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ABSTRACT

iii

Underground coal mines have several dangers, one of the most hazardous of which 

is the possibility of an explosion caused by the ignition of methane gas. To reduce 

ventilation costs, coal mines have the option to close off abandoned areas that are no longer 

active with structural seals to keep an explosion from propagating into working areas of 

the mine. Though seals have been designed to resist the overpressure, none have been 

evaluated for their resistance to the impact of heavy objects. Underground explosions 

produce high velocity gasses that, traveling through mine openings, may propel objects in 

the mine at a high velocity causing them to impact and damage the mine seals. Seals 

damaged in this manner may no longer hold the pressure they were originally rated for and 

may fail during subsequent explosions or leak explosive gasses into active workings.

To test the effects of impact on mine seals, a projectile generator and two seals have 

been constructed. The projectile generator is a thick-walled steel pipe with a 4-inch wall, 

is 8.5 feet in length, and sealed on one end. Projectiles are propelled by a charge of black 

powder with a wooden wad and are held in place by foam sabots in the bore. This system 

allows firing of many different potential projectiles that may be found in an underground 

mine. The velocity of each projectile is measured by an infrared chronometer which can 

later be used to determine its impact energy. Impact effects on the seals are measured using 

strain gauges, LIDAR scans before and after impact, high speed cameras, and visual 

inspection. The focus of this research is on the projectile generator design, initial testing, 

and analysis of impacts on the mine seals.
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1. INTRODUCTION

Underground coal mine explosions are deadly events and a constant danger that 

miners and engineers must take great care to mitigate. The long process of coal formation 

also produces methane gas which, especially in deep lying coal veins, cannot escape until 

mining disturbs the coal. As long as the methane in the strata is at a higher pressure than 

the surrounding air and has a way of escape, it will continually vent into the mine workings. 

This results in potentially explosive conditions when the methane-air mixture reaches the 

lower end of the explosive limit (Bise, 2003). MSHA (the Mine Safety and Health 

Administration) requires underground coal mines to either ventilate all areas of the mine 

to eliminate the risk of a methane explosion or block off abandon areas with seals, which 

are typically made of concrete or other non-flammable material. The required strength of 

these seals is dependent on the type of atmosphere behind (inby) the seal, either 50 psi (345 

kPa) for inert and monitored atmospheres, 120 psi (827 kPa) for non-inert and 

unmonitored, and over 120 psi (827 kPa) for special cases. Seals must be designed to resist 

these pressures for four seconds.

Overpressure is not the only danger of an explosion underground. Due to the 

confined nature of such explosions a long period of high-velocity and high-pressure air is 

produced behind the shockwave that travels throughout the mine and is capable of 

propelling any objects in the mine to a very high velocity. Large or heavy objects such as 

boulders, roof bolts, and equipment may be picked up and thrown into the mine seals in 

the event of an explosion. These objects may reach velocities over 700 ft/s (213 m/s) based 

on a simulated explosion event in which 120 psi (827 kPa) was applied to a representative
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object for four seconds. (Perry, 2018). Though mine seals are designed to withstand high 

pressure, they are not intentionally designed to withstand impact. This research sought to 

design, build, and test a projectile generator capable of propelling a variety of typical mine 

materials to the required velocity and to examine their effects on 50 psi (345 kPa) and 120 

psi (827 kPa) MSHA approved mine seals.
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2. BACKGROUND

2.1. LITERATURE REVIEW OF MINE SEALS

Methane is liberated from most coal beds continuously after mining and in many 

mines will accumulate to, and then pass, the lower and upper explosive limits of the 5% to 

16% methane to air ratio. Mines close to the surface, or those with breaches that result in 

air exchange with current workings or the surface, may never pass the upper limit of the 

explosive ratio and will remain dangerous throughout the life of the mine (NIOSH, 2007). 

For increased safety, MSHA considers atmospheres to be inert in a range of less than 3% 

methane or more than 20% methane. If readings are between 4.5% and 17% methane while 

oxygen is 10% or greater, immediate action must be taken for atmospheres behind seals 

rated to less than 120 psi (827 kPa).

Historically, old mine workings have been closed off with a wide variety of walls 

or seals, including seals built with small individual solid blocks, cinder blocks (concrete 

masonry units or CMU), poured concrete, reinforced concrete, walls of gob (waste rock), 

timber, and other materials and methods. The Sago Mine disaster on January 2nd, 2006, and 

its subsequent investigation led MSHA to develop stricter and more robust requirements 

for coal mine seals. Prior to that event, mine seals such as those in the Sago Mine were 

only required to resist 20 psi (138 kPa) based on a 1992 USBM study; and before that there 

were no standards for pressure rating mine seals (Gates et al., 2007). The seals in the Sago 

Mine were constructed of concrete and fly ash blocks cemented together, made to be 

simple, inexpensive to construct, and easy to install. MSHA found, through interviews and 

an investigation, that the seals were destroyed and the individual blocks hurled into the
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working areas of the mine during the explosion, which initially occurred on the inby, non- 

ventilated side of the mine. Ignition was likely due to lightning strikes which caused a spark 

to jump across metal reinforcement in the mine, igniting the methane-air mixture. Unlike 

other coal mine explosions, the coal dust still present in the mine was not thought to have 

contributed to the explosion. MSHA estimated that pressure may have reached over 90 psi 

(655 kPa) behind the seal when it was destroyed, far more than the 20 psi (138 kPa) the 

seal was rated for (Gates et al., 2007).

After this event, MSHA decided on the three different pressure standards for mine 

seals, justification for which is provided in the NIOSH report IC 9500 (NIOSH, 2007). 

Mine seal manufacturers may submit seal designs for approval to MSHA, which keeps a 

list of all approved seals (MSHA, 2007). Mine seal designs are rated for different size 

openings and require different thicknesses of concrete or layers of CMU based on their 

designed pressure. MSHA requires seals to be designed to withstand 50 psi (345 kPa) for 

four seconds when the atmosphere behind the seal is kept inert, and 120 psi (827 kPa) for 

four seconds when the atmosphere is not monitored. Currently, no seals have been 

approved for over 120 psi (827 kPa) (MSHA, 2007).

Mine seal manufacturers submit designs to MSHA for approval upon completion 

of the engineering design work. Seal designs are not required to be field tested due to the 

high cost and difficult logistics of testing; engineers use CAD analysis programs and 

engineer equations to estimate the pressure resistive properties of their designs. Designs 

may include monolithic blocks with or without reinforcement, CMU blocks, and gob seals 

created by heaping up waste rock to form a barrier (MSHA, 2007). Seals tested during this
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research were monolithic concrete blocks, one with reinforcement (referred to as the 

reinforced seal) and one without reinforcement (referred to as the plug seal).

2.2. LITERATURE REVIEW OF BLACK POWDER

Testing of construction materials is often carried out in weather impact testing. 

Impact testing of structures is typically conducted using pneumatic (compressed air) 

cannons to determine their resistance to extreme weather events. This type of testing is 

meant to evaluate walls, doors, and windows for their resistance to common items being 

thrown by tornadoes and hurricanes. Though a pneumatic cannon was initially considered 

for this research, it was quickly realized that any compressed air cannon can only produce 

modest projectile energy (960 ft-lbs. or 1.3 kJ) compared to a combustion driven projectile 

generator (>73,800 ft-lbs. or 100 kJ) (FEMA, 2017). Light gas guns are another form of 

projectile generator that may have been useful for the project, but they are limited to a 

small diameter projectile in any practical gun, require a large horizontal footprint, and are 

very expensive.

With these considerations in mind, standard black powder was chosen as the 

propellant and a muzzle loading design for the projectile generator in order to produce high 

velocity projectiles in a safe and cost-effective manner. Black powder is relatively 

inexpensive, produces enough gas pressure to achieve high velocities, and is not capable 

of producing so much gas pressure as to require an expensive gun design to safely contain 

it.

Research on black powder has been conducted since the early to mid-1900’s, but 

the field seems fairly arcane due to black powder’s obsolescence as a propellant and mining
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explosive. World militaries replaced most of their black powder arms before WWI with 

nitrocellulose base propellants, though more than 10 million pounds were produced during 

that war for use in fuses and older firearms. It is still used in some military hardware in use 

today, such as the RPG-7 (Shea, 2012), as a reliable ignition mechanism for other charges 

(Sasse, 1985). The advent of nitroglycerin dynamite eliminated its use in the mining 

industry. Black powder’s obsolescence occurred before a complete understanding of its 

characteristics was realized. For all its antiquity as humanity’s first low explosive black 

powder still has yet to be fully understood.

Black powder (or gunpowder) is classified as a propellant or low explosive rather 

than a high explosive. It does not and cannot detonate under most circumstances. 

Detonation by definition includes the formation of a shock (pressure) wave moving faster 

than the speed of sound in the detonating material, black power instead only burns, albeit 

very quickly, producing hot gasses and solid products but no shock wave. Typical black 

powder has only three components: carbon (C) or charcoal; sulfur (S), and potassium 

nitrate (KN03). Their ratios are approximately 75% potassium nitrate, 15% charcoal, and 

10% sulfur by weight and correspond to the stoichiometric formula (Williams, 1975):

2 K N 03 + 3C  + S ^ K 2S +  N2 + 3 C 0 2 (1)

in which black powder burns to produce potassium sulfide (K2S), diatomic nitrogen (N2) 

and carbon dioxide (C02). However, this ratio was not historically agreed upon; numerous 

alchemists and later scientists (the famous Roger Bacon among them) proscribed 

significantly different formulas (Davis, 1941).
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As shown by Table 2.1, the correct stoichiometric ratio of components was known

by the end of the 18th century. The changing ratios may not necessarily reflect error on the

part of those medieval scientists. Different ratios give different pressure profiles which may

Table 2.1 Historical Black Powder Compositions by Weight (Davis, 1941)
SaLTFBTJ!U Chakcqal Buii-irs

■8th century, Marcus (irueeiLs............... . . .  66.60 22 22 11.11
8tb century, Marcus Graecua............... . . .  69.22 23.07 7.69
c. 1252, Roger liaenn.............................. . . .  3 7 5 0 31 25 31.25
1350, Arderne (laboratory recipe)......... . . .  66.6 22.2 11.1
1500, Whitehom#....................... , ........... . . 50.0 33.3 16.6
1560, Bruxelles studies.................. , , ,. . . ,  75.0 15.62 9.3S
1635, British Government contract. , . . . . 75.0 12.5 12 5
1781, Bishop Watson............................... . . .  75.0 15.0 10.0

have been more appropriate for whatever use they put it to at the time. For example, higher 

sulfur content likely made the low-purity early black powder easier to ignite. It should be 

noted that although sulfur does contribute to the amount of gasses produced, it is not strictly 

necessary. Sulfur’s main purpose is to decrease the ignition temperature, making for an 

easier ignition and a faster burn (Davis, 1941). When black powder is exposed to a flame, 

sulfur’s low melting point and combustion temperature act as an intermediate step between 

the ignition flame and the relatively high ignition temperature of potassium nitrate and 

carbon (Conkling, 2010) (Rose, Hardt, 1979). Table 2.2 displays sulfur’s effect on the 

maximum reaction temperature as a function of its weight percentage.

As shown in Table 2.2, a powder made with 15% sulfur results in a combustion 

temperature of 1300° C (2372° F), near the maximum possible black powder combustion 

temperature of 1350° C (2462° F). Per the ideal gas law, changing gas temperatures result
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Table 2.2 Sulfur Content vs Max Temperature (Brown, 1989)
Table 1. The Effect of Increasing Sulphur Content on the Burning 
Kate of Sulphuric^ Black Powder.

Sulphur Burning rate T „ Enthalpy oE reaction, -  H 
(homb calorimetry)

m Jem's] m fkX/*] [U;mol]
(of osieiizer)

o% b 0.20 ± 0.01 900 2.75 ± 0.03 243.5
p 0.16 ±0.01

5%h 0.39 ± 0.01 1020 3,35 ±  0,05 278.ft
P 0.3$ ± 0.01

10% h 0.71 ± 0.01 1350 3,21 ± 0,02 252,2
P 0.56 ± 0.01

13% h 0.94 ± 0,01 1300 2.92 ±  0,02 217.2
P 0.-81 ±  0.01

20%  h 0.95 ±  0.01 1240 2.80 ±  0.04 2010
P 0.33 ± 0 01

30% h 0,79 ± 0.01 1140 2.59 ±  0,05 166.3
P Q.77 ± 0.01 ' -s - J  *1.

h -  hand-packed, p = pressed

in linear changes in pressure. For safety’s sake, the higher temperature of 1350° C will be 

used as the reaction temperature in this thesis when calculating gas pressure. For contrast, 

Figure 2.1 displays the combustion temperature curve of various mixtures of potassium 

nitrate and charcoal and indicates that the removal of sulfur significantly reduces 

temperature (red lines added to the graph intersect at max temperature reached for sulfur

less black powder with 15% charcoal, about 1100° C on the graph).

The best type of charcoal, what tree it was produced from, and its exact chemical 

composition were points widely debated and examined in the medieval period and early 

industrial age. In fact, it is still relevant today and its effects on gas production will be 

discussed further in the thesis. Different tree species produce varying compositions of 

charcoal and may be suitable for producing different effects in black powder and other
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fireworks compositions. Debate still exists over how volatiles in the charcoal affect burn 

rates; some researchers posit that the amount of volatiles in the charcoal has a great effect 

on its reactivity and burn rate (Rose, Hardt, 1979). As was typical of early scientific

Figure 2.1 Temperature Curve of Sulphur-less Black Powder (Brown, 1989)

research, the manufacture of black powder was an art developed by trial, error, and deadly 

experience with many milling operations destroying themselves (Lancaster, 2006). The 

only present-day company in the United States still producing black powder keeps their 

exact recipe and methods a trade-secret, as the author discovered when attempting to gather 

more information on the subject.

Also relevant to an understanding of black powder is an examination of its reaction 

characteristics due to geometry. During deflagration, ignition is generally thought to 

propagate from one grain to another by means of the molten spray of potassium salts in 

grained powders. Propagation is slowed by sulfur and a higher sulfur content will slow 

down the reaction even though it increases sensitivity. Grain size also greatly affects the
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propagation (flame spread) rate. Large grain powders may have propagation rates as low 

as 560 ft/s (171 m/s) and small grain powders as high as 2130 ft/s (650 m/s) (Brown, 1989). 

This is also evident from the use of powder in the muzzle loading firearms: small grain 

powders are used in smaller bore weapons firing lighter weight projectiles where a fast 

pressure increase is needed, large grain powders are used for the opposite. Cannon grade 

powder, the largest grain commercially available for firearms, was the grade used in this 

study. Small grain powders may have a specific gravity of up to 1.6. The cannon grade 

powder used in this study had a measured specific gravity of 1. The lower density of larger 

powders results in a lower energy density per unit of volume.

Reaction products are also of special concern when evaluating black powder’s 

performance. Few chemical mixtures are perfectly homogeneous; each time one substance 

is mixed with another slight difference in mixing will occur. Gun powder companies have 

historically found this to be true even up to the present day (Sasse, 1985). An empirical

Potassium nitrate.............. . . . . . ........... 74.430
Potassium sulfate 
Sulfur

Charcoal

Moisture

0 133 
10 OM

H.2S6

LOSS

Their mean results from the analyst of the gaseous products 
(percentage by volume) and of the solid products (percentage by 
weight) arc shown in the following tables.
t'jirhon dioxide . .
Carbon monoxide.
Nitrogen...............
Hydrogen sulfide.

. . . .  1U 29 Piilibcflttm rarhonate............. 61.03
___ 12.4.7 Pulu^em  aulfote............. . .. 15.10
. . . .  32 01 Potassium sulfide.. ............. . .  L4.45
. . . . 2 05 Polji?isnmi thiocyanate........ . .  0 2 2

0 43 . . .  0 27
. . . .  2 1 0 Ammonium carbonate......... . .  O.Ofi

Sulfur.................................... . .  S.74
Carbon............................... . . .  O.Ofi

Figure 2.2 Noble and Abel Experimental Results (Davis, 1941)
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measure would be more accurate, and Davis provides an analysis (Figure 2.2) of the 

reaction products done by Sir Andrew Noble and Frederick Abel in the late 19th century.

Results not shown included the percentage of solids as 55.91%, 42.98% gas, and 

1.11% water; and the volume at 274.2 cc at 0° C under a pressure of 760 mm mercury 

(units of temperature not stated, author assumes to be Celsius). As shown in Figure 2.2 

there are a large and varied number of reaction products, and charcoal is composed of more 

elements than carbon. In modern powders charcoal is approximated as roughly C9H40, a 

rounded empirical average used by other researchers for the particular black powder used 

in this study (Sasse, 1984).

2.3. LITERATURE REVIEW OF GUN DESIGN

Gun design has a long and fascinating history. Early firearms were simple iron 

tubes, open at one end and having a touch-hole drilled or forged into the other. Gunpowder 

was poured down the tube, a rounded rock or steel ball (or several) driven down after it, 

and a burning corded match touched to the touch-hole. Black powder was likely first 

discovered in China with the oldest known writings dated to AD 808 (Lancaster, 2006), 

and it seems logical that the invention of guns would follow soon after. Firearms were 

introduced and/or developed in medieval Europe in the 14th century, and by the late 15th 

they were sailing with Columbus to the Americas (Pegler, 2009).

The so called “cottage industry”, as most manufacturing is termed prior to the 

industrial revolution, did not produce consistent parts because the technology of the time 

simply wasn’t accurate enough and manufacturers were fairly dispersed. Firearms were 

each individually made and parts fitted by hand. In order to ease loading, the barrel or
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“bore” was often oversized for the projectile to be fired which allowed gas to escape past 

the projectile or “blow-by” when fired, reducing accuracy and velocity.

Development did progress rather quickly by the 1600s, essentially modern spring- 

loaded triggers appeared along with the progression to a flintlock mechanism as a means 

of initiation, rather than burning match cords. In perhaps a portent of future American 

culture English colonists themselves were quite well armed in 1609, having according to 

John Smith “24 peeces [sic] of ordinances, 300 muskets, snaphaunces and fire-lockes [sic], 

shot powder and match” (Pegler, 2009). Flintlocks gave way to the percussion cap in the 

early to mid-1800’s, just in time to become well-establish before the American Civil War. 

Percussion caps used mercury fulminate, an explosive and highly sensitive compound, to 

set off the main charge of powder in the barrel.

Many modern firearm designs and especially ideas stem from this period; and as is 

obvious from the much-abbreviated history above, much of the research was trial and error, 

intuition and ideas. Firearms and traditional “academic” engineering were not always 

closely related. John Browning, a gun designer who is to firearms what Einstein is to 

physics, had no formal higher education. Today, as with most engineering disciplines, 

firearms are designed by engineering teams using CAD software and advanced mechanical 

engineering degrees. Some of that knowledge will be discussed in the paragraphs below as 

it pertains to the design of a projectile generator for this thesis.

From an engineering standpoint, guns can be conceptualized essentially as pressure 

vessels containing a piston which is free to move in one direction. Barlow’s formula, which 

is a common formula used in civil engineering (49 CFR 192.105) for determining the 

design pressure of steel pipe, has been simplified into the formula:
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(2)

and gives the yield and burst pressure based on the yield and tensile strength of the material, 

where Pt is maximum internal pressure (psi), S  is the yield or tensile strength (psi), t is the 

wall thickness (inches), and D is the outside diameter of the pipe (inches). Barlow’s 

formula, while widely used for pressure estimation in industry, was not intended to be used 

in gun barrels but is accurate for thin walled pipes.

The wall ratio equation is a more conservative equation and more accurate for thick 

walled tubes. It is a combination of von Mises failure criterion and Lame’s formulas; 

specifically used for gun barrels (Carlucci, Jacobson, 2013):

C2 - 1
Pj= . = * s (3)

y 3 *<?+ 1

and gives the yield and burst pressure. In this formula, Pt is internal pressure (psi), ^ is the 

ratio of the outer diameter to the inner diameter (OD/ID) (unitless), and S  is the yield or 

tensile strength (psi).

Pressure produced by the firing of a cartridge must also be known in order to design 

safe firearms. The exact calculations involved can be incredibly complex and were beyond 

the scope of this thesis (Carlucci, Jacobson, 2013). However, a few equations with some 

assumptions can greatly simplify the process.

The ideal gas law can be used to find the pressure of any ideal gas at close to

standard temperatures and pressures and is stated in two forms (Elger et al., 2013):
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c * IL * T
P = (-----^ ---- )

(4)

tn*R* T
p = < ^ ^ >

(5)

where

(6)

and P  is pressure (Pascals), n is the amount of gas in moles, R  is the specific gas constant, 

Ru is the universal gas constant, T is the absolute temperature (degrees Kelvin), and V is 

the volume in meters cubed. This equation is not particularly accurate as temperatures and 

pressures increase (Cooper, 2010).

Engineers in the field of ballistics often use an equation developed by the 

aforementioned Noble and Abel, called the Noble-Abel equation of state:

(7)

where the variables are the same as Equation (4) with the addition of mg representing the 

mass of the gas and b representing co-volume (an empirical value unique to each gas), 

which is often close to 1/1000th of the specific volume (Cooper, 2010) (Carlucci, Jacobson, 

2013). Cooper gives a simplified version of the Noble-Abel equation of state with:

0.0S21 * n * T
P= -----------------

V - 0.025 * n
(8)
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where n is moles, T is temperature Kelvin, and V is volume in liters. This equation has been 

tailored to fit empirical data from common propellant gasses (Cooper, 2010).

Projectile design and development have progressed greatly since the first person 

loaded a rock into a tube filled with gunpowder; though the basic ideas of all projectile 

weapons remain the same. One particular development, used extensively for this project, 

is the sabot (a French word for a type of shoe, pronounced say-bow) (Carlucci, Jacobson, 

2013). Sabots are here defined as any device that allows the firing of projectiles smaller 

than the bore diameter of a gun. Because sabot materials are generally much lighter weight 

and/or have a lower mass (they are not intended to cause damage or ever reach the target), 

the lighter-weight sabot-enclosed projectile can achieve much higher velocity than typical 

for a gun of that caliber.

A pervasive example of a modern-day sabot is the shotgun sabot; a piece of molded 

plastic which holds a slug smaller than the bore diameter of the shotgun, allowing hunters 

to kill deer and other game animals from a far greater range than when using traditional 

buckshot. In fact, the typical shotgun wad holding shot can be classified as a cup-type 

sabot, allowing a shotgun to fire many sub-caliber projectiles at once. Many militaries also 

use sabots in various guns (such as the 120mm cannon on the M1 Abrams tank) in order to 

fire extremely high velocity projectiles that can defeat heavily armored targets. This project 

also used sabots for the same purpose; Figure 2.3 is a drawing of one of the steel projectiles 

used in this project with a wood and foam sabot.

Sabot material selection is a critical part of sabot design. Having no effect on the 

target, sabot weight is entirely parasitic (Carlucci, Jacobson, 2013), and therefore engineers 

attempt to design sabots to be as light as possible. However, as with many engineering
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Figure 2.3 Steel Projectile with Sabot

challenges, it presents a dilemma of choice that forces the engineer to decide, based on a 

multidimensional scale involving weight, manufacturing costs, time, function, and safety, 

which attributes or combination thereof best meet the needs of the user. As an aside: the 

US DOD, being somewhat well funded, could afford to spend about $13,370 USD per 

round of M829A4 fin-stabilized discarding-sabot for the main gun of the M1 Abrams series 

tank (Exhibit P-40, 2017). This project, being well but somewhat less funded than the 

DOD, still occasionally had unit costs of well over $100 USD per shot using the some of 

the cheapest materials and labor available.
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3. DESIGN AND CALCULATIONS

3.1. BARREL DESIGN

Researchers decided on a muzzle loading design for the projectile generator due to 

the simplicity of use and manufacture. Breech loading designs, as typical of most modern 

firearms and artillery, were considered but rejected. In order to fire a wide variety of 

projectiles, the projectile generator needed a large bore (the inside diameter of the barrel), 

of approximately 12 inches (30.5 cm). Locked breech guns, such as modern artillery, 

require extensive machining of the barrel and many precisely machined and expensive 

parts to function. This in turn would result in a very large and heavy device that would not 

be able to be machined on any of the equipment available at Missouri S&T or in the local 

area. Therefore, a simple steel tube, plugged at one end and loaded from the muzzle, was 

deemed the best choice as manufacturing and fitting a breech plug was within the 

capabilities of S&T machine shops and personnel.

Finding a length of steel tube large enough to become the barrel proved difficult. 

Eventually a 12-inch (30.5 cm) inner diameter, 20-inch (51 cm) outer diameter seamless 

4140 steel pipe was found in the US; a cutoff of a piece imported from Germany. This 

piece became the barrel of the projectile generator, weighing roughly 5,800 pounds (2630 

kg) and having a length of 8.5 feet (2.6 m).

Before the proposed barrel could be purchased, it first had to be evaluated to 

determine if it could safely contain the pressure of firing multiple shots without yielding 

or failing. To ensure safety and simplify the calculations the barrel was evaluated in the 

worst-case scenario for a gun: a completely obstructed bore under pressure from the largest
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charge of powder. The barrel pressure calculations proceeded with the assumption that the 

barrel would have to withstand the residual pressure of three pounds of cannon grade black 

powder burning completely and only expanding into the volume of the “chamber” behind 

the projectile.

According to the provided mill report (Appendix A), the barrel steel has a yield 

tensile strength of 61,000 psi (421 MPa) and an ultimate tensile strength of 112,000 psi 

(772 MPa). Both the internal yield pressure and ultimate burst pressure of the pipe were 

calculated and compared to the maximum pressure the propellant can produce. Internal 

yield pressure and ultimate burst pressure were both calculated using two different 

equations for redundancy: Barlow’s formula (2), and the wall ratio Equation (3). Barlow’s 

formula:

(9)

(10)

Calculations with this equation gave a yield pressure of about 24,400 psi (168 MPa) 

and a burst pressure of about 45,000 psi (310 MPa). Applying the wall ratio equation 

(Carlucci, Jacobson, 2013):
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( § )  LPi = . 12 , -  * 61,000
20

3 * ( X j )  +1

(n >  1P; = , LZ - * 1 12.000
f 2 0 ^  '
3 * ( g )  - 1

(11)

(12)

Calculations with Equations 11 and 12 gave a yield pressure of about 22,000 psi 

(152 MPa) and a burst pressure of about 41,000 psi (283 MPa). Both formulas give 

somewhat similar results. However, Barlow’s formula is only intended for thin walled 

pipes under relatively low pressures. The wall ratio equation given by Carlucci and 

Jacobson is specifically for gun barrels and is a derivation of the von Mises criterion for 

stress (Carlucci, Jacobson, 2013). In Equations 11 and 12, failure is said to occur if the 

barrel pressure ever exceeds the yield strength of the barrel material. As the wall ratio 

equation more accurately represents the actual stresses on a thick-walled barrel and gives 

a lower maximum pressure than Barlow’s formula, 22,000 psi was used as the maximum 

pressure that the barrel should be exposed to.

The next design step after determining the max barrel pressure was to determine 

how much pressure the cannon grade black powder produces per unit of weight and what 

chamber volume would keep that pressure below the yield strength of the barrel. Every 

combustible or explosive substance has a maximum static pressure it is capable of 

producing (assuming it is contained in a space equal to its volume) based on the amount 

(moles) of gas produced per unit of volume for a given initial density and constant reaction 

temperature. Maximum static pressure can be found with a combination of stoichiometry,
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the modified Nobel-Able equation of state given by Cooper (2010), and several 

assumptions. The simplest equation commonly given for the combustion of black powder 

is given in Equation (1). However, that reaction is perhaps too simple. Experimental data 

has shown that the products of black powder combustion are varied, as shown in Figure

2.2. The author could find no stoichiometric formula in previously published research that 

accurately represented the reaction, likely because black powder was largely supplanted by 

smokeless powder in the early 20th century (Sasse, 1985) and only occasional research has 

been published since.

Noble and Abel’s analysis was used to develop a more accurate representation of 

the reaction, approximating charcoal as C9H40 . Their analysis was simplified somewhat to 

ease calculations; water was eliminated from the reactants which changed the solid to gas 

mass ratios to about 56.4% and 43.6% respectively. Noble and Abel left it as percent 

volume in their report; the gas must be converted to a moles per unit of weight to be useful 

in pressure calculations. Table 3.1 shows this process.

The moles per kilogram of black powder (moles/kg in Table 3.1) were found by 

using values provided by Noble and Abel and a re-arranging of Equation 7, solving for the 

moles of gas n, and accounting for the volume percentage of each individual gas:

(13)

where the units are the same as Equation 7, with the addition of the percentage volume (% 

v) and multiplying by 1,000 to arrive at the moles of gas per kilogram of black powder 

fokg ) .



Table 3.1 Noble Abel Analysis

KN03 C9H501 S —> K2C03 K2S04 K2S S C02 CO N2 H2 H2S CH4
grams/mol:
%  mass: 74.8% 14.7% 10.5% 61.2% 15.3% 14.5% 9.0%
%  vol: 49% 12% 33% 1% 3% 4%
moles/kg:
%  mass: 74.8% 14.7% 10.5% 35% 9% 3% 5% 23.89% 3.85% 10.14% 0.02% 0.99% 0.76%

I  Moles Gas/kg: 11.31
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For example, solving for the moles/kg of C02:

(14)

yields 5.43 moles of C02 per kg of black powder. Using this equation in Table 3.1, the total 

gas production of black powder was found to be 11.31 moles/kg (25 moles/lb.). Some slight 

errors were introduced using this method. Several of the trace quantities of solid products 

were eliminated from the calculations, and moisture content was also ignored. This, 

combined with the derived nature of the calculations, resulted in about a 3% loss of mass 

from the original given weight. The error is small and was deemed to be within an 

acceptable margin. Finally, the maximum pressure produced in the worst-case scenario for 

the projectile generator could be computed. Using Cooper’s equation modified equation of 

state for pressure (Cooper, 2010):

G.GS21 * 15.4 mol * 1623 °K (15)
P = --------------------------------------

3.71 liters- 0.025 * 15.4 mol

where 3 lb. (1.4 kg) of black powder produces 15.4 moles of gas in the projectile 

generator’s 226 in3 (3.71-liter) chamber, the equation yields a pressure of 617 atm or 9,074 

psi. The projectile generator has a calculated yield pressure of 22,000 psi (152 MPa), 

therefore the yield factor of safety in the worst-case scenario is 2.4. Using the burst pressure 

of 41,000 psi (282 MPa), the projectile generator has an absolute factor of safety of 4.5. In 

this manner the projectile generator’s barrel was proven safe for use, provided a ratio of 3 

lb. (1.4 kg) of black powder per 226 in3 chamber volume (or 2 inch or 5 cm chamber 

length) is not exceeded while using a disintegrating powder container such as insulation
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foam. The calculations provided are completely empirical and not quite stoichiometrically 

balanced; to further understand the problem the author attempted to find a balanced 

stoichiometric equation, starting with the reaction:

XNO: -  C9H:-0 -  $ — (16)

K:C03 + k 2s o + - k 2s - c o 2 + c o  + h ; o  + n : - h 2 -  S

H20  was included in this equation because it is very likely to form during combustion 

(Cooper, 2010). Again, several minute products of Noble and Abel’s analysis have been 

eliminated for simplicity, such as ammonium carbonate and pure carbon. A spreadsheet 

was used to find the coefficients of the reaction and then determine the mass percentages 

of the products as shown in Table 3.2.

Balancing was accomplished by the “guess and check” method because the 

equation can’t be solved algebraically, or rather, it has near infinite solutions. This solution 

gave the formula shown in Equation 10:

iOIOXi: -  12.!' -  33 _ > — (17)

26 K;C 0 3 + 6 K2S 0 4 -  S K: S -  59 C 02 + 27.5 CO +- 5 H20  + 40 N: -  26.25 H: + 19.7 S

Normal convention for chemical equations calls for the elimination of fractions and 

decimals, but to do so in this equation would result in very large and irreducible 

coefficients. As stated, the number of possible reactions is nearly mathematically infinite;
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the goal of this equation was to arrive at a balanced equation that was a close as possible 

to the reaction in Figure 1.4; a balance more representative of the reaction is likely possible.

The mass ratio of solids to gasses (~57% solids to ~43% gasses) is within one 

percent of the ratio found by Noble and Abel (Davis, 1941) although the ratios of different 

gaseous products differ by up to 14%. However, Cooper’s Equation 7 is already accounting 

for common reaction products in the R value and co-volume adjustment, therefore the 

actual ratios of the different gasses should have little effect on pressure calculation. Using 

the mass ratios found in Table 3.2, Table 3.3 calculates the moles of gas produced per 

kilogram of black powder.

Table 3.3 reports 14.6 moles/kg (6.6 moles/lb.) of gas, as opposed to the strictly 

empirical method in Table 3.1 which found 11.3 moles/kg (5.1 moles/lb.). As an additional 

comparison, the “standard” black powder reaction equation (Equation 1) yields about 14.8 

moles/kg (6.7 moles/lb.). Equation 7 and Table 3.3, with the same volume and temperature 

as before and 3 lb. (1.4 kg) of black powder, yields 19.9 moles of gas and a pressure of 

12,154 psi (84 MPa) compared to 9,074 psi (63 MPa) from Table 3.1, a 34% increase in 

pressure.

The stoichiometrically balanced equation has infinite solutions and does not seem 

to represent the actual black powder reaction as closely as the strictly empirical calculation. 

The simplistic reaction of Equation 1 disregards most of the known products of black 

powder combustion. For the purposes of this thesis, the Noble-Abel analysis used in Table 

3.1 is assumed to be the most accurate representation of the moles of gas produced.



Table 3.2 Stoichiometric Balance of a Complex Black Powder Reaction

KN03 C9H5D1 S —> K2C03 K2S04 K2S C02 CO H20 M2 H2 S
grams/mol: 101.1 129.1 32.1 138,2 174.3 110.3 44.0 28-0 18,0 28.0 2.0 32.1
moles
ratio: 80 12.5 33.7 26 6 8 59 27.5 5 40 26.25 19.70
mass (kfil: 8.00 1.61 1.08 0.00 3.59 1.05 0.88 2.60 0.77 0.09 1.12 0.05 0.63
mass %: 75.0% 1 5.0% 10.0% 33.3% 9 .7 % 8.2% 24.1% 7.1% 0.8% 10.4% O.S% 5.9%

Table 3.3 Stoichiometric Balance Pressure Calculation

KN03 C9HS01 S — > K2C03 K2S04 K2S C02 CO H20 N2 H2 S
mass %: 75.0% 15.0% 10.0% 11 % 10% 8% 7% o oc 10% 0.49%
mass (g): 748.5 149.3 100.0 332.6 96.8 81.6 240.3 71.3 8.3 103.7 4.9 58.5
g/mol: 101.1 129.1 32.1 138.2 174.3 110.3 44.0 28.0

o00 28.0 2.0 32.1
moles:
State: S S S S S S G G G G G S

l  Moles Gas/kg: 14.60

to
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3.2. BREECH PLUG DESIGN

Most modern artillery is breech loading, meaning it loads from the rear of the gun, 

as opposed to nearly all firearms prior to the 19th century which loaded from the muzzle or 

front end. Breech loading has many advantages: fast loading due to not needing to ram the 

propellant and projectile down the barrel, access to the rear end of the barrel should errors 

occur in firing, and easier cleaning. While a breech loading projectile generator would have 

been preferable due to these advantages, the required design time and complexity of 

machining the heavy barrel were unfortunately beyond the scope of the project. 

Consequently, a relatively simple breech plug and plate to seal the bore was designed. 

Researchers desired a simple design with a high factor of safety to plug the breech end of 

the projectile generator, but in a way such that the plug could be removed if a projectile 

became fixed in the barrel due to errors in loading. The largest possible force on the breech 

face can be calculated by taking the max static pressure of 9,074 psi (63 MPa) and 

multiplying it by the area of the bore (113 in2, 713 cm2), resulting in a force of 1,026 kips 

(4.6 MN). Researchers chose a 12-inch diameter by 12-inch-long (30.5 cm) cast steel 

cylinder as a breech plug to be pinned in place with pull-out steel dowels and then capped 

with a steel breech plate. Removing the breech plate and the plug in particular would be 

difficult but not impossible if the need arose. Figure 3.1 is a CAD drawing of the proposed 

breech plug and plate design. Forty-four pins and bolts (twenty-two each) were used to 

hold the breech plug and plate in place. The dowel pins were arranged in a series of two 

rows of eleven pins each, with holes drilled through the barrel and two inches into the 

breech plug and the four-inch-long dowel pins inserted through the barrel wall and into the 

plug.
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Having a shear strength of 102,000 lbs. (0.45 MN), the pull-out dowel pins have a 

combined strength of 2,244,000 lbs. (10 MN) An additional 22 holes were drilled around 

the circumference of the breech plate and two inches into the rear of the projectile generator 

parallel to its axis. Researchers tapped these holes for the threads on the bolts and attached 

the breech plate to the rear of the projectile generator with the bolts. With a tensile strength 

of 117,810 lbs. (0.52 MN), twenty-two bolts have a combined strength of 2,591,820 lbs. 

(11.5 MN) In total, the breech design can support a force of 4,835,820 lbs. (21.5 MN) This 

d-sign gave the projectile generator breech a factor of safety of 4.7. The barrel and breech 

plug were shown to be safe using these methods, and the actual factor of safety is much 

higher as the barrel is not entirely sealed due to the touch hole.
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The frame design proceeded with two main design considerations: the frame must 

be simple enough to construct out of locally available materials with the tools available at 

S&T, and it must be able to withstand the forces of gravity and recoil. With these 

considerations in mind, researchers chose to build the frame from 1/8-inch thick wall, two 

inches by two-inch square tubing or, to use industry terms, Hollow Structural Sections or 

HHS. Figure 3.2 displays the initial CAD drawings of the design:

3.3. FRAME DESIGN

Figure 3.2 Initial Frame Design

A total of 8 HSS were placed as horizontal supports to hold the weight of the 

projectile generator, each having a bending strength of 4.9 kips (21.8 kN) over the two- 

foot-wide frame, giving the frame the ability to support a downward force of 39.4 kips 

(175 kN). The force of gravity due to the projectile generator’s weight, breech plug and 

plate included, is equal to about 7 kips (31 kN), resulting in a factor of safety of 5.6. The 

frame is slightly overbuilt in this regard. After the initial construction of the frame, the 

author had several lengths of HSS left over and added them vertically in between the 

upright sections (supporting the midpoint of the horizontal sections), further increasing
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strength. Those sections are not shown in Figure 3.2 but are visible in pictures of the 

completed projectile generator.

Recoil is arrested in this design by four recoil lugs and frames, two on each side, 

which are the triangular HHS attached to the centerline of the barrel in Figure 3.2. These

Figure 3.3 Recoil Frame

were each made by welding a steel cube to the triangular HSS along the centerline of the 

projectile generator between the horizontal supports, drilling a one-inch diameter hole 

through the two-inch cube and drilling an additional two inches into the barrel. A steel pull

out dowel pin was then inserted through the cube and into the hole in the barrel. Further 

recoil support was provided by another series of HSS at the rear of the projectile generator 

as shown in Figure 3.3:

This frame was welded to the rear of the projectile generator butting up against the 

breech plate. Using the table values for HHS strength (Steel Construction Manual, 2005) 

and the geometry of the frame, the author calculated the combined strength of the recoil
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arresting components to be 16.5 kips (73 kN). Per Newton’s third law, the recoil force can 

be computed as the force caused by a 30 lb. (14 kg) projectile accelerated to 700 ft/s (213 

m/s), the maximum weight projectile at the highest expected velocity to be fired from the 

projectile generator. Table 3.4 shows the calculation:

Table 3.4 Recoil Force Calculation

Recoil Force
Prjt Weight: 30 lbs
Prjt Mass: 0.93243 slug
Velocity: 700 ft/s
Barrel Length: 7.5 ft
Avg Vel: 350 ft/s
Time in Barrel: 0.021 s
Acc: 32667 ft/sA 2
Force: 30459.33 lbs

The recoil calculation is greatly simplified from real ballistic acceleration, 

assuming constant acceleration through the barrel, but does give a good estimate of the 

average force experience by the projectile and, inversely, the projectile generator during 

firing. Table 3.4 gives the average force as 30,500 lbs. or 30.5 kips (136 kN). If the 

projectile generator were fixed to the ground and unmovable, the design would fail because 

the recoil frame is only capable of resisting a force of 16.5 kips (73 kN) (FS ~ 0.54). 

However, as will be shown in the next section, the projectile generator was placed on a 

surface of clean crushed gravel. Therefore, the static friction force between the gravel and 

the bottom of the steel frame is the actual maximum force that the frame needs to resist, 

the rest of the force is translated into movement of the projectile generator rearward (the 

kinetic friction force, lower than the static, arresting the projectile generator’s momentum
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once it begins to move). Using 0.4 as the coefficient of friction between clean gravel and 

steel (Fine Software, 2020) and a downforce of 7 kips (31 kN), the author calculated the 

force of friction to be 2.8 kips (12 kN), or about 1/6th of the resistive force of the recoil 

frame (FS ~ 6). However, if  the projectile generator would sink into the gravel slightly 

(which it did), the static friction force would be significantly higher and very difficult to 

predict using engineering calculations. The correct answer is likely in between these two 

extremes, and projectile generator projectiles only ever achieved about half of the designed 

muzzle energy, thus keeping the recoil force well below the strength of the recoil frame in 

any case.



32

4. CONSTRUCTION, PROJECTILES, AND SITE PREPERATION

The Missouri S&T experimental mine provided a safe location to conduct testing 

on the seals. Researchers selected a site and cleared it of brush and trees; a gravel layer was 

laid down to create a firm base for the seals and projectile generator. A concrete pad was 

poured to create a base for the seals, and a team from Strata Mine Services poured the seals.

Figure 4.1 Mine Seals

Figure 4.1 is a picture of the seals during disassembly of the framework after they 

had set up for a month. The seal on the left is the unreinforced seal rated to 50 psi (344 

kPa), and the seal on the right is the reinforced seal rated to 120 psi (827 kPa) and having 

two grids of rebar for reinforcement.

Construction of the projectile generator was carried out at S&T’s Rock Mechanics 

building. Researchers assembled and welded the frame, shown in Figure 4.2, and added
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several features not included in the initial design. Outriggers were attached to provide 

stability during firing, and angled roll-stops (seen on the top right portion of the frame) 

were added for increased safety.

Figure 4.2 Frame During Construction

Other parts for the projectile generator were manufactured concurrently. The breech 

plug is shown in Figure 4.3, just after machining, and in Figure 4.4 it has been fitted to the 

projectile generator and spot-welded in place. Figure 4.4 also shows the drilling and taping 

of the holes for the bolts and pins that hold the plug and plate in place. Figure 4.5 is a 

picture of the completed projectile generator barrel, and Figure 4.6 shows the complete 

projectile generator, unpainted. Also visible in Figure 4.6 are four additional steel straps, 

which were heated and hammered into place around the barrel then welded to the frame. 

These straps ensured that the barrel could not break loose from the frame during transport 

or firing. Finally, the projectile generator was placed in position at the test site (Figure 4.7).
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Figure 4.4 Drilling

The projectile generator was specifically designed to fire almost any projectile that 

fits within a 12-inch diameter circle. To that end, researchers decided on a design very 

similar to a shotgun wad system in which a wooden “wad” or disk is used to seal the bore
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*

Figure 4.6 Completed Projectile Generator

during firing and propel projectiles down the barrel. Wads were originally disks cut off 

from a wood utility pole and lathe turned to the bore diameter, but they were often too 

cracked along their axis to create an effective gas seal and weighed up to 10 lbs. (4.5 kg)



36



37

by themselves. Researchers then used a water jet cutting CNC machine and a CNC router 

to cut plywood disks which were stacked together and glued to create the wad. This method 

worked well, obturating the bore and holding together during firing; it also cut the wad 

weight by half, allowing higher velocities for the same weight projectile. However, 

plywood wads shattered in the bore when fired with more than two pounds of black powder 

due to the increased pressure. Testing determined that charges over two pounds became 

cost inefficient (due to only moderate velocity gains for additional powder), so researchers 

used plywood wads and only 1 lb. (2.2 kg) of powder for all subsequent testing (Steward, 

2019).

Cannon grade black powder was used as the propellent due to the properties 

discussed in Section 2. Researchers made the powder charges by double wrapping the 

desired weight of powder into a squat aluminum foil cylinder, then taping that cylinder into 

the center of a two-inch-thick piece of foam insulation cut to fit the bore. While protecting 

the black powder from sparks or electrical shock during loading, the foil could also easily 

be pierced with a brass rod through the projectile generator’s touch hole. After piercing the 

powder charge, researchers then inserted an electric match through the touch hole and into 

the powder. The projectile generator was fired from a safe location with an electric blasting 

machine (Steward, 2019). Foam insulation disintegrates rapidly under high temperature 

and pressure, and researchers realized that it provided an additional measure of safety to 

the projectile generator by increasing the chamber volume. When the projectile generator 

is loaded, the powder charge, contained in a thick foam disk, is pressed to the rear of the 

projectile generator. The wad is then rammed down the bore until it contacts the foam disk, 

and the projectile pushed down on top of the wad (Steward, 2019).
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To keep projectiles from damaging the bore, researchers cut foam sabots to fit 

around each projectile. This allowed the use of many different types of projectiles: wood 

beams, roof bolts, roof bolt plates, concrete and steel cylinders, hand tools, etc. Figure 4.8 

shows a 30-pound (13.6 kg) concrete projectile with a foam sabot. Foam added very little 

to the overall weight of the shot and did not damage the seals or equipment as plastic or 

metal sabots might have (Steward, 2019).
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5. FIRING AND TEST RESULTS

5.1. FIRING AND VISUAL RESULTS

Both seals were subjected to the same battery of tests. These tests included the firing 

of the following: a 5x5 inch five-foot-long wood beam, a 30 lb. (13.6 kg) concrete slug, 

four roof bolts plates in a sabot, four roof bolts in a sabot, various hand tools, a section of 

narrow gauge mine rail, and ten, twenty- and thirty-pound steel penetrators. Figure 5.1 

shows a twenty-pound steel penetrator ready to be fired. In total, nine different projectiles

Figure 5.1 20 lb. Steel Penetrator in Sabot

were fired at the reinforced seal and 16 at the unreinforced seal. The unreinforced seal’s 

response to impacts has been evaluated in depth by von Niederhausern (2019) and will 

only be discussed briefly. One pound of black powder propelled projectiles to velocities of 

up to 507 ft/s (158 m/s). Two sets of IR beam emitter/receivers, connected to a data
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acquisition system, reported the time when each beam was broken as a projectile passed 

through them. Combined with the distance between the sensors, researchers calculated the 

average velocity of each projectile.

The projectile generator was fired using an electric match from a long lead in line 

(100 ft, 30 m) behind cover for safety. Figure 5.2 illustrates the test layout. Figure 5.3 

displays the strain gauge locations on the back side of the reinforced seal, gauge #4 is at 

the left side of the seal when viewed from the front. Figure 5.4 shows a projectile, a 30 lb. 

(13.6 kg) steel penetrator, in flight during a test; the tip of the steel penetrator is just visible

at the end of the sabot. Figure 5.5 shows a concrete slug (encased in a yellow cardboard 

tube) passing through the chronograph during a test shot to establish a velocity baseline. 

Figure 5.6 displays the impact of a wood 5x5 inch beam on the reinforced seal. Seal damage



41

. 'VT7
>>

Figure 5.4 Projectile in Flight

was assessed by visual inspection, strain gauge data (six strain gauges were placed on the 

rear face), and a LIDAR scan of the face after each shot. Damage done to the unreinforced 

seal was quite severe, as shown in Figure 5.7. Though catastrophic, the damage to the right 

hand side should not be taken as completely representative of possible in situ effects of
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Figure 5.5 Shot Through Chronograph

projectile impact. A thirty-pound steel slug impact, visible as the right-most crater, caused 

the damage and was the last projectile fired at the unreinforced seal. The seal was already 

weak from multiple impacts, in particular the ten- and twenty-pound slug impacts (left and
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middle craters). This damage was aggravated by the closeness of the' exposed right side 

and top of the seal. Pressure wave reflections likely greatly increased the tensile stress on 

the seal which lead to failure. When in place in a mine, the seal would be poured against 

the mine roof and walls on either side and would not have experienced the same failure, 

though it may have experienced failure in a different location (von Niederhausern, 2019). 

However, disregarding the loss of the corner, the steel slugs caused significant cracking 

and spalling in addition to the material ejected from the craters on impact. All other 

projectiles fired at this seal caused no more than surface damage. For a complete study of 

the impact data from the unreinforced seal, see von Niederhausern’s analysis (von 

Niederhausern, 2019).
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The reinforced seal withstood the same battery of tests with far less obvious 

damage; likely due to the impact locations of the steel slugs being closer to the center of 

the seal (away from edges) and further from each other. As with the unreinforced seal, 

projectiles other than the steel slugs did only slight surface damage. However, an 

examination of the data does indicate that heavier projectiles, irrespective of the apparent 

surface damage, did cause significantly larger stresses in the rear face of the seal. Figure 

5.8 shows the final state of the reinforced seal after all testing was complete. In this test, 

the 10 lb. (4.5 kg) steel slug impacted on the right, the 30 lb. (13.5 kg) in the center, and 

the 20 lb. (9 kg) on the left. The 10 lb. (4.5 kg) slug impact site exhibited slightly less 

damage than the others, its penetration and crush zone were significantly less. Both the 30 

and 20 lb. (13.5, 9 kg) slugs penetrated deeper and had wider crushed and cracked zones, 

with the 20 lb. (9 kg) slug leaving a slightly deep cavity. Impact locations are shown in
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Figure 5.9 30 lb. Steel Slug Impact Site

Figure 5.10 (locations are approximate for the tools, roof bolts, and roof bolt plates). The 

30 lb. (13.5 kg) impact site is the middle crater in Figure 5.8 and Figure 5.9; all sites 

exhibited similar characteristics with a crush zone, a heavily cracked and partially ejected 

zone, and some small but long cracks going towards free faces. Most of the material in the 

crushed zone was ejected during impact. The heavily cracked zone extended about an inch 

outside the crush zone and was also missing some material that was ejected or fell off the 

seal after impact. Though far less cracking occurred outside of these zones as compared to 

the unreinforced seal, researchers observed some small cracks traveling between the impact 

sites and from the impact sites to the edges of the seal. Some very slight cracking was also 

only removed a small portion of the total volume lost. These scattered impacts are on the 

left side of the seal in Figure 5.11. Both the 20 and 30 lb. (9 and 13.6 kg) steel projectiles 

observed at the rear of the seal. No major failures or large
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cracks were observed during any of the tests and the reinforced seal did not fail as the 

unreinforced seal did.

LIDAR scans of the face were conducted after every shot and the final scan is 

shown in Figure 5.11. Table 5.1 displays the amount of volume lost from the reinforced 

seal. All projectiles other than the steel slugs did little visible damage to the face and 

penetrated to a depth of about 3.15 inches (80 mm) and removed significant amounts of 

material, but the 10 lb. (4.5 kg) projectile only removed a small fraction and penetrated to 

about 2.4 inches (60 mm). This result corresponds with their different impact energies 

(calculated in Table 5.2) and will be discussed in Section 5.2.
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4.0 19.1 34.1 49.2 64.2 79.3
Depth of Lost Material (mm)

Figure 5.11 Reinforced Seal LIDAR Scan

Table 5.1. Volume Lost from Reinforced Seal

V o lu m e  Lost
10 lb steel: 0.210 liters
201b steel: 1.181 liters
10 lb steel: 1.261 liters
All other proj: 0.407 liters
Total V o l: 3.259 lite rs

5.2. DATA ANALYSIS, RESULTS, AND DISCUSSION

To process the collected data, the author wrote a program in the Python 

programming language that takes in the projectile data and strain gauge data and reports 

projectile velocity, kinetic energy, rear face stress on all channels, and axial stress on a 

strain rosette centrally located on the rear of the seal. An example of the program’s output 

files can be found at the end of Appendix B. The program analyzes the rosette data using 

the following equations (Hibbeler, 2014):
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E a =  * cos26 n +  e v * s in zQa +  Txy * £ i n 9 Q * cosQa

E6 =  Ej * cos2Qb + Ej, > s in zQb + Tj^ fcsinSj, * cos0b (IS)

Ec = £*, * c o s 2Qc + Ey * sin20<, 4- Y ,y * sinQ c * cosQ^

where Ea , £b, and Ec are the strains on the rosette gauges as labeled in Figure 5.12 

(Hibbeler, 2014), the angles are between the gauges as labeled Qa, 6 b, Qc and Cx, £y , and 

Yxy are the strain in x, y, and shear respectively. These equations solve for any angles 

regardless of the orientation of the gauges. Principle strain was solved using equation (19) 

(Hibbeler, 2014), then converted to stress:

(19)

The program solves for the three equations (18) simultaneously and reports strain 

and stress as the simple stress on each gauge and uses equation (19) to solve the principle 

strains from the rosette. Maximum stress is solved by multiplying by concrete’s average 

modulus of elasticity by the largest (most positive) principle strain. Velocity and kinetic 

energy are also found from the beam break times of the chronograph. Table 5.2 displays 

the projectile weight, velocity, and kinetic energy. The weight in Table 5.2 is broken down 

by the projectile weight and the total weight of the shot including the wad and sabot. 

Kinetic energy is given in ft-lbs. and Joules.

Unfortunately, the cable connecting the data acquisition system to one of the 

chronograph IR sensors became disconnected during several shots. The sabot holding the 

rail and its wad became detached in the barrel during firing, resulting in a very low velocity 

impact. Therefore, the rail was not considered in further data analysis.
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Table 3.2. Projectile Data.

W e ig h t K in e tic  Energy
P ro je ctile P ro je ctile Total V e l (ft/s) ft  lbs Jo u le s
Concrete 30.5 38 431 87,931 119,234
5x5 wood 31.5 38 423 87,595 118,779
201b slug 21 31 477 74,313 100,769
301b slug 31 42.5 379 69,143 93,753
Bolts IS 24 430 51,680 70,076
10 lb slug 10 18.5 507 40,000 54,240
Plates 10 15 X X X
Rail 27 34 X X X
Tools 5 12 X X X

Data in Table 5.2 shows some of the interesting properties of the projectile 

generator. A velocity curve exists, with light weight projectiles having a higher velocity 

compared to heavier ones (excepting the roof bolt velocity). As is typical of guns, an 

obvious optimal weight is indicated by the data, even in this small data set. This optimal 

shot weight is a result of a large number of factors including the burn rate of the powder
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and length of the bore. The 20 lb. (9 kg) steel slug, though attaining a lower velocity to the 

10 lb. (4.5 kg), has nearly double the kinetic energy. The 30 lb. (13.6 kg) slug has slightly 

lower kinetic energy than the 20 lb. (9 kg), and the 5x5 inch wood post and the concrete 

slug had nearly the same total weight, velocity, and the highest kinetic energies of the 

projectiles. A total shot weight of about 40 pounds (18 kg) is likely the optimal weight and 

the most energy efficient for the powder, barrel diameter and length.

Principle stresses and max tensile stress from each impact are shown in Table 5.3, 

the impacts are in order of greatest to least measured tensile stress and the sensor that 

registered the max value is also listed. Strain was converted to stress using a modulus of 

elasticity of 4*106 psi (27.6 GPa), which is average for concrete. Principle stresses are a1 

and a2; positive numbers represent tension. Due to the large amount of data gathered from 

each shot not all graphs can be shown in this section; they are available in Appendix B. 

Figures 5.13 through 5.16 are graphs produced by the analysis program for the concrete 

projectile; 5.13 and 5.14 display micro-strain on strain gauges 1 and 2, 5.15 displays a bar 

chart comparison of all strain gauge stress from that shot (CH3 corresponding with strain 

gauge 1, CH4 with 2, etc.), and Figure 5.16 displays the principal stresses.

Analysis of the data revealed surprising results. As shown in Tables 5.2 and 5.3, 

the projectiles with the highest kinetic energy did not necessarily cause the greatest stress 

on the rear face of the seal. Though the wood 5x5 and concrete projectiles had the most 

kinetic energy and caused the most stress, the 20 lb. (9 kg) and 30 lb. (13.6 kg) steel slugs 

had only slightly less and caused, on average, about 125 psi (862 kPa) less stress. All 

projectiles except the steel slugs caused no visible damage or only very slight surface 

damage, the steel projectiles did cause cratering. This may explain why they caused less
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Table 5.3 Stress Data
Stress (psi)

P ro je ctile M ax T e n sile Sensor o l o2
Concrete 233.5 2 447 -133.3
5x5 wood 197 3 237.3 17.6
10lb slug 167.3 2 256 -67.3
Roof Bolts 113.3 4 232.9 -136.7
Tools 101.4 5 133.1 -31.2
301b slug 100.1 1 101 -238.5
201b slug 37.1 3 156.3 -21.1
Plates 70.6 4 60.1 -30.4

rear face stress; some of their kinetic energy was absorbed in crushing the concrete at the 

impact area; and that crush period also resulted in a lower pressure impulse into the seal. 

Note that the 10 lb. (4.5 kg) steel slug created a smaller impact crater and caused 

significantly more rear face stress than the 20 or 30 lb. (9, 13.6 kg) slugs (~70 psi, 482 

kPa), while attaining only just over half their kinetic energy. As shown in Table 5.1, the 10 

lb. (4.5 kg) slug also only crushed and removed a small fraction of concrete compared to 

the 20 and 30 lb. (9, 13.6 kg) slugs.

Concrete has a tensile strength generally ranging from 400 to 700 psi (2,758 to 

4,826 kPa). As shown in Table 5.2, the lower end of that range was only exceeded once by 

the principal stress caused by the concrete projectile. Most induced stresses were at least 

within 25% of the 400-psi (2758 kPa) tensile strength. Due to the location of the impacts 

and sensors, stresses high enough to causes cracking on the rear face may not have been 

recorded. The strain rosette was centrally located on the reinforced seal (Figure 5.3) during 

all shots; principle stresses at other locations may have reached the failure point. Stresses 

within the seal likely reached levels above the concrete’s tensile strength between the 

impact points and the rear face, especially for steel slugs. The data recorded by the strain
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gauges was in most cases noisy to draw solid conclusions about wave reflections, other 

than that there were many. Also important in consideration of the data is the types of 

pressure waves created in the rear of the seal.

Due to the placement of the strain gauges on the rear of the seals, they will 

experience both transverse and longitudinal waves and, as those waves reflect off the 

various surfaces and bottom of the seal, they will also experience wave superposition and 

interference. This greatly complicates analysis, especially when trying to determine strains 

and stresses other than those directly measured by the strain gauges. Axial stress (in this 

case, through the seal perpendicular to the rear face and the strain gauges) is an important 

component of concrete failure and causes scabbing when high pressure waves in a solid 

material meet a low impedance zone such as air (Cooper, 2010). Several attempts were 

made to solve for axial stress, but due to the complex nature of the waves and the single 

strain rosette for data, these attempts did not result in axial stress values that the author 

deemed legitimate (they varied from 550 psi to 1,700 psi, 3,792 to 11,721 kPa) because no 

scabbing was observed on the rear face. Therefore, conclusions about the stress state of the 

concrete were only drawn from the strain gauge readings and the principles strains and 

stresses derived from them.

Finally, a comparison of the data from the 120 psi (827 kPa) reinforced seal against 

the 50 psi (345 kPa) unreinforced seal (von Niederhausern, 2019) shows that the two seals 

reacted somewhat similarly when comparing the relative stresses of the different 

projectiles, though they experienced velocity and impact energy differences. Both seals 

generally experienced high rear-face stress from the concrete impacts relative to other 

projectiles, except for the hand tools shot at the 50 psi (345 kPa) seal which may have
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Figure 5.13 Strain Gauge #1 Strain, Concrete Projectile

Figure 5.14 Strain Gauge #2 Strain, Concrete Projectile
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Stress per Channel, Concrete 301b 
250 i--------------------------------------------------------------------------------

CHS CHI CH5 CMC CH7 CHS
Channels

Figure 5.15 Stress per Channel, Concrete Projectile
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achieved a higher velocity than when shot at the 120 psi (827 kPa) seal (the velocity data 

was not collected for that shot), and the wood projectile which achieved far higher velocity 

in the test on the 120 psi (827 kPa) seal. The 30 lb. (13.6 kg) concrete projectile caused the 

second highest stress in the 120 psi (827 kPa) seal and third highest in the 50 psi (345 kPa) 

seal. The steel projectiles caused almost all the surface damage and cracking in both seals, 

but not the highest rear-face tensile stress.
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6.1. DISCUSSION OF CONCLUSIONS

The projectile generator has proven to be very effective and useful in propelling a 

large assortment of various materials that could become projectiles in the event of an 

explosion in an underground mine. Though the initial target velocity of 700 ft/s (213 m/s) 

has yet to be reached, the projectile generator did accelerate projectiles up to sufficient 

velocities and kinetic energies necessary to cause failure; catastrophic failure in the case of 

the unreinforced seal. Challenges to the project included the design of the projectile 

generator for safety and simplicity at a low cost, overcoming the parasitic weight of the 

wad, building sabots that successfully protected the barrel from damage, data loss, and 

analysis of the complicated pressure waves induced in the seals.

Conclusions reached from this research:

• The projectile generator can produce muzzle energies of at least 88,000 ft-lbs. (119,000

J)

• The projectile generator can accelerate projectiles to at least 507 ft/s (154.5 m/s)

• The projectile generator can safely contain the pressure produced by 3 lb. of black 

powder (1.4 kg) per 2-inch (5 cm) length of chamber, provided disintegrating foam or 

other material is used as the powder container

• Traditional, simplified black powder reaction equations do not accurately represent the 

complex combustion products and may over-estimate the actual gas production by up 

to 31%. Based on historical experimental data, black powder made in a 75/15/10 ratio

6. CONCLUSION
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of potassium nitrate, charcoal, and sulfur produces about 5.13 moles/lb. (11.3 

moles/kg) of gas vs 6.7 moles/lb. (14.8 moles/kg) for the simplified equation

• Mine seals can be damaged by materials commonly found in mines when propelled to 

velocities possible during an underground explosion

• Hard, dense, non-deforming projectiles can cause cratering, cracking, and catastrophic 

failure of mine seals

• Soft, deforming, or disintegrating projectiles can cause stress greater than the tensile 

strength of concrete while not causing immediately visible damage to mine seals

• Small, dispersed objects (hand tools, roof bolt plates, roof bolts) do not pose a 

significant threat to mine seals

The data shows that dense, hard objects of sufficient mass (the steel slugs) cause 

significant surface damage by cratering and spalling the impact face but cause less stress 

in the rear face of the reinforced seal. Common steel objects found in a mine may include 

drill steel, I-beams, and equipment parts. Projectiles that deform or disintegrate upon 

impact (concrete, wood) cause little to no visible surface damage but may still generate 

rear-face stress over the yield strength of concrete. Common frangible objects found in a 

mine may include large rocks and boulders, concrete chunks, and wood beams. Significant 

stress, cracking, cratering, or ejection of material at the impact face was observed in both 

seals when struck with both deforming and non-deforming projectiles. Consequently, this 

study has shown that the materials found in an underground coal mine can cause significant 

structural damage to coal mine seals when propelled to velocities possible in a methane- 

coal dust explosion.
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This area of research has many avenues for further work:

• Additional impact testing, with higher energy projectiles

• Internal stress analysis and the consequences of wave reflections

• Response of the seals in-situ when surrounded by and attached to rock

• Test different seal designs and types

• Failure rates and mechanisms when the seal is struck by high velocity projectiles while 

also in a pressurized, explosive environment

• Modeled and full-scale methane and coal dust explosion analysis to estimate pressures 

and projectile velocities

• Analysis of how far objects in a mine may travel during an explosion and develop a 

standard distance for clearing areas inby the seal. The current standard of 50 ft (15.2 

m) may not be adequate

• Further analysis of the effect of piling waste rock (gob) on the inby side of the mine to 

protect seals from projectiles and diffuse pressure waves (Perry, 2010)

6.2. FUTURE WORK

6.3. DESCRIPTION OF APPENDICIES

A. Appendix A is a page from the mill test report provided with the steel pipe that 

became the barrel. The yield and tensile strengths used for calculating max 

barrel pressure are found under the “Tensile Test Results” heading and are 

given in psi.

B. Appendix B contains that data collected from each shot on the reinforced seal, 

displayed in graph form. Graphs labeled “#.1” show the principle stresses as
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calculated by the analysis program and graph the max tensile stress measured 

on each channel. Graphs labeled “#.2” show the data from each sensor, 

displayed as micro-strain vs time.

C. Appendix C displays the text of the program used to analyze the sensor data. 

This program was written in the Python 3.8 programming language as two 

separate scripts. The first sets up a file and naming system to organize multiple 

projects and testing dates, then calls the second script to perform the actual 

analysis of data. The second script performs all analysis and uses the sympy 

library to solve the principle stress equations, creates the graphs shown in 

Appendix B using the matplotlib library, and also writes data and relevant 

information in text files, an example of which is shown at end of the appendix. 

The settings and other constants needed for the analysis are also found in an 

example setup text file at the end of the appendix.



APPENDIX A.

MILL TEST REPORT
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APPENDIX B.

STRESS ANALYSIS DATA
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a.

Stress per Channel, Concrete 301b
250 -|-----------------------------------------------------------------------------------

CH3 CH4 CH5 CH6 CH7 CHS
Channels

b.

Figure B.1 Concrete Stresses
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CH3
Time vs Micro-Strain

CH4
Time vs Micro-Strain

Time (ms)

a.
CH5

Time vs Micro-Strain

Time (ms)

b.

Time (ms)

c. d.
CH7

Time vs Micro-Strain
CH8

Time vs Micro-Strain

Time (ms)

e.
Time (ms)

f.

Figure B.2 Concrete Sensor Data
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a.

Stress per Channel, Rail

CH3 CH4 CH5 CH6 CH7 CHS
Channels

b.

Figure B.3 Rail Stresses
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a.
CH S

Time vs Micro Strain

b.
CH6

lime vs Micro-Strain

e.

Figure B.4 Rail Sensor Data
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a.

Stress per Channel, Roof Bolt Plates

CH3 CH4 CH5 CH6 CH7 CHS
Channels

b.

Figure B.5 Roof Bolt Plate Stresses
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CH3
Time vs Micro-Strain

CH4
Time vs Micro-Strain

Time (ms)

a.

c.

b.
CHS

Time vs Micro-Strain

Time (ms)

d.
CHS

Time vs Micro-Strain

e.
Time (ms)

f.

Figure B.6 Roof Bolt Plate Data
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a.

b.

Figure B.7 Roof Bolt Stresses
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Time vs Micro-Strain Time vs Micro-Strain
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Time vs Micro-StrainTime vs Micro-Strain
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Figure B.8 Roof Bolt Data
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a.

Stress per Channel, Steel Slug 10 lb

CH3 CH4 CH5 CH6 CH7 CHS
Channels

b.

Figure B.9 Steel Slug 10 lb. Stresses
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CH3
Time vs Micro-Strain

CH4
Time vs Micro-Strain

Time (ms)

a.
CH5

Time vs Micro-Strain

Time (ms)

c.

Time (ms)

b.

e. f.

Figure B.10 Steel Slug 10 lb. Data
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a.

Stress per Channel, Steel Slug 20 lb

CH3 CH4 CH5 CH6 CH7 CH3
Channels

b.

Figure B.11 Steel Slug 20 lb. Stresses
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Time vs Micro-Strain
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d
CH8
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f.

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Time (ms)

:: H -!

CH7

C 44

Figure B.12 Steel Slug 20 lb. Data
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a.

Stress per Channel, Steel Slug 30 lb

CH3 CH4 CH5 CH6 CH7 CHS
Channels

b.

Figure B.13 Steel Slug 30 lb. Stresses
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Figure B.14 Steel Slug 30 lb. Stresses
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a.

Stress per Channel, Tools

CH3 CH4 CH5 CH6 CH7 CH8
Channels

b.

Figure B.15 Tools Stresses
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CH3
Time vs Micro-Strain

CH4
Time vs Micro-Strain

Time (ms)

a.
Time (ms)

b.

e. f.

Figure B.16 Tools Data
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a.

Stress per Channel, Wood 5x5

CH3 CH4 CH5 CH6 CH7 CHS
Channels

b.

Figure B.17 Wood 5x5 Stresses
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b.

e. f.

Figure B.18 Wood 5x5 Stress



APPENDIX C.

STRESS ANALYSIS PROGRAM
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# P r o j e c t  M a i n  M e n u  a n d  F i l e  S y s t e m  C r e a t o r

from t k in t e r  im port *
from P IL  im port Im ageTk, Image
from t k in t e r  im port f i le d i a lo g
im port t k in t e r  as t k
from t k in t e r  im port messagebox
im port os
im port Cannon_CSV_Data_Processor as DataP 
im port s q l i t e 3

n e w _ file p a th  = "0"

d e f n e w _ p ro je c t():  
g u i = T o p le v e l( )  
ro o t.w ith d ra w ()  
g u i . t i t l e ( "New P r o je c t " ) 
g u i. ic o n b it m a p ( 'M S T _ Ic o n .ic o ' ) 
g u i.g e o m e try ("+860+400")

s e t _ lo c a t io n  = B u tto n (g u i, t e x t ="Se t P r o je c t  L o c a t io n " , command=lam bda: 
g e t_ n e w _ file p a th (g u i, t e x tb o x ) ,  bg= " b la c k " , f g = "w h ite ")

te x tb o x  = t k . T e x t ( g u i ,  h e ig h t=1 , w id th =35, bg= "w h ite " , f g = " b la c k " ) 
f i l e _ l a b e l  = L a b e l( g u i,  t e x t = " F i le p a t h :" , f g = " b la c k " ) 
nam e_label = L a b e l( g u i,  t e x t = "E n te r a p ro je c t  name: " )
E_name = E n t r y (g u i,  w id th =30, b o rd erw id th =5)
c re a te _ p ro je c t  = B u tto n (g u i, t e x t ="C re ate  P r o je c t " , command=lam bda: 

c re a te _ p ro je c t_ f ile (E _ n a m e , g u i ) ,  bg= " b la c k " , f g = "w h ite ")
menu_button = B u tto n (g u i, t e x t = "Main Menu", command=lam bda: d e s t r o y ( g u i) ,  

bg= " b la c k " , f g ="w h ite ")

s e t _ lo c a t io n .g r id ( row=0 , column=0 , padx=5, pady=5) 
f i l e _ l a b e l . g r i d ( row=1 , column=0 , padx=5, pady=5) 
t e x t b o x .g r id ( row=2 , column=0 , padx=5 , pady=5) 
n a m e _ la b e l.g r id (row=3 , column=0 , padx=5, pady=5) 
E _ n a m e .g r id (row=4 , column=0 , padx=5, pady=5) 
c r e a t e _ p r o je c t .g r id ( row=5, column=0 , padx=5, pady=5) 
m e n u _ b u tto n .g rid (row=6, column=0 , padx=5, pady=5) 
# g e t _ b u t t o n . g r i d ( r o w = 7 ,  c o L u m n = 0 )

name = E_nam e.get() 
p r i n t (name)

re tu rn

d e f g e t_ n e w _ file p a th (g u i, te x tb o x ):  
g lo b a l n e w _ file p a th
n e w _ file p a th  = f i le d i a lo g . a s k d i r e c t o r y ( i n i t i a l d i r = " / " , t i t l e = " S e le c t  F i l e  

L o c a t io n " )
t e x t b o x . in s e r t ( t k .E N D , n e w _ file p a th )  
g u i.u p d a t e _ id le t a s k s ( )
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re tu rn

d e f c re a te _ p ro je c t_ f ile (E _ n a m e , g u i ) :  
name = E_nam e.get() 
i f  name == " " :

m essagebox.show w arning("Awww sh u c k s" , "P le a se  name th e  p r o je c t . " ) 
re tu rn

i f  n e w _ file p a th  == " 0 " :
m essagebox.show w arning("Awww sh u c k s" , "P le a se  s e t  new p ro je c t  

lo c a t io n ." )
re tu rn

p r o je c t _ f i le  = n e w _ file p a th  + "/" + name + " P ro je c t"

t r y :
o s .m k d ir ( p r o je c t _ f i le )

excep t F i l e E x i s t s E r r o r :
m essagebox.show w arning(" N u ts !" , " F i le  name a lre a d y  e x i s t s . " ) 
re tu rn

database = s q l i t e 3 .c o n n e c t ( p r o je c t _ f i le  + "/" + name + " P r o je c t"  + 
"_D a ta b a se .d b ")

r  = d a ta b a s e .c u rs o r ()

r .e x e c u t e ( .....CREATE TABLE shot (

)

Shot_Date t e x t ,  
P r o je c t i le _ M a t e r ia l  t e x t ,  
P ro je c t ile _ W e ig h t_ lb s  t e x t ,  
Powder_W eight_lbs t e x t ,  
K in e t ic _ e n e r g y _ ft _ lb s  t e x t ,  
A v g _ V e lo c ity _ ft_ s  t e x t ,  
M a x_ S tre ss_ p si t e x t ,  
M a x _ A x ia l_ S tre ss_ p s i t e x t ,  
s h o t_ o s_ d ire c to ry  t e x t

d a tab ase .co m m it()
d a t a b a s e .c lo s e ()

m essageb o x.sh o w in fo ("Msg", "New p ro je c t  c re a te d  a t  " + n e w _ file p a th  + 
" . \n \n P le a se  re tu rn  to  Main Menu to  s e le c t  "

"the
p r o je c t . " )

re tu rn

d e f c u r r e n t _ p r o je c t ( ) :
f i le p a t h  = f i le d ia lo g . a s k d i r e c t o r y ( i n i t i a l d i r = " / " , t i t l e = " S e le c t  p ro je c t  

f o ld e r " )
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i f  f i le p a t h  ==
m essagebox.show w arning("W arning", "No f i l e  path s e le c t e d " ) 
re tu rn

e l s e :
s e le c t _ c r e a t e _ t e s t ( f i le p a t h )

re tu rn

d e f s e le c t _ c r e a t e _ t e s t ( f i le p a t h ) :  
g u i = T o p le v e l( )  
ro o t.w ith d ra w ()  
g u i . t i t l e ( "C u rre n t P r o je c t " ) 
g u i. ic o n b it m a p ( 'M S T _ Ic o n .ic o ' ) 
g u i.g e o m e try ("+860+400")

la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
l a s t _ f i l e  = f i le p a t h [ la s t _ f i le _ p o s  + 1 :]

project_nam e = L a b e l( g u i,  t e x t = " P r o je c t :  " + l a s t _ f i l e ,  f g = " b la c k " ) 
o ld _ t e s t  = B u tto n (g u i, t e x t = "A n alyze  T e st D a ta " , command=lam bda: 

s e le c t _ t e s t ( f i le p a t h ) ,
bg= " b la c k " , f g = "w h ite ")

new _test = B u tto n (g u i, t e x t = "Make New T e st  F o ld e r" , command=lam bda: 
n a m e _ n e w _ te st_ fo ld e r(f ile p a th ), bg= " b la c k " , f g = "w h ite ")

menu_button = B u tto n (g u i, t e x t = "Main Menu", command=lam bda: d e s t r o y ( g u i) ,  
bg= " b la c k " , f g ="w h ite ")

p ro je c t_ n a m e .g r id (row=0 , column=0 , padx=5, pady=5) 
o ld _ t e s t . g r id ( row=1 , column=0 , padx= 5, pady=5) 
n e w _ t e s t .g r id (row=2 , column=0 , padx= 5, pady=5) 
m e n u _ b u tto n .g rid (row=6, column=0 , padx=5, pady=5)

re tu rn

d e f s e le c t _ t e s t ( f i le p a t h ) :
t e s t _ f i le p a t h  = f i le d ia lo g . a s k d i r e c t o r y ( i n i t i a l d i r = f i le p a t h ,  t i t l e = " S e le c t  

t e s t  fo ld e r / d a t e " )
D a t a P .A n a ly s is _ g u i( t e s t _ f i le p a t h )

re tu rn

d e f n a m e _ n e w _ te st_ fo ld e r(f ile p a th ):  
g u i = T o p le v e l( )  
g u i . t i t l e ( "New T e st  F o ld e r" ) 
g u i. ic o n b it m a p ( 'M S T _ Ic o n .ic o ' ) 
g u i.g e o m e try ("+860+400")

m o n th _ lis t  = [ " Ja n " , "Feb ", "Mar", "A p r", "May", "Ju n e ", " J u ly " , "Aug", 
" S e p t" , "O ct" , "Nov", "D ec"]
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c l i c k l  = S t r in g V a r ( )  
c l i c k 1 .s e t ( m o n t h _ l i s t [ 0 ] )

m onth_label = L a b e l( g u i,  t e x t = "E n te r  th e  m onth:") 
month_drop = OptionM enu(gui, c l i c k 1 ,  * m o n th _ lis t)  
s e le c t_ d a y  = L a b e l( g u i,  t e x t = "E n te r th e  day ( 1 - 3 1 ) : " )
E_day = E n t r y (g u i,  w id th =20, b o rd erw id th =5) 
d e s c r ip t io n _ la b e l  = L a b e l( g u i,  t e x t = "E n te r t e s t  d e s c r ip t o r :" ) 
E _ d e s c r ip t io n  = E n t r y (g u i,  w id th =20, b o rd erw id th =5) 
go_back = B u tto n (g u i, t e x t = "C re a te  F o ld e r" , command=lam bda: 

m ake_new _folder(gu i, f i le p a t h ,  c l i c k 1 ,  E_day,

E _ d e s c r ip t io n ) ,  f g = "w h ite ", bg= " b la c k " )

m o n th _ la b e l.g r id (row=1 , column=0 , padx=5, pady=5) 
m o n th _ d ro p .g rid (row=2 , column=0 , padx=5, pady=5) 
s e le c t _ d a y .g r id ( row=3 , column=0 , padx=5, pady=5) 
E _ d a y .g r id ( row=4 , column=0 , padx= 5, pady=5) 
d e s c r ip t io n _ la b e l . g r id ( row=5, column=0 , padx=5, pady=5) 
E _ d e s c r ip t io n .g r id ( row=6 , column=0 , padx=5, pady=5) 
g o _ b a c k .g r id (row=7 , column=0 , padx=5 , pady=5)

re tu rn

d e f m ake_new _folder(gu i, f i le p a t h ,  c l i c k 1 ,  E_day, E _ d e s c r ip t io n ) :

day = E _ d a y .g e t()
month = c l i c k 1 . g e t ( )
d e s c r ip t o r  = E _ d e s c r ip t io n .g e t ( )

t e s t _ f i l e  = f i le p a t h  + "/" + day + "_" + month + "_" + d e s c r ip t o r

o s . m k d ir ( t e s t _ f i le )
g u i .d e s t r o y ( )

re tu rn

d e f d e s t r o y (x ) :  
x .d e s t r o y ( )  
r o o t .d e ic o n if y ( )  
re tu rn

d e f t it le _ w in d o w () :  
r o o t .d e s t r o y ( )  
re tu rn

# T i t L e  W i n d o w  
ro o t = t k . T k ( )
ro o t .ic o n b it m a p ( 'M S T _ Ic o n .ic o ') 
r o o t . t i t l e ( "Cannon Data P ro c e s s o r" ) 
r o o t .c o n f ig u r e ( background= 'g r e e n ')
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ro o t.g e o m e try ("+650+300") 
load = Im a g e .o p e n ('C a n n o n _ S h o t.jp g ') 
render = Im ageTk.P h o to lm age(lo ad) 
img = L a b e l( ro o t , image=ren d er) 
im g .g r id ( row=0 , column=0 )
la b e l  = L a b e l( ro o t , t e x t = "Welcome to  th e  MST Cannon Data P ro c e s s o r" , 
bg= 'g r e e n ', f g = 'w h it e ')
l a b e l . g r i d ( row=1 , column=0 ) 
r o o t . a f t e r ( 2000, t it le _ w in d o w )  
ro o t.m a in lo o p ()

ro o t = t k . T k ( )
r o o t . t i t l e ( "Cannon Data P ro c e s s o r" ) 
ro o t .ic o n b it m a p ( 'M S T _ Ic o n .ic o ') 
ro o t.g e o m e try ("+800+300")

Menu_frame = La b e lF ra m e (ro o t)
T i t le _ la b e l  = Label(M enu_fram e, t e x t = "Main Menu", f g = "g re e n ", bg= "w h ite ") 
new _project_button  = tk.Button(M enu_fram e, t e x t = "C re a te  New P r o je c t " , 
command=new _project, f g = "w h ite ", bg=" b la c k " )
c r e a t e _ f ile _ b u t t o n  = tk.Button(M enu_fram e, t e x t = " S e le c t  P r o je c t " , 
command= c u r re n t_ p r o je c t ,  f g = "w h ite " , bg= " b la c k " )
e x it_ b u tto n  = Button(M enu_fram e, t e x t =" E x it  Program ", command= r o o t .q u it ,  
bg= " b la c k " , f g ="w h ite ")

load = Im a g e .o p e n ('C h r o n o _ R e s iz e .jp g ')
load = lo a d . r e s i z e ( ( 300, 200) ,  Im age.A N TIA LIA S)
render = Im ageTk.PhotoIm age(load)
img = L a b e l( ro o t , image=ren d er)

M e n u _fram e .grid (row=0 , column=0 , padx=5, pady=5)
T i t l e _ l a b e l . g r i d ( row=0 , column=0 , padx=5 , pady=15 ) 
c r e a t e _ f i le _ b u t t o n .g r id ( row=1 , column=0 , padx=5, pady=5) 
n e w _ p ro je c t_ b u tto n .g r id (row=2 , column=0 , padx=5, pady=5) 
e x it _ b u t t o n .g r id ( row=3 , column=0 , padx=5 , pady=5) 
im g .g r id ( row=4 , column=0 , padx=5, pady=5 )

m ain lo o p ()
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# T h i s  c o d e  i s  t h e  d a t a  p r o c e s s o r  m o d u l e  " C a n n o n _ C S V _ D a t a _ P r o c e s s o r . p y "  f o r  
# P r o j e c t _ M a i n _ M e n u . p y
# T h i s  p r o g r a m  w a s  w r i t t e n  b y  E t h a n  S t e w a r d  f o r  t h e  A l p h a  F o u n d a t i o n  p r o j e c t :

# A n a l y s i s  o f  C o a l  M i n e  S e a l  I n t e g r i t y  f r o m  E x p l o s i v e l y  D r i v e n  P r o j e c t i l e s

p r i n t ( "Im ported Cannon_CSV _D ata_Processor.py")
from t k in t e r  im port *
from t k in t e r  im port f i le d i a lo g
im port t k in t e r  as t k
# f r o m  P I L  i m p o r t  I m a g e T k ,  I m a g e

im port csv
im port math
from m a tp lo t lib  im port p y p lo t as p l t  
im port os
from t k in t e r  im port messagebox 
im port numpy as np 
im port sympy as sp
from sympy im port Eq, so lv e _ lin e a r_ sy s te m , M a trix  
im port math 
im port s q l i t e 3

f i le p a t h  = "0" 
main f i l e  = "0"

d e f A n a ly s is _ g u i( t e s t _ d a t e _ f i le p a t h ) :
# M a i n  W i n d o w  
io _ g u i = t k . T k ( )
i o _ g u i . t i t l e ( "Cannon Data P ro c e s s o r" ) 
io _ g u i. ic o n b it m a p ( 'M S T _ Ic o n .ic o ') 
io _ g u i.g e o m e try ("+650+300")

Output_fram e = L a b e lF ra m e (io _ g u i, t e x t = " O u tp u t:" )
Entry_fram e = L a b e lF ra m e (io _ g u i, t e x t = " In p u t :" )
Fo ld er_fram e = La b e lFram e(En try_fram e )

d is t _ la b e l  = L a b e l(E n try _ fra m e , t e x t = "E n te r IR  se n so r se p a ra tio n  d is ta n c e  
( i n ) : " , padx=5, pady=5)

E _ d is t  = E n try (E n try _ fra m e , w id th =20 , b o rd erw id th =5)

m ass_ la b e l = L a b e l(E n try _ fra m e , t e x t = "E n te r t e s t  p r o je c t i le  mass ( l b s ) : " ) 
E_mass = E n try (E n try _ fra m e , w id th =20 , b o rd erw id th =5)

sum _m ass_label = L a b e l(E n try _ fra m e , t e x t = "E n te r  shot w eight ( in c lu d e  a l l  
p r o je c t i le  co m p o n e n ts):")

E_sum_mass = E n try (E n try _ fra m e , w id th =20, b o rd erw id th =5)

pow der_w eight_label = L a b e l(E n try _ fra m e , t e x t = "E n te r  powder charge  w eight 
( l b s ) : " , padx=5, pady=5)

E_powder_weight = E n try (E n try _ fra m e , w id th =20, b o rd erw id th =5)

x _ y _ p o s it io n  = L a b e l(E n try _ fra m e , t e x t = "E n te r h i t  lo c a t io n  ( i n ,  x / y )  from  
bottom l e f t : " )

E_x= E n try (E n try _ fra m e , w id th =10, b o rd erw id th =5)
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E _ y = E n try (E n try _ fra m e , w id th =10 , b o rd erw id th =5)

new_shot_button = tk .B u tto n (F o ld e r_ fra m e , t e x t = "New Shot F o ld e r" ,
command=lam bda:

m a k e _ n e w _ sh o t_ fo ld e r(te st_ d a te _ file p a th ), f g = "w h ite " , bg= " b la c k " )

f i le p a th _ b u tto n  = tk .B u tto n (F o ld e r_ fra m e , t e x t = " S e le c t  S h o t" , 
command=lam bda: f in d f i le p a t h ( t e s t _ d a t e _ f i le p a t h ) ,

f g = "w h ite " , bg= " b la c k " )

m a t e r ia l_ l is t  = [ " s t e e l" , " c o n c re te " , "wood", " ro c k " , " o th e r" ]

m a te r ia l = tk .S tr in g V a r (E n t r y _ fr a m e )  
m a t e r ia l . s e t ( m a t e r ia l_ l is t [ 0 ] )

m a t e r ia l_ la b e l = L a b e l(E n try _ fra m e , t e x t = " S e le c t  p r o je c t i le  m a t e r ia l :" ) 
m a te ria l_ d ro p  = O ptionM enu(Entry_fram e, m a te r ia l,  * m a t e r ia l_ l is t )  
m a t e r ia l_ d r o p .c o n f ig (w id th =6 )

t a r g e t _ la b e l  = L a b e l(E n try _ fra m e , t e x t = " D e scrib e  T a rg e t : " )
E _ ta rg e t  = E n try (E n try _ fra m e , w id th =20, b o rd erw id th =5)

te x tb o x  = tk .T e x t(O u tp u t_ fra m e , h e ig h t =30, w id th =35, padx=5, pady=5, 
bg= " b la c k " , f g ="# 4 9 fe 0 0 ")

an a lyze_ b u tto n  = tk .B u tto n (E n try _ fra m e , t e x t = "Run A n a ly s is " , 
command=lam bda: a n a ly z e _ d a ta (te s t_ d a te _ f ile p a th ,

te x tb o x , Output_fram e, E _ d is t ,  E_mass,

E_sum_mass, E_powder_weight, E_x, E_y,

m a te r ia l,  E _ t a r g e t ) ,  f g = "w h ite ",

bg= " b la c k " )

back_button = B u tto n (io _ g u i, t e x t ="B a ck", command=lam bda: g o _ b a c k ( io _ g u i) ,  
bg= " b la c k " , f g ="w h ite ")

e x it_ b u tto n  = B u tto n (io _ g u i, t e x t =" E x it  Program ", command= io _ g u i.q u it ,  
bg= " b la c k " , f g ="w h ite ")

O u tp u t_ fra m e .g r id (row=0 , column=1 , padx=5, pady=5)
E n t r y _ fr a m e .g r id (row=0 , column=0 , padx=5, pady=5)

F o ld e r _ fr a m e .g r id (row=1 , column=0 , padx=1 , pady=1 )

n e w _ sh o t_ b u tto n .g rid (row=0 , column=0 , padx=5, pady=1 ) 
f i le p a t h _ b u t t o n .g r id ( row=0 , column=1 , padx=5, pady=1 )

d i s t _ l a b e l . g r i d ( row=2 , column=0 )
E _ d i s t . g r i d ( row=3 , column=0 , padx=1 0 , pady=10 )

m a s s _ la b e l.g r id ( row=4 , column=0 )
E _ m a s s .g r id (row=5, column=0 , padx=1 0 , pady=10 )
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s u m _ m a ss_ la b e l.g r id (row=6 , column=0 ) 
E_su m _m a ss.grid (row=7 , column=0 , padx=10, pady=10 )

p o w d e r_ w e ig h t_ la b e l.g r id (row=8 , column=0 ) 
E _ p o w d e r_ w e ig h t.g rid (row=9 , column=0 )

x _ y _ p o s it io n .g r id ( row=1 0 , column=0 , padx=10 , pady=10 ) 
E _ x .g r id ( row=11 , column=0 , padx=4 , pady=4 ) 
E _ y . g r id ( row=12 , column=0 , padx=4 , pady=4 )

m a t e r ia l_ la b e l .g r id ( row=13 , column=0 , padx=5, pady=5) 
m a t e r ia l_ d r o p .g r id ( row=14 , column=0 )

t a r g e t _ la b e l . g r id ( row=1 5 , column=0 , pady=5) 
E _ t a r g e t . g r id ( row=16 , column=0 , pady=5)

a n a ly z e _ b u t t o n .g r id (row=17 , column=0 , pady=5)

t e x t b o x .g r id ( row=0 , column=1 , padx=5 , pady=5)

b a c k _ b u tto n .g r id (row=1 , column=0 ) 
e x it _ b u t t o n .g r id ( row=1 , column=1 )

t e x t b o x . in s e r t ( t k .E N D , "Program R u n n in g . . ." ) 

re tu rn

d e f a n a ly z e _ d a ta (te s t_ d a te _ f ile p a th , te x tb o x , Output_fram e, E _ d is t ,  
E_sum_mass, E_powder_weight, E_x, E_y, 

m a te r ia l,  E _ t a r g e t ) :

i f  f i le p a t h  == " 0 " :
t e x t b o x . in s e r t ( t k .E N D , "\n F i l e  path not s e t " ) 
re tu rn

x = 1
CH1_time = C H 1 _ 2 _ fu n ctio n (x )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH1 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

x  = 2
CH2_time = C H 1 _ 2 _ fu n ctio n (x )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH2 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

x  = 3
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )
CH3data = C H 3 _ 8 _ fu n ctio n (x , c )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH3 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

E_mass,



90

x = 4
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )
CH4data = C H 3 _ 8 _ fu n ctio n (x , c )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH4 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

x  = 5
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )
CH5data = C H 3 _ 8 _ fu n ctio n (x , c )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH5 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

x  = 6
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )
CH6data = C H 3 _ 8 _ fu n ctio n (x , c )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH6 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

x  = 7
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )
CH7data = C H 3 _ 8 _ fu n ctio n (x , c )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH7 f i l e  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

x  = 8
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )
CH8data = C H 3 _ 8 _ fu n ctio n (x , c )  
t e x t b o x . in s e r t ( t k .E N D , "\nCH8 f i l e  fo u n d ") 
t e x t b o x . in s e r t ( t k .E N D , "\nGraphs c re a te d " ) 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

T im e _ D iff = CH2_time - CH1_time

d i s t  = E _ d is t .g e t ( )  
mass = E _ m a ss.g e t()  
d i s t  = f l o a t ( d i s t )  
mass = f l o a t (m ass)

sum_mass = E_sum _m ass.get() 
sum_mass = f l o a t (sum_mass)

A vg_ ve l = f l o a t ( ( d i s t  / T im e _ D iff)  * ( 1 / 12 ) * ( 1000) )  
KE_imp = 0 .5  * (mass / 3 2 .1 7 4 ) * A vg_ ve l ** 2 
KE_met = KE_imp * 1 .35 6
sum_KE_imp = 0 .5  * (sum_mass / 3 2 .1 7 4 ) * A vg_ ve l ** 2 
sum_KE_met = sum_KE_imp * 1 .3 5 6  
A vg_ ve l = s t r ( round(A v g _ v e l, 2 ) )
KE_imp = s t r ( round(KE_im p, 2 ) )
KE_met = s t r ( round(KE_met, 2 ) )  
sum_KE_imp = s t r ( round(sum_KE_imp, 2 ) )  
sum_KE_met = s t r ( round(sum_KE_met, 2 ) )  
mass = s t r ( round(m ass, 2 ) )  
sum_mass = s t r ( round(sum_mass, 2) )
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# N o t e  t h a t  c h a n n e l  3  i s  a l w a y s  s e n s o r  1 ,  CH4 =  S e n s 2 ,  e t c .  
CH3max = fin d _ stra in _ m a x (C H 3 d a ta )
CH4max = fin d _ stra in _ m a x (C H 4 d a ta )
CH5max = fin d _ stra in _ m a x (C H 5 d a ta )
CH6max = fin d _ stra in _ m a x (C H 6 d a ta )
CH7max = fin d _ stra in _ m a x (C H 7 d a ta )
CH8max = fin d _ stra in _ m a x (C H 8 d a ta )

CH3min = fin d _ stra in _ m in (C H 3 d a ta )
CH4min = fin d _ stra in _ m in (C H 4 d a ta )
CH5min = fin d _ stra in _ m in (C H 5 d a ta )
CH6min = fin d _ stra in _ m in (C H 6 d a ta )
CH7min = fin d _ stra in _ m in (C H 7 d a ta )
CH8min = fin d _ stra in _ m in (C H 8 d a ta )

CH3_xyz = g e t _ s e n s o r_ lo c a t io n (1 , 
CH4_xyz = g e t _ s e n s o r_ lo c a t io n (2 , 
CH5_xyz = g e t _ s e n s o r_ lo c a t io n (3 , 
CH6_xyz = g e t_ s e n s o r_ lo c a t io n (4 , 
CH7_xyz = g e t _ s e n s o r_ lo c a t io n (5, 
CH8_xyz = g e t _ s e n s o r_ lo c a t io n (6,

te x tb o x ,
te x tb o x ,
te x tb o x ,
te x tb o x ,
te x tb o x ,
te x tb o x ,

Output_fram e)
Output_fram e)
Output_fram e)
Output_fram e)
Output_fram e)
Output_fram e)

C H 3 _d ist = f in d _ se n so r_ d is ta n c e (C H 3 _ x y z , E_x, E_y) 
C H 4 _d ist = fin d _ se n so r_ d is ta n c e (C H 4 _ x y z , E_x, E_y) 
C H 5 _d ist = fin d _ se n so r_ d is ta n c e (C H 5 _ x y z , E_x, E_y) 
C H 6 _d ist = fin d _ se n so r_ d is ta n c e (C H 6 _ x y z , E_x, E_y) 
C H 7 _d ist = fin d _ se n so r_ d is ta n c e (C H 7 _ x y z , E_x, E_y) 
C H 8 _d ist = fin d _ se n so r_ d is ta n c e (C H 8 _ x y z , E_x, E_y)

C H 3 _ stre ss  
C H 4 _ stre ss  
C H 5 _ stre ss  
C H 6 _ stre ss  
C H 7 _ stre ss  
CH8 s t r e s s

fin d _ sim p le _ stre ss(C H 3 m a x , CH3min, te x tb o x )  
fin d _ sim p le _ stre ss(C H 4 m a x , CH4min, te x tb o x )  
fin d _ sim p le _ stre ss(C H 5 m a x , CH5min, te x tb o x )  
fin d _ s im p le _ stre ss(C H 6 m a x , CH6min, te x tb o x )  
fin d _ sim p le _ stre ss(C H 7 m a x , CH7min, te x tb o x )  
fin d _ sim p le _ stre ss(C H 8 m a x , CH8min, te x tb o x )

# f i n d s  o r d e r  o f  s e n s o r s  f r o m  c l o s e s t  t o  f u r t h e s t  f r o m  i m p a c t  s i t e  
d i s t _ l i s t  = [C H 3 _ d ist , C H 4 _ d ist, C H 5 _ d ist, C H 6 _ d ist, C H 7 _ d ist, C H 8 _ d ist]  
s t r e s s _ l i s t  = [C H 3 _ stre ss , C H 4 _ stre ss , C H 5 _ stre ss , C H 6 _ stre ss , C H 7 _ stre ss ,  

C H 8 _ stre ss]

d is t_ o rd  = s o r t _ d i s t ( d i s t _ l i s t )  
s tre s s _ o rd  = s o r t _ s t r e s s ( s t r e s s _ l i s t )

max_pos = s t r e s s _ l i s t . in d e x ( max( s t r e s s _ l i s t ) )
# s t r e s s  c h a n n e l s  s t a r t  a t  c h a n n e l  3 ,  h e n c e  m a x _ p o s  +  3

max_CH = max_pos + 3
max_CH = s t r (max_CH)
m ax_stress = max( s t r e s s _ l i s t )
m ax_stress = s t r (m a x _ stre ss)
m a x _ lis t  = [ ]
m a x _ l i s t . in s e r t ( 0 , max_CH) 
m a x _ l is t . in s e r t ( 1 , m ax _stre ss)
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powder_weight = E_p o w d er_w eigh t.get() 
m a te r ia l = m a t e r ia l .g e t ( )  
t a r g e t  = E _ t a r g e t .g e t ( )

d a t a _ l is t  = [[A v g _ v e l, KE_imp, KE_met, sum_KE_imp, sum_KE_met, 
pow der_w eight, mass, sum_mass, m a te r ia l,  t a r g e t ] ,

[CH3max, CH3min, C H 3 _ d ist, C H 3 _ s tre s s ] , [CH4max, CH4min, 
C H 4 _ d ist, C H 4 _ s tre s s ],

[CH5max, CH5min, C H 5 _ d ist, C H 5 _ s tre s s ] , [CH6max, CH6min, 
C H 6 _ d ist, C H 6 _ s tre s s ],

[CH7max, CH7min, C H 7 _ d ist, C H 7 _ s tre s s ] , [CH8max, CH8min, 
C H 8 _ d ist, C H 8 _ s tre s s ]]

c r e a t e _ b a s ic _ c h a r t s ( s t r e s s _ l is t )

ro s e tte _ s tre s s _ d a ta  = F u ll_ R o s e tte _ S c a n (te x tb o x , O utput_fram e) 
s tre s s _ d a ta  = r o s e t t e _ s t r e s s _ d a t a [2 ] 
w rite _ ro s e tte _ g r a p h s (s t r e s s _ d a ta )

m ax_axia l = [ r o s e t t e _ s t r e s s _ d a t a [ 0 ] ,  r o s e t t e _ s t r e s s _ d a t a [1 ] ]

w r it e _ o u t p u t _ f i le s ( t e s t _ d a t e _ f i le p a t h ,  d a t a _ l is t ,  d is t _ o r d , te x tb o x , 
m a x _ lis t ,  s t re s s _ o r d , m ax _a xia l)

la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
l a s t _ f i l e  = f i le p a t h [ la s t _ f i le _ p o s  + 1 :]
t e x t b o x . in s e r t ( t k .E N D , "\n\nA l l  v a lu e s  c a lc u la t e d \n\nWrote output f i l e :  " 

+ l a s t _ f i l e  + " O u tp u t.tx t"
"\n\nData se n t to  d a tab ase \n\nA n a ly s is  com plete")

re tu rn

d e f C H 1 _ 2 _ fu n c t io n (f):  
f  = s t r ( f )

f i l e  = "/CH" + f  + " . t x t "

w ith  open( f i le p a t h  + f i l e ,  ' r ' ) as c s v _ f i le :
f i le _ r e a d  = c s v . r e a d e r ( c s v _ f i le ,  d e lim it e r = ' , ' )

xd ata  = [ ]  
ydata = [ ]

f o r  row in  f i le _ r e a d :  
x = row[0 ] 
y = row[1 ]

x d a ta .a p p e n d (x)  
y d a ta .a p p e n d (y)

f o r  i  in  ran g e ( 0 , le n (x d a t a ) ) :  

x d a t a [ i]  = f l o a t ( x d a t a [ i ] )
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f o r  i  in  ran g e ( 0 , le n (y d a t a ) ) :

y d a t a [ i]  = f l o a t ( y d a t a [ i ] )

f i le _ d a t a  = l i s t ( z i p (x d a ta , y d a ta ))

i  = 0 
z = 49
b a s e lin e  = 0

# e s t a b L i s h e s  t h e  n o r m a l  s e n s o r  s i g n a l  f r o m  a  #  o f  d a t a p o i n t s  s t a r t i n g  a t

#  t h e  b e g i n n i n g  o f  t h e  d a t a .  V a r  a v g s i g  r e p r e s e n t s  t h e  a v e r a g e  u n a c t i v a t e d  
s e n s o r  s i g n a l

w h ile  i  <= z :
b a s e lin e  = b a s e lin e  + f i l e _ d a t a [ i ] [ 1 ] 
i  += 1

# a v e r a g e  s i g n a l  f o u n d  f r o m  a v e r a g e  o f  z  d a t a p o i n t s  
a v g s ig  = b a s e l in e / (z + 1 )

r  = 0 
z = 0
# U S E R :  s e t  v o l t a g e _ v a r i a n c e  ( v o l t a g e _ v a r )  j u s t  a b o v e  m a x i m u m  n o i s e  l e v e l  

o f  s e n s o r .
v o lta g e _ v a r  = .15  
f i le _ t im e  = 0 
v o lt s  = 0

# l o o p  c o m p a r e s  a l l  d a t a p o i n t s  i n  y  ( 2 n d )  c o l u m n  ( v o l t a g e )  a g a i n s t  t h e  
a v e r a g e  s e n s o r

#  s i g n a l  I O T  t o  d e t e r m i n e  w h e n  s e n s o r  v o l t a g e  d r o p s  ( i n f r a r e d  b e a m  b r o k e n  
b y  p r o j e c t i l e )

w h ile  r  <= le n ( f i le _ d a t a )  - 1 :

z = f i l e _ d a t a [ r ] [ 1 ] - a v g s ig  
z = a b s( z )  
r  += 1

# i f  v o l t a g e  v a r i a n c e  i s  f o u n d  a b o v e  v o l t a g e _ v a r  v a r i a b l e ,  r e c o r d s  t i m e  
i f  z > v o lta g e _ v a r :

f i le _ t im e  = f i l e _ d a t a [ r ] [ 0 ] 
v o lt s  = f i l e _ d a t a [ r ] [ 1 ] 
break

i f  r  == le n ( f i le _ d a t a )  - 1 :
p r i n t ( "CH" + f  + " . t x t  not fo u n d ") 
break

re tu rn  f i l e  tim e

d e f C H 3 _ 8 _ fu n c tio n (f, c ) :
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f  = s t r ( f )

f i l e  = "/CH" + f  + " . t x t "
# c o n v e r t  c  f r o m  m v / u e  t o  u e  
c = ( 1000/ c )

w ith  open( f i le p a t h  + f i l e ,  ' r ' ) as c s v _ f i le :
f i le _ r e a d  = c s v . r e a d e r ( c s v _ f i le ,  d e lim it e r = ' , ' )

xd ata  = [ ]  
ydata = [ ]

f o r  row in  f i le _ r e a d :  
x = row[0 ] 
y = row[1 ]

x d a ta .a p p e n d (x)  
y d a ta .a p p e n d (y)

# C o n v e r t s  d a t a  f r o m  s t r i n g  t o  f l o a t  
f o r  i  in  ran g e ( 0 , le n (x d a t a ) ) :  

x d a t a [ i]  = f l o a t ( x d a t a [ i ] )

# C o n v e r t s  y d a t a  ( v o l t s )  t o  m i c r o s t r a i n  ( u e )  

f o r  i  in  ran g e ( 0 , le n (y d a t a ) ) :  
y d a t a [ i]  = f l o a t ( y d a t a [ i ] )  
y d a t a [ i]  = y d a t a [ i]  * c

w rite _ g ra p h s (x d a ta , yd a ta , f )

f i le _ d a t a  = l i s t ( z i p (x d a ta , y d a ta ))

re tu rn  f i l e  data

d e f c r e a t e _ b a s ic _ c h a r t s ( s t r e s s _ l i s t ) :
ch a n n e ls  = [ "CH3", "CH4", "CH5", "CH6", "CH7", "CH8"]

p l t . i o f f ( )
p l t . c l f ( )
la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
l a s t _ f i l e  = f i le p a t h [ la s t _ f i le _ p o s  + 1 :]

p lt .b a r (c h a n n e ls ,  s t r e s s _ l i s t )  
p l t . x l a b e l ( 'C h a n n e ls ') 
p l t . y l a b e l ( 'S t r e s s  ( p s i ) ' )
p l t . t i t l e ( 'S t r e s s  per Ch an n el, ' + l a s t _ f i l e )
p l t . s a v e f i g ( f i l e p a t h  + '/ S t r e s s  per Channel ' + l a s t _ f i l e  + ' . p n g ' )

re tu rn

d e f f in d f i le p a t h ( t e s t _ d a t e _ f i le p a t h ) :
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g lo b a l f i le p a t h  
g lo b a l m a in _ f ile
f i le p a t h  = f i le d ia lo g . a s k d i r e c t o r y ( i n i t i a l d i r = te s t _ d a t e _ f i le p a t h ,  

t i t l e = " S e le c t  F i l e " ) 
p r i n t ( f i le p a t h )
la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
m a in _ f ile  = f i le p a t h [ 0 : la s t _ f i le _ p o s ]  
p r i n t (m a in _ f i le )  
p r i n t ( t e s t _ d a t e _ f i le p a t h )
m essageb o x.sh o w in fo ("In p u t D a ta ", "Copy and p a ste  th e  CSV f i l e s  (8 )  in to  

th e  new shot f o l d e r . \n P le a se  ensure th a t"
" th e  setu p  f i l e  f o r  t h i s  t e s t  date i s

in s id e  th e  t e s t  f o l d e r . " ) 

re tu rn

d e f f in d _ s e n s o r_ d is ta n c e (p o s , E_x, E _ y ): 
x_pos = E _ x .g e t ( )  
y_pos = E _ y .g e t ( )

x_pos = f l o a t (x_ p o s)  
y_pos = f l o a t (y_ p o s)

d i s t  = m a t h .s q rt ( (p o s [0 ]-x _ p o s )* * 2 + (p o s [1 ]-y _ p o s )* * 2 + (p o s [2 ] - 0 )* * 2 ) 
d i s t  = round( d i s t ,  1 )

re tu rn  d i s t

d e f f in d _ s tra in _ m a x (d a ta ):  
b = d a ta [0 ] [ 1 ]

f o r  i  in  ran g e ( 0 , le n (d a t a ) ) :  
i f  b <  d a t a [ i ] [ 1 ]:  

b = d a t a [ i ] [ 1 ]

re tu rn  b

d e f f in d _ s t r a in _ m in (d a t a ) :  
b = d a ta [0 ] [ 1 ]

f o r  i  in  ran g e ( 0 , le n (d a t a ) ) :  
i f  b >  d a t a [ i ] [ 1 ]:  

b = d a t a [ i ] [ 1 ]

re tu rn  b

d e f f in d _ t im e s (a _ d a ta , b_data, c _ d a ta ):

m ax_start = max(a _ d a ta [0 ] [ 0 ] ,  b _ d a ta [0 ] [ 0 ] ,  c _ d a ta [0 ] [ 0 ] )  
ms = s t r (m a x _ sta rt)
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p r i n t ( "max s t a r t  tim e : " + ms + " ms")

min_end = m in(a _ d a t a [ -1 ] [ 0 ] ,  b _ d a ta [-1 ] [ 0 ] ,  c _ d a t a [ -1 ] [ 0 ] )  
me = s t r (m in_end)
p r i n t ( "min end tim e : " + me + " ms")

min_max_times = [m a x _ sta rt, min_end]

re tu rn  min_max_times 
d e f in d e x _ 2 d ( l is t ,  v ) :

f o r  i ,  x  in  enum erate( l i s t ) :  
i f  v in  x :

re tu rn  i ,  x . in d e x (v )

d e f F u ll_ R o s e tte _ S c a n (te x tb o x , O u tp u t_fram e): 
x = 3
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )  
a_data = C H 3 _ 8 _ fu n ctio n (x , c )

x  = 4
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )  
b_data = C H 3 _ 8 _ fu n ctio n (x , c )

x  = 5
c = g e t_ s e n so r_ c o n v e rs io n (x , te x tb o x )  
c_data = C H 3 _ 8 _ fu n ctio n (x , c )

s tre s s _ p a ra  = g e t_ s tre s s _ p a ra m e te rs(te x tb o x )
Tavg = s t r e s s _ p a r a [ 0 ]
ModEavg = s t r e s s _ p a r a [1 ]
PR = s t r e s s _ p a r a [ 2 ]

a n g le s  = g e t_ ro s e _ a n g le s ()

ta  = a n g le s [ 0 ] 
tb  = a n g le s [ 1 ] 
t c  = a n g le s [ 2 ]

min_max_times = fin d _ t im e s (a _ d a ta , b_data, c_ d a ta )

# f i n d  ( r o w ,  c o l u m n )  o f  s t a r t  t i m e  
a _ s t a r t  = in d ex_2 d (a_ d a ta , m in_m ax_tim es[0 ] )  
b _ s ta r t  = in d ex_2 d (b _d ata , m in_m ax_tim es[0 ] )  
c _ s t a r t  = in d e x _ 2 d (c_ d a ta , m in_m ax_tim es[0 ] )
# f i n d  r o w  o f  s t a r t  t i m e  
a _ro w _sta rt = a _ s t a r t [ 0 ] 
b _ro w _start = b _ s t a r t [ 0 ] 
c_ ro w _ sta rt = c _ s t a r t [ 0 ]

a_end = in d ex_2 d (a_ d a ta , m in_m ax_tim es[1 ] )  
b_end = in d ex_2 d (b _d ata , m in_m ax_tim es[1 ] )  
c_end = in d e x _ 2 d (c_ d a ta , m in_m ax_tim es[1 ] )
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a_row_end = a_end[0 ] 
b_row_end = b_end[0 ] 
c_row_end = c_e n d [0 ]

d ata_ran ge  = a_row _end-a_row _start  
d r = s t r (d a ta _ ra n g e )

a x i a l_ s t r a i n _ l i s t  = [ 0 , 0 , 0 , 0 ] 
a x i a l_ s t r e s s _ l i s t  = [ 0 , 0 , 0 , 0 ] 
S tre s s_ S 1  = [ ]
S tre s s_ S 2  = [ ]
S t r e s s _ A x ia l  = [ ]  
tim e = [ ]

t e x t b o x . in s e r t ( t k .E N D , "\n R o se tte  Scan S t a r t . " ) 
t e x t b o x . in s e r t ( t k .E N D , "\nA n a ly s is  may take  s e v e r a l m inutes. 

STAND B Y . . . " )
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

\n PLEASE

a1 = 0 
a2 = 0 
a3 = 0

f o r  i  in  ran g e ( 0 , d a ta _ ra n g e ):
#  T h i s  L o o p  u s e s  s y m p y  t o  s o l v e  t h e  3  e q u a t i o n s  f o r  s t r a i n  i n  x ,  y ,  

a n d  s h e a r  ( v )

a = a _ d a ta [a _ ro w _ sta rt + i ] [ 1 ] 
b = b _ d ata [b _ro w _sta rt + i ] [ 1 ] 
c = c _ d a ta [c _ ro w _ sta rt  + i ] [ 1 ]

i f  i  > 0 .0 5  * data_range  and a1 == 0 : 
p r i n t ( " P ro g re s s : 5%") 
a1 = 1

i f  i  > 0 .5 0  * data_range  and a2 == 0 : 
p r i n t ( " P ro g re s s : 50%") 
a2 = 1

i f  i  > 0 .7 5  * data_range  and a3 == 0 : 
p r i n t ( " P ro g re s s : 75%")
a3 = 1

s = a / (m a th .c o s (m a th .ra d ia n s (ta ))  ** 2 ) 
s = round( s ,  4 )
d = (m a th .s in (m a t h .ra d ia n s (t a ))  ** 2) / (m a th .c o s (m a th .ra d ia n s (ta ))  **

2 )
d = round(d , 4 )
f  = (m a th .s in (m a t h .ra d ia n s (t a ))  * m a th .c o s (m a th .r a d ia n s (ta )) )  / 

(m a th .c o s (m a th .ra d ia n s (ta ))  ** 2 ) 
f  = round( f ,  4 )

g = b / (m a th .s in (m a th .ra d ia n s (tb ))  ** 2 ) 
g = round(g , 4 )
h = (m a th .c o s (m a th .ra d ia n s (tb ))  ** 2) / (m a th .s in (m a th .ra d ia n s (tb ))  **
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h = round(h , 4 )
j  = (m a th .s in (m a th .ra d ia n s (tb ))  * m a th .c o s (m a th .ra d ia n s (tb )) )  / 

(m a th .s in (m a th .ra d ia n s (tb ))  ** 2 ) 
j  = round( j ,  4 )

k = c / (m a th .s in (m a t h .r a d ia n s (t c ) )  * m a th .c o s (m a th .r a d ia n s (tc )) )  
k = round(k , 4 )
n = (m a th .c o s (m a th .ra d ia n s (tc ))  ** 2) / (m a th .s in (m a t h .ra d ia n s (t c ) )  

m a t h .c o s (m a th .r a d ia n s (tc )) )  
n = round(n , 4 )
m = (m a th .s in (m a t h .ra d ia n s (t c ) )  ** 2) / (m a th .s in (m a t h .ra d ia n s (t c ) )  

m a t h .c o s (m a th .r a d ia n s (tc )) )  
m = round(m, 4 )

eq1 = s p .F u n c t io n ( ' e q l ' ) 
eq2 = s p .F u n c t io n ( 'e q 2 ') 
eq3 = s p .F u n c t io n ( 'e q 3 ')

x , y , v = s p .s y m b o ls ( 'x  y  v ' )

eq1 = Eq (x  + y * d + v * f ,  s )
eq2 = Eq(y + x  * h + v * j ,  g )
eq3 = Eq(v + x  * n + y * m, k)

row1 = [ 1 , d, f ,  s]
row2 = [ 1 , h, j ,  g]
row3 = [ 1 , n, m, k]

system  = M a trix ((ro w 1 , row2, row 3))
s o l  = (so lv e _ lin e a r_ s y ste m (s y ste m , x , y , v ) )
Ex = s o l [ x ]
Ex = round(E x , 2 )
Ey = s o l[ y ]
Ey = round(E y , 2 )
Yxy = s o l[ v ]
Yxy = round(Y x y , 2)
Sx = (E x  * 10 ** ( - 6 ) )  * ModEavg
Sy = (Ey  * 10 ** ( - 6 ) )  * ModEavg
Sxy = (Yxy * 10 ** ( - 6 ) )  * ModEavg 
Savg = (S x  + Sy) / 2

E1 = ( ( E x  + Ey) / 2 ) + m a t h .s q r t ( ( ( ( E x  - Ey) / 2 ) ** 2 ) + (Y xy  / 2 )
2 )

E2 = ( ( E x  + Ey) / 2 ) - m a t h .s q r t ( ( ( ( E x  - Ey) / 2 ) ** 2 ) + (Y xy  / 2 )
2 )

E1 = round(E 1 , 2 )
E2 = round(E 2 , 2 )
51 = (E1 * 10 ** ( - 6 ) )  * ModEavg
52 = ( e 2 * 10 ** ( - 6 ) )  * ModEavg

Emin = m in(E 1 , E2)
Ez = -(E m in ) / PR 
Ez = round(E z ,  2 )

2)

*

*

**
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Sz = (E z  * ( 10 ** ( - 6 ) ) )  * ModEavg

S tre ss_ S 1 .a p p e n d (S 1 )
S tre ss_ S 2 .a p p e n d (s2 )
S tre s s _ A x ia l.a p p e n d (S z )  
t im e .a p p e n d (a _ d a ta [a _ ro w _ sta rt + i ] [ 0 ] )

A v g _ S tra in  = (E x  + Ey) / 2
A v g _ S tre ss  = (A v g _ S tra in  * ( 10 ** ( - 6 ) ) )  * ModEavg

#  T h e t a  =  ( m a t h . d e g r e e s ( m a t h . a t a n ( Y x y  /  ( E x  -  E y ) ) ) )  /  2
#  T h e t a  =  r o u n d ( T h e t a ,  2 )

#  #  m a x  s h e a r  s t r a i n

#  Y  =  ( m a t h . s q r t ( ( ( ( E x  -  E y )  /  2 )  ** 2 )  +  ( ( Y x y  /  2 )  ** 2 ) ) )  *  2

#  Y s t r e s s  =  s t r e s s _ p a r a [ 1 ]  *  ( Y  *  1 0  ** ( - 6 ) )

i f E1 > a x i a l _ s t r a i n _ l i s t [ 0 ] :  
a x i a l _ s t r a i n _ l i s t [ 0 ] = E1 
a x i a l _ s t r a i n _ l i s t [ 1 ] = E2 
a x i a l _ s t r a i n _ l i s t [ 2 ] = Ez 
a x i a l _ s t r a i n _ l i s t [ 3 ] = A v g _ S tra in

a x i a l _ s t r e s s _ l i s t [ 0 ]
a x i a l _ s t r e s s _ l i s t [ 1 ]
a x i a l _ s t r e s s _ l i s t [ 2 ]
a x i a l _ s t r e s s _ l i s t [ 3 ]

51
52 
Sz
A v g _ S tre ss

s tre s s _ d a ta  = [S t r e s s _ S 1 , S tre s s _ S 2 , S t r e s s _ A x ia l ,  tim e]

#  t e x t b o x . i n s e r t ( t k . E N D ,  " \ n R o s e t t e  D a t a  S c a n  C o m p l e t e " )

#  O u t p u t _ f r a m e . u p d a t e _ i d l e t a s k s ( )

re tu rn  a x i a l_ s t r a i n _ l i s t ,  a x i a l_ s t r e s s _ l i s t ,  s t re s s_ d a ta

d e f f in d _ s im p le _ s tre s s (s t ra in _ m a x , s t r a in _ m ir , te x tb o x ):

s tre s s _ p a ra  = g e t_ s tre s s _ p a ra m e te rs(te x tb o x )

x  = stra in _m ax  
x = f l o a t (x )
# c o n v e r t  s t r a i n  t o  s t r e s s

s t r e s s  = s t r e s s _ p a r a [ 1 ] * (x  * 10* * ( - 6 ) )
s t r e s s  = round( s t r e s s ,  2 )

re tu rn  s t r e s s

d e f g e t_ r o s e _ a n g le s () :

S e t u p _ f i le  = open( " S e t u p .t x t " , " r " ) 
S e tu p _ s tr in g  = S e t u p _ f i le .r e a d ( )  
S e t u p _ f i le .c lo s e ( )
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z = S e t u p _ s t r in g . f in d ( "Theta a : " ) 
x = S e t u p _ s t r in g . f in d ( ' , ' , z )  
y = le n ( "Theta a : " ) 
a = S e t u p _ s t r in g [ ( z  + y ) : x ]

z = S e t u p _ s t r in g . f in d ( "Theta b :" ) 
x = S e t u p _ s t r in g . f in d ( ' , ' , z )  
y = le n ( "Theta b : " ) 
b = S e t u p _ s t r in g [ ( z  + y ) : x ]

z = S e t u p _ s t r in g . f in d ( "Theta c : " ) 
x = S e t u p _ s t r in g . f in d ( ' , ' , z )  
y = le n ( "Theta c : " ) 
c = S e t u p _ s t r in g [ ( z  + y ) : x ]

a = f l o a t (a )  
b = f l o a t (b ) 
c = f l o a t (c )

a n g le s  = [a , b, c ]

re tu rn  a n g le s

d e f g e t_ s e n s o r_ lo c a t io n (s e n s o r , te x tb o x , O utput_fram e):
# T h i s  f u n c t i o n  a t t e m p t s  t o  o p e n  t h e  s e t u p  f i l e ,  w h i c h  s t o r e s  t h e  L o c a t i o n  

d a t a  o f  t h e  s e n s o r s  a n d  o t h e r  d a t a
# I f  S e t u p . t x t  i s  f o u n d ,  f u n c t i o n  g e t s  t h e  t h i c k n e s s  o f  t h e  p l u g  a n d  t h e  

x / y  l o c a t i o n  o f  t h e  s e n s o r s  
t r y :

S e t u p _ f i le  = open(m a in _ f i le  + " / S e t u p .t x t " , " r " ) 
i f  sen so r == 1 :

t e x t b o x . in s e r t ( t k .E N D , "\nS e t u p .t x t  fo u n d ") 
O u tp u t_ fra m e .u p d a te _ id le ta sk s()

excep t F ile N o tF o u n d E rro r :
t e x t b o x . in s e r t ( t k .E N D , "\nS e t u p .t x t  not fo u n d ") 
re tu rn

t r y :
S e t u p _ f i le  = open(m a in _ f i le  + " / S e t u p .t x t " , " r " ) 
S e tu p _ s tr in g  = S e t u p _ f i le .r e a d ( )
S e t u p _ f i le .c lo s e ( )
T h ic k _ lo c  = S e t u p _ s t r in g . f in d ( "\ " " )
T h ic k  = S e t u p _ s t r in g [ ( T h ic k _ lo c  + 1 ) : ( T h ic k _ lo c  + 5) ]  
T h ic k  = f l o a t (T h ic k )

S e n so r_ lo c  = [ ]

sen so r = s t r (s e n so r)
c u rre n t_ se n so r  = ( "Sen so r " + se n so r)
lo c _ in d e x  = S e t u p _ s t r in g .f in d (c u r r e n t_ s e n s o r )
x  = S e t u p _ s t r in g [ ( lo c _ in d e x  + 1 1 ) : ( lo c _ in d e x  + 16 ) ]
y = S e t u p _ s t r in g [ ( lo c _ in d e x  + 1 8 ) : ( lo c _ in d e x  + 23) ]
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x = f l o a t (x )  
y = f l o a t (y )
S e n s o r _ lo c . in s e r t ( 0 , x )
S e n s o r _ lo c . in s e r t ( 1 , y )
S e n s o r _ lo c . in s e r t ( 2 , T h ic k )

excep t F ile N o tF o u n d E rro r :
t e x t b o x . in s e r t ( t k .E N D , "\n Lo c a tio n  data not fo u n d ") 
re tu rn

re tu rn  Sensor lo c

d e f g e t_ se n so r_ co n v e rs io n (C h a n n e l, te x tb o x ):
# f u n c t i o n  f i n d s  t h e  s e n s o r  o n  t h e  g i v e n  c h a n n e l  i n  t h e  s e t u p  f i l e ,  t h e n  

f i n d s  t h e  c o n v e r s i o n  r a t i o  o f  t h a t  s e n s o r
# r e t u r n s  t h e  c o n v e r s i o n  r a t i o  a s  m V / m i c r o s t r a i n  
t r y :

Channel = s t r (C h an n e l)
S e t u p _ f i le  = open(m a in _ f i le  + " / S e t u p .t x t " , " r " )
S e tu p _ s tr in g  = S e t u p _ f i le .r e a d ( )
S e t u p _ f i le .c lo s e ( )
CH = "CH" + Channel
z = S e t u p _ s t r in g .f in d (C H )
x = S e t u p _ s t r in g [ ( z  + 4 ) : ( z  + 8 ) ]
C o n ve rsio n _ In d e x  = S e t u p _ s t r in g . f in d ( "SN" + x )  
c = S e tu p _ s tr in g [(C o n v e rs io n _ In d e x  + 7 ) :(C o n v e rs io n _ In d e x  + 11) ]  
c = f l o a t ( c )

excep t F ile N o tF o u n d E rro r :
t e x t b o x . in s e r t ( t k .E N D , "\nC o n versio n  data not fo u n d ") 
re tu rn

re tu rn  c

d e f g e t_ s tre s s _ p a ra m e te rs (te x tb o x ):  

t r y :
S e t u p _ f i le  = open(m a in _ f i le  + " / S e t u p .t x t " , " r " ) 
S e tu p _ s tr in g  = S e t u p _ f i le .r e a d ( )  
S e t u p _ f i le .c lo s e ( )

#  z  =  S e t u p _ s t r i n g . f i n d ( " T e n s i L e  m a x : " )
#  x  =  l e n ( " T e n s i l e  m a x : " )

#  T m a x  =  S e t u p _ s t r i n g [ ( z  +  x ) : ( z  +  x  +  5 ) ]

#

#  z  =  S e t u p _ s t r i n g . f i n d ( " T e n s i l e  m i n : " )

#  x  =  l e n ( " T e n s i l e  m i n : " )
#  T m i n  =  S e t u p _ s t r i n g [ ( z  +  x ) : ( z  +  x  +  5 ) ]

#

#  z  =  S e t u p _ s t r i n g . f i n d ( " M o d  o f  E l a s  m a x : " )

#  x  =  l e n ( " M o d  o f  E l a s  m a x : " )

#  M o d E m a x  =  S e t u p _ s t r i n g [ ( z  +  x ) : ( z  +  x  +  9 ) ]
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#  z  =  S e t u p _ s t r i n g . f i n d ( " M o d  o f  E L a s  m i n : " )
#  x  =  l e n ( " M o d  o f  E l a s  m i n : " )

#  M o d E m i n  =  S e t u p _ s t r i n g [ ( z  +  x ) : ( z  +  x  +  9 ) ]

# g e t s  a v g  t e n s i l e  s t r e n g t h  a n d  m o d u l u s  o f  e l a s t i c i t y  f r o m  S e t u p . t x t  

z = S e t u p _ s t r in g . f in d ( " T e n s ile  a v g :" ) 
x = S e t u p _ s t r in g . f in d ( ' , ' , z )  
y = le n ( " T e n s ile  a v g :" )
Tavg = S e t u p _ s t r in g [ ( z  + y ) : x ]

z = S e t u p _ s t r in g . f in d ( "Mod o f E la s  a v g :" ) 
x = S e t u p _ s t r in g . f in d ( ' , ' , z )  
y = le n ( "Mod o f  E la s  a v g :" )
ModEavg = S e t u p _ s t r in g [ ( z  + y ) : x ]

z = S e t u p _ s t r in g . f in d ( " P o is s o n 's  R a tio  a v g :" ) 
x = S e t u p _ s t r in g . f in d ( ' , ' , z )  
y = le n ( " P o is s o n 's  R a t io  a v g :" )
PR = S e t u p _ s t r in g [ ( z  + y ) : x ]

Tavg = f l o a t (T a v g )
ModEavg = f l o a t (ModEavg)
PR = f l o a t (PR)

s tre s s _ p a ra  = [T a vg , ModEavg, PR]

excep t F ile N o tF o u n d E rro r :
t e x t b o x . in s e r t ( t k .E N D , "\nS t r e s s  data not fo u n d ") 
re tu rn

re tu rn  s tre s s_ p a ra

#

d e f g e t_ te s t_ d a te (te x tb o x ):  

t r y :
S e t u p _ f i le  = open(m a in _ f i le  + " / S e t u p .t x t " , " r " ) 
S e tu p _ s tr in g  = S e t u p _ f i le .r e a d ( )
S e t u p _ f i le .c lo s e ( )
d a te _ lo c  = S e t u p _ s t r in g . f in d ( "T e st D a te :" )
date = S e tu p _ s t r in g [(d a t e _ lo c  + 10 ) : ( d a t e _ lo c  + 20)]

re tu rn  date

excep t F ile N o tF o u n d E rro r :
t e x t b o x . in s e r t ( t k .E N D , "\nT e st  Date not fo u n d ") 
re tu rn

d e f g o _ b a c k (g u i) :  
g u i.d e s t r o y ( )  
re tu rn
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d e f m a k e _ sh o t_ fo ld e r(g u i, f i le p a t h ,  E _ d e s c r ip t io n ) :

d e s c r ip t o r  = E _ d e s c r ip t io n .g e t ( )  
o s .m k d ir ( f i le p a t h  + "/" + d e s c r ip t o r )  
g u i.d e s t r o y ( )

re tu rn

d e f m a k e _ n e w _ sh o t_ fo ld e r(file p a th ): 
g u i = T o p le v e l( )  
g u i . t i t l e ( "New Shot F o ld e r" ) 
g u i. ic o n b it m a p ( 'M S T _ Ic o n .ic o ' ) 
g u i.g e o m e try ("+860+400")

d e s c r ip t io n _ la b e l  = L a b e l( g u i,  t e x t = "E n te r t e s t  d e s c r ip t o r :" ) 
E _ d e s c r ip t io n  = E n t r y (g u i,  w id th =20, b o rd erw id th =5) 
go_back = B u tto n (g u i, t e x t = "C re a te  Shot F o ld e r " , command=lam bda: 

m a k e _ sh o t_ fo ld e r(g u i, f i le p a t h ,  E _ d e s c r ip t io n ) ,
f g = "w h ite ", bg=" b la c k " )

d e s c r ip t io n _ la b e l . g r id ( row=1 , column=0 , padx=5, pady=5) 
E _ d e s c r ip t io n .g r id ( row=2 , column=0 , padx=5, pady=5) 
g o _ b a c k .g r id (row=3 , column=0 , padx=5 , pady=5)

re tu rn

d e f s o r t _ d i s t ( d i s t _ l i s t ) :

la b e le d _ d is t  = [ [ "CH3", 0 ] ,  [ "CH4", 0 ] ,  [ "CH5", 0 ] ,  [ "CH6", 0 ] ,  [ "CH7", 
0 ] ,  [ "CH8", 0 ]]

f o r  i  in  ran g e ( 0 , le n ( d i s t _ l i s t ) ) :
CH = "CH" + s t r ( i  + 3 ) 
d is t  = d i s t _ l i s t [ i ]  
l a b e l e d _ d i s t [ i ] [ 0 ] = CH 
l a b e l e d _ d i s t [ i ] [ 1 ] = d is t

la b e le d _ d is t . s o r t ( key=lambda x : x [ 1 ] )

re tu rn  la b e le d  d i s t

d e f s o r t _ s t r e s s ( s t r e s s _ l i s t ) :
la b e le d _ s t re s s  = [ [ "CH3", 0 ] ,  [ "CH4", 0 ] ,  [ "CH5", 0 ] ,  [ "CH6", 0 ] ,  [ "CH7", 

0 ] ,  [ "CH8", 0 ]]

f o r  i  in  ran g e ( 0 , le n ( s t r e s s _ l i s t ) ) :
CH = "CH" + s t r ( i  + 3 ) 
s t r e s s  = s t r e s s _ l i s t [ i ]  
l a b e le d _ s t r e s s [ i ] [ 0 ] = CH 
l a b e le d _ s t r e s s [ i ] [ 1 ] = s t r e s s
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la b e le d _ s t re s s  = s o rte d ( la b e le d _ s t r e s s ,  key=lambda v : v [ 1 ] ,  re v e rs e =T ru e ) 

re tu rn  la b e le d  s t r e s s

d e f w rite _ g ra p h s (x d a ta , yd a ta , f ) :

p l t . i o f f ( )
p l t . c l f ( )
la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
l a s t _ f i l e  = f i le p a t h [ la s t _ f i le _ p o s  + 1 :]

p lt .p lo t ( x d a t a ,  y d a ta )
p l t . x l a b e l ( 'Tim e ( m s ) ')
p l t . y l a b e l ( 'ue ( m ic r o - s t r a in ) ' )
p l t . t i t l e ( 'C H ' + f  + ' \nTime v s  M ic r o -S t ra in  ' )
p l t . s a v e f i g ( f i l e p a t h  + '/C H ' + f  + ' Time v s  M ic r o -S t r a in _ ' + l a s t _ f i l e  + 

' . p n g ' )

re tu rn

d e f w rite _ ro se tte _ g ra p h s(R S D ):

p l t . i o f f ( )
p l t . c l f ( )
la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
l a s t _ f i l e  = f i le p a t h [ la s t _ f i le _ p o s  + 1 :]

51 = RSD[0 ]
52 = RSD[1 ]
Sz = RSD[2 ] 
tim e = RSD[3 ]

p l t .p lo t ( t im e ,  S1) 
p lt .p lo t ( t im e ,  S2)
# p L t . p L o t ( t i m e } S z )  
p l t . x l a b e l ( 'Tim e ( m s ) ') 
p l t . y l a b e l ( 'S t r e s s  ( p s i ) ' ) 
p l t . t i t l e ( 'P r in c ip le  S t r e s s e s ' ) 
p l t . l e g e n d ( [ ' S 1 ' , ' S 2 ' ] )
p l t . s a v e f i g ( f i l e p a t h  + '/ P r in c ip le  S t r e s s e s _ ' + l a s t _ f i l e  + ' . p n g ' ) 

re tu rn

d e f w r it e _ o u t p u t _ f i le s ( t e s t _ d a t e _ f i le p a t h ,  d a t a _ l is t ,  d is t _ o r d , te x tb o x , 
m a x _ lis t ,  s t re s s _ o r d , m a x _ a x ia l):

# f u n c t i o n  f i n d s  f i l e  n a m e  o f  t h e  L a s t  s e l e c t e d  f i l e ,  t h e n  w r i t e s  p r o g r a m  
r e s u l t s  t o  " L a s t _ f i L e  O u t p u t . t x t "

la s t _ f i le _ p o s  = f i l e p a t h . r f i n d ( " / " , 0 ) 
l a s t _ f i l e  = f i le p a t h [ la s t _ f i le _ p o s + 1 :]
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date = g e t_ te s t_ d a te (te x tb o x )
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O u tp u t_ f ile  = open( f i le p a t h  + '/ '  + l a s t _ f i l e  + " O u t p u t .t x t " , "w") 
O u t p u t _ f i le . w r it e ( la s t _ f i le  + " Output F i l e " )
O u t p u t _ f i le .w r it e ( "\nT e st D ate: " + d ate) 
O u t p u t _ f i le .w r it e ( "\n\nP r o je c t i le  D a ta ")
O u t p u t _ f i le .w r it e ( "\nAverage Im pact V e lo c it y :  " + d a t a _ l i s t [ 0 ] [ 0 ] + " 

f t / s " )
O u t p u t _ f i le .w r it e ( "\n K in e t ic  Energy o f  t e s t  p r o je c t i le :  " + 

d a t a _ l i s t [ 0 ] [ 1 ] + " f t - l b s ,  "
+ d a t a _ l i s t [ 0 ] [ 2 ] + " J o u le s " )

O u t p u t _ f i le .w r it e ( "\nSum KE o f  p r o je c t i le ,  wad, and sa b o t: " + 
d a t a _ l i s t [ 0 ] [ 3 ] + " f t - l b s ,  "

+ d a t a _ l i s t [ 0 ] [ 4 ] + " J o u le s " )
O u t p u t _ f i le .w r it e ( "\n P r o je c t i le  w eigh t: " + d a t a _ l i s t [ 0 ] [ 6 ] + " lb s " ) 
O u t p u t _ f i le .w r it e ( "\n P r o je c t i le  m a te r ia l:  " + d a t a _ l i s t [ 0 ] [ 8 ] )  
O u t p u t _ f i le .w r it e ( "\nT o t a l shot w eigh t: " + d a t a _ l i s t [ 0 ] [ 7 ] + " lb s " ) 
O u t p u t _ f i le .w r it e ( "\n Powder w eigh t: " + d a t a _ l i s t [ 0 ] [ 5 ] + " l b s " ) 
O u t p u t _ f i le .w r it e ( "\nT a rg e t : " + d a t a _ l i s t [ 0 ] [ 9 ] )
O u t p u t _ f i le .w r it e ( "\nMax s t r e s s :  " + m a x _ lis t [ 1 ] + " p s i  on Channel " + 

m a x _ lis t [ 0 ] )

O u t p u t _ f i le .w r it e ( "\n\nSen so r o rd e r , from c lo s e s t  to  fu r t h e s t  from im pact 
s i t e : " )

f o r  i  in  ran g e ( 0 , le n ( d is t _ o r d ) ) :  
x = s t r ( d i s t _ o r d [ i ] [ 0 ] )
O u t p u t _ f i le .w r it e ( "\ n " + x )

O u t p u t _ f i le .w r it e ( "\n\nS t r e s s  o rd e r , h ig h e s t  to  lo w e s t :" ) 
f o r  i  in  ran g e ( 0 , le n ( s t r e s s _ o r d ) ) :  

x = s t r ( s t r e s s _ o r d [ i ] [ 0 ] )  
y = s t r ( s t r e s s _ o r d [ i ] [ 1 ] )
O u t p u t _ f i le .w r it e ( "\ n " + x  + ": " + y + " p s i" )

O u t p u t _ f i le .w r it e ( "\n\nR o se tte  max a x ia l  s t r a in  d a t a :" ) 
O u t p u t _ f i le .w r it e ( ( "\nMax a x i a l  s t r a in  E z: " + s t r (m a x _ a x ia l[0 ] [ 2 ] ) ) )  
O u t p u t _ f i le .w r it e ( ( "\nP r in c ip le  s t r a in  E1: " + s t r (m a x _ a x ia l[0 ] [ 0 ] ) ) )  
O u t p u t _ f i le .w r it e ( ( "\nP r in c ip le  s t r a in  E2: " + s t r (m a x _ a x ia l[0 ] [ 1 ] ) ) )  
O u t p u t _ f i le .w r it e ( ( "\nAverage s t r a in :  " + s t r (m a x _ a x ia l[0 ] [ 3 ] ) ) )

O u t p u t _ f i le .w r it e ( "\n\nR o se tte  max a x ia l  s t r e s s  d a t a :" ) 
O u t p u t _ f i le .w r it e ( ( "\nMax a x i a l  s t r e s s  S z : " + s t r ( round(m a x _ a x ia l[1 ] [ 2 ] ,  

2 ) ) )  + " p s i" )
O u t p u t _ f i le .w r it e ( ( "\nP r in c ip le  s t r e s s  S1: " + s t r ( round(m a x _ a x ia l[1 ] [ 0 ] ,  

2 ) ) )  + " p s i" )
O u t p u t _ f i le .w r it e ( ( "\nP r in c ip le  s t r e s s  S2: " + s t r ( round(m a x _ a x ia l[1 ] [ 1 ] ,  

2 ) ) )  + " p s i" )
O u t p u t _ f i le .w r it e ( ( "\nAverage s t r e s s :  " + s t r ( round(m a x _ a x ia l[1 ] [ 3 ] ,  2 ) ) )  

+ " p s i" )

O u t p u t _ f i le .c lo s e ( )
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f o r  i  in  ran g e ( 1 , le n ( d a t a _ l i s t ) ) :  
x = i  + 2 
x = s t r (x )

O u tp u t_ f ile  = open( f i le p a t h  + ' / '  + l a s t _ f i l e  + " O u t p u t .t x t " , " a " ) 
O u t p u t _ f i le .w r it e ( "\n\nChannel " + x  + " D a ta ")

mx = d a t a _ l i s t [ i ] [ 0 ] 
mx = round(mx, 2 ) 
mx = s t r (mx)
O u t p u t _ f i le .w r it e ( "\nMax S t r a in  (u e ):  " + mx)

mn = d a t a _ l i s t [ i ] [ 1 ] 
mn = round(mn, 2 ) 
mn = s t r (mn)
O u t p u t _ f i le .w r it e ( "\nMin S t r a in  (u e ):  " + mn)

d is t  = d a t a _ l i s t [ i ] [ 2 ] 
d is t  = round( d i s t ,  2 ) 
d is t  = s t r ( d i s t )
O u t p u t _ f i le .w r it e ( "\nD is ta n c e  from h it  lo c a t io n  ( i n ) :  " + d i s t )

s t r e s s  = d a t a _ l i s t [ i ] [ 3 ] 
s t r e s s  = s t r ( s t r e s s )
O u t p u t _ f i le .w r it e ( "\nS t r e s s  ( p s i ) :  " + s t r e s s )  

O u t p u t _ f i le .c lo s e ( )

# W r i t e  t o  d a t a b a s e
la s t _ f i le _ p o s  = t e s t _ d a t e _ f i le p a t h . r f in d ( " / " , 0 ) 
l a s t _ f i l e  = t e s t _ d a t e _ f i le p a t h [ la s t _ f i le _ p o s  + 1 :]  
p ro je c t _ d ir e c t o r y  = t e s t _ d a t e _ f i l e p a t h . r s t r i p ( la s t _ f i l e )  
f o r  f i l e  in  o s . l i s t d i r ( p r o je c t _ d ir e c t o r y ) :  

i f  f i le . e n d s w it h ( " .d b " ) :
d a t a _ f i le  = o s .p a t h . jo in ( p r o je c t _ d ir e c t o r y ,  f i l e )

database = s q l it e 3 .c o n n e c t ( d a t a _ f i le )  
r  = d a ta b a s e .c u rs o r ()

a x ia l  = s t r (m a x _ a x ia l[1 ] [ 2 ] )

r .e x e c u t e ( "INSERT INTO shot VALUES ( :d a t e ,  :m a t e r ia l ,  :p ro j_ m a ss, 
:pwdr_mass, :K E , :a v g v e l ,  :max_S, :m a x _ a x ia l, :s h o t _ o s _ d ir e c t o r y )" ,

{
' d a t e ' : d a te ,
'm a t e r ia l ' : d a t a _ l i s t [ 0 ] [ 8 ] ,
'p r o j_ m a s s ': d a t a _ l i s t [ 0 ] [ 6 ] ,
'pw dr_m ass': d a t a _ l i s t [ 0 ] [ 5 ] ,
' K E ' : d a t a _ l i s t [ 0 ] [ 1 ] ,
'a v g v e l ' : d a t a _ l i s t [ 0 ] [ 0 ] ,
'm a x _ S ': m a x _ lis t [ 1 ] ,
'm a x _ a x ia l ': a x ia l ,
's h o t _ o s _ d ir e c t o r y ': f i le p a t h
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} )

d a tab ase .co m m it()
d a t a b a s e .c lo s e ()

re tu rn



Example Setup text document (.txt)

Plug Thickness: "36.0"

Test Date:18OCT2019

Sensor Locations (inches, x,y) bottom left corner (front view):

108

Sensor 1: "57.00, 36.00"

Sensor 2: "62.12, 37.12"

Sensor 3: "62.12, 33.88"

Sensor 4: "03.00, 36.00"

Sensor 5: "60.00, 69.00"

Sensor 6: "60.00, 03.00"

Strain Gauge rosette angles (degrees) 

Theta a:0.0,

Theta b:135.0,

Theta c:225.0,
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Strain Gauge on each Channel (DO edit this, no spaces/tabs):

CH3:8228

CH4:8266

CH5:8269

CH6:8226

CH7:8268

CH8:8227

Strain Gauge Serial Number and mV to ue conversion (Don't edit this unless new sensor 

used):

SN8266:42.2

SN8269:50.0

SN8226:52.0

SN8268:44.8

SN8227:51.4

SN8229:40.5

SN8267:50.8

SN8228:42.4

Concrete stress values (psi) (edit to change concrete properties): 

Tensile avg:550.0,

Mod of Elas avg:4000000.0,

Poisson's Ratio avg:0.15,
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Tensile max:700.0,

Tensile min:400.0,

Mod of Elas max:6000000.0, 

Mod of Elas min:2000000.0,



Example Output File (.txt)

Steel Slug 10 lb Output File 

Test Date: 18OCT2019
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Projectile Data

Average Impact Velocity: 507.34 ft/s

Kinetic Energy of test projectile: 40000.21 ft-lbs, 54240.29 Joules

Sum KE of projectile, wad, and sabot: 74000.4 ft-lbs, 100344.54 Joules

Projectile weight: 10.0 lbs

Projectile material: steel

Total shot weight: 18.5 lbs

Powder weight: 1 lbs

Target: Reinforced Seal

Max stress: 167.25 psi on Channel 4

Sensor order, from closest to furthest from impact site:

CH3

CH4

CH5

CH7

CH6

CH8



Stress order, highest to lowest:

CH4: 167.25 psi 

CH3: 117.77 psi 

CH5: 100.58 psi 

CH7: 72.88 psi 

CH6: 60.22 psi 

CH8: 52.33 psi

Rosette max axial strain data:

Max axial strain Ez: 24.80 

Principle strain E1: -3.72 

Principle strain E2: -10.36 

Average strain: -7.04

Rosette max axial stress data:

Max axial stress Sz: 99.20 psi 

Principle stress S1: -14.88 psi 

Principle stress S2: -41.44 psi 

Average stress: -28.16 psi

Channel 3 Data 

Max Strain (ue): 29.44 

Min Strain (ue): -22.53
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Distance from hit location (in): 39.5 

Stress (psi): 117.77

Channel 4 Data

Max Strain (ue): 41.81

Min Strain (ue): -30.89

Distance from hit location (in): 41.5

Stress (psi): 167.25

Channel 5 Data

Max Strain (ue): 25.14

Min Strain (ue): -22.34

Distance from hit location (in): 42.0

Stress (psi): 100.58

Channel 6 Data

Max Strain (ue): 15.05

Min Strain (ue): -11.16

Distance from hit location (in): 53.4

Stress (psi): 60.22

Channel 7 Data
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Max Strain (ue): 18.22



Min Strain (ue): -21.03 

Distance from hit location (in): 48.5 

Stress (psi): 72.88

Channel 8 Data

Max Strain (ue): 13.08

Min Strain (ue): -13.43

Distance from hit location (in): 56.0

Stress (psi): 52.33
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