.02 (.02) -.04 (.03)

Male -.01 (.01) .01 (.02)

College .01 (.01) .02 (.02)

Random Effects V (a) V (a) V (a) V (a)

Individual .002 (.05) .002 (.05) .02 (.13) .02 (.12)

Residual .004 (.06) .004 (.06) .01 (.08) .01 (.08)

N 402 398 402 398

N o te :  *p < .05 , **p < .01 , a n d  ***p  < .001 .
S e e  T a b le  A .1  in  a p p e n d ix  f o r  d e ta i le d  r e s u lts  o f  e a c h  m ode l.
B  = E s tim a te , S E  = S ta n d a r d  E rro r , V  = V ar ia n ce , a  = S ta n d a r d  D e v ia t io n , N  = N u m b e r  o f  O b se r v a tio n

to attention, perceptions of the AI and task, and demographics. Results for the effect of 

uncertainty were consistent across both models.

Across participants, uncertainty information increased accuracy by 0.06 (d = .77), 

representing a medium effect consistent with the paired t-tests. This suggests that 

participants were able to leverage additional information from the uncertainty 

information to improve their accuracy. In Model 2 (Table 4), participants who perceived
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the AI as more useful had higher accuracy, with medium effect (d = .43). Participants 

who perceived the AI as more useful may have been more likely to rely on the AI. None 

of the other covariates were significant (a = .01).

Across participants, uncertainty information did not significantly increase 

confidence (a = .01). Similarly, in Model 4 (Table 4), participants who perceived the AI 

as more useful had higher confidence with a very large effect (d = 1.54), likely because 

participants who perceived the AI as more useful were more likely to rely on it. None of 

the other covariates were significant (a = .01).

Figure 3. Accuracy is significantly improved by uncertainty information, but confidence 
is not. Dotted blue line represents the accuracy of AI (59%).
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Table 4. Linear regression models suggest that uncertainty information improves
accuracy, but not confidence.

Post-AI Accuracy Post-AI Confidence

Model 1
B (SE)

Model 2
B (SE)

Model 3
B (SE)

Model 4
B (SE)

Intercept .51 (.01) *** .43 (.07) *** .56 (.02) *** .52 (.11) ***

Uncertainty Information .06 (.01) *** .06 (.01) *** .02 (.02) -.00 (.02)

Avg. Time/Image (s) -.00 (.00) .00 (.00)

Attention Score .01 (.01) -.04 (.02)

Avg. AI Usefulness .13 (.03) *** .60 (.06) ***

Task Difficulty .01 (.01) * -.02 (.01)

AI Trustworthiness -.01 (.01) -.02 (.01)

Age (logged) -.00 (.02) -.05 (.03)

Male -.02 (.01) .01 (.02)

College .01 (.01) .02 (.02)

N 201 199 201 199

Adjusted R2 .13 .20 .00 .40

F 29.67*** 6.39*** 1.14 15.32***

N o te :  *p < .05 , **p < .01 , a n d  ***p  < .001
S e e  T a b le  A .1  in  a p p e n d ix  f o r  d e ta i le d  r e su lts  o f  e a ch  m o d e l.
B  = E s tim a te , S E  = S ta n d a r d  E rro r , N  = N u m b e r  o f  O b se r v a tio n

4.3. EFFECT OF DOMAIN KNOWLEDGE

As shown in Figure 4 and Figure 5, the interaction of domain knowledge with AI 

recommendations and uncertainty information were situational, partially supporting H2. 

To evaluate the effect of domain knowledge, we calculated accuracy and confidence for 

the plant and animal images separately. Thus, separate regression models are conducted 

for plants and animals to measure the interaction between domain knowledge and ranked 

AI recommendations (Figure 4, Table 6) or uncertainty information (Figure 5, Table 7).
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Table 6 uses linear mixed effects regression to capture the sampling hierarchy from 

repeated measures. In contrast, Table 7 uses linear regression to measure the effect of 

between-subject effects and is limited to the post-AI performance.

In general, participants were better at identifying animals than plants. Participants 

reported higher domain knowledge for animals (M = .47, Med = .40 SD = .23) than 

plants (M = .19, Med = .20, SD = .21), t (395.41) = 13, p  < .001. Overall, participants 

were more accurate when identifying animals (M = .61, Med = .62, SD = .09), rather 

than, plants (M = .50, Med = .53, SD = 10), t (395.96) = 11.89, p  < .001. In addition, 

participants were more confident when identifying animals (M = .63, Med = .65, SD = 

.15) rather than plants (M = .53, SD = .17), t (396.11) = 6.07, p  < .001. Similar to the 

participants, the AI was better at identifying animals than plants. The AI’s first 

recommendation was correct 62% of the time for animals and 58% for plants.

Table 5. Summary of measures by plants and animals.

P la n ts  M %  (S D % ) A n im a ls  M %  (S D % )
P re -
A I

P o st-
A I

N o
U n ce r ta in ty

U n ce r ta in ty
P re -
A I

P o st-
A I

N o
U n ce r ta in ty

U n ce r ta in ty

A I
A c cu ra c y 58 62

A c cu ra c y
27
(9)

50
(1 0 )

46
(1 2 )

53 (7 )
48

(1 2 )
61
(9)

51 (9 ) 57  (5 )

C o n fid en ce
39

(1 4 )
53

(1 7 ) 55 (1 6 ) 5 8 (1 5 )
49

(1 7 )
63

(1 5 )
56 (1 6 ) 58 (1 5 )

O v erco n fid e
1

(2 1 )
2

(1 7 )
n ce 2  (1 7 ) 3 (1 8 ) 1 (1 6 ) 1 (2 1 ) 5 (1 8 ) 1 (1 5 )

Consistent with Table 3, AI recommendations significantly increased participants'

accuracy and confidence even when separated by image topic. However, the effect on
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accuracy is larger for plant images (fi = .24, t = 21.69, p < .001, d  = .15) than animal 

images (fi = .16, t = 8.60, p < .001, d  = .23). This is likely because participants relied on 

the AI more heavily for plants, where they had lower domain knowledge. Conversely, the 

effect on confidence is larger for animal images (fi = .23, t = 12.09, p < .001, d  = .16) 

than plant images (fi = .16, t = 13.07, p < .001, d  = .09), likely due to higher domain 

knowledge for animals.

When separated by plants and animals, domain knowledge significantly increased 

participants’ accuracy for animals (fi = .10, t = 3.16, p = .002) but not plants (p = .05) in 

Models 1 and 2 in Table 6. This suggests that participants effectively employed their 

domain knowledge to identify animals. However, domain knowledge significantly 

increased participants' confidence for both plants (fi = .24, t = 4.71 , p < .001) and animals 

(fi = .36, t = 8.16, p < .001) in Models 3 and 4 in Table 6. This suggests that domain 

knowledge more consistently increased confidence.

In most of the models, the interaction between domain knowledge and AI 

recommendations was not significant (see Models 1-3, Table 6). However, for animal 

images, the effect of AI recommendations on confidence decreased as domain knowledge 

increased (see Figure 4). In Model 4 (Table 6), the interaction of animal domain 

knowledge and AI recommendations decreased confidence (fi = -.19, t = -5.32, p < .001). 

As animal domain knowledge increased, the additive effect of domain knowledge 

decreased when AI recommendations were provided. This suggests that the AI 

recommendations were more effective for increasing confidence when domain 

knowledge was low. When domain knowledge was high, the AI recommendations had

little effect on confidence.
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W ithin-subjects —  Before Al —  After Al

Figure 4. Effect of animal (b, d) and plant (a, c) domain knowledge on accuracy (a, b) 
and confidence (c, d). For animal domain knowledge, the effect of ranked AI 

recommendations on confidence (d) decreases as domain knowledge increases. Dotted 
red line represents AI accuracy in plants (58%) and animals (62%).

In contrast with Table 4, when separated by plants and animals, uncertainty 

information significantly increased participants' accuracy for plant images and confidence 

for animal images (see Table 7). This suggests the results in Table 4 are largely driven by 

plants, rather than animals.

Participants had higher accuracy when provided uncertainty information for 

plants (P = .08, t = 4.33, p < .001, d  = .13), but there was no effect for animals (p = .21). 

This suggests that participants may have relied on the uncertainty information more when 

they had lower domain knowledge. In addition, perceived AI usefulness increased 

accuracy for animals (^ = .14, t = 3.67, p < .001, d  = .04). This suggests that participants 

who perceived usefulness may be a better predictor of AI reliance when domain 

knowledge is higher. Perceived task difficulty increased accuracy for plants (^ = .02, t =
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2.76, p = .006, d = .05), suggesting that participants who perceived the task as more 

difficult may have relied on the AI more.

Table 6. Linear mixed effects regression model suggests the interaction of animal domain 
knowledge and AI recommendations decreases confidence.

Accuracy Confidence

Fixed Effects Model 1: 
Plants
B (SE)

Model 2: 
Animals 
B (SE)

Model 3: 
Plants
B (SE)

Model 4: 
Animals 
B (SE)

Intercept .38 (.07) *** .37 (.08) *** .55 (.12) *** .44 (.12) ***

AI Recommendations .24 (.01) *** .16 (.02) *** .16 (.01) *** .23 (.02) ***

Domain Knowledge .07 (.03) * .10 (.03) ** .24 (.05) *** .36 (.04) ***

Knowledge*AI -.06 (.04) -.06 (.03) -.04 (.04) -.19 (.04) ***

recommendations

Avg. time taken .00 (.00) .00 (.00) .00 (.00) .00 (.00)

Attention check .00 (.01) .00 (.01) -.04 (.02) -.02 (.02)

Task difficulty .00 (.01) -.00 (.01) -.01 (.01) -.02 (.01) *

AI trustworthiness .00 (.01) -.00 (.01) .01 (.01) .01 (.01)

Age (logged) -.05 (.02) * .03 (.02) -.06 (.03) -.03 (.03)

Male -.01 (.01) -.02 (.01) .01 (.02) .03 (.02)

College .03 (.01) * -.01 (.01) .03 (.02) .02 (.02)

Random Effects V (<J) V (<J) V (<J) V (<J)

Individual .00 (.05) .00 (.07) .01 (.12) .01 (.11)

Residuals .01 (.08) .01 (.08) .01 (.09) .01 (.08)

Number of Images 19 13 19 13

N 398 398 398 398

Note: *p < .05, **p < .01, and ***p < .001.
See Table A.1 in appendix for detailed results of each model.
B = Estimate, SE = Standard Error, V = Variance, a = Standard Deviation, N = Number of Observation
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Participants had higher confidence when provided uncertainty information for 

animals (fi = .11, t = 2.81, p = .005, d  = .004), but there was no effect for plants (p = .07). 

This suggests that participants may have used the AI recommendations for confirmation, 

increasing their confidence. However, this did not work for plants, when they had low 

domain knowledge. In addition, perceived AI usefulness increased confidence for plants 

(fi = .55, t = 8.90, p < .001, d  = .29) and animals (fi = .48, t = 9.17, p < .001, d  = 1.35), 

consistent with Table 3.

When separated by plants and animals, domain knowledge significantly increased 

confidence, but not accuracy in Table 7. For both plants and animals, domain knowledge 

did not significantly increase post-AI accuracy (p >.01). This suggests that domain 

knowledge did not allow participants to better leverage the uncertainty information. 

However, domain knowledge significantly increased post-AI confidence for both plants 

(fi = .19, t = 3.20, p = .002, d  = .08) and animals (fi = .28, t = 5.54, p < .001, d = .08). 

This suggests that participants with higher domain knowledge tended to be more 

confident in the post-AI assessment, although the reasons may be different between 

plants and animals.

In most of the models, the interaction between domain knowledge and uncertainty 

information was not significant (see Models 1-3, Table 7). However, for animal images, 

post-AI confidence increased when no uncertainty information was provided and stayed 

constant when AI information was provided (see Figure 5d). In Model 4 (Table 7), the 

interaction of animal domain knowledge and uncertainty information decreased 

confidence (fi = -0.21, t = -2.95, p = 0.004, d  = 0.03). The interaction estimate effectively 

cancels out the effect of domain knowledge (0.28 -  0.21). This suggests that participants
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who received uncertainty information tended to not have different confidence levels 

despite varying in terms of domain knowledge.

It is important to note that there were more images of plants than animals. As a 

result, participants were penalized less for each mistake on the plant images (18/19 = 

95%) than the animal images (12/13 = 92%). Some, but not all, of the differences in 

results for plants and animals can be attributed to this difference. Additionally, no 

participant who were randomly placed in receiving the uncertainty information reported 

plant knowledge higher than 0.6.

Figure 5. Effect of animal (b, d) and plant (a, c) domain knowledge on accuracy (a, b) 
and confidence (c, d). For animal domain knowledge, the effect of uncertainty 

information on confidence (d) decreases as domain knowledge increases. Dotted red line 
represents AI accuracy in plants (58%) and animals (62%).
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Table 7. Linear regression model suggests the interaction of animal domain knowledge 
and uncertainty information decreases confidence.

Accuracy Confidence

Model 1: 
Plants
B (SE)

Model 2: 
Animals 
B (SE)

Model 3: 
Plants
B (SE)

Model 4: 
Animals 
B (SE)

Intercept .40 (.08) *** .42 (.08) *** .51 (.12) *** .46 (.11) ***

Uncertainty information .08 (.02) *** .04 (.03) .05 (.03) .11 (.04) **

Domain Knowledge .04 (.04) .05 (.04) .19 (.06) ** .28 (.05) ***

Knowledge*Uncertainty information .01 (.07) .00 (.05) -.23 (.10) * -.21 (.07) **

Avg. time taken -.00 (.00) .00 (.00) .00 (.00) .00 (.00)

Attention check .02 (.02) .00 (.02) -.04 (.02) -.01 (.02)

Avg. AI usefulness .11 (.04) * .14 (.04) *** .55 (.06) *** .48 (.05) ***

Task difficulty .02 (.01) ** .01 (.01) -.01 (.01) -.02 (.01) *

AI trustworthiness -.00 (.01) -.01 (.01) -.02 (.01) -.01 (.01)

Log(age) -.02 (.02) .02 (.02) -.07 (.03) * -.05 (.03)

Gender (male = 1) -.01 (.01) -.02 (.01) .01 (.02) .02 (.02)

Education .03 (.01) * -.02 (.01) .02 (.02) .04 (.02) *

(college = 1)

N 199 199 199 199

Adjusted R2 .19 .10 .40 .42

F 5.25 2.89 13.13 14.07

Note: *p < .05, **p < .01, and ***p < .001

5. CONCLUSION

In a mixed-subject design, participants performed an image recognition task with 

and without AI recommendations (within-subjects). With the AI recommendations,

participants were randomly assigned to receive or not receive uncertainty information
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(between-subjects). We also used a self-reported measure of domain knowledge related to 

plants and animals to evaluate the effect of domain knowledge. We hypothesized that (1) 

post-AI accuracy and confidence will be higher, (2) accuracy and confidence of 

participants receiving uncertainty information will be higher than participants who did 

not receive it, and (3) the interaction between AI recommendations and uncertainty 

information with domain knowledge will increase accuracy.

Based on the results, we have 3 primary findings, (1) AI recommendations 

increased accuracy and confidence overall, (2) uncertainty information increased 

accuracy but did not affect users’ confidence, and (3) domain knowledge interacting with 

AI recommendations and uncertainty information decreased confidence, particularly for 

animals. In our study, AI recommendations improved users' accuracy and confidence 

across all the models, even in different domains. None of the other covariates were 

significant, suggesting the increase in accuracy and confidence was mainly due to AI 

recommendations. In general, the human-AI team did not perform better than the AI 

alone, similar to studies on recidivism prediction (Green & Chen, 2019; Grgic-Hlaca et 

al., 2019; Lin et al., 2020) and unlike high-stakes healthcare studies (Bien et al., 2018; 

Lakhani & Sundaram, 2017; Patel et al., 2019; Xiong et al., 2020). Similar to this study, 

the recidivism studies used laypeople from online survey platform like Amazon mTurk, 

whereas the healthcare studies used specific domain experts.

Uncertainty information improved accuracy but did not affect confidence. Even 

though the overall accuracy improved, uncertainty information had significant effects on 

plant images but not animal images which could mean the effects of uncertainty may 

depend on domain knowledge as well. Results also indicate that participants found the AI
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recommendations and uncertainty information useful, which suggests they may have 

been relying on the AI more which agrees with the findings of Antifakos et al. (2005). 

However, unlike the results from our study, Gkatzia et al. (2016) found uncertainty 

information to increase users’ confidence as well. Providing numbers, text, and visual 

together could be reason Gkatzia et al. (2016) found significant results in their study. In 

addition, complexity of this study is significantly higher than Gkatzia et al. (2016).

The interaction effects between domain knowledge and AI recommendations or 

between domain knowledge and uncertainty information is situational since the 

interaction effects are significant in decreasing the confidence of the participants for 

images of animals only. Overall, participants reported higher domain knowledge for 

animals than plants. Results also suggest that participants were more accurate in 

identifying animal images. Results indicate domain knowledge increased users’ 

confidence consistently across both domains. Effect of AI recommendations on accuracy 

was larger in plant images and on confidence was larger in animal images suggesting that 

users relied on AI more when domain knowledge was low (plants) and used Al’s 

recommendations as confirmation when domain knowledge was high (animals). Results 

of uncertainty information on accuracy and confidence across both domains are similar to 

the effects of AI recommendations. The interaction effect between domain knowledge & 

AI recommendations and domain knowledge & uncertainty information significantly 

decreased users’ confidence in animal domain. This suggests that AI recommendations 

had little effect on confidence when domain knowledge was high. Results also suggests 

that participants who received uncertainty information tended to not have different 

confidence levels despite varying in terms of domain knowledge.
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This study also has its limitations. Participants were gathered from Prolific, as it 

would be expensive and difficult to gather experts for this study. The domain knowledge 

scores were self-reported and may not reflect the true level of knowledge as people might 

not be a good judge and may have been influenced by their perception of task 

performance. As Greis et al. (2017) and Zhou et al. (2015) mention, research on users’ 

confidence due to AI recommendations and uncertainty information is limited. So, future 

work should continue to examine this outcome. Research on expert vs novice interacting 

with decision support systems in high-stake situations were also limited.

In the future, studies can focus on domain knowledge interacting with 

recommendation systems for high-stake decisions to determine the effects on users’ 

metacognition. Since domain knowledge effects carry less weight in this study due to 

subjective interpretation, in the future, it is recommended to design an experiment where 

domain knowledge interaction with recommendation systems is examined in terms of 

expert vs. novices.

Decision support systems are integrated into various fields at an increasing rate. 

However, effects of providing uncertainty information on users’ accuracy and confidence 

is still being researched. Results of this study indicate that user’s performance will 

improve with AI recommendations and uncertainty information. So, it will be valuable 

for decision support systems to provide uncertainty information in more than one format 

along with the AI recommendations.



49

REFERENCES

Antifakos, S., Kern, N., Schiele, B., & Schwaninger, A. (2005). Towards improving trust 
in context-aware systems by displaying system confidence. ACM International 
Conference Proceeding Series, 111, 9-14. https://doi.org/10.1145/1085777.1085780

Arshad, S. Z., Zhou, J., Bridon, C., Chen, F., & Wang, Y. (2015). Investigating User 
Confidence for Uncertainty Presentation in Predictive Decision Making.
Proceedings o f the Annual Meeting o f the Australian Special Interest Group for 
Computer Human Interaction, 352-360. https://doi.org/10.1145/2838739.2838753

Ashktorab, Z., Liao, Q. V., Dugan, C., Johnson, J., Pan, Q., Zhang, W., Kumaravel, S., & 
Campbell, M. (2020). Human-AI Collaboration in a Cooperative Game Setting. 
Proceedings o f the ACM on Human-Computer Interaction, 4(CSCW2), 1-20. 
https://doi.org/10.1145/3415167

Bansal, G., Tongshuang, W. U., Zhou, J., Raymond, F. O. K., Nushi, B., Kamar, E.,
Ribeiro, M. T., & Weld, D. S. (2020). Does the Whole Exceed its Parts? The Effect 
of AI Explanations on Complementary Team Performance. ArXiv.

Bhatt, U., Antoran, J., Zhang, Y., Liao, Q. V., Sattigeri, P., Fogliato, R., M elanin, G. G., 
Krishnan, R., Stanley, J., Tickoo, O., Nachman, L., Chunara, R., Srikumar, M., 
Weller, A., & Xiang, A. (2020). Uncertainty as a Form o f Transparency: 
Measuring, Communicating, and Using Uncertainty. 
http://arxiv.org/abs/2011.07586

Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., Bereket, M., Patel, B. N., 
Yeom, K. W., Shpanskaya, K., Halabi, S., Zucker, E., Fanton, G., Amanatullah, D. 
F., Beaulieu, C. F., Riley, G. M., Stewart, R. J., Blankenberg, F. G., Larson, D. B.,
... Lungren, M. P. (2018). Deep-learning-assisted diagnosis for knee magnetic 
resonance imaging: Development and retrospective validation of MRNet. PLoS 
Medicine, 15(11), 1-19. https://doi.org/10.1371/journal.pmed.1002699

Brand-Gruwel, S., Kammerer, Y., van Meeuwen, L., & van Gog, T. (2017). Source
evaluation of domain experts and novices during Web search. Journal o f Computer 
Assisted Learning, 55(3), 234-251. https://doi.org/10.1111/jcal.12162

Budescu, D. V., Por, H. H., & Broomell, S. B. (2012). Effective communication of 
uncertainty in the IPCC reports. Climatic Change, 113(2), 181-200. 
https://doi.org/10.1007/s10584-011-0330-3

https://doi.org/10.1145/1085777.1085780
https://doi.org/10.1145/2838739.2838753
https://doi.org/10.1145/3415167
http://arxiv.org/abs/2011.07586
https://doi.org/10.1371/journal.pmed.1002699
https://doi.org/10.1111/jcal.12162
https://doi.org/10.1007/s10584-011-0330-3


50

Bussone, A., Stumpf, S., & O’Sullivan, D. (2015). The role of explanations on trust and 
reliance in clinical decision support systems. Proceedings - 2015 IEEE International 
Conference on Healthcare Informatics, ICHI2015, October, 160-169. 
htts://doi.org/10.1109/ICHI.2015.26

Dane, E., Rockmann, K. W., & Pratt, M. G. (2012). When should I trust my gut? Linking 
domain expertise to intuitive decision-making effectiveness. Organizational 
Behavior and Human Decision Processes, 119(2), 187-194. 
https://doi.org/10.10167j.obhdp.2012.07.009

Feng, S., & Boyd-Graber, J. (2019). What can AI do for me? 229-239. 
https://doi.org/10.1145/3301275.3302265

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty 
displays using quantile dotplots or CDFs improve transit decision-making. 
Conference on Human Factors in Computing Systems - Proceedings, 2018-April, 1­
12. https://doi.org/10.1145/3173574.3173718

Galesic, M. (2010). Statistical Numeracy for Health. Archives o f Internal Medicine, 
170(5), 462. https://doi.org/10.1001/archinternmed.2009.481

Gkatzia, D., Lemon, O., & Rieser, V. (2016). Natural language generation enhances 
human decision-making with uncertain information. 54th Annual Meeting o f the 
Association for Computational Linguistics, ACL 2016 - Short Papers, 264-268. 
https://doi.org/10.18653/v1/p16-2043

Green, B., & Chen, Y. (2019). Disparate interactions: An algorithm-in-the-loop analysis 
of fairness in risk assessments. FAT* 2019 - Proceedings o f the 2019 Conference on 
Fairness, Accountability, and Transparency, 90-99. 
https://doi.org/10.1145/3287560.3287563

Greis, M., Avci, E., Schmidt, A., & Machulla, T. (2017). Increasing users’ confidence in 
uncertain data by aggregating data from multiple sources. Conference on Human 
Factors in Computing Systems - Proceedings, 2017-May, 828-840. 
https://doi.org/10.1145/3025453.3025998

Grgic-Hlaca, N., Engel, C., & Gummadi, K. P. (2019). Human decision making with 
machine advice: An experiment on bailing and jailing. Proceedings o f the ACM on 
Human-Computer Interaction, 3(CSCW). https://doi.org/10.1145/3359280

Huang, Q., Chen, Y., Liu, L., Tao, D., & Li, X. (2020). On Combining Biclustering 
Mining and AdaBoost for Breast Tumor Classification. IEEE Transactions on 
Knowledge and Data Engineering, 32(4), 728-738. 
https://doi.org/10.1109/TKDE.2019.2891622

https://doi.org/10.10167j.obhdp.2012.07.009
https://doi.org/10.1145/3301275.3302265
https://doi.org/10.1145/3173574.3173718
https://doi.org/10.1001/archinternmed.2009.481
https://doi.org/10.18653/v1/p16-2043
https://doi.org/10.1145/3287560.3287563
https://doi.org/10.1145/3025453.3025998
https://doi.org/10.1145/3359280
https://doi.org/10.1109/TKDE.2019.2891622


51

Knijnenburg, B. P., Reijmer, N. J. M., & Willemsen, M. C. (2011). Each to his own: How 
different users call for different interaction methods in recommender systems.
RecSys ’11 - Proceedings o f the 5th ACM Conference on Recommender Systems, 
141-148. https://doi.org/10.1145/2043932.2043960

Lakhani, P., & Sundaram, B. (2017). THORACIC IMAGING: Deep Learning at Chest 
Radiography Lakhani and Sundaram. Radiology, 284(2), 574-582. 
http://pubs.rsna.org.ezp-prod1.hul.harvard.edu/doi/pdf/10.1148/radiol.2017162326

Lin, Z. J., Jung, J., Goel, S., & Skeem, J. (2020). The limits of human predictions of 
recidivism. Science Advances, 6(7), 1-9. https://doi.org/10.1126/sciadv.aaz0652

Lipkus, I. M., & Hollands, J. G. (1999). The visual communication of risk. Journal o f the 
National Cancer Institute. Monographs, 27701(25), 149-163. 
https://doi.org/10.1093/oxfordjournals.jncimonographs.a024191

Logg, J. M., Minson, J. A., & Moore, D. A. (2018). Algorithm appreciation: People 
prefer algorithmic to human judgment. Organizational Behavior and Human 
Decision Processes, 151, 90-103. https://doi.org/10.1016Zj.obhdp.2018.12.005

Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People 
prefer algorithmic to human judgment. Organizational Behavior and Human 
Decision Processes, 151(December 2018), 90-103. 
https://doi.org/10.1016/j.obhdp.2018.12.005

Maadi, M., Khorshidi, H. A., & Aickelin, U. (2021). A review on human-ai interaction in 
machine learning and insights for medical applications. International Journal o f 
Environmental Research and Public Health, 18(4), 1-21. 
https://doi.org/10.3390/ijerph18042121

Madsen, M., & Gregor, S. (2000). Measuring Human-Computer Trust. Proceedings of 
Eleventh Australasian Conference on Information Systems, 6-8. 
http://books.google.com/books?hl=en&lr=&id=b0yalwi1HDMC&oi=fnd&pg=PA10 
2&dq=The+Big+Five+Trait+Taxonomy:+History,+measurement,+and+Theoretical 
+Perspectives&ots=758BNaTvOi&sig=L52e79TS6r0Fp2m6xQVESnGt8mw%5Cn 
http://citeseerx.ist.psu.edu/vi ewdoc/downl oad?doi=

McNamara, D. M., Goldberg, S. L., Latts, L., Atieh Graham, D. M., Waintraub, S. E., 
Norden, A. D., Landstrom, C., Pecora, A. L., Hervey, J., Schultz, E. V., Wang, C.
K., Jungbluth, N., Francis, P. M., & Snowdon, J. L. (2019). Differential impact of 
cognitive computing augmented by real world evidence on novice and expert 
oncologists. Cancer Medicine, 8(15), 6578-6584. https://doi.org/10.1002/cam4.2548

https://doi.org/10.1145/2043932.2043960
http://pubs.rsna.org.ezp-prod1.hul.harvard.edu/doi/pdf/10.1148/radiol.2017162326
https://doi.org/10.1126/sciadv.aaz0652
https://doi.org/10.1093/oxfordjournals.jncimonographs.a024191
https://doi.org/10.1016Zj.obhdp.2018.12.005
https://doi.org/10.1016/j.obhdp.2018.12.005
https://doi.org/10.3390/ijerph18042121
http://books.google.com/books?hl=en&lr=&id=b0yalwi1HDMC&oi=fnd&pg=PA10
http://citeseerx.ist.psu.edu/vi
https://doi.org/10.1002/cam4.2548


52

Patel, B. N., Rosenberg, L., Willcox, G., Baltaxe, D., Lyons, M., Irvin, J., Rajpurkar, P., 
Amrhein, T., Gupta, R., Halabi, S., Langlotz, C., Lo, E., Mammarappallil, J., 
Mariano, A. J., Riley, G., Seekins, J., Shen, L., Zucker, E., & Lungren, M. (2019). 
Human-machine partnership with artificial intelligence for chest radiograph 
diagnosis. Npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0189-7

Rauschecker, A. M., Rudie, J. D., Xie, L., Wang, J., & Gee, J. C. (2020).
Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI. Radiology, 
00, 1-12.

Rosenberg, L., & Willcox, G. (2019). Artificial Swarm Intelligence The technology of 
Artificial Swarm Intelligence ( ASI ) has been shown to amplify. IntelliSys, 
September, 1-18.

Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and fast - But is it 
good? Evaluating non-expert annotations for natural language tasks. EMNLP 2008 - 
2008 Conference on Empirical Methods in Natural Language Processing, 
Proceedings o f the Conference: A Meeting o f SIGDAT, a Special Interest Group of 
the ACL, October, 254-263.

Spiegelhalter, D. (2017). Risk and uncertainty communication. Annual Review of
Statistics and Its Application, 4, 31-60. https://doi.org/10.1146/annurev-statistics- 
010814-020148

Subramanian, H. V., Canfield, C., Shank, D. B., Andrews, L., & Dagli, C. (2020). 
Communicating uncertain information from deep learning models in human 
machine teams. ASEM 41st International Annual Conference Proceedings “Leading 
Organizations through Uncertain Times.”

Viswanath, Venkatesh, & Fred D., Davis. (2000). A Theoretical Extension of the 
Technology Acceptance Model: Four Longitudinal Field Studies. Management 
Science, 46 (2) (May 2014), 186-204.

Wang, J., Molina, M. D., & Sundar, S. S. (2020). When expert recommendation
contradicts peer opinion: Relative social influence of valence, group identity and 
artificial intelligence. Computers in Human Behavior, 107(July 2019), 106278. 
https://doi.org/10.1016d.chb.2020.106278

Wang, W., & Benbasat, I. (2013). A Contingency approach to investigating the effects of 
user-system interaction modes of online decision aids. Information Systems 
Research, 24(3), 861-876. https://doi.org/10.1287/isre.1120.0445

https://doi.org/10.1038/s41746-019-0189-7
https://doi.org/10.1146/annurev-statistics-010814-020148
https://doi.org/10.1146/annurev-statistics-010814-020148
https://doi.org/10.1016d.chb.2020.106278
https://doi.org/10.1287/isre.1120.0445


53

Xiong, Z., Wang, R., Bai, H. X., Halsey, K., Mei, J., Li, Y. H., Atalay, M. K., Jiang, X.
L., Fu, F. X., Thi, L. T., Huang, R. Y., Liao, W. H., Pan, I., Choi, J. W., Zeng, Q. H., 
Hsieh, B., CuiWang, D., Sebro, R., Hu, P. F., ... Qi, Z. Y. (2020). Artificial 
Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 
from Pneumonia of Other Origin at Chest CT. Radiology, 296(3), E156-E165. 
https://doi.org/10.n48/radiol.2020201491

Zhang, Y., Liao, Q. V., & Bellamy, R. K. E. (2020). Effect of confidence and explanation 
on accuracy and trust calibration in ai-assisted decision making. ArXiv.

Zhou, J., Bridon, C., Chen, F., Khawaji, A., & Wang, Y. (2015). Be Informed and Be 
Involved. 923-928. https://doi.org/10.1145/2702613.2732769

Zikmund-Fisher, B. J., Smith, D. M., Ubel, P. A., & Fagerlin, A. (2007). Validation of 
the subjective numeracy scale: Effects of low numeracy on comprehension of risk 
communications and utility elicitations. Medical Decision Making, 27(5), 663-671. 
https://doi.org/10.1177/0272989X07303824

https://doi.org/10.n48/radiol.2020201491
https://doi.org/10.1145/2702613.2732769
https://doi.org/10.1177/0272989X07303824


54

SECTION 

2. CONCLUSION

The results of both studies suggest that AI recommendations significantly 

improve the accuracy of the participants. In Paper I, results indicated that ranked multiple 

AI recommendations improves accuracy rather than single AI recommendations. Paper II 

confirms that ranked multiple AI recommendations improve the accuracy of the 

participants across all domains as well. Paper II also suggests that ranked multiple AI 

recommendations significantly improve participants’ confidence. Results of both these 

studies agree with the literature reviewed on recidivism prediction with AI 

recommendations (Green & Chen, 2019; Grgic-Hlaca et al., 2019; Lin et al., 2020). 

However, studies in this thesis and in recidivism studies, human-AI teams performed 

better than humans but not the AI alone. All these studies included laypeople making the 

decisions so, future studies should design experiments in terms of experts vs novices to 

compare results with studies that suggests Human-AI teams perform better than humans 

and AI alone (Bansal et al., 2020; Bien et al., 2018; Lakhani & Sundaram, 2017; Patel et 

al., 2019; Rosenberg & Willcox, 2019; Xiong et al., 2020).

The literature reviewed also support that accuracy increased when AI 

recommendations uncertainty information is provided (Bansal et al., 2020; Fernandes et 

al., 2018; Gkatzia et al., 2016). The effects of providing AI recommendations uncertainty 

information on accuracy were unclear in Paper I as it was presented in terms of 

confidence bars that were monochrome and were overlapped by texts. Limitations of 

Paper I helped design the representation of uncertainty information in Paper II better



55

which confirmed uncertainty information will significantly improve participants 

accuracy. In Paper II, uncertainty information was provided both numerically and 

visually in terms of percentage values and bars. The bars were color coded to signify 

varying uncertainty and were separated from texts as well. As a result, the saliency of 

representing uncertainty information improved in Paper II which may have been the 

reason participants accuracy improved in Paper II compared to Paper I.

Gkatzia et al. (2016) found providing uncertainty information in terms of texts, 

numbers, and graphs improved users’ confidence however, research on AI 

recommendations uncertainty information effect on users is limited (Greis et al., 2017; 

Zhou et al., 2015). Effects of uncertainty information on participants’ confidence is 

unclear in Paper II. Future studies should examine the effects of uncertainty on users’ 

confidence. One method would be improving the Al’s accuracy on its top 

recommendation and involving domain experts.

Lastly, our findings agree with the literature reviewed -  high domain knowledge 

increases accuracy (Brand-Gruwel et al., 2017; Snow et al., 2008). Participants reported 

higher domain knowledge for animals than plants and results show that confidence 

increased across both domains suggesting that domain knowledge more consistently 

increased confidence. Results of Paper II indicates that AI recommendations improved 

accuracy across both domains however, the effect was larger for plant images suggesting 

that participants relied on AI more when domain knowledge was low which is similar to 

findings of Wang & Benbasat (2013).

Providing uncertainty information significantly improved accuracy in plants but 

not for animals, again indicating that participants relied on AI more when domain
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knowledge was low. This finding agrees with Bussone et al. (2015) who also found 

participants rely on AI uncertainty information more when domain knowledge is low.

The interaction between AI recommendation and knowledge or uncertainty information 

and knowledge was situational as it only showed significant effects on animal images 

domain by decreasing users’ confidence only. This suggests that AI recommendations 

had little effect on confidence when domain knowledge was high.

Results also suggests that participants who received uncertainty information 

tended to not have different confidence levels despite varying in terms of domain 

knowledge. Research on different levels of knowledge interacting AI recommendations 

or AI recommendations uncertainty information is limited so future work can include 

investigating this further. Domain knowledge was self-rated by the participants at the end 

of the experiment of Paper II. In the future it will be beneficial if the experiment is 

designed in terms of expert vs novice. It would be ideal if the experiment setting involves 

a high-stakes scenario. In addition, one could examine the effects of AI recommendations 

and uncertainty on accuracy and confidence when there is a time limit like kidney organ 

transplant process. In a kidney organ allocation process several stakeholders make 

decisions from Organ Procurement Organizations (OPOs), Transplant Centers (TCs), and 

organ recipients typically in a very short time frame. A National Science Foundation 

(NSF) planning grant funded project focuses on reducing the kidney discard rate in the 

kidney allocation process with the use of an AI decision support system. Results of this 

thesis can be applied when designing the AI for users by providing multiple AI 

recommendations in ranked order instead of single AI recommendations. Providing AI
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recommendation’s uncertainty information both numerically and visually through bar 

plots and percentage value will also aid transplant center workers compare between the 

multiple recommendations.
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APPENDIX

Table A.1. Mean of individual cognitive measures responses show that participants found 
the AI information more useful than reliable.

AI recommendation w/o 
uncertainty information

AI recommendations w/ 
uncertainty information

AI Reliability Scales
The AI always provided the advice I  

required to make a decision.

M (SD) 
3.73 (1.73)

M (SD) 
3.85 (1.59)

The AI performed reliably. 4.16 (1.54) 4.44 (1.45)

The AI responded the same way under the 
same conditions at different times.

4.32 (1.48) 3.94 (1.49)

I  could rely on the AI to function 
properly.

4.20(1.44) 4.20 (1.39)

The AI evaluated the images consistently. 4.32 (1.56) 4.28 (1.36)

AI Usefulness scales
Using the AI recommendations improved 

my performance.
4.82 (1.40) 5.42 (0.99)

Using AI recommendations in the task 
increased my productivity

4.94 (1.56) 5.38 (1.08)

Using the AI recommendations in the task 
enhanced my effectiveness.

4.88 (1.64) 5.51 (1.02)

I  found the AI to be useful in completing
the task

4.98 (1.49) 5.64 (1.05)
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Table A.2. Linear mixed effects regression model suggests the interaction of animal 
domain knowledge and AI recommendations decreases confidence.

Accuracy Confidence
Fixed Effects Model 1: Model 2: Model 3: Model 4:

Plants Animals Plants Animals
B (SE) B (SE) B (SE) B (SE)

Intercept 0.26 (0.01) *** 0.43 (0.02) *** 0.33 (0.01) *** 0.31 (0.02) ***

AI 0.24 (0.01) *** 0.16 (0.02) *** 0.15 (0.01) *** 0.23 (0.02) ***

Recommendations

Domain 0.06 (0.03) 0.10 (0.03) ** 0.27 (0.05) *** 0.37 (0.04) ***

Knowledge

Knowledge*AI -0.06 (0.04) -0.05 (0.03) -0.04 (0.04) -0.19 (0.04) ***

recommendations

Random Effects V (a) V (a) V (a) V (a)

Individual 0.00 (0.05) 0.00 (0.07) 0.01 (0.12) 0.01 (0.11)

Residuals 0.01 (0.08) 0.01 (0.08) 0.01 (0.09) 0.01 (0.08)

Number of Images 19 13 19 13

N 402 402 402 402
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Table A.3. Linear regression model suggests the interaction of animal domain knowledge 
and uncertainty information decreases confidence

Accuracy Confidence
Model 1: Model 2: Model 3: Model 4:

Plants Animals Plants Animals
B (SE) B (SE) B (SE) B (SE)

Intercept 0.46 (0.01) *** 0.55 (0.02) *** 0.44 (0.02) *** 0.46 (0.03) ***

Uncertainty 0.07 (0.02) *** 0.06 (0.03) 0.10 (0.03) ** 0.14 (0.05) **

information

Domain Knowledge 0.01 (0.04) 0.07 (0.04) 0.34 (0.06) *** 0.31 (0.06) ***

Knowledge*Uncerta -0.02 (0.07) -0.04 (0.05) -0.33 (0.11) ** -0.26 (0.09) **

inty information

N 2 0 1 2 0 1 2 0 1 2 0 1

Adjusted R2 0 . 1 1 0.05 0 . 1 1 0 . 1 1

F 9  3 0 *** 4.39** 9.93*** 9.42***

Note: *p < .05, **p < .01, and ***p < .001
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Table A.4. Linear mixed effects regression shows that domain knowledge significantly
increased participants overconfidence.

Over confidence 1 Over Over Over
confidence 2 confidence 3 confidence 4

Plants Animals
B (SE)___________ B (SE)_________ B (SE)_________B (SE)

Intercept 0.07 (0.01) *** 0.20 (0.13) 0.22 (0.14) 0.07 (0.15)

AI Recommendations - 0.04 (0.01) *** - 0.04 (0.01) *** 0.01 (0.02) 0.07 (0.03) **

Domain Knowledge 0.21 (0.07) ** 0.25 (0.06) ***

Knowledge *U ncertai - 0.06 (0.05) - 0.13 (0.05) **

nty information

Avg. time taken 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Task difficulty - 0.02 (0.01) * - 0.02 (0.01) 0.02 (0.01)

AI trustworthiness 0.01 (0.01) 0.01 (0.01) 0.02 (0.01)

Attention check - 0.05 (0.02) * - 0.03 (0.03) 0.02 (0.03)

log (Age) - 0.03 (0.04) 0.07 (0.04) - 0.06 (0.04)

Male 0.03 (0.02) 0.04 (0.02) 0.05 (0.02)

College 0.01 (0.02) 0.03 (0.03) 0.03 (0.03)

Random Effects V (a) V (a) V (a) V (a)

Individual 0.02 (0.14) 0.02 (0.14) 0.02 (0.14) 0.02 (0.14)

Residuals 0.01 (0.09) 0.01 (0.09) 0.01 (0.11) 0.01 (0.11)

N 402 398 398 398

Note: *p < .05, **p < .01, and ***p < .001



62

Table A.5. Effects of uncertainty information on overconfidence is situational however, 
participants who perceived AI as more useful were significantly overconfident.

Over
confidence 1 

B (SE)

Over
confidence 2 

B (SE)

Over
confidence 3 

Plants
B (SE)

Over
confidence 4 

Animals
B (SE)

Intercept 0.05 (0.02) ** 0.09 (0.13) 0.10 (0.14) 0.04 (0.14)

Uncertainty - 0.03 (0.02) - 0.06 (0.02) ** - 0.01 (0.03) 0.07 (0.05)

Information

Domain Knowledge 0.12 (0.07) 0.22 (0.06) ***

Knowledge*Uncerta - 0.16 (0.11) - 0.22 (0.09) *

inty information

Avg. AI use 0.47 (0.07) *** 0.40 (0.07) *** 0.33 (0.07) ***

Avg. time taken 0.00 (0.00) 0.00 (0.00) 0.00

Task difficulty - 0.03 (0.01) ** - 0.02 (0.01) * - 0.03 (0.01) *

AI trustworthiness - 0.01 (0.01) - 0.01 (0.01) - 0.00 (0.01)

Attention check - 0.05 (0.02) - 0.02 (0.03) - 0.01 (0.03)

Log(age) - 0.05 (0.04) 0.07 (0.04) * - 0.08 (0.04) *

Male 0.02 (0.02) 0.05 (0.02) * 0.04 (0.02)

College 0.01 (0.02) 0.06 (0.02) * 0.06 (0.04) *

N 201 199 199 199

Adj-R2 0.01 0.26 0.24 0.22

F 2.03 8.59 *** 6.84 *** 6.03 ***

Note: *p < .05, **p < .01, and ***p < .001
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