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ABSTRACT

iii

Millions of acres of forests are destroyed by wildfires every year, causing ecological, 

environmental, and economical losses. The recent wildfires in Australia and the Western 

U.S. smothered multiple states with more than fifty million acres charred by the blazes. The 

warmer and drier climate makes scientists expect increases in the severity and frequency 

of wildfires and the associated risks in the future. These inescapable crises highlight the 

urgent need for early detection and prevention of wildfires. This work proposed an energy 

management framework that integrated unmanned aerial vehicle (UAV) with air quality 

sensors for early wildfire detection and forest monitoring. An autonomous patrol solution 

that effectively detects wildfire events, while preserving the UAV battery for a larger area of 

coverage was developed. The UAV can send real-time data (e.g., sensor readings, thermal 

pictures, videos, etc) to nearby communications base stations (BSs) when a wildfire is 

detected. An optimization problem that minimized the total UAV’s consumed energy and 

satisfied a certain quality-of-service (QoS) data rate were formulated and solved. More 

specifically, this study optimized the flight track of a UAV and the transmit power between 

the UAV and BSs. Finally, selected simulation results that illustrate the advantages of the 

proposed model were proposed.
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NOMENCLATURE

Symbol Description

Bo Communication bandwidth

C (x ,y ,z) Steady-state concentration at a point(x,y,z).

Ec Total UAV communications energy.

E f Total UAV flying energy.

Etot Total UAV energy.

G Earth gravity.

H Effective height of the emission point.

Ka Ambient air temperature.

Ks Temperature of the plume.

No Noise power

P L \oS [t ] Line-of-sight path loss between the UAV and BS l during time t .

PL ^LoS [t ] Non-line-of-sight path loss between the UAV and BS l during time t.

Pc [t ] Total transmitted power during time t .

p f  [t ] Flying power at time t .

Pa Ambient pressure.

Pn [t] UAV’s transmit power allocated for data type n.

Ps Consumed power due to UAV hardware.
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Q Emission rate.

Rfh,n Data rate threshold of type n.

V UAV speed.

Ax Horizontal spacing distance or horizontal gap.

©i [t] elevation angle between the UAV and BS l in degree.

UAV transmit power budget.

x Maximum horizontal spacing distance.

8 Number of quantization levels.

Q [t ] Association between the UAV and BS l during time t .

f Time slot duration.

0  [t ] UAV location during time t .

K Emission rate factor.

Vs Upward velocity of the plume

Wp Number of the UAV propellers.

<A Air density

P [t] Wildfire binary variable indication at time t .

a  [t] Data rate loss-factor.

(x) Horizontal spread parameters.

a z (x ) Vertical spread parameters.

T Genetic algorithm survival strings.
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6W Wind direction.

^LoS Line-of-sight shadowing loss.

^nl0s Non-line-of-sight shadowing loss.

ds Diameter of the plume at the emission point.

gl [t] Average channel gain between the UAV and BS l during time t .

h0 Height of the plume on fire.

mtot UAV mass.

rp Radius of the UAV.

u Average wind speed

z Vertical distance from the plume centerline.



1. INTRODUCTION

Wildfires destroy millions of acres of forests every year, causing ecological, environ

mental, and economic damages. During the last decade, the severity and number of wildfires 

increased dramatically worldwide [1]. In 2018, approximately 8.7 million acres burned in 

the United States (U.S.) only, which cost around 24 billion dollars due to infrastructure dam

age and firefighting. The recent wildfires in Australia and Western U.S. smothered multiple 

states with more than fifty million acres charred [1]. Due to climate change, the severity 

and frequency of the wildfire and the risks associated with it are expected to increase in the 

future [2]. Given the fast speed of wildfire development, early detection is a key solution to 

ensure that fires are kept under control and properly extinguished. Figure 1.1 shows images 

of a recent wildfire in Saddleridge, California, near Los Angeles in 2019 [3]. This wildfire 

resulted in deaths of two people and the evacuation of approximately 100,000 people.

1.1. CURRENT DETECTION TECHNIQUES

Watchtowers. A conventional method for wildfire detection utilizes lookout stations 

situated with extensive visibility [4]. Figure 1.2-a and Figure 1.2-b show fire lookout towers 

in southern Georgia, U.S. and in Poland [5]. This method consumes tremendous labor 

costs and is subject to issues with workers’ safety in fire detection [6, 7]. Furthermore, this 

method may delay fire detection (i.e, the worker maybe late in observing or reporting the 

fire event).

Satellite Remote Sensing. Satellite remote sensing is one of the most effective 

ways for monitoring forest fire activities [8]; they can identify active fires, evaluate burned 

areas, and assess fire emissions [9, 10]. Figure 1.3 shows satellite images provided by 

National Aeronautics and Space Administration (NASA) that detected a 2019 wildfire in
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California [11]. However, satellite imagery has limited spatial resolution (tens of meters) 

and requires the observed area to be cloud-free, thus making it difficult to identify early-stage 

wildfires [12].

Figure 1.1. Pictures from Saddleridge fire erupts in California in 2019.

Thermal Imaging. Thermal imaging detects and monitors fire. This method can be 

utilized for detecting hotspots during fire mapping and tracking fire progression. Figure 1.4 

shows a thermal image provided by the United States Geological Survey (USGS) taken in 

Florida in 2000 [13]. Several projects in the U.S. and worldwide aim to deploy large numbers 

of thermal cameras in hotspot locations and in forests. For example, as shown in Figure 1.5, 

a project taking place in California, U.S., called ALERTWildfire project, has installed 300 

fixed thermal cameras in California forests with the goal of installing approximately 1,000
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stations with advanced camera by 2022 [14]. However, thermal cameras are subject to 

limited spatial resolution and weather interference. Thick canopies may block the thermal 

signal from the fire [15].

Figure 1.2. Existing watchtowers, a) Fire lookout tower in South Georgia, United States, b) 
Fire lookout tower in Poland.

Figure 1.3. NASA satellite images in 2019, California United States.
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(a) (b)

Figure 1.4. Thermal imaging, a) Fixed thermal camera, b) A thermal image provided by 
USGS taken in Florida in 2000.

16:22 20 
16:52 106

18:52 4390 13268 4837
19:22 5326 20909 7971
19:52 6406 26378 9917
20:22 7453 32732 12029
20:52 8547 41496 15267
21:22 9652 49994 18329
21:52 10844 56571 21020

SCE West Woolsey Canyon 
Temperature

Thousand Oaks

Satellite Detections
0  Last 12 Hours 
^  Last 1210 24 Hours 
®  Last 24 to 48 Hours 
9  Last 2 lo 7 Days 
Transparency is Low Conlidonco

Pan Tilt Zoom Cameras 
Show View: 0
Show Target:

Summary

Sage Peak2

Figure 1.5. ALERTWildfire project in California U.S
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1.2. RELATED WORKS

Monitoring air quality especially tracers of wildfires emissions, such as particulate 

matter (PM) and carbon monoxide (CO) can be effective in identifying wildfire events. Air 

quality sensors are low-cost and sensitive to monitored gas species. They have low inter

ference and they use scattering source and microprocessor for particle measurements [16]. 

Generally, air quality sensors work in three steps. In the first step, the sensors use laser 

scattering to radiate particles in the air. In the second step, the sensors collect the scattering 

light data over time. In the last step, the sensors use the built-in microprocessors to measure 

the particle concentrations, equivalent particle diameters, and number of particles with 

different diameters per unit volume. Figure 1.6 shows an air quality sensor that measures 

PM2.5 concentration [17].

Figure 1.6. PM2.5 air quality sensor.
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Existing work showed that common PM sensors achieved a low limit of detec

tion [16]. By using a Kriging interpolation algorithm, the spatio-temporal distribution of 

PM can be mapped by a sensor network [18]. Conversely, low-cost CO sensors using tri- 

boelectric nanogenerators are available, and they can monitor CO concentrations without a 

battery by harvesting the movement of tree branches [19]. However, a challenge for using air 

quality sensors for wildfire detection is that an enormous number of sensors are required if 

they are deployed at fixed locations, thus, complicating data communication. Furthermore, 

it is difficult to deploy these sensors in hazard areas or forests.

The Unmanned Aerial Vehicle (UAV) is becoming a promising and realistic option 

for for wildfire detection and forest management because of its low cost, low maintenance, 

high mobility, and large coverage area including hazard areas (i.e., it can be operated in 

areas that cannot be accessed by humans or out of line-of-sight) [20, 21, 22, 23]. There are 

four types of UAVs being deployed by the National Interagency Fire Center (NIFC). Types 1 

and 2 are complex systems requiring special personnel and designated areas for launching, 

and types 3 and 4 are simple devices (i.e., drones) that can be stored in backpacks and 

launched from fire lines [24].

Previous studies on optimizing the framework for wildfire detection mainly focused 

on using thermal imaging [8,20,21,25,26,27]. These studies solved optimization problems 

to find the best watchtower locations that simultaneously minimized the cost and maximized 

the detection coverage. For instance, in [8], the authors proposed to build fixed watchtowers 

equipped with laser night vision and high-definition video cameras to monitor wildfires. 

More specifically, they formulated and solved an optimization problem to find the best 

watchtower locations that simultaneously minimized the cost and maximized the detection 

coverage. However, this solution was relatively costly and not dynamic. The work in [26] 

investigated the operational constraints, limitations, and opportunities for wildfire detection 

and monitoring of equipped UAVs with thermal camera image intensifiers. Although, there 

are various ranges of sensors can detect infrared radiation, each sensor has challenges, such
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as considerable incident energy and reflected light during daytime, the dynamic behaviour 

of fire flame, and a need for advanced and accurate computer vision algorithms. The authors 

in [25] proposed a vision-based UAV system using color and motion features to process the 

captured images a UAV is flew. They first proposed a wildfire detection color algorithm to 

extract the fire-colored pixels using the chromatic feature. Then, the color algorithm was 

followed by flow algorithms to handle the effects of the UAV’s vibration on the image quality. 

However, as mentioned earlier, thermal imaging may experience interference because the 

canopy and weather conditions.

+

Figure 1.7. Integrating the air quality sensors with the UAV.

Air quality sensors can be used to measure the concentration of fire emission sig

natures, such as PM and CO, that are the most affluent pollutants in fire emissions. The 

transport of air pollutants from combustion is not significantly affected by physical obstruc

tions, therefore combining air quality sensors with UAVs can provide more accurate fire 

detection compared to imaging methods. Moreover, the detection limits of the sensors ~ 10 

j igm ~ 3 for PM and ~ 0 .5  ppm for CO [28] are far below the clean background conditions 

(~ 35 jig  m~3 for PM and ~ 35 ppm for CO) [29]. Recent studies show that integrating 

air quality sensors with UAVs could achieve faster responses to real fire events as shown in 

Figure 1.7 [30, 31]. Therefore, integrating the air quality sensors make a sensitive and early 

alarm system for wildfires [32]. Several studies considered designing sensors that measured 

both the CO and PM values [31, 33]. For instance, [31] shows that fire detection sensitiv
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ity was enhanced by measuring CO and PM values simultaneously with active sampling. 

Combining sensor integration of CO and PM with data processing algorithms can efficiently 

differentiate between real and nuisance fire sources, and thus reducing false alarms. In [34], 

Illingworth et.al. proposed using air-quality sensors equipped with large-scale Skywalker 

UAV. The authors showed how using UAVs for measuring the pollutant's concentration in 

sub-urban scale/areas can provide a useful additional indicator variability. This can lead 

to a better usage of air quality sensors equipped with UAVs in early detection of wildfires. 

Therefore, developing UAVs equipped with low cost air quality sensors can improve the 

wildfire detection paradigm for early detection and treatment. Table 1.1 compares the 

concerns for the established and proposed wildfire detection methods.

Table 1.1. Comparison between the main current and proposed wildfire methods.

Method Concerns
Watchtowers High labor cost.

Safety issues for workers.
Subject to delays in fire detection.

Satellite Remote Sensing Limited spatial resolution.
Observed area needs to be cloud-free.

Thermal Imaging Limited resolution.
Limited weather interference.
Thick canopies may block the thermal signal from fire.

Air quality Sensors only Needs to deploy large number of sensors to cover wide area 
Harder to be deployed in hazard areas or forests

Air quality + UAV UAV battery limitation.
Needs base station for tracking and communications.

Apart from fire detection, first responders require reliable communications when the 

existing communication capabilities during wildfires fail, therefore, from the public safety 

sector's perspective, enabling UAV technology with communication transceivers to send 

real-time data, including sensor readings and pictures, to nearby communications BSs. The 

data can be then analysed for the best course of action.
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1.3. THESIS SCOPE AND CONTRIBUTIONS

This work focused on UAV types 3 and 4, due to their facile operation and routine 

usage in forest management. UAVs were previously employed to monitor progress of wild

fires at low altitudes (< 400 feet). However, their success in early-stage wildfire detection 

largely depends on the UAV patrol algorithm that determines the battery consumption and 

area of coverage in forest patrol [35]. Therefore, an efficient algorithm is needed to opti

mize the patrol of UAVs for accurate fire detection and efficient data communication, while 

maximizing forest patrol area.

Specifically, this work establishes the fundamentals of a UAV patrol algorithm 

for effective wildfire detection and forest management. It considered a UAV platform 

mounted with PM and CO sensors and equipped with the communication transceiver for 

data communication with the BSs. The main contributions of this work to the insight and 

design of energy efficient UAV patrolling systems for early wildfire detection were detailed 

in the following section.

In Section 2, the system model of wildfire detection based on integrated air quality 

sensors with the UAV was given. The contributions of this section were summarized as

follows:

• Proposing the overall UAV patrolling and communication system model. This model 

included the patrolling flight pattern and communication links between the UAV and 

BSs. It was considered that communication BSs already existed.

• Discussing the pollutant dispersion model on the UAV patrolling problem.

• Discussing the UAV communications and data rate transmission channel gain on the 

communication problem.

• Showing the overall energy model that consisted of flying energy consumption and 

transmit energy consumption.
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In Section 3, the UAV patrolling and communication mathematical problem was 

investigated. The contributions of this section were summarized as follows:

• Formulating an optimization problem that minimizes the total energy consumption 

while taking into consideration the detection threshold, achievable data rate quality, 

transmit power budget limitation, and the communication link associations between 

the UAV and BSs.

• Assuming that the UAV is transmitting different data types to selected BS simulta

neously using orthogonal frequency division multiple access (OFDMA) technique. 

Each data type had certain throughput quality-of-service (QoS).

• Formulating two sub-problems: 1) Patrolling problem that optimized the UAV tra

jectory and patrolling horizontal gap, and 2) Communication problem that optimized 

the UAV-BS link associations in addition to the UAV transmit power when wildfire 

was detected.

In Section 4, the UAV patrolling solution was provided. More specifically, this 

section optimized the flight track of the UAV using a plume dispersion model to detect the 

wildfire tracer gas species with the goal of achieving wider areas of coverage for the UAV 

patrol and respecting the UAV battery limitations. The contributions of this section were 

summarized as follows:

• Analyzing the patrolling optimization problem by showing that the UAV patrolled at 

best altitude based on the pollutant dispersion model, thus reducing the 3D problem 

into 2D problem.

• Employing a meta-heuristic approach based on Genetic Algorithm (GA) to find a near 

optimal solution of patrolling horizontal gap due to non-convexity of the 2D problem.
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• Analyzing the patrolling scheme’s performance using Monte-Carlo simulation under 

various system parameters and different UAV’s battery capacities. This study com

pared the proposed solution for different stability situations: very unstable, moderate 

unstable, slightly unstable, and neutral.

In Section 5, the UAV communication solution was provided. This section optimized 

communication resources and attempted to achieve the desired data rate QoS for each of 

data type. The contributions of this section were summarized as follows:

• Optimizing the communication link association between the UAV and BSs. By 

assuming the UAV was associated to one BS at a time. The study proposed to do the 

association with the best link.

• Proposing a software protocol to manage the resource allocation between the UAV 

and selected BS.

• Introducing loss-factor optimization to avoid the in-feasibility of transmit power 

allocation (i.e., in case the transmit power is not enough to achieve the data rate QoS).

• Solving the transmit power allocation and loss-factor optimization using convex meth

ods.

• Illustrating the communication scheme’s performance using Monte-Carlo simulation 

under different communication parameters and different transmit power budgets.

The conclusion was given in Section 6. Furthermore, two future directions were 

provided as potential extension of the work. The first recommendation is introducing a 

hotspot locations concept. This means based on historical wildfires data, some hotspot areas 

may need to be patrolled over them. The second suggestion is implementing directional 

communications, such as free-space-optical (FSO) communications, for data transmission 

where FSO link can reach few kilometers coverage, in addition to the capability of high 

speed data rates. This can be helpful in extending the communication coverage area.
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2. SYSTEM MODEL

This section proposed the system model. The system model consisted of one UAV 

patrolling over a rectangular-shaped flat area covered by forest. The UAV was equipped 

with a communication transceiver to communicate with one of the L nearby communication 

BSs when a wildfire was detected as shown in Figure 2.1. The area had a pre-defined wind 

direction of QW (as a reference, 6W = 0 is pointing north). In addition, the UAV was equipped 

with air quality sensors monitoring the concentrations of PM (ugm-3) and CO (ppm).

8
End

8 8

Start

Figure 2.1. System model.

A wildfire event were identified when the air pollutant concentrations measured by 

both sensors were above the forest backgrounds [36]. Then, the UAV transmitted real-time 

data to a selected BS. It was assumed that an early-stage wildfire happened at a random
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location in the patrolled area and continuously emited PM and CO pollutants in to the 

environment via a plume that transported with the wind and dispersed in all directions, as 

shown in Figure 2.2. To effectively detect and report wildfire events, the following four 

parameters were optimized: (1) the altitude of the UAV that ensured the UAV transected the 

plume; (2) the flight pattern of the UAV that ensured the UAV samples were in the plume for 

a considerable time; (3) the link association or the communication link between the UAV 

and BSs, and (4) the UAV’s transmitted power of data communication to the selected BS. 

These four parameters affected battery and energy consumption and determined the total 

distance traveled by the UAV and the area of coverage.

Figure 2.2. A schematic diagram of the Gaussian dispersion model for predicting the air 
pollutants concentrations in a plume.
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2.1. POLLUTANT DISPERSION MODEL

The UAV’s speed is V; therefore, VT  is the maximum distance that the UAV can 

travel every time slot t , where T is the time slot duration. The location of the UAV were 

considered as 3D coordinates during a time slot t as U[t] = (x [t], y [t], z [t]). It was 

assumed that the UAV was initially in a Start Point location and that it would land at the 

End Point location after finishing the investigation, as shown in Figure 2.1.

The transport of the plume is typically described by dispersion models [29]. The 

most widely used model that predicts the transport of air pollutants in a plume is the Gaussian 

dispersion model, as shown in Figure 2.2, where the concentration of air pollutants emitted 

from an elevated source can be calculated by [29]:

C (x ,y ,z) Q
2 n u o y (x) o z (x)

exp exp (z -  H )2 
2oZ (x)

+ exp
(z + h  )2 y

2oz2 (x) )
(2.1)

where C is the steady-state concentration at a point (x, y, z), Q is the emission rate, o y (x) 

and o z (x) are the horizontal and vertical spread parameters, respectively, depending on the 

atmospheric stability and function of distance x . Note that u is the average wind speed, z is 

the vertical distance from the plume centerline, and H  is the effective height of the emission 

point.

For simplicity, this study uses the index i = {1,2} to refer to PM and CO index, 

respectively. Similarly, the sensor concentrations are given as C1 and C2 for the concentra

tion of PM and CO, respectively. A binary variable p i [t] is introduced to indicate if the 

concentration of pollutant i exceeds the concentration threshold Ct ,̂i during time t :

Pi [t ]
1, if Ci [t] > Cth,i during time slot t 

0, otherwise.
(2.2)
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By defining C  as the maximum concentration value of pollutant i (the value which 

can be measured exactly at the fire point), (2.2) can be written as an equivalent mathematical 

expression as follows:

(Cth,i -  Ci [t]) -  Ci (1 -  Pi [t]) < 0, Vi, Vi, (2.3)

and

(Ci [t] -  C h i ) -  CiP i [t] < 0, Vi, Vt. (2.4)

Note that employing both constraints (2.3) and (2.4) are necessary to represent (2.2) in 

mathematical equations. For simplicity, assume p  [t] = p 1 [t] p 2 [t], where p  [t] equals 

1 if the concentrations for both pollutants are greater that concentration threshold and 0 

otherwise (i.e., the concentration of one pollutant is less than the threshold).

2.2. UAV COMMUNICATIONS CHANNEL MODEL

As discussed in [37], the BS can receive two different types of communications 

signals in addition to the line-of-sight signal. The first type is strong reflected non-line-of- 

sight, and the second type consists of multi reflected fading signals. Both non-line-of-sight 

signal types can be considered independently with different probabilities of occurrences 

(i.e, the probabilities of line-of-sight occurrences) for each type [37]. Probabilities of 

occurrences depend on various factors such as density, obstacles dimensions, transmission 

elevation angles. The probability of multiple reflections was assumed to be negligible 

compared to the line-of-sight signal and strong reflected non-line-of-sight [37, 38]. One 

of the common technique that characterizes the UAV to BS channel gain is modeling the 

ground-to-air Path Loss (PL) using line-of-sight and non-line-of-sight components with 

their separate probabilities of occurrences. In other words, the channel gain was considered 

as a weighted the sum of the two PLs links (i.e., line-of-sight signal and strong reflected 

non-line-of-sight links) [37, 39].
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Therefore, the probability of line-of-sight between the UAV and the BSs can be 

obtained. Hence, the PL between UAV and BS l positioned at a location U [t] for line-of- 

sight signal and strong reflected non-line-of-sight are given, respectively, as follows [37, 

40,41]:

PL'l °S [t] = &oS , (2.5)

PLNLoS [t] = ?nl„s , (2.6)

where ^  [t] = ||U [t] -  U11| is the distance between the UAV, and BS l and Ul is the fixed 

location of BS l , and To is the wavelength of the radio signal. Note that ^LoS and ^NLoS are 

the additional shadowing losses to the free space propagation for line-of-sight signal and 

strong reflected non-line-of-sight links, respectively. The line-of-sight probability is [42]:

p \ ° s [t ]
1

1 + V1 exp(-V2 [01 [t] -  Vi])’
(2.7)

where 0 l [t] = H0 sin-1 ^ i s  the elevation angle between the UAV and BS l in degree. 

Note that V1 and V2 are constant values that depend on the environment. Thus, the strong 

reflected non-line-of-sight probability is equal to 1 -  ^L°S [t]. Based on this PL model, the 

average PL for ground-to-air link is given by:

PLl [t ] = ^LoS [t ] P^LoS [t ] + (1 -  ^LoS [t]) PLNLoS [t ]. (2.8)

Finally, the average channel gain between the UAV and BS l during time slot t is given by:

gl [t ] =
1

PLl [t].
(2.9)
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2.3. DATA TRANSMISSION

It was assumed that wildfire was detected when both PM and CO concentrations 

rose above their concentration thresholds. Therefore, the UAV had to transmit real-time 

data to the selected BS. The data types were categorized into different n = 1 , . . ,N  types 

based on QoS, which was given as data rate threshold Rth,n in bits/s. In addition to the 

air-quality sensors, this study assumed that the UAV was equipped with a thermal camera 

taking pictures or videos to increase decision accuracy. For example, the QoS of the sensor 

readings defer from the QoS of the thermal pictures or videos. Note that, different QoS data 

was referenced as a separate data type.

A binary variable e/ [t] is introduced to indicate the communication link association 

between the UAV and BS / during time slot t . It equals 1 if the UAV is associated with BS 

/ during time slot t , and 0 otherwise, and is calculated by:

e/ [t ] =
1, if the UAV is associated with BS / during time slot t 

0, otherwise.
(2.10)

The goal was to transmit all data types to the selected BS if both pollutants concentration 

were greater than the threshold (i.e., p  [t] = 1) Therefore, the data rate of each transmitted 

data type n is aiming to satisfy the following condition:

p  [t] e/ [t] (#olog2 ( l  + [t ] ) ~  Rth,n) > 0, Vn, V/, Vt (2.11)

where Pn [t] and g/ [t] are the UAV’s transmit power allocated for data type n and channel 

gain between the UAV and BS / during time slot t, respectively. Note that B0 and N0 are the 

communication bandwidth and the noise power, respectively. Constraint (2.11) indicates 

that the UAV had to transmit all data types, thus satisfying the QoS condition when the 

wildfire was detected (i.e., p [ t ] = p 1 [t] p 2[t] = 1), and it did not transmit when there
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is no wildfire (i.e., p  [t] = p\ [t] p 2 [t] = 0). In other words, p  [t] = 1 only when both 

concentrations are above the threshold, and p  [t] = 0 if at least one of the concentration is 

below the threshold.

2.4. UAV ENERGY MODEL

The UAV consumed operation and communication transmission energies. The UAV 

communication transmitted power can be given as [43]:

N
Pc  [t] = Y  Pn [t], (2.12)

n=1

where P c [t] and Pn [t] are the total UAV’s communication power and transmit power of 

data type n during time slot t . In addition to the transmit power, the UAV consumed flying 

and hovering powers P F [t], and is given as [44]:

PF [t]
1 (m totG )3

2 prpWpp
+ Ps (2.13)

where Ps denotes the consumed power due to UAV hardware in (W), p  is the air density in 

(kg/m3), G is the earth gravity in (m/s2), and mtot the UAV mass in (kg). Parameters mp 

and rp respectively donate to the number of the UAV propellers and to the UAV radius of 

the UAV. Therefore, the total energy consumption can be given as:

T T
Etot = Ep + Ec =  T Y j Pf [t] + T Y  Pc [t] . (2.14)

t=i t=i

Note that because E F >> E c (power consumption of multiple Watts for flying compares to 

fractional Watts for transmission), the total energy in (2.14) can be approximated as [43,44]:

T
Etot » e f  = T Y  P f  [t],

t=1
(2.15)



19

where T is a dependent variable that can effect the total energy; for example, if the patrol 

UAV finished the patrolling trip early, then T becomes smaller, and the energy will be 

lower. Note that, although P c [t] is much smaller than PF [t], there was a need to optimize 

it because the transmitted power plays a significant role in satisfying the data QoS given 

in (2.11). The effect of the P c [t] in the communication optimization problem was shown 

in Section 5.
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3. UAV PATROLLING AND COMMUNICATION OPTIMIZATION

In this section, the UAV patrolling and communication mathematical problem was 

formulated. The goal was to minimize the total energy consumption and satisfy the detection 

threshold, achievable data rate quality, transmit power budget, and the UAV and BSs 

communication link associations constraints. Furthermore, it was assumed that the UAV 

could transmit different data types at the same time over different bandwidths or frequencies 

using the OFDMA technique.

The optimization problem was formulated to minimize the UAV's total energy 

during all time slots, while trying to satisfy certain QoS for each data type when detecting 

a wildfire. Also, two complementary sub-optimization problems were formulated. The 

goal for the first one was to find the optimal UAV trajectory within the desired area. The 

second optimization problem optimized the association between UAV and BSs, and the 

UAV transmitted allocated power for each data type when the wildfire was detected.

Minimizing the UAV's energy consumption was achieved by minimizing the UAV's 

travel time when reaching Cth,i, Vi = {1, 2} and detecting wildfire. This was done by 

optimizing the UAV’s trajectory. Due to the limited battery of the UAV, the flight track 

of the UAV determined the area that UAV patrolled. For simplicity, it was assumed that 

the UAV adopted rectangular track, as shown in Figure 3.1. With this rectangular flight 

track, the total distance traveled by the UAV was strongly affected by the distance between 

the two parallel legs named horizontal gap and given by Ax. A narrower gap led to longer 

flight distances and faster battery consumption, and a wider gap led to ineffective wildfire 

tracer detection and lower energy consumption. Note that this rectangular track with Ax 

optimization could be modified easily for other tracks, such as square or spiral tracks. The 

rectangular track was chosen for simplicity.
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Figure 3.1. A schematic diagram of the studied problem. The optimization of the UAV 
patrol algorithm should identify an optimal flight track for the effective detection of wildfire 
events.

3.1. GENERAL OPTIMIZATION PROBLEM

Figure 3.2. The profile PM concentrations along the y axis at different distances (x) 
downstream of the emission point at an altitude (z) of (a) 50m and (b) 100m, according to 
the Gaussian dispersion model.
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Figure 3.2 shows the profile of PM concentrations along the parallel legs at different 

distances downstream of a fire event using emission factor equal to 20g/kg fuel [36]. 

Figure 3.2 also compares the profile of PM concentrations at different UAV’s altitudes 

(i.e., z = 50m z = 100m). For instance, when using 75^g  m-3 as the threshold of PM 

measurement based on three times of the regulated concentration to identify the fire event 

for z = 50m [29, 45], the PM concentrations above the threshold will only occur within 

around 400m downstream of the fire event as shown in Figure 3.2-a. This means that that a 

UAV using a gap distance wider than 400m may not be able to detect the fire event during 

the patrol. For z = 100m, Figure 3.2-b shows that if the UAV is not maintained at an ideal 

altitude, the UAV will miss the fire event even at 200m downstream the fire. This study used 

the Gaussian dispersion model to calculate the maximum gap distance of the UAV. Based 

on the battery capacity of common UAVs, the maximum distance that can be traveled by 

the UAV and the area of the forest that can be patrolled were calculated.

The general optimization problem was aiming to minimize the total UAV’s energy 

during all time slots, while satisfying certain QoS when detecting wildfire. The optimization 

variables are: i) the UAV altitude, ii) the UAV pattern or horizontal gap, iii) the association 

between the UAV and BSs, and iv) the UAV transmitted power for each data type. Therefore, 

the proposed optimization problem can be formulated as:

minimize Etot (3.1)
(z[t],>> [t] ,Ax,Pn [t]) >0,(Pi [t],ei [t])e{0,1}

subject to

(Cth, -  Ci[t] ) -  CtKl(1 -  Pi[t])<  0, Vi, Vt (3.2)

(Ci [t] -  Cthi) -  CiPi [t] < 0, Vi, Vt (3.3)

2
P [t] = ^  Pi [t], Vt,

i=1
(3.4)
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P [t] 6/ [t] |5 o  log 2 | l  + [t ̂  -  Rth,n) > 0, Vn, V/, Vt, (3.5)

N
Y jP n  [t ] <  P, Vt, (3.6)
n=1

L
Y  6/ [t] <  1, Vt, (3.7)
/=1

where constraints (6.4) - (6.7) are to ensure that when wildfire is detected, the variable 

parameter p  [t] is equal to 1. Constraint (3.5) is to guarantee a certain QoS (Rth,n) for each 

data type. Constraint (3.6) presents transmit power limitation due to transmitters’ hardware 

capabilities. Constraint (3.7) is to guarantee that the UAV can be connected to one BS 

at most at a time t . In the sequel, the details of the two trajectory and communications 

sub-problems were provided.

3.2. TRAJECTORY OPTIMIZATION

To effectively detect early-stage fire events, the UAV needs to optimize its altitude 

and trajectory. Therefore, the patrolling optimization sub-problem can be given as

minimize Etot (3.8)
(z [t],y [t ],Ax,)>0,

subject to

C (x = Ax, y [t], z[t]) > Cth,i, Vi, (3.9)

where constraint (3.9) is to insure that the horizontal spacing Ax, y [t], and z[t] takes into 

account satisfying Cth,i for both PM and CO pollutant species in case of a wildfire happened 

in area of interest. This is to ensure to detect the wildfire anywhere in the area of interest. 

Note that value of p  [t] will be based on a real-time concentration measurement of PM and

CO sensors.
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3.3. DATA TRANSMISSION OPTIMIZATION PROBLEM

In this section, the data transmission sub-problem were formulated, while accounting 

the QoS constraint given in (3.5) when a wildfire was detected (i.e., when p  [t] = 1). 

Therefore, the communication sub-problem that optimized the UAV transmit power for 

each data type Pn [t] and communication link associations e/ [t] is given as:

minimize Etot (3.10)
Pn [t]>0,e; [t]e{0,1}

subject to

p  [<]e/ [t ] (B ° l o g 2 (l  + r ,th,n > 0, Vn, V/, Vt, (3.11)

N
Y jP n  [t] < P, Vt, (3.12)
n=1 

L
^  e/ [t] < 1, Vt.
1 = 1

(3.13)
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4. UAV PATROLLING SOLUTION

In this section, the solution of the UAV patrolling optimization sub-problem was 

proposed. This section optimized the flight track of the UAV using a plume dispersion 

model to detect the wildfire tracer gas species with the goal of achieving a wider area of 

coverage for the UAV patrol and respecting the UAV’s battery limitations. Furthermore, this 

section illustrated Monte-Carlo simulation results to validate the feasibility of the solution.

To effectively detect early-stage fire events, the UAV must transect the plume at the 

altitude of the plume centerline z [t] = H ; which it can be calculated by [29]:

H  = ho +
vsds

u
1.5 + 2.68 x 10-2Pa.

Ks -  Ka \ 

— ) d
(4.1)

In (4.1), h0 is the height of the plume on fire, vs is the upward velocity of the plume, d is the 

diameter of the plume at the emission point, Pa is the pressure, Ks is the temperature of the 

plume, and Ka is the ambient air temperature. In addition, based on the Gaussian dispersion 

model, the maximum concentration will happen when y = 0, as shown in Figure 3.2. 

Therefore, based on the ambient condition and existing data characterizing fire plumes [46], 

the optimal/maximum horizontal spacing distance Ax of the rectangular UAV motion can 

be calculated, as shown in Figure 3.1, by solving the following optimization problem; note 

that maximizing Ax is equivalent to minimizing E p :

maximize Ax
Ax

(4.2)

subject to:

C (x = Ax, y = 0, z = H) > Qh,i, Vi, (4.3)
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where constraint (4.3) is to ensure that the horizontal spacing Ax satisfies Cth,i for all 

pollutant species (i.e., PM and CO). Next, this study proposed a solution to solve the 

formulated optimization problems given in (4.2)-(4.3) by using genetic algorithm (GA).

4.1. TRAJECTORY OPTIMIZATION SOLUTION

The problem formulated in (4.2)-(4.3) is a non-convex and non-linear optimization 

problem. Therefore, it was difficult to find the optimal solution [47]. Hence, it was 

proposed to use a GA to find a sub-optimal solution to the problem. This algorithm depends 

essentially on random-natural evolution. Initially, GA generated a random population set 

containing a set number of strings. For each generation, the strong strings survived the 

algorithm; whereas, the weak ones died. After that, the GA generated new strings from the 

surviving strings using mutation and crossover operations [48].

4.1.1. GA Coding Approach. In the GA coding approach, it was proposed to 

divide the horizontal spacing distance Ax into 5 quantization levels between 0 and x, as 

follows: |Ax e jo, j - [ , 5 - \ , •••, (<5~I_21)x, x j j , where x  is the maximum horizontal spacing 

distance. Therefore, Ax could be one of the levels between 0 and x .

Note that to employ the GA approach, Ax levels had to be encoded into binary words 

b. The length of the binary words b depended on 5 (i.e., the number of quantization levels) 

as follows: length(b) = [log2 5], where |\] denotes the integer round towards +ro. For 

example, if 5 = 4, then two bits are sufficient to encode these levels. If 5 = 17, then five 

bits are needed. In the latter case, the required words were less than a power of 2. This 

was because some binary words were redundant, and they corresponded to any valid word. 

Several solutions were proposed to solve this problem by discarding these words as illegal, 

then by assigning them a low utility or mapping them to a valid word with fixed, random, 

or probabilistic remapping [49].
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Algorithm 1 Proposed Genetic Algorithm
- Initialization: Ax = 0.
- Generate a random initial population containing all S j , Vj  = 1, • • • , S.
- iteration it = 1
while (not converge or it <maximum iteration:) do 

for j  = 1 : S do
- Find Axj (it) corresponding to the string S j , V j  = 1, ••• ,S  for iteration it . 
if constraint (4.3) is satisfied then

- Ax j (it) = Ax j (it) 
else

- Set Ax j (it) to 0. 
end if

end for
- Save Ax (it) such that Ax (it) = max Ax; (it).

j
- Keep the best r  strings, thus providing the highest Ax; (it) to the next population.
- From the survived parents (r  strings), generate S - r  new strings by applying crossovers 
and mutations to generate a new population set.
- it = it + 1. 

end while
- Find optimal Ax * such that Ax* = max Ax (it).

it

4.1.2. GA Approach. The GA approach was started by randomly generating S 

binary strings to formulate the initial population set. Each string S j , V j  = 1, ••• ,S  had 

a binary word and built by b corresponding to the Ax levels (an example of 4 strings and 

8 binary word length is shown in Figure 4.1). Then the GA algorithm computed Ax; that 

corresponded to Sj after verifying whether the constraint (4.3) was satisfied or not. After 

that, the algorithm selected the best r  strings (where 1 < r  < S) that provided the highest 

Ax to keep them to the next population cycle (called survived parents strings). Conversely, 

the algorithm applied GA operations that consisted of crossover and mutation operations on 

the survived parents to formulate new S -  r  (called children strings). Note that crossover 

operation consisted of i) dividing two survived parents strings at a random point, and ii) 

swapping the obtained fragments to recombine and produce two new children strings. The 

mutation operator was used by changing a random string value with probability p  (an
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example of crossover and mutation operation is shown in Figure 4.2). This GA procedure 

was repeated until convergence or until a maximum generation pre-defined number was 

reached.

b binary words

S -
strings

Figure 4.1. GA approach example with 4 strings and 8 binary word length.

The proposed GA with discrete levels is detailed in Algorithm 1.

Crossover random point
Mutation random bit

I
Survived

parent 1 0 0 0 1 1 0 1

Children 1 0 0 1 1 1 0 1

a) Crossover operation b) Mutation operation

Figure 4.2. GA operations example.
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4.2. PATROLLING SIMULATION RESULTS

This section presented simulation results to illustrate the proposed solution. The 

study considered the reference emission rate Q0,; of the PM and CO following Gaussian 

distribution N (1 7 .4 ,7.2) and N (6 4 .5 ,16.7), respectively [36]. It was assumed that Cth,\ 

and Cth,2 were equal to 75jug/m3 and 150ppm (based on three times of the regulated 

concentration to identify the fire event) [29, 45]. The rest of the simulation parameters are 

summarized in Table 4.1 [29, 50, 51]. Four stability situations (very unstable, moderate 

unstable, slightly unstable, and neutral) were considered based on the dispersion model 

given in (2.1). In other words, a y and a z were calculated based on reasonable approximated 

fit and given, respectively, as [29]:

a y = axb, (4.4)

v z = cxd + f ,  (4.5)

where the parameters a, b, c, d, f  are given in Table 4.2 [29]. Figure 4.3-Figure 4.5 show 

examples of 2D Gaussian pollutants concentrations dispersion model in a plume for very 

unstable, slightly unstable, and neutral atmospheric stability situations, respectively.

Table 4.1. Patrolling simulation parameters.

Constant Value Constant Value Constant Value
V [m/s] 5 ho [m] 15 Vs [m/s] 1.55
ds [m] 4.75 Ka [K] 308.15 Ks [K] 1106.15
Pa [mb] 1000 Ps [W] 0.5 mtot [kg] 1
^  [kg/m3] 1.225 Wp 4 rP 0.2

Figure 4.6 plots the horizontal gap Ax as a function of wind speed u. It was shown 

that as the wind speed increased, the horizontal gap decreased for all different types of 

stability situations. This was because the relationship between pollutant concentration C 

and wind speed u was inverse propositional, as given in (2.1). Note that when C at the
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same location (x, y, z) increased, then Ax increased because the UAV was able to detect 

the Cth beyond this point. For low wind speed values, the gaps between different types 

of stability situations were large. For example, when u = 2[m/s], Ax for neutral and very 

unstable situations were approximately 220m and 160m, respectively, with an approximate 

difference of 80m. When u = 20[m/s], Ax for neutral and very unstable situations were 

about 900m and 400m, respectively, with difference of about 500m. As u increased, the 

gap between the different stability situations was reduced.

Table 4.2. Stability coefficients based on the Gaussian dispersion model.

Stability a b
Ax < 1km Ax > 1km

c d f c d f
1- Very unstable 213 0.894 440.8 1.941 9.27 459.7 2.094 -9.6
2- Moderate unstable 156 0.894 106.6 1.149 3.3 108.2 1.098 2.0
3- Slightly unstable 104 0.894 61.0 0.911 0 61.0 0.911 0
4- Neutral 68 0.894 33.2 0.725 -1.7 44.5 0.516 -13.0

Figure 4.7 illustrates the horizontal gap Ax versus the emission rate factor k. The 

factor k is defined as a parameter to express the emission rate, in terms of the the reference 

emission rate, as Qi = KiQ0,;-, Vi = {1, 2}. Note that the emission rate factor for PM2.5 

and CO are denoted as k1 and k2, respectively. This helped show the effect of the increase 

or decrease in emission rates on the horizontal gap. As shown in Figure 4.7, for the same 

emission rate factor k = k1 = k2, as k increased, the horizontal gap increased. This 

confirmed the proportional relationship between C and Q in (2.1). Thus, Ax increased 

when Q increased.

Figure 4.8 and Figure 4.9 illustrate the horizontal gap Ax by fixing one emission 

rate factor and changing the other for very unstable and neutral situations. For instance, 

in Figure 4.8 k1 varied and k2 was fixed for both very unstable and neutral situations. In 

other words, the Q 1 varied and Q2 was fixed. For low values of k1, the PM pollutant was 

dominant for Ax optimization up to the cut-off point (i.e., around 1.5 for very unstable
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Figure 4.3. 2D Gaussian pollutants concentrations dispersion model in a plume for slightly 
stability situation.

situation and 1.25 for neutral situation). After that, the CO pollutant was the dominant 

factor in Ax optimization. In Figure 4.9, k2 varied and k\ was fixed for both very unstable 

and neutral situations. Meaning, the emission rate of CO varied and the emission rate of 

PM2.5 was fixed. In this case, the study yielded different cut-off points (i.e., around 0.5 for 

very unstable situation and 0.8 for neutral situation).

Figure 4.10 showed the expected rectangular area that UAV with a velocity V = 

5[m/s] can be patrolled as a function of horizontal gap for different battery capacities. It 

was shown that as horizontal gap increased and the patrolled area is also increased. For 

example, with horizontal gap Ax = 500m, the UAV can cover areas of approximately 1km2 

and 3.2km2 with battery capacities of 6KJ and 24KJ, respectively.
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Figure 4.4. 2D Gaussian pollutants concentrations dispersion model in a plume for very 
unstable stability situation.
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Figure 4.5. 2D Gaussian pollutants concentrations dispersion model in a plume for neutral 
stability situation.



33

Figure 4.6. The horizontal gap as a function of wind speed for different stability situations.

Figure 4.7. The horizontal gap versus emission rate factor for different stability situations.
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(a) Very unstable (b) Neutral

Figure 4.8. The effect of PM2.5 emission rate on the horizontal gap while fixing the 
emission rate of CO.

Figure 4.9. The effect of CO emission rate on the horizontal gap while fixing the emission 
rate of PM2.5.
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Horizontal gap [m]

Figure 4.10. The area covered by the UAV as a function of horizontal gap for different UAV 
battery limitations.
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5. COMMUNICATIONS SOLUTION

In this section, the solution to the UAV communication sub-problem was provided. 

This section optimized communication resources and tried to achieve the desired data rate 

QoS for each of data type. The communication resources included the UAV transmit power 

and communication link association between the UAV and BSs. In addition, this section 

proposed a software design management protocol that managed the resource allocation 

between the UAV and the selected BS. Finally, the section illustrated simulation results to 

validate the feasibility of the communication problem solution.

5.1. UAV-BS PROTOCOL

In the proposed protocol, the UAV implemented a software management protocol 

that managed the transmit power allocation, UAV to BS associations, and UAV's trajectory. 

Note that a control link was needed between the BSs and UAV. Therefore, establishing a 

UAV-BS link was required (i.e., this part is booked only for protocol management). In this 

study, a brief description of a simple management protocol that manages the link between 

the BS and UAV was given.

5.1.1. Establishment of the UAV-BS Link. To start a communication link between 

the selected BS and UAV, each BS periodically broadcast a UAVSEARCH frame. The UAV 

received the UAVSEARCH frame from nearby BSs and checked the pollutants’ concen

tration. The UAV added all BSs to the candidate BSs list. If the pollutants concentration 

fall below a certain threshold Cth, then the UAV ignored these frames, otherwise (i.e., for 

both pollutants C[t] > Cth) the UAV returned an UAVACK frame to all candidate BSs list 

containing the UAV’s Ethernet/MAC addresses. Note that in the case of multiple UAVs 

(which can be an extension of this model), it is possible for the BSs to receive multiple 

UAVACK frames from different UAVs. If this happens, then, a collision protocol must be 

considered to to avoid the collisions of different UAVACKs arriving to the BSs simultane
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ously. It was assumed that all BSs were connected through optical fibers via a central unit, 

therefore when the BSs received the UAVACK frame, the central unit selected the best BS 

to communicate with the UAV. Then, the selected BS responded to the UAV and managed 

the transmit power allocations for each data type, thus informing the UAV with the best 

transmit power to send the data over specific bandwidth resources.

5.1.2. Maintenance of the UAV-BS Link. When the communication link between 

the selected BS and the UAV was established, the UAV was added into “UAV table” of that 

BS. The table was updated periodically by sending UAVSEARCH-UAVACK messages, as 

described in the establishment of the UAV-BS link.

5.1.3. Termination of the UAV-BS Link. When the UAV did not respond with 

an UAVACK to the BS, for certain issues (such as out of range or the concentration of the 

pollutants are less than the threshold), the BS will update its “UAV table”. This update 

removed the UAV from the table. There were several ways to terminate: 1) graceful leave, 

where the UAV informed the BS in advance of the termination using CLOSE frame. This 

could be due to several factors, such as the UAV’s battery was down or the concentration of 

the pollutants were less than the threshold; 2) ungraceful leave, where the UAV terminated 

the link without informing the BS. In this case, the BS continued tp send UAVSEARCH 

frames with timeout strategy. This means that the communication link would be termi

nated when the maximum number of UAVSEARCH frames is reached without responding. 

Note that the maximum number of UAVSEARCH frames could be selected based on the 

situation/application.

5.2. COMMUNICATION OPTIMIZATION SOLUTION

In this section, the data transmission optimization problem was formulated to satisfy 

the QoS constraint given in (3.5) when a wildfire was detected. However, in practice this 

can be a hard constraint to satisfy Rth,n for all time slots due to the limited transmit power 

circuit or to the randomness of the communication channel gain over time. To avoid the
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infeasibility of the problem (i.e., failing achieve the required QoS with the available transmit 

power budget), the study introduced a fraction variable called loss-factor given by a  to relax 

Rth,n, as follows:

Bo log 2 | l  + > Rth,n -  a [t]Rth,n. (5.1)

where a [ t] (0 < a  [t] < 1) represents the loss tolerance or loss factor in the rate during 

time slot t . For example, if a  [t] = 0.2, the achievable data rate will be lowered by a factor 

of 0.2. Also, when a [ t] = 0, Rth,n can be achieved. Therefore, the goal was to achieve 

as close to Rth,n as possible by minimizing a  [t]. The following optimization problem was 

formulated instantaneously (i.e., for each time slot t), as follows:

minimize a  [t ]
Pi [t],Pn [t],ei [t],a[t]

(5.2)

subject to
2

P [t] = n  P1 [t] ’
1 = 1

(5.3)

P [t ] ei [t ] | bo log 2 | l  + PnB B ^lt] ) -  (Rthn -  a  [t] Rth,n)) > 0, Vn, Vi, (5.4)

N
Y jP n  [t ] < P,
n=1

(5.5)

L
^  ei [t] < 1,
i=i

(5.6)

a  [t] < 1, (5.7)

where constraint (5.7) guarantees that the loss tolerance cannot exceed 1.
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5.3. DATA TRANSMISSION OPTIMIZATION SOLUTION

The problem formulated in (5.2)-(5.7) was a mixed integer non-linear optimization 

problem caused by existence of binary variables pi [t] and e/ [t] [47]. To simplify the 

formulated optimization problem, it was solved it in three steps: first, p i [t] was found by 

comparing the concentration of each pollutant species with the threshold value. Second, 

the best channel gain was selected between the UAV and BSs, as given in UAV-BS protocol 

section. Last, given p i [t] and e/ [t] values, the problem became a convex optimization 

problem for P n [t] and a  [t] and then the optimal transmit power (Pn [t]) and loss tolerance 

a  [t] solution were found by exploiting the strong duality [47]. Therefore, for given given 

p i [t] and e/ [t] values, the communication optimization problem formulated in (5.2)-(5.7) 

becomes:

minimize a  [t ] (5.8)
Pn [t],a[t]>0

subject to

p[t] e/ [t] | bo log2^1 + -  (Rth,n -  a[t]Rthn) j > 0, Vn, (5.9)

N
Y jP n  [ t ] <  P, (5.10)
n=1

a [ t]  < 1. (5.11)

Note that the optimization problem formulated in (5.8)-(5.11) is a convex optimization 

problem because of: 1) the domain is convex, 2) the objective function is linear (i.e., 

convex), and 3) all inequality constraints are convex functions. To find optimal transmit 

power, the study used the Lagrangian method [47]. The Lagrangian expression of (5.8)- 

(5.11) is derived as:
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L(A\,n,A.2,A.3,Pn [t] , a [t]) =

a  [t] + 2  ^1,nP [t] 6l [t] ((Rth,n -  a  [t] Rth,n) -  Bo log2 (1 + ' ))  (5.12)

+42 ( 2  Pn [ t ] -  p )  + 43 ( a  [ t ] -  1).

In (5.12), A is the vector that contains all the Lagrangian multipliers of the system, 

where 4 1,n, 42, and 42 represent the Lagrangian multipliers related to the QoS for data n, 

peak power, and loss tolerance constraints, respectively. By taking the derivative of the 

Lagrangian given in 5.12 with respect to Pn [t], and a [ t ], the optimal transmit power and 

optimal as follows:

Pn [t ] = Bq
41, np  [t ] ei [t ] 

42 ln (2)
No \ +

gi [t ]
n = 1,.., N. (5.13)

1 + 43 = 41,nP [t] ei [t] Rth,n, n = 1 ,. . ,N .  (5.14)

Note that the subgradient method, ellipsoid method, or other heuristic approaches can be 

employed to find the optimal Lagrangian multipliers of this problem [52].

5.4. COMMUNICATIONS SIMULATION RESULTS

This section presented simulation results to illustrate the communication solution. 

It was assumed n = 3 with different Rth,n as Rth,1 = 1[Mbits/s] (for low QoS data rate), 

Rth,2 = 5[Mbits/s] (for medium QoS data rate), Rth,3 = 10[Mbits/s] (for hight QoS data 

rate).

The data communication performance is shown in Figure 5.1 and Figure 5.2. Fig

ure 5.1 plots the average achievable data rate for three data rate requirement types: 1) type 

1 is suitable for low data rate requirement such as sensor readings, 2) type 2 is suitable 

medium data rate requirement such as pictures or thermal images, and 3) type 3 is suitable 

high data rate requirements such as high resolution pictures or acceptable videos quality. 

Note that, as shown in (5.9), the communications data rate depends on the UAV’s transmit
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power and loss tolerance. Figure 5.1 showed that the achievable throughput improved with 

the increase of the power budget l5 up to a certain point. This is due to the fact that starting 

from this value of P  the communication data rate threshold was achieved and had no need 

to consume more energy. Figure 5.1 also showed that when the transmit power budget P 

was low, then the Rth,n may not be reached. This could be due to shadowing effect, PL, or 

communication channel conditions. However, when P  is high (e.g., 40 dBm W), the loss is 

zero, and Rth,n can be achieved.

Figure 5.1. Average achievable data rate versus UAV transmit power budget.

By contrast, Figure 5.2 plots the average loss tolerance as a function of the power 

budget P. It shown the amount of loss in the target rate threshold versus the UAV power 

budget P. For example, if P  = 10dBm W (i.e., equivalent to 0.01 W), then the average loss 

in the rate is approximately 0.23Rth,n for each of the data type n.

Table 5.1, exemplifies the loss tolerance a ,  data rate Rn, and transmit power Pn 

for all three data types and different power budgets P. This table validates the analysis of 

when P  is low, then the optimization problem optimizes the transmit power, thus aiming
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Figure 5.2. Average loss tolerance versus UAV transmit power budget.

Table 5.1. Power allocations and loss-factors based on different UAV’s power budget.

Data Type
P  = 0.1 W P = 1 W

a Rn [Mbits/s] Pn [W] a Rn [Mbits/s] Pn [W]
1 0.125 0.87 0.016 0.038 0.96 0.29
2 0.125 4.38 0.019 0.038 4.80 0.31
3 0.125 8.75 0.065 0.038 9.62 0.40

to minimize the loss tolerance a .  For example, for data type 2, by using P  = 1W instead 

of P  = 0.1W, the optimal a  can be decreased from 0.125 to 0.038 and the data rate R2 

increased from 4.38Mbits/s to 4.8Mbits/s.
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6. CONCLUSION AND FUTURE DIRECTIONS

This section provided the work conclusion and future directions. This section started 

by summarizing the work and then exploring two future suggestions.

6.1. CONCLUSION

This study proposed a novel idea for equipping the UAV with air quality sensors and 

communication transceivers for early wildfire detection. This proposed model can overcome 

thermal imaging and other current technologies by detecting pollutants faster, and by giving 

more information about pollutant size distribution. Furthermore, the development of the 

autonomous patrol optimization (i,e, optimizing the flight track of the UAV) can effectively 

detect the wildfire events, while preserving the UAV battery for a larger coverage area. This 

will lead to more robust and energy saving solution for wildfire detection.

6.2. FUTURE DIRECTIONS

The future and ongoing works around this work will implement new research direc

tions to improve the work and lead to better performance.

6.2.1. Multiple Wildfire Hotspot Locations. One future recommendation is to 

consider multiple wildfire hotspot locations. These location can be determined based on 

historical data, and it is worth requiring the UAV to patrol above these hotspot locations in 

a spiral motion. This will come in expense of UAV energy consumption and complexity 

of the modified track. Figure 6.1 shows the integration between the rectangular track with 

spiral motion around hotspot locations.

Consider 3D coordinates for each hotspot location j  as J j = (Xj, Yj, Z j), which is 

the equivalent altitude over the hotspot location j . Assume that the UAV is initially in the 

landing location L and it will land at the same location after finishing the investigation. For
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the path planning problem, at each time slot t , the UAV can be in one of three modes: 1) flying 

between two hotspots locations (called flying mode), 2) flying around a hotspot location 

(called hotspot mode), or 3) landing at the initial location (called landing mode). Therefore, 

the it is needed to introduce three binary variables to identify each mode. Denoting f [ t ] 

as flying mode variable and is equal one if UAV is flying between hotspots locations and 

zero otherwise. Denoting hj [t] as the hotspot mode variable and is equal to one if the UAV 

flying over the hotspot j  and zero otherwise. Denoting l[ t] as the landing mode variable 

and is equal to one if the UAV is not flying and staying on the landing spot or at the initial 

location and zero otherwise.

□ Detection of wildfire

Pre-defined path

Spiral motion

• Hotspot location

w UAV

nBase station

Figure 6.1. Rectangular track with spiral motion around hotspot locations.

The details of these three variables are given as follows:

f  [t] =
1, if the UAV flying between hotspots locations during time slot t 

0, otherwise.
(6.1)

hj [t]
1, if the UAV flying over the hotspot j  during time slot t 

0, otherwise.
(6.2)
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m  =
1, if the UAV not flying and at initial location during time slot t 

0, otherwise.
(6.3)

The following constraints are to ensure the UAV is in one mode only for each time 

slot t , and to ensure the UAV must fly over all hotspots locations j  = 1 ,2 ,.., J  within the 

duration of a total of T time slots:

(to ensure that the UAV is in one mode (either flying or hotspot, or landing).

j

f  [t] + l [t] + Y  hj [t] = 1, Vt. (6.4)
j =1

(to ensure that the UAV flies over all hotspot locations j  = 1,..., J).

T
Y  hj [t] = 1, VJ. (6.5)
t=1

(to ensure that when the UAV is flying over hotspot j , then the coordinate of hotspot 

j  and the coordinate of the UAV are the same).

T
Y  hj [t]U [t] = Jj, V j (6.6)
t=1

(to ensure that when the UAV is landing at the initial location, then the coordinate 

of initial location and the coordinate of the UAV are the same).

T
Y  l[ t]V [t] = L . (6.7)
t=1

Conversely, to perform spiral motion, as shown in Figure 6.2, design parameters 

must be optimized such as D ' (the outer diameter), d' (the inner diameter), and R' (the 

number of the spiral rings). The values of D ', d ', and R' can be added to the optimization 

problem.
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The approximated circumference C' of the spiral motion, which is equivalent to 

the travel path of the UAV when the UAV is flying over a hotspot location and is given as 

follows:

In (6.8), the spiral circumference is approximated by taking the averages of the inner radius 

and outer radius.

Figure 6.2. An example of spiral motion around a hotspot location centered at (8,4).

6.2.2. Data Transmission via FSO. BSs are not always around or near the forest, 

therefore it may require long distance communication link. The directional transceiver 

antennas operating in Terahertz bands, such as free-space-optical (FSO), can provide 

infrastructure-less wireless access [53]. FSO has recently attracted significant interest 

from telecommunication researchers and industries, mainly due to the low cost and the
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deficit in radio frequency wireless spectrum [54], FSO uses the unlicensed optical spec

trum to provide a higher bandwidth channel for transferring large volumes of data, and it 

can be easily integrated with the UAV system for transmitting the air quality data collected 

from the patrol of UAVs [55],

Using a FSO link, the achievable data rate between the UAV and the central unit 

is a strong function of the geometric loss, as determined by r (the radius of the receiver's 

aperture in m), / (the distance between the laser transmitter and receiver in km), and 6 (the 

transmitter divergence angle) as shown in Figure 6.3.

FSO beam

FSO in future studies must address research questions related to: 1) optimizing 

the FSO alignment between the FSO transmitter and receiver. In this case, it is proposed 

that the UAV can be equipped with a swift and electronic FSO transmitter, 2) optimizing 

when and where to transmit the collected data to the BS based on weather conditions. For 

example, the UAV can keep collecting the sensors data and wait until flying over an area
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with a clear line-of-sight to transmit the signals to the BS via FSO link, and 3) optimizing 

the data communication frequency of the UAV, so it does not interfere the UAV flight and 

air quality sensing.
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